1
|
Minorsky PV. The "plant neurobiology" revolution. PLANT SIGNALING & BEHAVIOR 2024; 19:2345413. [PMID: 38709727 PMCID: PMC11085955 DOI: 10.1080/15592324.2024.2345413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural Sciences, Mercy University, Dobbs Ferry, NY, USA
| |
Collapse
|
2
|
Yu J, Khomenko I, Biasioli F, Li M, Varotto C. A Novel Isoprene Synthase from the Monocot Tree Copernicia prunifera (Arecaceae) Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15329. [PMID: 37895009 PMCID: PMC10607627 DOI: 10.3390/ijms242015329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity to emit isoprene, among other stresses, protects plants from drought, but the molecular mechanisms underlying this trait are only partly understood. The Arecaceae (palms) constitute a very interesting model system to test the involvement of isoprene in enhancing drought tolerance, as their high isoprene emissions may have contributed to make them hyperdominant in neotropical dry forests, characterized by recurrent and extended periods of drought stress. In this study we isolated and functionally characterized a novel isoprene synthase, the gene responsible for isoprene biosynthesis, from Copernicia prunifera, a palm from seasonally dry tropical forests. When overexpressed in the non-emitter Arabidopsis thaliana, CprISPS conferred significant levels of isoprene emission, together with enhanced tolerance to water limitation throughout plant growth and development, from germination to maturity. CprISPS overexpressors displayed higher germination, cotyledon/leaf greening, water usage efficiency, and survival than WT Arabidopsis under various types of water limitation. This increased drought tolerance was accompanied by a marked transcriptional up-regulation of both ABA-dependent and ABA-independent key drought response genes. Taken together, these results demonstrate the capacity of CprISPS to enhance drought tolerance in Arabidopsis and suggest that isoprene emission could have evolved in Arecaceae as an adaptive mechanism against drought.
Collapse
Affiliation(s)
- Jiamei Yu
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Iuliia Khomenko
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. REMOTE SENSING 2022. [DOI: 10.3390/rs14071740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission to the water stress is usually parameterized using soil moisture in previous studies. In this study, we designed a new parameterization scheme of water stress in MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene emission rates in southeastern China were simulated with different water stress indicators including soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down estimations. The results showed that in southeastern China, the spatiotemporal correlations between those simulations and top-down retrieval are all high with different biases. The simulated isoprene emission rates with EDVI-based water stress factor are most consistent with top-down estimation with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with top-down. The temporal correlation coefficients are increased after applied with EDVI water stress factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12). Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied, which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene emission using microwave observations.
Collapse
|
4
|
Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. J Biotechnol 2021; 331:53-62. [PMID: 33727083 DOI: 10.1016/j.jbiotec.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
Agricultural sustainability is an increasing need considering the challenges posed by climate change and rapid human population growth. The use of plant growth-promoting rhizobacteria (PGPR) may represent an excellent, new agriculture practice to improve soil quality while promoting growth and yield of important crop species subjected to water stress conditions. In this study, two PGPR strains with 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase activity were co-inoculated in velvet bean plants to verify the physiological, biochemical and molecular responses to progressive water stress. The results of our study show that the total biomass and the water use efficiency of inoculated plants were higher than uninoculated plants at the end of the water stress period. These positive effects may be derived from a lower root ACC content (-45 %) in water-stressed inoculated plants than in uninoculated ones resulting in lower root ethylene emission. Furthermore, the ability of inoculated plants to maintain higher levels of both isoprene emission, a priming compound that may help to protect leaves from oxidative damage, and carbon assimilation during water stress progression may indicate the underlining metabolic processes conferring water stress tolerance. Overall, the experimental results show that co-inoculation with ACC deaminase PGPR positively affects tolerance to water deficit, confirming the potential for biotechnological applications in water-stressed agricultural areas.
Collapse
|
5
|
Ma WT, Tcherkez G, Wang XM, Schäufele R, Schnyder H, Yang Y, Gong XY. Accounting for mesophyll conductance substantially improves 13 C-based estimates of intrinsic water-use efficiency. THE NEW PHYTOLOGIST 2021; 229:1326-1338. [PMID: 32984961 DOI: 10.1111/nph.16958] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
Carbon isotope discrimination (Δ) has been used widely to infer intrinsic water-use efficiency (iWUE) of C3 plants, a key parameter linking carbon and water fluxes. Despite the essential role of mesophyll conductance (gm ) in photosynthesis and Δ, its effect on Δ-based predictions of iWUE has generally been neglected. Here, we derive a mathematical expression of iWUE as a function of Δ that includes gm (iWUEmes ) and exploits the gm -stomatal conductance (gsc ) relationship across drought-stress levels and plant functional groups (deciduous or semideciduous woody, evergreen woody and herbaceous species) in a global database. iWUEmes was further validated with an independent dataset of online-Δ and CO2 and H2 O gas exchange measurements with seven species. Drought stress reduced gsc and gm by nearly one-half across all plant functional groups, but had no significant effect on the gsc : gm ratio, with a well supported value of 0.79 ± 0.07 (95% CI, n = 198). gm was negatively correlated to iWUE. Incorporating the gsc : gm ratio greatly improved estimates of iWUE, compared with calculations that assumed infinite gm . The inclusion of the gsc : gm ratio, fixed at 0.79 when gm was unknown, proved desirable to eliminate significant errors in estimating iWUE from Δ across various C3 vegetation types.
Collapse
Affiliation(s)
- Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, Beaucouzé, 49070, France
| | - Xu Ming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising, 85354, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising, 85354, Germany
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
6
|
Photosynthesis and Related Physiological Parameters Differences Affected the Isoprene Emission Rate among 10 Typical Tree Species in Subtropical Metropolises. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030954. [PMID: 33499177 PMCID: PMC7908470 DOI: 10.3390/ijerph18030954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
Volatile organic compound (VOCs) emission is an important cause of photochemical smog and particulate pollution in urban areas, and urban vegetation has been presented as an important source. Different tree species have different emission levels, so adjusting greening species collocation is an effective way to control biogenic VOC pollution. However, there is a lack of measurements of tree species emission in subtropical metropolises, and the factors influencing the species-specific differences need to be further clarified. This study applied an in situ method to investigate the isoprene emission rates of 10 typical tree species in subtropical metropolises. Photosynthesis and related parameters including photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate, which can influence the emission rate of a single species, were also measured. Results showed Salix babylonica always exhibited a high emission level, whereas Elaeocarpus decipiens and Ligustrum lucidum maintained a low level throughout the year. Differences in photosynthetic rate and stomatal CO2 conductance are the key parameters related to isoprene emission among different plants. Through the establishment of emission inventory and determination of key photosynthetic parameters, the results provide a reference for the selection of urban greening species, as well as seasonal pollution control, and help to alleviate VOC pollution caused by urban forests.
Collapse
|
7
|
Sun Z, Shen Y, Niinemets Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7364-7381. [PMID: 32996573 PMCID: PMC7906789 DOI: 10.1093/jxb/eraa415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Isoprene emissions have been considered as a protective response of plants to heat stress, but there is limited information of how prolonged heat spells affect isoprene emission capacity, particularly under the drought conditions that often accompany hot weather. Under combined long-term stresses, presence of isoprene emission could contribute to the maintenance of the precursor pool for rapid synthesis of essential isoprenoids to repair damaged components of leaf photosynthetic apparatus. We studied changes in leaf isoprene emission rate, photosynthetic characteristics, and antioxidant enzyme activities in two hybrid Populus clones, Nanlin 1388 (relatively high drought tolerance) and Nanlin 895 (relatively high thermotolerance) that were subjected to long-term (30 d) soil water stress (25% versus 90% soil field capacity) combined with a natural heat spell (day-time temperatures of 35-40 °C) that affected both control and water-stressed plants. Unexpectedly, isoprene emissions from both the clones were similar and the overall effects of drought on the emission characteristics were initially minor; however, treatment effects and clonal differences increased with time. In particular, the isoprene emission rate only increased slightly in the Nanlin 895 control plants after 15 d of treatment, whereas it decreased by more than 5-fold in all treatment × clone combinations after 30 d. The reduction in isoprene emission rate was associated with a decrease in the pool size of the isoprene precursor dimethylallyl diphosphate in all cases at 30 d after the start of treatment. Net assimilation rate, stomatal conductance, the openness of PSII centers, and the effective quantum yield all decreased, and non-photochemical quenching and catalase activity increased in both control and water-stressed plants. Contrary to the hypothesis of protection of leaf photosynthetic apparatus by isoprene, the data collectively indicated that prolonged stress affected isoprene emissions more strongly than leaf photosynthetic characteristics. This primarily reflected the depletion of isoprene precursor pools under long-term severe stress.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, Hangzhou, Zhejiang, China
| | - Yan Shen
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
| |
Collapse
|
8
|
Alderotti F, Brunetti C, Marino G, Centritto M, Ferrini F, Giordano C, Tattini M, Moura BB, Gori A. Coordination of Morpho-Physiological and Metabolic Traits of Cistus incanus L. to Overcome Heatwave-Associated Summer Drought: A Two-Year On-Site Field Study. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.576296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Brunetti C, Loreto F, Ferrini F, Gori A, Guidi L, Remorini D, Centritto M, Fini A, Tattini M. Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress. TREE PHYSIOLOGY 2018; 38:1640-1654. [PMID: 30137639 DOI: 10.1093/treephys/tpy089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/24/2018] [Indexed: 05/19/2023]
Abstract
Over the past decades, introduction of many fast-growing hygrophilic, and economically valuable plants into xeric environments has occurred. However, production and even survival of these species may be threatened by harsh climatic conditions unless an effective physiological and metabolic plasticity is available. Moringa oleifera Lam., a multipurpose tree originating from humid sub-tropical regions of India, is widely cultivated in many arid countries because of its multiple uses. We tested whether M. oleifera can adjust primary and secondary metabolism to efficiently cope with increasing water stress. It is shown that M. oleifera possesses an effective isohydric behavior. Water stress induced a quick and strong stomatal closure, driven by abscisic acid (ABA) accumulation, and leading to photosynthesis inhibition with consequent negative effects on biomass production. However, photochemistry was not impaired and maximal fluorescence and saturating photosynthesis remained unaffected in stressed leaves. We report for the first time that M. oleifera produces isoprene, and show that isoprene emission increased three-fold during stress progression. It is proposed that higher isoprene biosynthesis helps leaves cope with water stress through its antioxidant or membrane stabilizing action, and also indicates a general MEP (methylerythritol 4-phosphate) pathway activation that further helps protect photosynthesis under water stress. Increased concentrations of antioxidant flavonoids were also observed in water stressed leaves, and probably cooperate in limiting irreversible effects of the stress in M. oleifera leaves. The observed metabolic and phenotypic plasticity may facilitate the establishment of M. oleifera in xeric environments, sustaining the economic and environmental value of this plant.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
11
|
Skinner DZ, Bellinger B, Hiscox W, Helms GL. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants. PLoS One 2018; 13:e0198042. [PMID: 29912979 PMCID: PMC6005534 DOI: 10.1371/journal.pone.0198042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of winter wheat (Triticum aestivum L.) plants to develop freezing tolerance through cold acclimation is a complex rait that responds to many environmental cues including day length and temperature. A large part of the freezing tolerance is conditioned by the C-repeat binding factor (CBF) gene regulon. We investigated whether the level of freezing tolerance of 12 winter wheat lines varied throughout the day and night in plants grown under a constant low temperature and a 12-hour photoperiod. Freezing tolerance was significantly greater (P<0.0001) when exposure to subfreezing temperatures began at the midpoint of the light period, or the midpoint of the dark period, compared to the end of either period, with an average of 21.3% improvement in survival. Thus, freezing survival was related to the photoperiod, but cycled from low, to high, to low within each 12-hour light period and within each 12-hour dark period, indicating ultradian cyclic variation of freezing tolerance. Quantitative real-time PCR analysis of expression levels of CBF genes 14 and 15 indicated that expression of these two genes also varied cyclically, but essentially 180° out of phase with each other. Proton nuclear magnetic resonance analysis (1H-NMR) showed that the chemical composition of the wheat plants' cellular fluid varied diurnally, with consistent separation of the light and dark phases of growth. A compound identified as glutamine was consistently found in greater concentration in a strongly freezing-tolerant wheat line, compared to moderately and poorly freezing-tolerant lines. The glutamine also varied in ultradian fashion in the freezing-tolerant wheat line, consistent with the ultradian variation in freezing tolerance, but did not vary in the less-tolerant lines. These results suggest at least two distinct signaling pathways, one conditioning freezing tolerance in the light, and one conditioning freezing tolerance in the dark; both are at least partially under the control of the CBF regulon.
Collapse
Affiliation(s)
- Daniel Z. Skinner
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
- * E-mail:
| | - Brian Bellinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
| | - William Hiscox
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
12
|
Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. PLANTA 2018; 247:573-585. [PMID: 29124326 DOI: 10.1007/s00425-017-2808-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/03/2017] [Indexed: 05/12/2023]
Abstract
AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.
Collapse
Affiliation(s)
- Susanna Pollastri
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Massimo Pesando
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | - Erica Lumini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | | | - Antonella Faccio
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Marco Michelozzi
- CNR, Institute of Biosciences and Bioresources, Sesto Fiorentino, Italy
| | - Maurizio Lambardi
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | | | - Francesco Loreto
- CNR, Department of Biology, Agriculture and Food Sciences (DiSBA), Rome, Italy
| | - Mauro Centritto
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | - Raffaella Balestrini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy.
| |
Collapse
|
13
|
Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G, De Carlo A, Mahmood T, Centritto M. Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS One 2018; 13:e0191218. [PMID: 29447189 PMCID: PMC5814102 DOI: 10.1371/journal.pone.0191218] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/29/2017] [Indexed: 01/22/2023] Open
Abstract
Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.
Collapse
Affiliation(s)
- Aansa Rukya Saleem
- Department of Earth and Environmental Sciences, Bahria University Islamabad Campus, Islamabad, Pakistan
- * E-mail:
| | - Cecilia Brunetti
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Viale delle Idee Sesto Fiorentino, Firenze, Italy
| | - Azeem Khalid
- Department of Environmental Science, Pir Mehr Ali Shah Arid and Agriculture University, Rawalpindi, Pakistan
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Aida Raio
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Giovanni Emiliani
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Anna De Carlo
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Tariq Mahmood
- Islamic Educational, Scientific and Cultural Organization, Rabat, Morocco
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
14
|
Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D. CO2 Diffusion Inside Photosynthetic Organs. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, Tognetti R, Loreto F, Ferrini F, Centritto M. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. TREE PHYSIOLOGY 2017; 37:1637-1647. [PMID: 28981861 DOI: 10.1093/treephys/tpx083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought.
Collapse
Affiliation(s)
- Giovanni Marino
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Cecilia Brunetti
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Romano
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Franco Biasioli
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
16
|
Vieira DDSS, Emiliani G, Bartolini P, Podda A, Centritto M, Luro F, Del Carratore R, Morillon R, Gesteira A, Maserti B. A L-type lectin gene is involved in the response to hormonal treatment and water deficit in Volkamer lemon. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:94-99. [PMID: 28802186 DOI: 10.1016/j.jplph.2017.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress. In this work, a lectin like gene, namely ClLectin1, was characterized in Volkamer lemon and its expression was studied in plants exposed to either water stress, hormonal elicitors (JA, SA, ABA) or wounding to understand whether this gene may have a function in the response to multiple stress combination. Results showed that ClLectin1 has 100% homology with a L-type lectin gene from C. sinensis and the in silico study of the 5'UTR region showed the presence of cis-responsive elements to SA, DRE2 and ABA. ClLectin1 was rapidly induced by hormonal treatments and wounding, at local and systemic levels, suggesting an involvement in defence signalling pathways and a possible role as fast detection biomarker of biotic stress. On the other hand, the induction of ClLectin1 by water stress pointed out a role of the gene in the response to drought. The simultaneous response of ClLectin1 expression to water stress and SA treatment could be further investigated to assess whether a moderate drought stress may be useful to improve citrus performance by stimulating the SA-dependent response to biotic stress.
Collapse
Affiliation(s)
- Dayse Drielly Sousa Santana Vieira
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Giovanni Emiliani
- CNR-Istituto per la Valorizzazione del Legno e delle Specie Arboree, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Paola Bartolini
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandra Podda
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Mauro Centritto
- CNR-Istituto per la Valorizzazione del Legno e delle Specie Arboree, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - François Luro
- UMR AGAP - INRA de Corse, équipe APMV, 20230 San Giuliano, France
| | - Renata Del Carratore
- CNR-Istituto di Fisiologia Clinica, Area della Ricerca Pisa, Via Moruzzi 1, 56100 Pisa,Italy
| | - Raphaël Morillon
- UMR AGAP - CIRAD, équipé APMV - Station de Roujol, 97170 Petit Bourg, Guadaloupe, France
| | | | - Biancaelena Maserti
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Fini A, Brunetti C, Loreto F, Centritto M, Ferrini F, Tattini M. Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change. FRONTIERS IN PLANT SCIENCE 2017; 8:1281. [PMID: 28798754 PMCID: PMC5526906 DOI: 10.3389/fpls.2017.01281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 05/12/2023]
Abstract
The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection.
Collapse
Affiliation(s)
- Alessio Fini
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Science, National Research Council of ItalyRome, Italy
| | - Mauro Centritto
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Massimiliano Tattini
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Institute for Sustainable Plant ProtectionSesto Fiorentino, Italy
| |
Collapse
|
18
|
Ederli L, Brunetti C, Centritto M, Colazza S, Frati F, Loreto F, Marino G, Salerno G, Pasqualini S. Infestation of Broad Bean ( Vicia faba) by the Green Stink Bug ( Nezara viridula) Decreases Shoot Abscisic Acid Contents under Well-Watered and Drought Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:959. [PMID: 28642773 PMCID: PMC5463057 DOI: 10.3389/fpls.2017.00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 05/11/2023]
Abstract
The response of broad bean (Vicia faba) plants to water stress alone and in combination with green stink bug (Nezara viridula) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H2O2) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis (A) and stomatal conductance (gs ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H2O2. However, infestation of N. viridula greatly increased both SA and H2O2 contents in leaves and roots, which suggests that endogenous SA and H2O2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| | - Cecilia Brunetti
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of PalermoPalermo, Italy
| | - Francesca Frati
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of ItalyRome, Italy
| | - Giovanni Marino
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| |
Collapse
|
19
|
Catola S, Kaidala Ganesha SD, Calamai L, Loreto F, Ranieri A, Centritto M. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1257. [PMID: 27602039 PMCID: PMC4993785 DOI: 10.3389/fpls.2016.01257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 05/27/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts.
Collapse
Affiliation(s)
- Stefano Catola
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Srikanta Dani Kaidala Ganesha
- Institute of Ecosystem Study, National Research Council of ItalySesto Fiorentino, Italy
- School of Biology, Indian Institute of Science Education and ResearchThiruvananthapuram, India
| | - Luca Calamai
- Department of Agriculture, Food and Environmental Science, University of FlorenceFlorence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of ItalyRoma, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| |
Collapse
|
20
|
Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. PHYSIOLOGIA PLANTARUM 2016; 157:54-68. [PMID: 26537749 DOI: 10.1111/ppl.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted.
Collapse
Affiliation(s)
- Alessio Fini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 7, I-00185, Roma, Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Cristiana Giordano
- Centro di Microscopie Elettroniche "Laura Bonzi", Istituto dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Cecilia Brunetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
21
|
Sorrentino G, Haworth M, Wahbi S, Mahmood T, Zuomin S, Centritto M. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide. PLoS One 2016; 11:e0148554. [PMID: 26862904 PMCID: PMC4749297 DOI: 10.1371/journal.pone.0148554] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022] Open
Abstract
The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.
Collapse
Affiliation(s)
- Giuseppe Sorrentino
- Institute for Mediterranean Agriculture and Forest Systems, National Research Council, Via Patacca 85, 80056 Ercolano (NA), Italy
| | - Matthew Haworth
- Tree and Timber Institute, National Research Council (CNR - IVALSA), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Said Wahbi
- Laboratoire de Biotechnologie et Physiologie Végétale, Faculté des Sciences Semlalia, Université Cadi Ayyad, Boulevard My Abdellah BP 2390, Marrakech, Morocco
| | - Tariq Mahmood
- Department of Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpindi, Pakistan
| | - Shi Zuomin
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Lab on Forest Ecology and Environmental Sciences, State Forestry Administration, Beijing, 10091, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council (CNR - IVALSA), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
22
|
Dani KGS, Jamie IM, Prentice IC, Atwell BJ. Increased ratio of electron transport to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought. PLANT PHYSIOLOGY 2014; 166:1059-72. [PMID: 25139160 PMCID: PMC4213076 DOI: 10.1104/pp.114.246207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/15/2014] [Indexed: 05/23/2023]
Abstract
Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r(2) > 0.8) and photorespiratory stress (r(2) > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission.
Collapse
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Ian McLeod Jamie
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Iain Colin Prentice
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Brian James Atwell
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| |
Collapse
|
23
|
Centritto M, Haworth M, Marino G, Pallozzi E, Tsonev T, Velikova V, Nogues I, Loreto F. Isoprene emission aids recovery of photosynthetic performance in transgenic Nicotiana tabacum following high intensity acute UV-B exposure. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:82-91. [PMID: 25113453 DOI: 10.1016/j.plantsci.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/29/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Isoprene emission by terrestrial plants is believed to play a role in mitigating the effects of abiotic stress on photosynthesis. Ultraviolet-B light (UV-B) induces damage to the photosynthetic apparatus of plants, but the role of isoprene in UV-B tolerance is poorly understood. To investigate this putative protective role, we exposed non-emitting (NE) control and transgenic isoprene emitting (IE) Nicotiana tabacum (tobacco) plants to high intensity UV-B exposure. Methanol emissions increased with UV-B intensity, indicating oxidative damage. However, isoprene emission was unaffected during exposure to UV-B radiation, but declined in the 48 h following UV-B treatment at the highest UV-B intensities of 9 and 15 Wm(-2). Photosynthesis and the performance of photosystem II (PSII) declined to similar extents in IE and NE plants following UV-B exposure, suggesting that isoprene emission did not ameliorate the immediate impact of UV-B on photosynthesis. However, after the stress, photosynthesis and PSII recovered in IE plants, which maintained isoprene formation, but not in NE plants. Recovery of IE plants was also associated with elevated antioxidant levels and cycling; suggesting that both isoprene formation and antioxidant systems contributed to reinstating the integrity and functionality of cellular membranes and photosynthesis following exposure to excessive levels of UV-B radiation.
Collapse
Affiliation(s)
- Mauro Centritto
- Trees and Timber Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy.
| | - Matthew Haworth
- Institute of Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Giovanni Marino
- Institute of Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy
| | - Emanuele Pallozzi
- Institute of AgroEnvironmental and Forest Biology, National Research Council, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy; Department of Forest Environment and Resources, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Isabel Nogues
- Institute of AgroEnvironmental and Forest Biology, National Research Council, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy
| | - Francesco Loreto
- Institute of Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
24
|
Sun P, Wahbi S, Tsonev T, Haworth M, Liu S, Centritto M. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS One 2014; 9:e105165. [PMID: 25136798 PMCID: PMC4138116 DOI: 10.1371/journal.pone.0105165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.
Collapse
Affiliation(s)
- Pengsen Sun
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P. R. China
| | - Said Wahbi
- Laboratoire de Biotechnologie et Physiologie Végétale, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council, Sesto Fiorentino, Florence, Italy
| | - Shirong Liu
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P. R. China
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
25
|
Aydin YM, Yaman B, Koca H, Dasdemir O, Kara M, Altiok H, Dumanoglu Y, Bayram A, Tolunay D, Odabasi M, Elbir T. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:239-53. [PMID: 24858222 DOI: 10.1016/j.scitotenv.2014.04.132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 04/30/2014] [Indexed: 05/27/2023]
Abstract
Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta-myrcene were generally emitted by coniferous species. Oxygenated compounds were the third most prominent BVOC group and sesquiterpenes had slightly lower contributions.
Collapse
Affiliation(s)
- Yagmur Meltem Aydin
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Baris Yaman
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Husnu Koca
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Okan Dasdemir
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Melik Kara
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Hasan Altiok
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Yetkin Dumanoglu
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Abdurrahman Bayram
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Doganay Tolunay
- Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul, Turkey
| | - Mustafa Odabasi
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Tolga Elbir
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey.
| |
Collapse
|
26
|
Ciccioli P, Centritto M, Loreto F. Biogenic volatile organic compound emissions from vegetation fires. PLANT, CELL & ENVIRONMENT 2014; 37:1810-1825. [PMID: 24689733 PMCID: PMC4265192 DOI: 10.1111/pce.12336] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 05/30/2023]
Abstract
The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem.
Collapse
Affiliation(s)
- Paolo Ciccioli
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, RM, 00015, Italy
| | | | | |
Collapse
|