1
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
2
|
Ye X, Sun J, Tian Y, Chen J, Yao X, Quan X, Huang L. Identification of YUC genes associated with leaf wrinkling trait in Tacai variety of Chinese cabbage. PeerJ 2024; 12:e17337. [PMID: 38784401 PMCID: PMC11114110 DOI: 10.7717/peerj.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.
Collapse
Affiliation(s)
- Xuelian Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ji Sun
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, China
| | - Yuan Tian
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jingwen Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiangtan Yao
- Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Xinhua Quan
- Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Li Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li J, Ren J, Lei X, Fan W, Tang L, Zhang Q, Bao Z, Zhou W, Bai J, Zhang Y, Gong C. CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought. Cell Rep 2024; 43:113987. [PMID: 38517888 DOI: 10.1016/j.celrep.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmin Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhulatai Bao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhou Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Xu D, Yang L. Spatial regulation of immunity: unmasking the secrets of abaxial immunity to powdery mildew. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1213-1216. [PMID: 38416207 PMCID: PMC10901199 DOI: 10.1093/jxb/erae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article comments on: Wu Y, Sexton WK, Zhang Q, Bloodgood D, Wu Y, Hooks C, Coker F, Vasquez A, Wei C-I, Xiao S. 2024. Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. Journal of Experimental Botany 75, 1465-1478.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Hou J, Xu Y, Zhang S, Yang X, Wang S, Hong J, Dong C, Zhang P, Yuan L, Zhu S, Chen G, Tang X, Huang X, Zhang J, Wang C. Auxin participates in regulating the leaf curl development of Wucai (Brassica campestris L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13908. [PMID: 37022777 DOI: 10.1111/ppl.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) belongs to the Brassica genus of the Cruciferae family, and its leaf curl is a typical feature that distinguishes Wucai from other nonheading cabbage subspecies. Our previous research found that plant hormones were involved in the development of the leaf curl in Wucai. However, the molecular mechanisms and the hormones regulating the formation of leaf curl in Wucai have not yet been reported. This study aimed to understand the molecular functions related to hormone metabolism during the formation of leaf curl in Wucai. A total of 386 differentially expressed genes (DEGs) were identified by transcriptome sequencing of two different morphological parts of the same leaf of Wucai germplasm W7-2, and 50 DEGs were found to be related to plant hormones, which were mainly involved in the auxin signal transduction pathway. Then, we measured the content of endogenous hormones in two different forms of the same leaf of Wucai germplasm W7-2. A total of 17 hormones with differential content were identified, including auxin, cytokinins, jasmonic acids, salicylic acids, and abscisic acid. And we found that treatment with auxin transport inhibitor N-1-naphthylphthalamic acid can affect the leaf curl phenotype of Wucai and pak choi (Brassica rapa L. subsp. Chinensis). These results indicated that plant hormones, especially auxin, are involved in developing the leaf curl of Wucai. Our findings provide a potentially valuable reference for future research on the development of leaf curls.
Collapse
Affiliation(s)
- Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Ying Xu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Xiaona Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shuangshuang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Jie Hong
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Cuina Dong
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Ping Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Xingxue Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Jinlong Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, China
| |
Collapse
|
6
|
Hao N, Cao J, Wang C, Zhu Y, Du Y, Wu T. Understanding the molecular mechanism of leaf morphogenesis in vegetable crops conduces to breeding process. FRONTIERS IN PLANT SCIENCE 2022; 13:971453. [PMID: 36570936 PMCID: PMC9773389 DOI: 10.3389/fpls.2022.971453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf morphology can affect the development and yield of plants by regulating plant architecture and photosynthesis. Several factors can determine the final leaf morphology, including the leaf complexity, size, shape, and margin type, which suggests that leaf morphogenesis is a complex regulation network. The formation of diverse leaf morphology is precisely controlled by gene regulation on translation and transcription levels. To further reveal this, more and more genome data has been published for different kinds of vegetable crops and advanced genotyping approaches have also been applied to identify the causal genes for the target traits. Therefore, the studies on the molecular regulation of leaf morphogenesis in vegetable crops have also been largely improved. This review will summarize the progress on identified genes or regulatory mechanisms of leaf morphogenesis and development in vegetable crops. These identified markers can be applied for further molecular-assisted selection (MAS) in vegetable crops. Overall, the review will contribute to understanding the leaf morphology of different crops from the perspective of molecular regulation and shortening the breeding cycle for vegetable crops.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Yipeng Zhu
- Guiyang Productivity Promotion Center, Guiyang Science and Technology Bureau, Guiyang, China
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| |
Collapse
|
7
|
Chen K, Qu C, Zhang XY, Wang W, Gu CR, Liu GF, Yu QB, Yang CP, Jiang J. Molecular mechanism of leaf adaxial upward curling caused by BpPIN3 suppression in Betula pendula. FRONTIERS IN PLANT SCIENCE 2022; 13:1060228. [PMID: 36531359 PMCID: PMC9751824 DOI: 10.3389/fpls.2022.1060228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaves are one of the vegetative organs of plants that are essential for plant growth and development. PIN-FORMED (PINs) gene is an indoleacetic acid (IAA) transporter that plays a critical role in leaf development. To determine the function of BpPIN3 in leaf polarity formation in Betula pendula, the transgenic lines with BpPIN3 overexpression (OE) and BpPIN3-reduced expression (RE) were analyzed using the Agrobacterium-mediated method. The RE lines displayed the characteristics of leaf margin adaxial upward curling, with lower expression of BpPIN3 resulting in greater rolling. Tissue localization of IAA in the auxin GUS reporter system proved that auxin in the RE was mainly distributed in the secondary veins, palisade tissues, and epidermal cells in the leaf margin area. The auxin content in the leaf margin area was significantly greater than that in the main vein tissue. The cell density of the palisade tissue and the ratio of palisade tissue to spongy tissue in the curled leaf margin of the RE lines were found to be significantly decreased. RNA-seq analysis revealed that the RE hormone-signaling pathway genes were significantly enriched compared with those of the OE and WT lines; in particular, the auxin response-related genes SAURs (i.e., SAUR23, SAUR24, SAUR28, and SAUR50) and GH3.10 were found to be significantly upregulated. qRT-PCR analysis indicated that BpPIN3 expression at the leaf margin was significantly lower than that near the main vein in the RE lines. In contrast, the expression levels of SAURs and GH3.10 were significantly higher than those near the midrib. In conclusion, BpPIN3 regulates the expression of auxin response-related genes and the polar transport of auxin to change the polar form of the proximal and distal axes of birch leaves.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao-yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chen-rui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Gui-feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qi-bin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Chuan-ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Bao C, Qin G, Cao F, He J, Shen X, Chen P, Niu C, Zhang D, Ren T, Zhi F, Ma L, Ma F, Guan Q. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple. THE NEW PHYTOLOGIST 2022; 236:2131-2150. [PMID: 36161284 DOI: 10.1111/nph.18512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Cao B, Wang H, Bai J, Wang X, Li X, Zhang Y, Yang S, He Y, Yu X. miR319-Regulated TCP3 Modulates Silique Development Associated with Seed Shattering in Brassicaceae. Cells 2022; 11:cells11193096. [PMID: 36231057 PMCID: PMC9563637 DOI: 10.3390/cells11193096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Seed shattering is an undesirable trait that leads to crop yield loss. Improving silique resistance to shattering is critical for grain and oil crops. In this study, we found that miR319-targeted TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCPs) inhibited the process of post-fertilized fruits (silique) elongation and dehiscence via regulation of FRUITFULL (FUL) expression in Arabidopsis thaliana and Brassica napus. AtMIR319a activation resulted in a longer silique with thickened and lignified replum, whereas overexpression of an miR319a-resistant version of AtTCP3 (mTCP3) led to a short silique with narrow and less lignified replum. Further genetic and expressional analysis suggested that FUL acted downstream of TCP3 to negatively regulate silique development. Moreover, hyper-activation of BnTCP3.A8, a B. napus homolog of AtTCP3, in rapeseed resulted in an enhanced silique resistance to shattering due to attenuated replum development. Taken together, our findings advance our knowledge of TCP-regulated silique development and provide a potential target for genetic manipulation to reduce silique shattering in Brassica crops.
Collapse
Affiliation(s)
- Biting Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Hongfeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266101, China
| | - Jinjuan Bai
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xuan Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling 712100, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Changchun 130102, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Correspondence: (Y.H.); (X.Y.)
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.H.); (X.Y.)
| |
Collapse
|
10
|
Alemán-Báez J, Qin J, Cai C, Zou C, Bucher J, Paulo MJ, Voorrips RE, Bonnema G. Genetic dissection of morphological variation in rosette leaves and leafy heads in cabbage (Brassica oleracea var. capitata). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3611-3628. [PMID: 36057748 PMCID: PMC9519658 DOI: 10.1007/s00122-022-04205-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Correlations between morphological traits of cabbage rosette leaves and heads were found. Genome-wide association studies of these traits identified 50 robust quantitative trait loci in multiple years. Half of these loci affect both organs. Cabbage (Brassica oleracea var. capitata) is an economically important vegetable crop cultivated worldwide. Cabbage plants go through four vegetative stages: seedling, rosette, folding and heading. Rosette leaves are the largest leaves of cabbage plants and provide most of the energy needed to produce the leafy head. To understand the relationship and the genetic basis of leaf development and leafy head formation, 308 cabbage accessions were scored for rosette leaf and head traits in three-year field trials. Significant correlations were found between morphological traits of rosette leaves and heads, namely leaf area with the head area, height and width, and leaf width with the head area and head height, when heads were harvested at a fixed number of days after sowing. Fifty robust quantitative trait loci (QTLs) for rosette leaf and head traits distributed over all nine chromosomes were identified with genome-wide association studies. All these 50 loci were identified in multiple years and generally affect multiple traits. Twenty-five of the QTL were associated with both rosette leaf and leafy head traits. We discuss thirteen candidate genes identified in these QTL that are expressed in heading leaves, with an annotation related to auxin and other phytohormones, leaf development, and leaf polarity that likely play a role in leafy head development or rosette leaf expansion.
Collapse
Affiliation(s)
- Jorge Alemán-Báez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Jian Qin
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Chengcheng Cai
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Chunmei Zou
- Centre for Crop Systems Analysis, Wageningen University and Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| |
Collapse
|
11
|
Wang Y, Sun Z, Wang L, Chen L, Ma L, Lv J, Qiao K, Fan S, Ma Q. GhBOP1 as a Key Factor of Ribosomal Biogenesis: Development of Wrinkled Leaves in Upland Cotton. Int J Mol Sci 2022; 23:ijms23179942. [PMID: 36077339 PMCID: PMC9456263 DOI: 10.3390/ijms23179942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Block of proliferation 1 (BOP1) is a key protein that helps in the maturation of ribosomes and promotes the progression of the cell cycle. However, its role in the leaf morphogenesis of cotton remains unknown. Herein, we report and study the function of GhBOP1 isolated from Gossypium hirsutum. The sequence alignment revealed that BOP1 protein was highly conserved among different species. The yeast two-hybrid experiments, bimolecular fluorescence complementation, and luciferase complementation techniques revealed that GhBOP1 interact with GhPES and GhWDR12. Subcellular localization experiments revealed that GhBOP1, GhPES and GhWDR12 were localized at the nucleolus. Suppression of GhBOP1 transcripts resulted in the uneven bending of leaf margins and the presence of young wrinkled leaves by virus-induced gene silencing assay. Abnormal palisade arrangements and the presence of large upper epidermal cells were observed in the paraffin sections of the wrinkled leaves. Meanwhile, a jasmonic acid-related gene, GhOPR3, expression was increased. In addition, a negative effect was exerted on the cell cycle and the downregulation of the auxin-related genes was also observed. These results suggest that GhBOP1 plays a critical role in the development of wrinkled cotton leaves, and the process is potentially modulated through phytohormone signaling.
Collapse
Affiliation(s)
- Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Long Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lingling Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lina Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Hainan Yazhou Bay Seed Lab, Sanya 572000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China
- Correspondence: (S.F.); (Q.M.)
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Correspondence: (S.F.); (Q.M.)
| |
Collapse
|
12
|
miR398 Attenuates Heat-Induced Leaf Cell Death via Its Target CSD1 in Chinese Cabbage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous research has shown that miR398 contributed to plant thermotolerance by silencing its target gene COPPER/ZINC SUPEROXIDE DISMUTASE1 (CSD1) in Arabidopsis thaliana. However, the phylogenesis of miR398 and CSD1 in Brassica crop and their role in regulating leaf cell death under heat stress remains unexplored. Here, we characterized the homologous genes of miR398a and CSD1 in Brassica rapa ssp. pekinensis (Chinese cabbage) and found miR398a abundance was accumulated under heat stress (38 °C and 46 °C for 1 h) in Chinese cabbage, while the expression level of its targets BraCSD1-1 and BraCSD2-1 were downregulated. To further explore their role in heat response, we constructed the transgenic plants overexpressing artificial miR398a (aBra-miR398a), Bra-miR398a target mimic (Bra-MIM398a), and BraCSD1-1 in Chinese cabbage for genetic study. Under high temperatures, p35S::aBra-miR398a lines reduced the areas of leaf cell death and delayed the leaf cell death. By contrast, p35S::Bra-MIM398a and p35S::BraCSD1-1 plants enlarged the areas of leaf cell death and displayed the earliness of leaf cell death. Finally, we found that the expression level of stress-responsive genes BraLEA76, BraCaM1, BraPLC, BraDREB2A, and BraP5CS increased in transgenic plants overexpressing aBra-miR398a, which may contribute to their resistance to heat-induced leaf cell death. Taken together, these results revealed the function of Bra-miR398a in attenuating leaf cell death to ensure plant thermotolerance, indicating that the miR398-CSD1 module could be potential candidates for heat-resistant crop breeding.
Collapse
|
13
|
WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochem J 2022; 479:641-659. [PMID: 35212355 PMCID: PMC9022988 DOI: 10.1042/bcj20210810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1–1 and W1–7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1–1 and W1–7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1–1 and W1–7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.
Collapse
|
14
|
Jia L, Hao K, Suyala Q, Qin Y, Yu J, Liu K, Fan M. Potato tuber degradation is regulated by carbohydrate metabolism: Results of transcriptomic analysis. PLANT DIRECT 2022; 6:e379. [PMID: 35059552 PMCID: PMC8758968 DOI: 10.1002/pld3.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 05/13/2023]
Abstract
Tuber number is an essential factor determining yield and commodity in potato production. The initiation number has long been considered the sole determinant of the final total tuber number. In this study, we observed that tuber numbers at harvest were lower than at the tuber bulking stage; some formed tubers that were smaller than 3 cm degraded during development. Carbohydrate metabolism plays a crucial role in tuber degradation by coordinating the source-sink relationship. The contents of starch and sucrose, and the C:N ratio, are dramatically reduced in degradating tubers. Transcriptomic study showed that "carbohydrate metabolic processes" are Gene Ontology (GO) terms associated with tuber degradation. A polysaccharide degradation-related gene, LOC102601831, and a sugar transport gene, LOC102587850 (SWEET6a), are dramatically up-regulated in degradating tubers according to transcriptomic analysis, as validated by qRT-PCT. The terms "peptidase inhibitor activity" and "hydrolase activity" refer to the changes in molecular functions that degradating tubers exhibit. Nitrogen supplementation during potato development alleviates tuber degradation to a certain degree. This study provides novel insight into potato tuber development and possible management strategies for improving potato cultivation.
Collapse
Affiliation(s)
- Liguo Jia
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| | - Kai Hao
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| | - Qiqige Suyala
- College of Grassland and resource environmentInner Mongolia Agricultural UniversityHohhotChina
| | - Yonglin Qin
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| | - Jing Yu
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| | - Kun Liu
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| | - Mingshou Fan
- College of AgronomyInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
15
|
|
16
|
Yang X, Dong W, Ren W, Zhao Q, Wu F, He Y. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. THE PLANT CELL 2021; 33:1980-1996. [PMID: 33764452 PMCID: PMC8290291 DOI: 10.1093/plcell/koab090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for correspondence:
| |
Collapse
|
17
|
Zhang Y, Liang J, Cai X, Chen H, Wu J, Lin R, Cheng F, Wang X. Divergence of three BRX homoeologs in Brassica rapa and its effect on leaf morphology. HORTICULTURE RESEARCH 2021; 8:68. [PMID: 33790228 PMCID: PMC8012600 DOI: 10.1038/s41438-021-00504-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 05/26/2023]
Abstract
The leafy head characteristic is a special phenotype of Chinese cabbage resulting from artificial selection during domestication and breeding. BREVIS RADIX (BRX) has been suggested to control root elongation, shoot growth, and tiller angle in Arabidopsis and rice. In Brassica rapa, three BrBRX homoeologs have been identified, but only BrBRX.1 and BrBRX.2 were found to be under selection in leaf-heading accessions, indicating their functional diversification in leafy head formation. Here, we show that these three BrBRX genes belong to a plant-specific BRX gene family but that they have significantly diverged from other BRX-like members on the basis of different phylogenetic classifications, motif compositions and expression patterns. Moreover, although the expression of these three BrBRX genes differed, compared with BrBRX.3, BrBRX.1, and BrBRX.2 displayed similar expression patterns. Arabidopsis mutant complementation studies showed that only BrBRX.1 could rescue the brx root phenotype, whereas BrBRX.2 and BrBRX.3 could not. However, overexpression of each of the three BrBRX genes in Arabidopsis resulted in similar pleiotropic leaf phenotypes, including epinastic leaf morphology, with an increase in leaf number and leaf petiole length and a reduction in leaf angle. These leaf traits are associated with leafy head formation. Further testing of a SNP (T/C) in BrBRX.2 confirmed that this allele in the heading accessions was strongly associated with the leaf-heading trait of B. rapa. Our results revealed that all three BrBRX genes may be involved in the leaf-heading trait, but they may have functionally diverged on the basis of their differential expression.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
18
|
Li Y, Li X, Yang J, He Y. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun 2020; 11:5351. [PMID: 33093449 PMCID: PMC7582911 DOI: 10.1038/s41467-020-19186-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and natural antisense transcripts (NATs) control many biological processes and have been broadly applied for genetic manipulation of eukaryotic gene expression. Still unclear, however, are whether and how NATs regulate miRNA production. Here, we report that the cis-NATs of MIR398 genes repress the processing of their pri-miRNAs. Through genome-wide analysis of RNA sequencing data, we identify cis-NATs of MIRNA genes in Arabidopsis and Brassica. In Arabidopsis, MIR398b and MIR398c are coexpressed in vascular tissues with their antisense genes NAT398b and NAT398c, respectively. Knock down of NAT398b and NAT398c promotes miR398 processing, resulting in stronger plant thermotolerance owing to silencing of miR398-targeted genes; in contrast, their overexpression activates NAT398b and NAT398c, causing poorer thermotolerance due to the upregulation of miR398-targeted genes. Unexpectedly, overexpression of MIR398b and MIR398c activates NAT398b and NAT398c. Taken together, these results suggest that NAT398b/c repress miR398 biogenesis and attenuate plant thermotolerance via a regulatory loop. MiRNAs and natural antisense transcripts can both regulate gene expression and plant development. Here, the authors show that cis-NATs to MIR398 repress processing of pri-miR398 and that cis-NAT expression is downregulated at high temperatures, contributing to miR398 mediated thermotolerance responses.
Collapse
Affiliation(s)
- Yajie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
19
|
Tian X, Li X, Yu Q, Zhao H, Song J, Liao J. Irregular adaxial-abaxial polarity rearrangement contributes to the monosymmetric-to-asymmetric transformation of Canna indica stamen. AOB PLANTS 2020; 12:plaa051. [PMID: 33133481 PMCID: PMC7590949 DOI: 10.1093/aobpla/plaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, lateral organs including stamens develop according to the precise regulation of adaxial-abaxial polarity. However, the polarity establishment process is poorly understood in asymmetric stamens. Canna indica (Zingiberales: Cannaceae) is a common ornamental plant with an asymmetric stamen comprising a one-theca anther and a petaloid appendage. In this study, we depicted the monosymmetric-to-asymmetric morphogenesis of C. indica stamen, and the morphogenesis of the monosymmetric stamen of a sister species was used as a contrast. We chose a HD-ZIP III gene family member and a YABBY family member as the adaxial and abaxial polarity marker genes, respectively, and tested their expression using mRNA in situ hybridization. The expression patterns of the two genes changed dynamically and asymmetrically during the stamen development process. Compared with their homologues in Arabidopsis thaliana, these two genes exhibited some specific expression patterns. We hypothesize that the distinctive adaxial-abaxial polarity participates in the irregular morphogenesis of C. indica stamen, which mediates the putative stamen-to-petaloid staminode conversion in this species.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qianxia Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haichan Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Xinxing Vocational School of Traditional Chinese Medicine, Xinxing, Guangdong, China
| | - Juanjuan Song
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology/Economic Botany/Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Abstract
Biogenesis of plant microRNAs (miRNAs) takes place in nuclear dicing bodies (D-bodies), where the ribonulease III-type enzyme Dicer-like 1 (DCL1) processes primary transcripts of miRNAs (pri-miRNAs) into miRNA/miRNA* (*, passenger strand) duplexes from either base-to-loop or loop-to-base directions. Hyponastic Leaves 1 (HYL1), a double-stranded RNA-binding protein, is crucial for efficient and accurate processing. However, whether HYL1 has additional function remains unknown. Here, we report that HYL1 plays a noncanonical role in protecting pri-miRNAs from nuclear exosome attack in addition to ensuring processing. Loss of functions in SOP1 or HEN2, two cofactors of the nucleoplasmic exosome, significantly suppressed the morphological phenotypes of hyl1-2 Remarkably, mature miRNAs generated from loop-to-base processing were partially but preferentially restored in the hyl1 sop1 and hyl1 hen2 double mutants. Accordingly, loop-to-base-processed pri-miRNAs accumulated to higher levels in double mutants. In addition, dysfunction of HEN2, but not of SOP1, in hyl1-2 resulted in overaccumulation of many base-to-loop-processed pri-miRNAs, with most of their respective miRNAs unaffected. In summary, our findings reveal an antagonistic action of exosome in pri-miRNA biogenesis and uncover dual roles of HYL1 in stabilizing and processing of pri-miRNAs.
Collapse
|
21
|
Ren W, Wu F, Bai J, Li X, Yang X, Xue W, Liu H, He Y. BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage ( Brassica rapa ssp. pekinensis). HORTICULTURE RESEARCH 2020; 7:1. [PMID: 31908804 PMCID: PMC6938484 DOI: 10.1038/s41438-019-0222-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 05/18/2023]
Abstract
HYL1 (HYPONASTIC LEAVES 1) in Arabidopsis thaliana encodes a double-stranded RNA-binding protein needed for proper miRNA maturation, and its null mutant hyl1 shows a typical leaf-incurvature phenotype. In Chinese cabbage, BcpLH (Brassica rapa ssp. pekinensis LEAFY HEADS), a close homolog of HYL1, is differentially expressed in juvenile leaves, which are flat, and in adult leaves, which display extreme incurvature. BcpLH lacks protein-protein interaction domains and is much shorter than HYL1. To test whether BcpLH is associated with defects in microRNA (miRNA) biogenesis and leaf flatness, we enhanced and repressed the activity of BcpLH by transgenics and investigated BcpLH-dependent miRNAs and plant morphology. BcpLH promoted miRNA biogenesis by the proper processing of primary miRNAs. BcpLH downregulation via antisense decreased a specific subset of miRNAs and increased the activities of their target genes, causing upward curvature of rosette leaves and early leaf incurvature, concurrent with the enlargement, earliness, and round-to-oval shape transition of leafy heads. Moreover, BcpLH-dependent miRNAs in Chinese cabbage are not the same as HYL1-dependent miRNAs in Arabidopsis. We suggest that BcpLH controls a specific subset of miRNAs in Chinese cabbage and coordinates the direction, extent, and timing of leaf curvature during head formation in Brassica rapa.
Collapse
Affiliation(s)
- Wenqing Ren
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
- Graduate School of the Chinese Academy of Sciences, Shanghai, 200032 China
| | - Feijie Wu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | - Jinjuan Bai
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | - Xiaorong Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | - Xi Yang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | - Wanxin Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| | - Heng Liu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Yuke He
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032 China
| |
Collapse
|
22
|
Li X, Lian H, Zhao Q, He Y. MicroRNA166 Monitors SPOROCYTELESS/NOZZLE for Building of the Anther Internal Boundary. PLANT PHYSIOLOGY 2019; 181:208-220. [PMID: 31248965 PMCID: PMC6716238 DOI: 10.1104/pp.19.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/13/2019] [Indexed: 05/24/2023]
Abstract
The internal boundary between inner and outer microsporangia within anthers is essential for male fertility of vascular plants. Dehiscence zones embedded in the boundary release pollen for fertilization. However, the molecular mechanism underlying boundary formation in anthers remains poorly understood. Here, we report that microRNA166 (miR166) and its target PHABULOSA (PHB) regulate SPOROCYTELESS/NOZZLE (SPL/NZZ), which controls microsporogenesis. In developing anthers of Arabidopsis (Arabidopsis thaliana), the expression domains of miR165/6 and SPL/NZZ are overlapped and rearranged synchronously. Dominant mutation of PHB suppresses SPL/NZZ expression on the adaxial sides of stamens, resulting in a thickened boundary, whereas activation of MIR166g up-regulates SPL/NZZ expression, leading to ectopic microsporogenesis in the boundary. PHB limits the expression domains of SPL/NZZ to facilitate construction of the boundary, while miR166 preserves the expression domains of SPL/NZZ by inhibiting PHB to allow the inner microsporangia to take shape. Subsequently, PHB activates the key stem cell maintainer WUSCHEL in anthers to restrict the stomium cells to the boundary so that dehiscence zones develop and release pollen properly. These findings link adaxial/abaxial polarity to microsporogenesis in building of the internal boundary of anthers and thus advance the concepts underlying the establishment of the internal structure of male organs.
Collapse
Affiliation(s)
- Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Li J, Zhang X, Lu Y, Feng D, Gu A, Wang S, Wu F, Su X, Chen X, Li X, Liu M, Fan S, Feng D, Luo S, Xuan S, Wang Y, Shen S, Zhao J. Characterization of Non-heading Mutation in Heading Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2019; 10:112. [PMID: 30809236 PMCID: PMC6379458 DOI: 10.3389/fpls.2019.00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/23/2019] [Indexed: 05/26/2023]
Abstract
Heading is a key agronomic trait of Chinese cabbage. A non-heading mutant with flat growth of heading leaves (fg-1) was isolated from an EMS-induced mutant population of the heading Chinese cabbage inbred line A03. In fg-1 mutant plants, the heading leaves are flat similar to rosette leaves. The epidermal cells on the adaxial surface of these leaves are significantly smaller, while those on the abaxial surface are much larger than in A03 plants. The segregation of the heading phenotype in the F2 and BC1 population suggests that the mutant trait is controlled by a pair of recessive alleles. Phytohormone analysis at the early heading stage showed significant decreases in IAA, ABA, JA and SA, with increases in methyl IAA and trans-Zeatin levels, suggesting they may coordinate leaf adaxial-abaxial polarity, development and morphology in fg-1. RNA-sequencing analysis at the early heading stage showed a decrease in expression levels of several auxin transport (BrAUX1, BrLAXs, and BrPINs) and responsive genes. Transcript levels of important ABA responsive genes, including BrABF3, were up-regulated in mid-leaf sections suggesting that both auxin and ABA signaling pathways play important roles in regulating leaf heading. In addition, a significant reduction in BrIAMT1 transcripts in fg-1 might contribute to leaf epinastic growth. The expression profiles of 19 genes with known roles in leaf polarity were significantly different in fg-1 leaves compared to wild type, suggesting that these genes might also regulate leaf heading in Chinese cabbage. In conclusion, leaf heading in Chinese cabbage is controlled through a complex network of hormone signaling and abaxial-adaxial patterning pathways. These findings increase our understanding of the molecular basis of head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaomeng Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Dongxiao Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiangjie Su
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xing Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Daling Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Jiang W, Li Z, Yao X, Zheng B, Shen WH, Dong A. jaw-1D: a gain-of-function mutation responsive to paramutation-like induction of epigenetic silencing. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:459-468. [PMID: 30346598 PMCID: PMC6322565 DOI: 10.1093/jxb/ery365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis thaliana gain-of-function T-DNA insertion mutant jaw-1D produces miR319A, a microRNA that represses genes encoding CIN-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), a family of transcription factors that play key roles in leaf morphogenesis. In this study, we show that jaw-1D is responsive to paramutation-like epigenetic silencing. A genetic cross of jaw-1D with the polycomb gene mutant curly leaf-29 (clf-29) leads to attenuation of the jaw-1D mutant plant phenotype. This induced mutation, jaw-1D*, was associated with down-regulation of miR319A, was heritable independently from clf-29, and displayed paramutation-like non-Mendelian inheritance. Down-regulation of miR319A in jaw-1D* was linked to elevated levels of histone H3 lysine 9 dimethylation and DNA methylation at the CaMV35S enhancer located within the activation-tagging T-DNA of the jaw-1D locus. Examination of 21 independent T-DNA insertion mutant lines revealed that 11 could attenuate the jaw-1D mutant phenotype in a similar way to the paramutation induced by clf-29. These paramutagenic mutant lines shared the common feature that their T-DNA insertion was present as multi-copy tandem repeats and contained high levels of CG and CHG methylation. Our results provide important insights into paramutation-like epigenetic silencing, and caution against the use of jaw-1D in genetic interaction studies.
Collapse
Affiliation(s)
- Wen Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongfei Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaozhen Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Université de Strasbourg, CNRS, Strasbourg, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Peng T, Qiao M, Liu H, Teotia S, Zhang Z, Zhao Y, Wang B, Zhao D, Shi L, Zhang C, Le B, Rogers K, Gunasekara C, Duan H, Gu Y, Tian L, Nie J, Qi J, Meng F, Huang L, Chen Q, Wang Z, Tang J, Tang X, Lan T, Chen X, Wei H, Zhao Q, Tang G. A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. MOLECULAR PLANT 2018; 11:1400-1417. [PMID: 30243763 DOI: 10.1016/j.molp.2018.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression, leading to gene silencing. We previously developed short tandem target mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice, and maize, providing a resource for the functional interrogation of miRNAs. We not only revealed the functions of several miRNAs in plant development, but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, and ion-channel activity-associated electrophysiology, demonstrating that STTM technology is an effective approach for studying miRNA functions. To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks, we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTM-induced miRNA knockdown plants.
Collapse
Affiliation(s)
- Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mengmeng Qiao
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Haiping Liu
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sachin Teotia
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhanhui Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Yafan Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Bobo Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongjie Zhao
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lina Shi
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Cui Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Kestrel Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Chathura Gunasekara
- School of Forest Resources and Environmental Science, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Haitang Duan
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Yiyou Gu
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lei Tian
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Fanrong Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Qinghui Chen
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Department of Kinesiology and Integrative Physiology, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhenlin Wang
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jinshan Tang
- School of Technology, Michigan Technological University, Houghton, MI 49931, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guiliang Tang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
26
|
Mateo-Bonmatí E, Esteve-Bruna D, Juan-Vicente L, Nadi R, Candela H, Lozano FM, Ponce MR, Pérez-Pérez JM, Micol JL. INCURVATA11 and CUPULIFORMIS2 Are Redundant Genes That Encode Epigenetic Machinery Components in Arabidopsis. THE PLANT CELL 2018; 30:1596-1616. [PMID: 29915151 PMCID: PMC6096603 DOI: 10.1105/tpc.18.00300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 05/02/2023]
Abstract
All critical developmental and physiological events in a plant's life cycle depend on the proper activation and repression of specific gene sets, and this often involves epigenetic mechanisms. Some Arabidopsis thaliana mutants with disorders of the epigenetic machinery exhibit pleiotropic defects, including incurved leaves and early flowering, due to the ectopic and heterochronic derepression of developmental regulators. Here, we studied one such mutant class, the incurvata11 (icu11) loss-of-function mutants. We have identified ICU11 as the founding member of a small gene family that we have named CUPULIFORMIS (CP). This family is part of the 2-oxoglutarate/Fe(II)-dependent dioxygenase superfamily. ICU11 and its closest paralog, CP2, have unequally redundant functions: although cp2 mutants are phenotypically wild type, icu11 cp2 double mutants skip vegetative development and flower upon germination. This phenotype is reminiscent of loss-of-function mutants of the Polycomb-group genes EMBRYONIC FLOWER1 (EMF1) and EMF2 Double mutants harboring icu11 alleles and loss-of-function alleles of genes encoding components of the epigenetic machinery exhibit synergistic, severe phenotypes, and some are similar to those of emf mutants. Hundreds of genes are misexpressed in icu11 plants, including SEPALLATA3 (SEP3), and derepression of SEP3 causes the leaf phenotype of icu11 ICU11 and CP2 are nucleoplasmic proteins that act as epigenetic repressors through an unknown mechanism involving histone modification, but not DNA methylation.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - David Esteve-Bruna
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Lucía Juan-Vicente
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Riad Nadi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Francisca María Lozano
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
27
|
Pulungan SI, Yano R, Okabe Y, Ichino T, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. PLANT & CELL PHYSIOLOGY 2018. [PMID: 29528453 DOI: 10.1093/pcp/pcy052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.
Collapse
Affiliation(s)
- Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Ryoichi Yano
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Takuji Ichino
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Tohru Ariizumi
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Hiroshi Ezura
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
28
|
Chen W, Wan S, Shen L, Zhou Y, Huang C, Chu P, Guan R. Histological, Physiological, and Comparative Proteomic Analyses Provide Insights into Leaf Rolling in Brassica napus. J Proteome Res 2018; 17:1761-1772. [PMID: 29693398 DOI: 10.1021/acs.jproteome.7b00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Moderate leaf rolling is important in ideotype breeding, as it improves photosynthetic efficiency and therefore increases crop yields. To understand the regulatory network of leaf rolling in Brassica napus, a down-curved leaf mutant ( Bndcl1) has been investigated. Physiological analyses indicated that the chlorophyll contents and antioxidant enzyme activities were remarkably increased and the photosynthetic performance was significantly improved in Bndcl1. Consistent with these findings, 943 differentially accumulated proteins (DAPs) were identified in the Bndcl1 mutant and its wild-type plants using iTRAQ-based comparative proteomic analyses. Enrichment analysis of proteins with higher abundance in Bndcl1 revealed that the functional category "photosynthesis" was significantly overrepresented. Moreover, proteins associated with oxidative stress response and photosystem II repairing were also up-accumulated in Bndcl1, which might help the mutant to sustain the photosynthetic efficiency under unfavorable conditions. Histological observation showed that the mutant displayed defects in adaxial-abaxial patterning. Important DAPs associated with leaf polarity establishment were detected in Bndcl1, including ribosomal proteins, proteins involved in post-transcriptional gene silencing, and proteins related to brassinosteroid. Together, our findings may help clarify the mechanisms underlying leaf rolling and its physiological effects on plants and may facilitate ideotype breeding in Brassica napus.
Collapse
Affiliation(s)
- Wenjing Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Linkui Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Ying Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Pu Chu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| |
Collapse
|
29
|
Liu Y, Xu C, Tang X, Pei S, Jin D, Guo M, Yang M, Zhang Y. Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred Brassica rapa L. ssp. pekinensis. Gene 2018; 665:119-126. [PMID: 29705127 DOI: 10.1016/j.gene.2018.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage.
Collapse
Affiliation(s)
- Yan Liu
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Cui Xu
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuebing Tang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, PR China
| | - Di Jin
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Minghao Guo
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Meng Yang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, PR China.
| |
Collapse
|
30
|
Ren W, Wang H, Bai J, Wu F, He Y. Association of microRNAs with Types of Leaf Curvature in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2018; 9:73. [PMID: 29467771 PMCID: PMC5808167 DOI: 10.3389/fpls.2018.00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/15/2018] [Indexed: 05/29/2023]
Abstract
Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp-MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa. These findings provide insight into the relationship between miRNAs and variation in leaf curvature.
Collapse
Affiliation(s)
- Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Jinjuan Bai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Yang T, Wang Y, Teotia S, Zhang Z, Tang G. The Making of Leaves: How Small RNA Networks Modulate Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:824. [PMID: 29967634 PMCID: PMC6015915 DOI: 10.3389/fpls.2018.00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Leaf development is a sequential process that involves initiation, determination, transition, expansion and maturation. Many coding genes and a few non-coding small RNAs (sRNAs) have been identified as being involved in leaf development. sRNAs and their interactions not only determine gene expression and regulation, but also play critical roles in leaf development through their coordination with other genetic networks and physiological pathways. In this review, we first introduce the biogenesis pathways of sRNAs, mainly microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs), and then describe the function of miRNA-transcription factors in leaf development, focusing on guidance by interactive sRNA regulatory networks.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Sachin Teotia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Department of Biotechnology, Sharda University,Greater Noida, India
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| |
Collapse
|
32
|
Gu A, Meng C, Chen Y, Wei L, Dong H, Lu Y, Wang Y, Chen X, Zhao J, Shen S. Coupling Seq-BSA and RNA-Seq Analyses Reveal the Molecular Pathway and Genes Associated with Heading Type in Chinese Cabbage. Front Genet 2017; 8:176. [PMID: 29312432 PMCID: PMC5733010 DOI: 10.3389/fgene.2017.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023] Open
Abstract
In Chinese cabbage, heading type is a key agricultural trait of significant economic importance. Using a natural microspore-derived doubled haploid plant, we generated self-crossed progeny with overlapping or outward curling head morphotypes. Sequencing-based bulked segregant analysis (Seq-BSA) revealed a candidate region of 0.52 Mb (A06: 1,824,886~2,347,097 bp) containing genes enriched for plant hormone signal transduction. RNA Sequencing (RNA-Seq) analysis supported the hormone pathway enrichment leading to the identification of two key candidate genes, BrGH3.12 and BrABF1. The regulated homologous genes and the relationship between genes in this pathway were also revealed. Expression of BrGH3.12 varied significantly in the apical portion of the leaf, consistent with the morphological differences between overlapping and outward curling leaves. Transcript levels of BrABF1 in the top, middle and basal segments of the leaf were significantly different between the two types. The two morphotypes contained different concentrations of IAA in the apical portion of their leaves while levels of ABA differed significantly between plant types in the top, middle, and basal leaf segments. Results from Seq-BSA, RNA-Seq and metabolite analyses all support a role for IAA and ABA in heading type formation. These findings increase our understanding of the molecular basis for pattern formation of the leafy head in Chinese cabbage and will contribute to future work developing more desirable leafy head patterns.
Collapse
Affiliation(s)
- AiXia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chuan Meng
- Economic Crop Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - YueQi Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lai Wei
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hui Dong
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - YanHua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - XuePing Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - JianJun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - ShuXing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
33
|
Alptekin B, Langridge P, Budak H. Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 2017; 17:145-170. [PMID: 27665284 PMCID: PMC5383695 DOI: 10.1007/s10142-016-0525-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
34
|
Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling MR, Borm T, Bonnema G, Wu J, Wang X. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 2016; 48:1218-24. [PMID: 27526322 DOI: 10.1038/ng.3634] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.
Collapse
Affiliation(s)
- Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang, Nanjing, China
| | | | - Fenglan Zhang
- Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing Vegetable Research Center (BVRC), Beijing, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Bo Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yunxia Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Dongyuan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaobo Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Pingxia Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Ke Lin
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Ningwen Zhang
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Yan Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Hui Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jie Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yongcui Liao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Keyun Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xueming Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Lixia Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yunyan Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jisheng Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Chengcheng Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Ning Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Chao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yuan Ma
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Haijiao Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Yang Cui
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Micheal R Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkley, California, USA
| | - Theo Borm
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Guusje Bonnema
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China.,Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| |
Collapse
|
35
|
Liang J, Liu B, Wu J, Cheng F, Wang X. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:94. [PMID: 26904064 PMCID: PMC4746309 DOI: 10.3389/fpls.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/18/2016] [Indexed: 05/26/2023]
Abstract
Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.
Collapse
|
36
|
Fouracre JP, Poethig RS. The role of small RNAs in vegetative shoot development. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:64-72. [PMID: 26745378 PMCID: PMC4753120 DOI: 10.1016/j.pbi.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 05/02/2023]
Abstract
Shoot development consists of the production of lateral organs in predictable spatial and temporal patterns at the shoot apex. To properly integrate such programs of growth across different cell and tissue types, plants require highly complex and robust genetic networks. Over the last twenty years, the roles of small, non-coding RNAs (sRNAs) in these networks have become increasingly apparent, not least in vegetative shoot growth. In this review, we describe recent progress in understanding the contribution of sRNAs to the regulation of vegetative shoot growth, and outline persisting experimental limitations in the field.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Dias R, Kolazckowski B. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy. Proteins 2015; 83:2100-14. [PMID: 26370248 PMCID: PMC5054890 DOI: 10.1002/prot.24928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held that a protein's ligand specificity is determined primarily by its three‐dimensional structure, the general principles by which structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of protein−ligand complexes with associated binding‐affinity measurements to quantitatively characterize how combinations of atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact with other proteins. Although protein‐small molecule and protein‐DNA/RNA binding affinities can be accurately predicted from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular combinations of atomic interactions required to predict binding affinity differed between small‐molecule and DNA/RNA data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types. In contrast to what we observed for small‐molecule and DNA/RNA interactions, no statistical models were capable of predicting protein−protein affinity with >60% correlation. We demonstrate the potential usefulness of protein‐DNA/RNA binding prediction as a possible tool for high‐throughput virtual screening to guide laboratory investigations, suggesting that quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally advancing our understanding of how molecular structure translates into function. Proteins 2015; 83:2100–2114. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida
| | - Bryan Kolazckowski
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida
| |
Collapse
|
38
|
Wang H, Mao Y, Yang J, He Y. TCP24 modulates secondary cell wall thickening and anther endothecium development. FRONTIERS IN PLANT SCIENCE 2015; 6:436. [PMID: 26157444 PMCID: PMC4478849 DOI: 10.3389/fpls.2015.00436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/27/2015] [Indexed: 05/19/2023]
Abstract
miR319-targeted TCP genes are believed to regulate cell division in leaves and floral organs. However, it remains unknown whether these genes are involved in cell wall development. Here, we report that TCP24 negatively regulates secondary wall thickening in floral organs and roots. The overexpression of the miR319a-resistant version of TCP24 in Arabidopsis disrupted the thickening of secondary cell walls in the anther endothecium, leading to male sterility because of arrested anther dehiscence and pollen release. Several genes linked to secondary cell wall biogenesis and thickening were down-regulated in these transgenic plants. By contrast, the inhibition of TCP24 using the ectopic expression of a TCP24-SRDX repressor fusion protein, or the silencing of TCP genes by miR319a overexpression, increased cell wall lignification and the enhanced secondary cell wall thickening. Our results suggest that TCP24 acts as an important regulator of secondary cell wall thickening and modulates anther endothecium development.
Collapse
Affiliation(s)
| | | | | | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
39
|
Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 2014; 42:12224-36. [PMID: 25294831 PMCID: PMC4231765 DOI: 10.1093/nar/gku907] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the control of gene expression. HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE (SE) to process primary miRNA (pri-miRNA) into mature miRNA. Although HYL1 has been shown to partner with DCL1 to enhance miRNA accuracy, the mechanism by which HYL1 selects the DCL1-targeted cleavage sites in pri-miRNA has remained unknown. By mutagenesis of HYL1 and analysis of in vivo pri-miRNA processing, we investigated the role of HYL1 in pri-miRNA cleavage. HYL1 forms homodimers in which the residues Gly147 and Leu165 in the dsRBD2 domain are shown to be critical. Disruption of HYL1 homodimerization causes incorrect cleavage at sites in pri-miRNA without interrupting the interaction of HYL1 with DCL1 and accumulation of pri-miRNAs in HYL1/pri-miRNA complexes, leading to a reduction in the efficiency and accuracy of miRNAs that results in strong mutant phenotypes of the plants. HYL1 homodimers may function as a molecular anchor for DCL1 to cleave at a distance from the ssRNA–dsRNA junction in pri-miRNA. These results suggest that HYL1 ensures the correct selection of pri-miRNA cleavage sites through homodimerization and thus contributes to gene silencing and plant development.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Li S, Liu J, Liu Z, Li X, Wu F, He Y. HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a-Directed Pathways in Arabidopsis. THE PLANT CELL 2014; 26:1764-1780. [PMID: 24728648 PMCID: PMC4036584 DOI: 10.1105/tpc.114.124883] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many heat stress transcription factors (Hsfs) and heat shock proteins (Hsps) have been identified to play important roles in the heat tolerance of plants. However, many of the key factors mediating the heat response pathways remain unknown. Here, we report that two genes, which are targets of TAS1 (trans-acting siRNA precursor 1)-derived small interfering RNAs that we named HEAT-INDUCED TAS1 TARGET1 (HTT1) and HTT2, are involved in thermotolerance. Microarray analysis revealed that the HTT1 and HTT2 genes were highly upregulated in Arabidopsis thaliana seedlings in response to heat shock. Overexpression of TAS1a, whose trans-acting small interfering RNAs target the HTT genes, elevated accumulation of TAS1-siRNAs and reduced expression levels of the HTT genes, causing weaker thermotolerance. By contrast, overexpression of HTT1 and HTT2 upregulated several Hsf genes, leading to stronger thermotolerance. In heat-tolerant plants overexpressing HsfA1a, the HTT genes were upregulated, especially at high temperatures. Meanwhile, HsfA1a directly activated HTT1 and HTT2 through binding to their promoters. HTT1 interacted with the heat shock proteins Hsp70-14 and Hsp40 and NUCLEAR FACTOR Y, SUBUNIT C2. Taken together, these results suggest that HTT1 mediates thermotolerance pathways because it is targeted by TAS1a, mainly activated by HsfA1a, and acts as cofactor of Hsp70-14 complexes.
Collapse
Affiliation(s)
- Shuxia Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinxin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhongyuan Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
41
|
Wang TZ, Zhang WH. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2014; 1069:67-80. [PMID: 23996309 DOI: 10.1007/978-1-62703-613-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively regulating gene expression post-transcriptionally. Medicago truncatula has been used as a model plant to study functional genomics of legume plants. It has also been widely used to functionally study miRNAs. Identification of miRNAs at the whole-genome level is essential for functional characterization of miRNAs in plants. High-throughput sequencing is a powerful technology to identify miRNAs. In this chapter, the methods used for construction of a small RNA library and high-throughput sequencing involving total RNA isolation, small RNA purification, adapter ligation, reverse transcription, PCR amplification, and Solexa sequencing are described. Bioinformatics and analysis of differential expression of miRNAs including primary disposal, miRNA identification, target prediction, and expression analysis are also discussed. These methodologies associated with identification and functional characterization of miRNAs may provide useful tools for readers to study miRNAs in plants in general and Medicago truncatula in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
42
|
You CX, Zhao Q, Wang XF, Xie XB, Feng XM, Zhao LL, Shu HR, Hao YJ. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:183-92. [PMID: 24119151 DOI: 10.1111/pbi.12125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/03/2013] [Accepted: 08/26/2013] [Indexed: 05/26/2023]
Abstract
Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees.
Collapse
Affiliation(s)
- Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in chinese cabbage by differential cell division arrest in leaf regions. PLANT PHYSIOLOGY 2014; 164:710-20. [PMID: 24351684 PMCID: PMC3912100 DOI: 10.1104/pp.113.228007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/17/2013] [Indexed: 05/18/2023]
Abstract
Leafy heads of cabbage (Brassica oleracea), Chinese cabbage (Brassica rapa), and lettuce (Lactuca sativa) are composed of extremely incurved leaves. The shape of these heads often dictates the quality, and thus the commercial value, of these crops. Using quantitative trait locus mapping of head traits within a population of 150 recombinant inbred lines of Chinese cabbage, we investigated the relationship between expression levels of microRNA-targeted Brassica rapa ssp. pekinensis TEOSINTE BRANCHED1, cycloidea, and PCF transcription factor4 (BrpTCP4) genes and head shape. Here, we demonstrate that a cylindrical head shape is associated with relatively low BrpTCP4-1 expression, whereas a round head shape is associated with high BrpTCP4-1 expression. In the round-type Chinese cabbage, microRNA319 (miR319) accumulation and BrpTCP4-1 expression decrease from the apical to central regions of leaves. Overexpression of BrpMIR319a2 reduced the expression levels of BrpTCP4 and resulted in an even distribution of BrpTCP4 transcripts within all leaf regions. Changes in temporal and spatial patterns of BrpTCP4 expression appear to be associated with excess growth of both apical and interveinal regions, straightened leaf tips, and a transition from the round to the cylindrical head shape. These results suggest that the miR319a-targeted BrpTCP gene regulates the round shape of leafy heads via differential cell division arrest in leaf regions. Therefore, the manipulation of miR319a and BrpTCP4 genes is a potentially important tool for use in the genetic improvement of head shape in these crops.
Collapse
|
44
|
Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. HORTICULTURE RESEARCH 2014; 1:14024. [PMID: 26504539 PMCID: PMC4596316 DOI: 10.1038/hortres.2014.24] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/20/2023]
Abstract
The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n=7) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species.
Collapse
Affiliation(s)
- Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
45
|
Lian H, Li X, Liu Z, He Y. HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3397-410. [PMID: 23918970 PMCID: PMC3733155 DOI: 10.1093/jxb/ert178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The stamen produces pollen grains for pollination in higher plants. Coordinated development of four microsporangia in the stamen is essential for normal fertility. The roles of miR165/166-directed pathways in the establishment of adaxial-abaxial polarity have been well defined in leaves. However, the molecular mechanism underlying the adaxial-abaxial polarity of the stamen is elusive. Here it is reported that HYPONASTIC LEAVES1 (HYL1), a general regulator of microRNA (miRNA) biogenesis, plays an essential role in establishing the stamen architecture of the four microsporangia in Arabidopsis thaliana. In stamens, HYL1 and miR165/6 expression are progressively restricted to the lateral region, microsporangia, microspore mother cells, and microspores, whereas HD-ZIP III genes are preferentially expressed in the middle region, vascular bundle, and stomium. Loss of HYL1 leads to the formation of two rather than four microsporangia in each stamen. In the stamen of the hyl1 mutant, miR165/6 accumulation is reduced, whereas miR165/6-targeted HD-ZIP III genes are up-regulated and FILAMENTOUS FLOWER (FIL) is down-regulated; and, specifically, REVOLUTA (REV) is overexpressed in the adaxial region and FIL is underexpressed in the abaxial regions, concomitant with the aberrance of the two inner microsporangia and partial adaxialization of the connectives. Genetic analysis reveals that FIL works downstream of HYL1, and the defects in hyl1 stamens are partially rescued by rev-9 or phv-5 phb-6 alleles. These results suggest that HYL1 modulates inner microsporangia and stamen architecture by repression of HD-ZIP III genes and promotion of the FIL gene through miR165/6. Thus, the role of HYL1 in establishment of stamen architecture provides insight into the molecular mechanism of male fertility.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
- * These authors contributed equally to this work
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- * These authors contributed equally to this work
| | - Zhongyuan Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Tameshige T, Fujita H, Watanabe K, Toyokura K, Kondo M, Tatematsu K, Matsumoto N, Tsugeki R, Kawaguchi M, Nishimura M, Okada K. Pattern dynamics in adaxial-abaxial specific gene expression are modulated by a plastid retrograde signal during Arabidopsis thaliana leaf development. PLoS Genet 2013; 9:e1003655. [PMID: 23935517 PMCID: PMC3723520 DOI: 10.1371/journal.pgen.1003655] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Department of Botany, Kyoto University, Kyoto, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hironori Fujita
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | | | - Koichi Toyokura
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Maki Kondo
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | | | - Ryuji Tsugeki
- Department of Botany, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Mikio Nishimura
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| |
Collapse
|
47
|
Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jiménez-Gómez JM, Peng J, Maloof JN, Sinha NR. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. THE PLANT CELL 2013; 25:2465-81. [PMID: 23872539 PMCID: PMC3753377 DOI: 10.1105/tpc.113.112391] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/27/2013] [Accepted: 07/05/2013] [Indexed: 05/18/2023]
Abstract
Introgression lines (ILs), in which genetic material from wild tomato species is introgressed into a domesticated background, have been used extensively in tomato (Solanum lycopersicum) improvement. Here, we genotype an IL population derived from the wild desert tomato Solanum pennellii at ultrahigh density, providing the exact gene content harbored by each line. To take advantage of this information, we determine IL phenotypes for a suite of vegetative traits, ranging from leaf complexity, shape, and size to cellular traits, such as stomatal density and epidermal cell phenotypes. Elliptical Fourier descriptors on leaflet outlines provide a global analysis of highly heritable, intricate aspects of leaf morphology. We also demonstrate constraints between leaflet size and leaf complexity, pavement cell size, and stomatal density and show independent segregation of traits previously assumed to be genetically coregulated. Meta-analysis of previously measured traits in the ILs shows an unexpected relationship between leaf morphology and fruit sugar levels, which RNA-Seq data suggest may be attributable to genetically coregulated changes in fruit morphology or the impact of leaf shape on photosynthesis. Together, our results both improve upon the utility of an important genetic resource and attest to a complex, genetic basis for differences in leaf morphology between natural populations.
Collapse
Affiliation(s)
- Daniel H. Chitwood
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ravi Kumar
- Department of Plant Biology, University of California, Davis, California 95616
| | - Lauren R. Headland
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Daniel Fulop
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Jie Peng
- Department of Statistics, University of California, Davis, California 95616
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, California 95616
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
48
|
Liu C, Axtell MJ, Fedoroff NV. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. PLANT PHYSIOLOGY 2012; 159:748-58. [PMID: 22474216 PMCID: PMC3406889 DOI: 10.1104/pp.112.193508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 05/18/2023]
Abstract
Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 null mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher K(cat) and lower K(m) values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 null mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates.
Collapse
|
49
|
Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR. The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. ACTA ACUST UNITED AC 2012; 53:1322-33. [DOI: 10.1093/pcp/pcs077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Li S, Yang X, Wu F, He Y. HYL1 controls the miR156-mediated juvenile phase of vegetative growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2787-98. [PMID: 22268150 PMCID: PMC3346236 DOI: 10.1093/jxb/err465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 05/18/2023]
Abstract
HYL1 is an important regulator of microRNA (miRNA) biogenesis. A loss-of-function mutation of HYL1 causes the reduced accumulation of some miRNAs but fails to display the miRNA-deficient phenotypes of these miRNAs. In Arabidopsis, miR156 mediates phase transition through repression of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) genes. However, it remains unknown whether, and if so how, HYL1 enables phase transition through miR156. This study showed that a loss-of-function mutation of the HYL1 gene caused defects in the timing of the juvenile phase. In the primary leaves of hyl1-2 mutants, abaxial trichomes were generated prematurely, the leaf blades elongated, and the blade base angles enlarged, as is observed for adult leaves. In hyl1-2 p35S::miR156a and hyl1-2 spl9-4 spl15-1 plants, increased accumulation of miR156a and repressed expression of the SPL genes were concomitant with a complete or partial rescue of the hyl1-2 phenotype in phase defects. In contrast, overexpression of the SPL9 gene in hyl1-2 mutants led to total disappearance of the juvenile phase. Moreover, HYL1 prevented the premature accumulation of adult-related transcripts in the primary leaves. Taken together, these results suggest that HYL1 controls the expression levels of miR156-targeted SPL genes and enables plants to undergo the juvenile phase, an important and critical step during plant development to ensure maximum growth and productivity.
Collapse
Affiliation(s)
| | | | | | - Yuke He
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|