1
|
Zhou J, Zhang H, Huang Y, Jiao S, Zheng X, Lu W, Jiang W, Bai X. Impact of Sulfur Deficiency and Excess on the Growth and Development of Soybean Seedlings. Int J Mol Sci 2024; 25:11253. [PMID: 39457037 PMCID: PMC11508489 DOI: 10.3390/ijms252011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sulfur is a critical element for plant growth and development, serving as a component of amino acids (cysteine and methionine), iron-sulfur clusters, proteins, glutathione, coenzymes, and auxin precursors. Deficiency or low concentrations of sulfur in the soil can lead to significant growth retardation in plants. The objective of our study was to examine the effects of sulfur (S) deficiency and excess on morphological symptoms, sulfur and nitrogen (N) metabolism, as well as antioxidant activity in soybean. We found that S starvation decreased the fine root length, biomass, and activity, and the chlorophyll content was reduced, while excess sulfur promotes lateral root growth. In contrast to sulfur excess, sulfur deficiency inhibits N and S metabolism levels in both subsurface and above-ground parts, and induced the expression of some sulfur transporters (SULTRs). In this study, we created soybean hairy root lines overexpressing the SULTR gene (GmSULTR2;1a) to observe metabolic changes following sulfur deficiency treatment. The results showed that GmSULTR2;1a saved the sulfur-deficient phenotype, and the antioxidant enzyme activity was much higher than that of the wildtype in the absence of sulfur. Our study revealed the important role of sulfur element in soybean growth and development and the regulation of sulfur deficiency by GmSULTR2;1a.
Collapse
Affiliation(s)
- Jingwen Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Huimin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Yifan Huang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Shuang Jiao
- Key Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Xiangmin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wenjing Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| |
Collapse
|
2
|
Wu Y, Mehdi F, Cao Z, Gan Y, Jiang S, Zan L, Zhang S, Yang B. Optimizing Sugarcane Clonal Propagation In Vitro by Using Calcium Ammonium Nitrate and Ammonium Sulfate. PLANTS (BASEL, SWITZERLAND) 2024; 13:2767. [PMID: 39409637 PMCID: PMC11478678 DOI: 10.3390/plants13192767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
To replace explosive nitrate-based chemicals in MS medium, this study developed a new, safer, and more cost-effective method using fertilizer-grade calcium ammonium nitrate and ammonium sulfate. This approach replaces ammonium nitrate and potassium nitrate, ensuring both safety and cost efficiency for sugarcane propagation. Six local sugarcane varieties-Zhongtang1 (ZT1), Zhongtang3 (ZT3), Zhongtang6 (ZT6), Guitang42 (GT42), Guitang44 (GT44), and Guiliu 07150 (GT07150)-were used. In the control group (Ck), nitrate ions (NO3-) were 39.28 mM, and ammonium ions (NH4+) were 20.49 mM, with a 2:1 ratio. In the treatment groups, the concentrations of nitrate ions (NO3-) and ammonium ions (NH4+) included treatment 1 (19.69 mM NO3- and 10.3 mM NH4+), treatment 2 (29.54 mM and 15.44 mM), treatment 3 (39.38 mM and 20.59 mM), treatment 4 (49.225 mM and 25.74 mM), treatment 5 (59.07 mM and 30.89 mM), and treatment 6 (68.915 mM and 36.03 mM), respectively, all with the same 2:1 ratio. Fifty bottles per treatment, with three replicates, were used for each sugarcane plantlets treatment. After five subcultures, the optimal ratio was determined by assessing morphological and physiological parameters, nitrogen levels, and SOD enzyme activity. The results indicated that treatment 3 (39.38 mM and 20.59 mM) and treatment 4 (49.225 mM and 25.74 mM) had the best morphological and physiological indicators. The optimal doses of calcium ammonium nitrate and ammonium sulfate were found in treatments 3 and 4, as well as in the control, with no significant difference among them. However, treatment 3, due to its lower dose, was more cost effective. To improve cost efficiency in practical production, it is recommended to use the lower concentration ratio of treatment 3 for plant tissue culture plantlets.
Collapse
Affiliation(s)
- Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Shuting Jiang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Limei Zan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Li L, Su Y, Xiang W, Huang G, Liang Q, Dun B, Zhang H, Xiao Z, Qiu L, Zhang J, Wu D. Transcriptomic network underlying physiological alterations in the stem of Myricaria laxiflora in response to waterlogging stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116991. [PMID: 39236657 DOI: 10.1016/j.ecoenv.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Myricaria laxiflora is an endangered shrub plant with remarkable tolerance to waterlogging stress, however, little attention has been paid to understanding the underlying mechanisms. Here, physiological and transcriptomic approaches were applied to uncover the physiological and molecular reconfigurations in the stem of M. laxiflora in response to waterlogging stress. The accumulation of the contents of H2O2 and malonaldehyde (MDA) alongside increased activities of enzymes for scavenging the reactive oxygen species (ROS) in the stem of M. laxiflora were observed under waterlogging stress. The principal component analysis (PCA) of transcriptomes from five different timepoints uncovered PC1 counted for 17.3 % of total variations and separated the treated and non-treated samples. A total of 8714 genes in the stem of M. laxiflora were identified as differentially expressed genes (DEGs) under waterlogging stress, which could be assigned into two different subgroups with distinct gene expression patterns and biological functions. The DEGs involved in glycolysis were generally upregulated, whereas opposite results were observed for nitrogen uptake and the assimilation pathway. The contents of abscisic acid (ABA) and jasmonic acid (JA) were sharply decreased alongside the decreased mRNA levels of the genes involved in corresponding synthesis pathways upon waterlogging stress. A network centered by eight key transcription factors has been constructed, which uncovered the inhibited cell division processes in the stem of M. laxiflora upon waterlogging stress. Taken together, the obtained results showed that glycolysis, nitrogen metabolism and meristem activities played an important role in the stem of M. laxiflora in response to waterlogging stress.
Collapse
Affiliation(s)
- Linbao Li
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Yang Su
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Weibo Xiang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Guiyun Huang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Qianyan Liang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Bicheng Dun
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Haibo Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Zhiqiang Xiao
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Liwen Qiu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Jun Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Di Wu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China.
| |
Collapse
|
4
|
Liu C, Gu W, Liu C, Shi X, Li B, Zhou Y. Comparative phenotypic and transcriptomic analysis reveals genotypic differences in nitrogen use efficiency in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109028. [PMID: 39146913 DOI: 10.1016/j.plaphy.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Sorghum (Sorghumbicolor L.), a model for C4 grass and an emerging biofuel crop, is known for its robust tolerance to low input field. However, the focus on enhancing nitrogen use efficiency (NUE) in sorghum under low nitrogen (N) conditions has been limited. This study conducted hydroponic experiments and field trials with two sorghum inbred lines, contrasting in their N efficiency: the N-efficient (398B) and the N-inefficient (CS3541) inbred lines. The aim was to analyze the key factors influencing NUE by integrating phenotypic, physiological, and multi-omics approaches under N deficiency conditions. The field experiments revealed that 398B displayed superior NUE and yield performance compared to CS3541. In hydroponic experiments, the growth of 398B outperformed CS3541 following N deficiency, attributing to its higher photosynthetic and sustaining activity of N metabolism-related enzymes. Genomic and transcriptomic integration highlighted fewer genomic diversities and alterations in global gene expression in 398B, which were likely contributor to its high NUE. Additionally, co-expression network analysis suggested the involvement of key genes which impact N uptake efficiency (NUpE) and N utilization efficiency (NUtE) in both lines, such as an N transporter, Sobic.003G371000.v3.2leaf(NPF5.10) and a transcription factor, Sobic.002G202800.v3.2leaf(WRKY) in bolstering NUE under low-N stress. The findings collectively suggested that 398B achieved higher NUpE and NUtE, effectively coordinating photosynthesis and N metabolism to enhance NUE. The candidate genes regulating N uptake and utilization efficiencies could provide valuable insights for developing sorghum breeds with improved NUE, contributing to sustainable agricultural practices and bioenergy crop development.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
5
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Gao C, Liu C, Chen C, Liu N, Liu F, Su X, Huang Q. Genetic Evaluation of Water Use Efficiency and Nutrient Use Efficiency in Populus deltoides Bartr. ex Marsh. Seedlings in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2228. [PMID: 39204664 PMCID: PMC11359723 DOI: 10.3390/plants13162228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Populus deltoides Bartr. ex Marsh. represents a valuable genetic resource for fast-growing plantations in temperate regions. It holds significant cultivation and breeding potential in northern China. To establish an efficient breeding population of poplar, we studied the genetic variation of P. deltoides from different provenances. Our focus was on genotypes exhibiting high growth rates and efficient water and nutrient use efficiency (WUE and NUE). We evaluated 256 one-year-old seedlings from six provenances, measuring height, ground diameter, total biomass, and leaf carbon and nitrogen isotope abundance (δ13C and δ15N). Our analytical methods included variance analysis, multiple comparisons, mixed linear models, correlation analysis, and principal component analysis. The results showed that the coefficient of variation was highest for δ15N and lowest for δ13C among all traits. Except for δ15N, the effects of intra- and inter-provenance were highly significant (p < 0.01). The rates of variation for all traits ranged from 78.36% to 99.49% for intra-provenance and from 0.51% to 21.64% for inter-provenance. The heritability of all traits in AQ provenance was over 0.65, and all exhibited the highest level except for seedling height. All traits were significantly positively correlated with each other (p < 0.05), while ground diameter, total biomass, and WUE were highly significantly negatively correlated with latitude (p < 0.01). After a comprehensive evaluation, two provenances and eight genotypes were selected. The genetic gains for seedling height, ground diameter, total biomass, WUE, and NUE were 27.46 cm (178-2-106), 3.85 mm (178-2-141), 16.40 g (178-2-141), 0.852‱ (LA05-N15), and 3.145‱ (174-1-2), respectively. Overall, we revealed that the abundant genetic variation in P. deltoides populations mainly comes from intra-provenance differences and evaluated provenances and genotypes. The results of this study will contribute to optimizing and enhancing the breeding process of Chinese poplar and improving the productivity of fast-growing plantations.
Collapse
Affiliation(s)
- Chengcheng Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Chenggong Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Cun Chen
- School of Life Sciences, Qilu Normal University, Jinan 250013, China;
| | - Ning Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Ghent University, 9000 Ghent, Belgium
| | - Fenfen Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
7
|
Liu C, Gu W, Liu C, Shi X, Li B, Chen B, Zhou Y. Tryptophan regulates sorghum root growth and enhances low nitrogen tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108737. [PMID: 38763003 DOI: 10.1016/j.plaphy.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
8
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
9
|
Wang Z, Lian J, Liang J, Wei H, Chen H, Hu W, Tang M. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108648. [PMID: 38653094 DOI: 10.1016/j.plaphy.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqian Lian
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Xu T, Wang Z, Wang Z, Guo M, Wang X, He X, Wang J, Rahman SU, Bourhia M, Alsahli AA, Zhang Y. Effects of nitrate- and ammonium- nitrogen on anatomical and physiological responses of Catalpa bungei under full and partial root-zone drought. BMC PLANT BIOLOGY 2024; 24:217. [PMID: 38532319 DOI: 10.1186/s12870-024-04874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Catalpa bungei is a precious timber species distributed in North China where drought often occurs. To clarify adaptive responses of C. bungei to partial- and full- root-zone drought under the influence of nitrogen forms, a two-factor experiment was conducted in which well-watered (WW), partial root-zone drought in horizontal direction (H-PRD) and in vertical direction (V-PRD), and full root-zone drought (FRD) were combined with nitrate-nitrogen (NN) and ammonium-nitrogen (AN) treatments. C. bungei responded to FRD by sharply closing stomata, decreasing gas exchange rate and increasing leaf instantaneous water use efficiency (WUEi). Under FRD condition, the growth of seedlings was severely inhibited and the effect of N forms was covered up by the drastic drought effect. In comparison, stomata conductance and gas exchanges were moderately inhibited by PRDs. WUEi in V-PRD treatment was superior to H-PRD due to the active stomata regulation resulting from a higher ABA level and active transcription of genes in abscisic acid (ABA) signaling pathway under V-PRD. Under both PRDs and FRD, nitrate benefited antioxidant defense, stomata regulation and leaf WUEi. Under V-PRD, WUEi in nitrate treatment was superior to that in ammonium treatment due to active stomata regulation by signaling network of nitric oxide (NO), Ca2+ and ABA. Under FRD, WUEi was higher in nitrate treatment due to the favoring photosynthetic efficiency resulting from active NO signal and antioxidant defense. The interactive effect of water and N forms was significant on wood xylem development. Superoxide dismutase (SOD) and catalase (CAT) largely contributes to stress tolerance and xylem development.
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiyong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengfan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuelian He
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization , Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Lyu H, Li Y, Wang Y, Wang P, Shang Y, Yang X, Wang F, Yu A. Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization - a review of green manure applications. FRONTIERS IN PLANT SCIENCE 2024; 14:1305600. [PMID: 38239220 PMCID: PMC10794358 DOI: 10.3389/fpls.2023.1305600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024]
Abstract
Green manure application presents a valuable strategy for enhancing soil fertility and promoting ecological sustainability. By leveraging green manures for effective nitrogen management in agricultural fields can significantly reduce the dependency of primary crops on chemical nitrogen fertilizers, thereby fostering resource efficiency. This review examines the current advancements in the green manure industry, focusing on the modulation of nitrogen transformation in soil and how crops absorb and utilize nitrogen after green manure application. Initially, the influence of green manure on soil nitrogen transformation is delineated, covering processes such as soil nitrogen immobilization, and mineralization, and losses including NH3, N2O, and NO3 --N leaching. The review then delves into the effects of green manure on the composition and function of soil microbial communities, highlighting their role in nitrogen transformation. It emphasizes the available nitrogen content in the soil, this article discussing nitrogen uptake and utilization by plants, including aspects such as nitrogen translocation, distribution, the root system, and the rhizosphere environment of primary crops. This provides insights into the mechanisms that enhance nitrogen uptake and utilization when green manures are reintroduced into fields. Finally, the review anticipates future research directions in modulating soil nitrogen dynamics and crop nitrogen uptake through green manure application, aiming to advance research and the development of the green manure sector.
Collapse
Affiliation(s)
- Hanqiang Lyu
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yue Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yulong Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yongpan Shang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xuehui Yang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Feng Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Aizhong Yu
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Cui M, Yu H, Fan X, Nawaz M, Lian J, Liu S, Zhu Z, Zhang H, Du D, Ren G. Nitrogen Deposition Amplifies the Legacy Effects of Plant Invasion. PLANTS (BASEL, SWITZERLAND) 2023; 13:72. [PMID: 38202380 PMCID: PMC10780853 DOI: 10.3390/plants13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The legacy effects of invasive plant species can hinder the recovery of native communities, especially under nitrogen deposition conditions, where invasive species show growth advantages and trigger secondary invasions in controlled areas. Therefore, it is crucial to thoroughly investigate the effects of nitrogen deposition on the legacy effects of plant invasions and their mechanisms. The hypotheses of this study are as follows: (1) Nitrogen deposition amplifies the legacy effects of plant invasion. This phenomenon was investigated by analysing four potential mechanisms covering community system structure, nitrogen metabolism, geochemical cycles, and microbial mechanisms. The results suggest that microorganisms drive plant-soil feedback processes, even regulating or limiting other factors. (2) The impact of nitrogen deposition on the legacy effects of plant invasions may be intensified primarily through enhanced nitrogen metabolism via microbial anaerobes bacteria. Essential insights into invasion ecology and ecological management have been provided by analysing how nitrogen-fixing bacteria improve nitrogen metabolism and establish sustainable methods for controlling invasive plant species. This in-depth study contributes to our better understanding of the lasting effects of plant invasions on ecosystems and provides valuable guidance for future ecological management.
Collapse
Affiliation(s)
- Miaomiao Cui
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Haochen Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Xue Fan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Mohsin Nawaz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Junjie Lian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Shihong Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Zhaoqi Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
| | - Haiyan Zhang
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guangqian Ren
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (M.N.); (Z.Z.)
- Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Zhang S, Wang W, Chang R, Yu J, Yan J, Yu W, Li C, Xu Z. Structure and Expression Analysis of PtrSUS, PtrINV, PtrHXK, PtrPGM, and PtrUGP Gene Families in Populus trichocarpa Torr. and Gray. Int J Mol Sci 2023; 24:17277. [PMID: 38139109 PMCID: PMC10743687 DOI: 10.3390/ijms242417277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China;
| | - Wenxi Yu
- Heilongjiang Forestry Academy of Science, Harbin 150081, China;
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
14
|
Chen Y, Bai Y, Zhang Z, Zhang Y, Jiang Y, Wang S, Wang Y, Sun Z. Transcriptomics and metabolomics reveal the primary and secondary metabolism changes in Glycyrrhiza uralensis with different forms of nitrogen utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229253. [PMID: 38023834 PMCID: PMC10653330 DOI: 10.3389/fpls.2023.1229253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
The roots and rhizomes of Glycyrrhiza uralensis Fisch. represent the oldest and most frequently used herbal medicines in Eastern and Western countries. However, the quality of cultivated G. uralensis has not been adequate to meet the market demand, thereby exerting increased pressure on wild G. uralensis populations. Nitrogen, vital for plant growth, potentially influences the bioactive constituents of plants. Yet, more information is needed regarding the effect of different forms of nitrogen on G. uralensis. G. uralensis seedlings were exposed to a modified Hoagland nutrient solution (HNS), varying concentrations of nitrate (KNO3), or ammonium (NH4)2SO4. We subsequently obtained the roots of G. uralensis for physiology, transcriptomics, and metabolomics analyses. Our results indicated that medium-level ammonium nitrogen was more effective in promoting G. uralensis growth compared to nitrate nitrogen. However, low-level nitrate nitrogen distinctly accelerated the accumulation of flavonoid ingredients. Illumina sequencing of cDNA libraries prepared from four groups-treated independently with low/medium NH4 + or NO3 - identified 364, 96, 103, and 64 differentially expressed genes (DEGs) in each group. Our investigation revealed a general molecular and physiological metabolism stimulation under exclusive NH4 + or NO3 - conditions. This included nitrogen absorption and assimilation, glycolysis, Tricarboxylic acid (TCA) cycle, flavonoid, and triterpenoid metabolism. By creating and combining putative biosynthesis networks of nitrogen metabolism, flavonoids, and triterpenoids with related structural DEGs, we observed a positive correlation between the expression trend of DEGs and flavonoid accumulation. Notably, treatments with low-level NH4 + or medium-level NO3 - positively improved primary metabolism, including amino acids, TCA cycle, and glycolysis metabolism. Meanwhile, low-level NH4 + and NO3 - treatment positively regulated secondary metabolism, especially the biosynthesis of flavonoids in G. uralensis. Our study lays the foundation for a comprehensive analysis of molecular responses to varied nitrogen forms in G. uralensis, which should help understand the relationships between responsive genes and subsequent metabolic reactions. Furthermore, our results provide new insights into the fundamental mechanisms underlying the treatment of G. uralensis and other Glycyrrhiza plants with different nitrogen forms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Yang F, Zhang Y, Zhang H, Hu J, Zhu W, Liu L, Liu H, Fahad S, Gao Q. Comparative physiological and transcriptome analysis of leaf nitrogen fluxes in stay-green maize during the vegetative stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108147. [PMID: 37922646 DOI: 10.1016/j.plaphy.2023.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
In maize, nitrogen (N) stored in leaves is an important internal source for supporting subsequent growth and development. However, the regulation of N fluxes and photosynthesis and the molecular and genotypic regulations that modify them are less clear in source leaves during the vegetative stage. This knowledge is crucial for improving N use efficiency (NUE). By using 15N labeling and transcriptome methods, an analysis of the physiological and molecular basis of leaf N import and export processes and photosynthetic N use efficiency (PNUE) was conducted in two maize hybrids (XY335 and XY696) with different stay-green characteristics during the vegetative stage. Leaf N import and export in XY696 were 45% and 33% greater than those in XY335. However, the PNUE in XY335 was 17% greater than that in XY696 due to the higher net photosynthetic rate (A) and lower SLN. Correspondingly, the chlorophyll content and photosynthesis-related enzyme (PEPc, PEPck, PPDK) activities increased by 18∼30% in XY335. Transcriptome analysis indicated that the expression levels of several N and carbon metabolism-related genes encoding Rubisco, PEPc, Nir, GS and AS were significantly increased or decreased in XY696 in parallel with enzyme activities. Moreover, there was a large difference in the expression abundance of genes encoding nitrate/nitrite transporters and transmembrane proteins. Our results suggest that two hybrids modulate leaf N fluxes and photosynthesis differently by altering gene expression and enzyme activities. Our study contributes to understanding leaf N fluxes and PNUE regulation and serves as a crucial reference for NUE improvement in maize breeding research.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yudie Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyi Zhang
- College of Agriculture, Guangxi University, Nanning, 53002, China
| | - Jingwen Hu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Wenjing Zhu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Liu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Qiang Gao
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
16
|
Carrell AA, Clark M, Jawdy S, Muchero W, Alexandre G, Labbé JL, Rush TA. Interactions with microbial consortia have variable effects in organic carbon and production of exometabolites among genotypes of Populus trichocarpa. PLANT DIRECT 2023; 7:e544. [PMID: 38028650 PMCID: PMC10660807 DOI: 10.1002/pld3.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Poplar is a short-rotation woody crop frequently studied for its significance as a sustainable bioenergy source. The successful establishment of a poplar plantation partially depends on its rhizosphere-a dynamic zone governed by complex interactions between plant roots and a plethora of commensal, mutualistic, symbiotic, or pathogenic microbes that shape plant fitness. In an exploratory endeavor, we investigated the effects of a consortium consisting of ectomycorrhizal fungi and a beneficial Pseudomonas sp. strain GM41 on plant growth (including height, stem girth, leaf, and root growth) and as well as growth rate over time, across four Populus trichocarpa genotypes. Additionally, we compared the level of total organic carbon and plant exometabolite profiles across different poplar genotypes in the presence of the microbial consortium. These data revealed no significant difference in plant growth parameters between the treatments and the control across four different poplar genotypes at 7 weeks post-inoculation. However, total organic carbon and exometabolite profiles were significantly different between the genotypes and the treatments. These findings suggest that this microbial consortium has the potential to trigger early signaling responses in poplar, influencing its metabolism in ways crucial for later developmental processes and stress tolerance.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Miranda Clark
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Sara Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | | | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of Tennessee‐KnoxvilleKnoxvilleTennesseeUSA
| | - Jesse L. Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Present address:
Technology HoldingSalt Lake CityUtahUSA
| | - Tomás A. Rush
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
17
|
Kim TL, Lim H, Denison MIJ, Oh C. Transcriptomic and Physiological Analysis Reveals Genes Associated with Drought Stress Responses in Populus alba × Populus glandulosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3238. [PMID: 37765403 PMCID: PMC10535988 DOI: 10.3390/plants12183238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Drought stress affects plant productivity by altering plant responses at the morphological, physiological, and molecular levels. In this study, we identified physiological and genetic responses in Populus alba × Populus glandulosa hybrid clones 72-30 and 72-31 after 12 days of exposure to drought treatment. After 12 days of drought treatment, glucose, fructose, and sucrose levels were significantly increased in clone 72-30 under drought stress. The Fv/Fo and Fv/Fm values in both clones also decreased under drought stress. The changes in proline, malondialdehyde, and H2O2 levels were significant and more pronounced in clone 72-30 than in clone 72-31. The activities of antioxidant-related enzymes, such as catalase and ascorbate peroxidase, were significantly higher in the 72-31 clone. To identify drought-related genes, we conducted a transcriptomic analysis in P. alba × P. glandulosa leaves exposed to drought stress. We found 883 up-regulated and 305 down-regulated genes in the 72-30 clone and 279 and 303 in the 72-31 clone, respectively. These differentially expressed genes were mainly in synthetic pathways related to proline, abscisic acid, and antioxidants. Overall, clone 72-31 showed better drought tolerance than clone 72-30 under drought stress, and genetic changes also showed different patterns.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (T.-L.K.); (C.O.)
| |
Collapse
|
18
|
Chen W, Mou X, Meng P, Chen J, Tang X, Meng G, Xin K, Zhang Y, Wang C. Effects of arbuscular mycorrhizal fungus inoculation on the growth and nitrogen metabolism of Catalpa bungei C.A.Mey. under different nitrogen levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1138184. [PMID: 36909441 PMCID: PMC9996104 DOI: 10.3389/fpls.2023.1138184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Evidence suggests that arbuscular mycorrhizal fungi (AMF) may promote the growth of woody plants. However, the effects of AMF on nitrogen (N) metabolism in plants, especially trees, and its regulatory mechanism are rarely reported. Here, the effects of AMF inoculation on the growth and N nutrition status of Catalpa bungei under different N levels were reported. Three N levels (low, medium, high) and two mycorrhizal inoculation treatments (inoculation with Rhizophagus intraradices or not) were used with factorial design. The results showed that medium N could significantly improve the physiological metabolism and growth of C. bungei seedlings. However, when N was excessive, growth was significantly inhibited whether inoculated AMF or not. Compared with non-inoculated treatments, AMF inoculation could promote the absorption of N and P, improve photosynthesis under low to medium N levels, thus promoting the growth of seedlings. AMF changed the biomass allocation in seedlings by reducing the stem mass ratio and root/shoot ratio, and increasing the leaf mass ratio. At medium N levels, compared with non-inoculated treatment, AMF inoculation could significantly promote root growth by changing root hormone levels and improving root architecture and root activity. Under N addition, AMF inoculation could improve the absorption and assimilation of N by regulating the expression of key enzyme genes of N metabolism and nitrate transporter genes (NRT2.4, NRT2.5, NRT2.7) in roots, and enhancing the activities of the key enzyme of N metabolism. This study may provide a reference for the application of AMF in the cultivation and afforestation technology of C. bungei in Northwest China.
Collapse
|
19
|
Liu C, Duan N, Chen X, Li X, Zhao N, Cao W, Li H, Liu B, Tan F, Zhao X, Li Q. Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen. PLANTS (BASEL, SWITZERLAND) 2023; 12:895. [PMID: 36840241 PMCID: PMC9962214 DOI: 10.3390/plants12040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L-1 nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes' responses to increased nitrogen in the future.
Collapse
Affiliation(s)
- Chenggong Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Na Duan
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
- National Long-Term Scientific Research Base of Ulan Buh Desert Comprehensive Control, National Forestry and Grassland Administration, Dengkou 015200, China
| | - Xiaona Chen
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
- National Long-Term Scientific Research Base of Ulan Buh Desert Comprehensive Control, National Forestry and Grassland Administration, Dengkou 015200, China
| | - Xu Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Naqi Zhao
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
- National Long-Term Scientific Research Base of Ulan Buh Desert Comprehensive Control, National Forestry and Grassland Administration, Dengkou 015200, China
| | - Wenxu Cao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Huiqing Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Bo Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Fengsen Tan
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Xiulian Zhao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| | - Qinghe Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
20
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Li D, Liu J, Guo H, Zong J, Li J, Wang J, Li L, Chen J. Effects of low nitrogen supply on nitrogen uptake, assimilation and remobilization in wild bermudagrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:34-41. [PMID: 36179517 DOI: 10.1016/j.plaphy.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The natural mechanism of underlying the low nitrogen (N) tolerance of wild bermudagrass (Cynodon dactylon (L.) Pers.) germplasm was important for reducing N fertilizer input to turf while also maintaining acceptable turf quality. The growth, N uptake, assimilation and remobilization of two wild bermudagrass accessions (C291, low N tolerant and C716, low N sensitive) were determined under low N (0.5 mM) and control N (5 mM) levels. C291 exhibited lower reduction in shoot and plant dry weight than C716. Furthermore, C291 presented a lower decrease in 15NO3- influx compared with C716, maintained its root dry weight and root surface and showed obviously enhanced CyNRT2.2 and CyNRT2.3 expression resulting in higher shoot NO3--N content than the control. Moreover, in C291, nitrate reductase (NR) activity had no significant difference with control, and cytosolic glutamine synthetase (GS1) protein content, glutamate synthetase (GOGAT) activity and glutamate dehydrogenase (GDH) activity higher than control, result in the soluble protein and free amino acid contents in the shoots did not differ compared with that in the control under low N conditions. Overall, the low N tolerant wild bermudagrass accessions adopted a low N supply based on improved root N uptake ability to achieve more nitrate to kept shoot N assimilation, and meanwhile increased N remobilization in the shoots, thereby maintaining a better N status in bermudagrass. The findings may help elucidate the low N tolerance mechanisms in bermudagrass and therefore facilitate genetic improvement of N use efficiency aiming to promote low-input turfgrass management.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
22
|
Ullah A, Tariq A, Zeng F, Sardans J, Graciano C, Ullah S, Chai X, Zhang Z, Keyimu M, Asghar MA, Javed HH, Peñuelas J. Phosphorous Supplementation Alleviates Drought-Induced Physio-Biochemical Damages in Calligonum mongolicum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223054. [PMID: 36432784 PMCID: PMC9699272 DOI: 10.3390/plants11223054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (H2O2) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Akash Tariq
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Correspondence: (A.T.); (F.Z.); Tel.: +86-155-0448-0471 (A.T.)
| | - Fanjiang Zeng
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
- Correspondence: (A.T.); (F.Z.); Tel.: +86-155-0448-0471 (A.T.)
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires B1406, Argentina
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar 25000, Pakistan
| | - Xutian Chai
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Zhihao Zhang
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Maierdang Keyimu
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Hafiz Hassan Javed
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
23
|
Transcriptome Analysis Reveals Putative Induction of Floral Initiation by Old Leaves in Tea-Oil Tree (Camellia oleifera ‘changlin53’). Int J Mol Sci 2022; 23:ijms232113021. [PMID: 36361817 PMCID: PMC9655362 DOI: 10.3390/ijms232113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar ‘changlin53’) was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera ‘changlin53’ mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm–photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.
Collapse
|
24
|
Ullah A, Zeng F, Tariq A, Asghar MA, Saleem K, Raza A, Naseer MA, Zhang Z, Noor J. Exogenous naphthaleneacetic acid alleviated alkalinity-induced morpho-physio-biochemical damages in Cyperus esculentus L. var. sativus Boeck. FRONTIERS IN PLANT SCIENCE 2022; 13:1018787. [PMID: 36330265 PMCID: PMC9624244 DOI: 10.3389/fpls.2022.1018787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyperus esculentus L. var. sativus Boeck (commonly called Chufa) is a perennial species that produces nutritious underground tubers and contributes to the diet and health of human worldwide. However, it is salt-sensitive and its adaptation to salinity stress remains an enigma. Naphthaleneacetic acid (NAA) plays a vital role in regulating plant salt stress tolerance. Thus, we aimed to investigate the impact of NAA (150 mg/L) application on growth and physio-biochemical response mechanisms of Chufa plants to different levels of salinity stress (0-, 90-, and 180 mM of alkaline stress ([1:1 ratio of Na2CO3 and NaHCO3]). In response to increasing stress levels, shoot-root growth decreased, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), osmolytes (soluble protein, proline, and soluble sugars), and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly increased. Alkalinity led to significant increase in Na+ and Cl-, but decrease in Mg2+ concentration in both roots and leaves; however, K+ decreased significantly in leaves under both stresses. Additionally, NO 3 - and. levels, nitrate reductase (NR) activities, and glutamate synthase (GOGAT) decreased significantly. However, glutamine synthetase (GS) increased non-significantly at 90 mM but declined at 180 mM. Foliar NAA application reduced Na+ and Cl-, MDA, and H2O2 but increased photosynthetic pigments, K+ and Mg2+, osmolytes, nitrogen (N) metabolism, and upregulating the enzymatic antioxidant system to reduce oxidative stress under alkaline conditions. Hence, our findings manifest that NAA application is an effective strategy that can be utilized to enhance tolerance of chufa plants to alkaline stress. Future studies should explore whether NAA can positively alter the nutrient composition of chufa tubers at deeper molecular levels, which might offer solutions to nutritious problems in developing countries.
Collapse
Affiliation(s)
- Abd Ullah
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert Grassland Ecosystems, Cele, China
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Raza
- Chengdu Institute of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asad Naseer
- College of Agronomy/Key Laboratory of Crop Physio-ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert Grassland Ecosystems, Cele, China
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Pakistan
| |
Collapse
|
25
|
Chai X, Wang X, Pi Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6490-6504. [PMID: 35792505 DOI: 10.1093/jxb/erac301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed complex mechanisms to adapt to changing nitrate (NO3-) concentrations and can recruit microbes to boost nitrogen absorption. However, little is known about the relationship between functional genes and the rhizosphere microbiome in NO3- uptake of apple rootstocks. Here, we found that variation in Malus domestica NO3- transporter (MdNRT2.4) expression contributes to nitrate uptake divergence between two apple rootstocks. Overexpression of MdNRT2.4 in apple seedlings significantly improved tolerance to low nitrogen via increasing net NO3- influx at the root surface. However, inhibiting the root plasma membrane H+-ATPase activity abolished NO3- uptake and led to NO3- release, suggesting that MdNRT2.4 encodes an H+-coupled nitrate transporter. Surprisingly, the nitrogen concentration of MdNRT2.4-overexpressing apple seedlings in unsterilized nitrogen-poor soil was higher than that in sterilized nitrogen-poor soil. Using 16S ribosomal RNA gene profiling to characterize the rhizosphere microbiota, we found that MdNRT2.4-overexpressing apple seedlings recruited more bacterial taxa with nitrogen metabolic functions, especially Rhizobiaceae. We isolated a bacterial isolate ARR11 from the apple rhizosphere soil and identified it as Rhizobium. Inoculation with ARR11 improved apple seedling growth in nitrogen-poor soils, compared with uninoculated seedlings. Together, our results highlight the interaction of host plant genes with the rhizosphere microbiota for host plant nutrient uptake.
Collapse
Affiliation(s)
- Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
26
|
Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline-Alkaline Stress on Rice Seedlings. Int J Mol Sci 2022; 23:ijms231710048. [PMID: 36077438 PMCID: PMC9456538 DOI: 10.3390/ijms231710048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Saline–alkaline stress suppresses rice growth and threatens crop production. Despite substantial research on rice’s tolerance to saline–alkaline stress, fewer studies have examined the impact of magnetic water treatments on saline–alkaline-stressed rice plants. We explored the physiological and molecular mechanisms involved in saline–alkaline stress tolerance enhancement via irrigation with magnetized water using Nipponbare. The growth of Nipponbare plants was inhibited by saline–alkaline stress, but this inhibition was alleviated by irrigating the plants with magnetized water, as evidenced by greater plant height, biomass, chlorophyll content, photosynthetic rates, and root system in plants irrigated with magnetized water compared to those irrigated with non-magnetized water. Plants that were irrigated with magnetized water were able to acquire more total nitrogen. In addition, we proved that rice seedlings irrigated with magnetized water had a greater root NO3−-nitrogen concentration and root NH4+-nitrogen concentration than plants irrigated with non-magnetized water. These findings suggest that treatment with magnetized water could increase nitrogen uptake. To test this hypothesis, we analyzed the expression levels of genes involved in nitrogen acquisition. The expression levels of OsNRT1;1, OsNRT1;2, OsNRT2;1, OsAMT1;2, OsAMT2;1, OsAMT2;2, OsAMT2;3, OsAMT3;1, OsAMT3;2, and OsAMT3;3 were higher in plants exposed to magnetized water medium compared to those exposed to non-magnetized water media. We further demonstrated that treatment with magnetized water increases available nitrogen, NO3−-nitrogen content, and NH4+-nitrogen content in soil under saline–alkaline stress. Our results revealed that the increased resistance of rice seedlings to saline–alkaline stress may be attributable to a very effective nitrogen acquisition system enhanced by magnetized water.
Collapse
|
27
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
28
|
Huang WT, Zheng ZC, Hua D, Chen XF, Zhang J, Chen HH, Ye X, Guo JX, Yang LT, Chen LS. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. BMC PLANT BIOLOGY 2022; 22:370. [PMID: 35879653 PMCID: PMC9316421 DOI: 10.1186/s12870-022-03759-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.
Collapse
Affiliation(s)
- Wei-Tao Huang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Zhi-Chao Zheng
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Dan Hua
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xu-Feng Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiang Zhang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Huan-Huan Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xin Ye
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiu-Xin Guo
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Lin-Tong Yang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Li-Song Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| |
Collapse
|
29
|
Zhou J, Yang LY, Jia CL, Shi WG, Deng SR, Luo ZB. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:941380. [PMID: 35874008 PMCID: PMC9305699 DOI: 10.3389/fpls.2022.941380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.
Collapse
|
30
|
Zhao Z, Li M, Xu W, Liu JH, Li C. Genome-Wide Identification of NRT Gene Family and Expression Analysis of Nitrate Transporters in Response to Salt Stress in Poncirus trifoliata. Genes (Basel) 2022; 13:genes13071115. [PMID: 35885900 PMCID: PMC9323722 DOI: 10.3390/genes13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The uptake and transportation of nitrate play a crucial role in plant growth and development. These processes mostly depend on nitrate transporters (NRT), which guarantee the supplement of nutrition in the plant. In this study, genes encoding NRT with Major Facilitator Superfamily (MFS) domain were identified in trifoliate orange (Poncirus trifoliata (L.) Raf.). Totally, 56 NRT1s, 6 NRT2s, and 2 NAR2s were explored. The bioinformation analysis, including protein characteristics, conserved domain, motif, phylogenetic relationship, cis-acting element, and synteny correlation, indicated the evolutionary conservation and functional diversity of NRT genes. Additionally, expression profiles of PtrNRTs in different tissues demonstrated that NRT genes possessed spatio-temporal expression specificity. Further, the salt condition was certified to induce the expression of some NRT members, like PtrNPF2.1, PtrNPF7.4, and PtrNAR2.1, proposing the potential role of these NRTs in salt stress response. The identification of NRT genes and the expression pattern analysis in various tissues and salt stress lay a foundation for future research between nitrogen transport and salt resistance in P. trifoliata.
Collapse
Affiliation(s)
- Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Weiwei Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
31
|
Song J, Yang J, Jeong BR. Silicon Mitigates Ammonium Toxicity in Cabbage (Brassica campestris L. ssp. pekinensis) ‘Ssamchu’. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.922666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ammonium (NH4+) toxicity hinders the cabbage yield because most subspecies or varieties exhibit extreme sensitivity to NH4+. Current knowledge indicates that silicon (Si) can alleviate or reverse the ammonium toxicity severity. However, few investigations have been conducted on NH4+-stressed cabbage to elucidate the mechanism underlying the Si alleviation. The study described herein analyzes induced physio-chemical changes to explore how Si helps mitigate NH4+ toxicity. We applied one of three NH4+:NO3- ratios (0:100, 50:50, and 100:0) at a constant N (13 meq·L−1) to the cabbage plants, corresponding with two Si treatment levels (0 and 1.0 meq·L−1). Chlorosis and foliage necrosis along with stunted roots occurred following 100% NH4+ application were ameliorated in the presence of Si. The NH4+ toxicity ratio was reduced accordingly. Similarly, inhibition on the uptake of K and Ca, restricted photosynthesis (chlorophyll, stomatal conductance, and Fv/Fm), and accumulation of reactive oxygen species (ROS, O2·-, and H2O2), as well as lipid peroxidation (MDA, malondialdehyde) in NH4+-stressed cabbages were mitigated with added Si. The lower observed oxidative stresses in solely NH4+-treated plants were conferred by the boosted antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase). Concomitantly, Si-treated plants showed higher activities of key NH4+ assimilation enzymes (GS, glutamine synthetase; GOGAT, glutamate synthase; NADH-GDH, glutamate dehydrogenase) and NH4+ content in leaves. However, excessive NH4+ assimilations cause the acidic stress, which has been demonstrated to be the primary cause of NH4+ toxicity. Therefore, further investigation regarding the Si effects on H+ regulation and distribution should be warranted.
Collapse
|
32
|
Guo S, Arshad A, Yang L, Qin Y, Mu X, Mi G. Comparative Transcriptome Analysis Reveals Common and Developmental Stage-Specific Genes That Respond to Low Nitrogen in Maize Leaves. PLANTS 2022; 11:plants11121550. [PMID: 35736701 PMCID: PMC9230787 DOI: 10.3390/plants11121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
A growing leaf can be divided into three sections: division zone, elongation zone, and maturation zone. In previous studies, low nitrogen (LN) inhibited maize growth and development, especially leaf growth; however, the gene expression in response to LN in different regions in leaf were not clear. Here, using hydroponics and a transcriptome approach, we systematically analyzed the molecular responses of those zones and differentially expressed genes (DEG) in response to LN supply. Developmental stage-specific genes (SGs) were highly stage-specific and involved in distinct biological processes. SGs from division (SGs–DZ) and elongation zones (SGs–EZ) were more related to developmentally dependent processes, whereas SGs of the maturation zone (SGs–MZ) were more related to metabolic processes. The common genes (CGs) were overrepresented in carbon and N metabolism, suggesting that rebalancing carbon and N metabolism in maize leaves under LN condition was independent of developmental stage. Coexpression modules (CMs) were also constructed in our experiment and a total of eight CMs were detected. Most of SGs–DZ and SGs–EZ were classified into a set termed CM turquoise, which was mainly enriched in ribosome and DNA replication, whereas several genes from SGs–MZ and CGs were clustered into CM blue, which mainly focused on photosynthesis and carbon metabolism. Finally, a comprehensive coexpression network was extracted from CM blue, and several maize CONSTANS-LIKE(ZmCOL) genes seemed to participate in regulating photosynthesis in maize leaves under LN condition in a developmental stage-specific manner. With this study, we uncovered the LN-responsive CGs and SGs that are important for promoting plant growth and development under insufficient nitrogen supply.
Collapse
Affiliation(s)
- Song Guo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.G.); (Y.Q.)
| | - Adnan Arshad
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China;
- PODA Organization, Islamabad 44000, Pakistan
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha 410128, China;
| | - Yusheng Qin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.G.); (Y.Q.)
| | - Xiaohuan Mu
- Synergetic Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China;
- National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62734454
| |
Collapse
|
33
|
Water Uptake and Hormone Modulation Responses to Nitrogen Supply in Populus simonii under PEG-Induced Drought Stress. FORESTS 2022. [DOI: 10.3390/f13060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, the effects of nitrogen (N) supply on water uptake, drought resistance, and hormone regulation were investigated in Populus simonii seedlings grown in hydroponic solution with 5% polyethylene glycol (PEG)-induced drought stress. While acclimating to drought, the P. simonii seedlings exhibited a reduction in growth; differential expression levels of aquaporins (AQPs); activation of auxin (IAA) and abscisic acid (ABA) signaling pathways; a decrease in the net photosynthetic rate and transpiration rate; and an increase in stable nitrogen isotope composition (δ15N), total soluble substances, and intrinsic water use efficiency (WUEi), with a shift in the homeostasis of reactive oxygen species (ROS) production and scavenging. A low N supply (0.01 mM NH4NO3) or sufficient N supply (1 mM NH4NO3) exhibited distinct morphological, physiological, and transcriptional responses during acclimation to drought, primarily due to strong responses in the transcriptional regulation of genes encoding AQPs; higher soluble phenolics, total N concentrations, and ROS scavenging; and lower transpiration rates, IAA content, ABA content, and ROS accumulation with a sufficient N supply. P. simonii can differentially manage water uptake and hormone modulation in response to drought stress under deficient and sufficient N conditions. These results suggested that increased N may contribute to drought tolerance by decreasing the transpiration rate and O2− production while increasing water uptake and antioxidant enzyme activity.
Collapse
|
34
|
Yuan T, Zhu C, Li G, Liu Y, Yang K, Li Z, Song X, Gao Z. An Integrated Regulatory Network of mRNAs, microRNAs, and lncRNAs Involved in Nitrogen Metabolism of Moso Bamboo. Front Genet 2022; 13:854346. [PMID: 35651936 PMCID: PMC9149284 DOI: 10.3389/fgene.2022.854346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.
Collapse
Affiliation(s)
- Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Guangzhu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| |
Collapse
|
35
|
Characteristics of NH4+ and NO3− Fluxes in Taxodium Roots under Different Nitrogen Treatments. PLANTS 2022; 11:plants11070894. [PMID: 35406875 PMCID: PMC9003431 DOI: 10.3390/plants11070894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
To understand the characteristics of net NH4+ and NO3− fluxes and their relation with net H+ fluxes in Taxodium, net fluxes of NH4+, NO3− and H+ were detected by a scanning ion-selective electrode technique under different forms of fixed nitrogen (N) and experimental conditions. The results showed that higher net NH4+ and NO3− fluxes occurred at 2.1–3.0 mm from the root apex in T.ascendens and T. distichum. Compared to NH4+ or NO3− alone, more stable net NH4+ and NO3− fluxes were found under NH4NO3 supply conditions, of which net NH4+ flux was promoted at least 1.71 times by NO3−, whereas net NO3− flux was reduced more than 81.66% by NH4+ in all plants, which indicated that NH4+ is preferred by Taxodium plants. T. ascendens and T. mucronatum had the largest net NH4+ and total N influxes when NH4+:NO3− was 3:1. 15N Atom% and activities of N assimilation enzymes were improved by single N fertilization in the roots of T. distichum. In most cases, net H+ fluxes were tightly correlated with net NH4+ and NO3− fluxes. Thus, both N forms and proportions could affect N uptake of Taxodium. These findings could provide useful guidance for N management for better productivity of Taxodium plants.
Collapse
|
36
|
Lu Y, Deng S, Li Z, Wu J, Zhu D, Shi W, Zhou J, Fayyaz P, Luo ZB. Physiological Characteristics and Transcriptomic Dissection in Two Root Segments with Contrasting Net Fluxes of Ammonium and Nitrate of Poplar Under Low Nitrogen Availability. PLANT & CELL PHYSIOLOGY 2022; 63:30-44. [PMID: 34508646 DOI: 10.1093/pcp/pcab137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
To investigate physiological and transcriptomic regulation mechanisms underlying the distinct net fluxes of NH4+ and NO3- in different root segments of Populus species under low nitrogen (N) conditions, we used saplings of Populus × canescens supplied with either 500 (normal N) or 50 (low N) μM NH4NO3. The net fluxes of NH4+ and NO3-, the concentrations of NH4+, amino acids and organic acids and the enzymatic activities of nitrite reductase (NiR) and glutamine synthetase (GS) in root segment II (SII, 35-70 mm to the apex) were lower than those in root segment I (SI, 0-35 mm to the apex). The net NH4+ influxes and the concentrations of organic acids were elevated, whereas the concentrations of NH4+ and NO3- and the activities of NiR and GS were reduced in SI and SII in response to low N. A number of genes were significantly differentially expressed in SII vs SI and in both segments grown under low vs normal N conditions, and these genes were mainly involved in the transport of NH4+ and NO3-, N metabolism and adenosine triphosphate synthesis. Moreover, the hub gene coexpression networks were dissected and correlated with N physiological processes in SI and SII under normal and low N conditions. These results suggest that the hub gene coexpression networks play pivotal roles in regulating N uptake and assimilation, amino acid metabolism and the levels of organic acids from the tricarboxylic acid cycle in the two root segments of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Yan Lu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Shurong Deng
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Zhuorong Li
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jiangting Wu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Dongyue Zhu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Wenguang Shi
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jing Zhou
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Zhi-Bin Luo
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| |
Collapse
|
37
|
Song J, Yang J, Jeong BR. Root GS and NADH-GDH Play Important Roles in Enhancing the Ammonium Tolerance in Three Bedding Plants. Int J Mol Sci 2022; 23:ijms23031061. [PMID: 35162985 PMCID: PMC8834993 DOI: 10.3390/ijms23031061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ammonium is a paradoxical nutrient because it is more metabolically efficient than nitrate, but also causes plant stresses in excess, i.e., ammonium toxicity. Current knowledge indicates that ammonium tolerance is species-specific and related to the ammonium assimilation enzyme activities. However, the mechanisms underlying the ammonium tolerance in bedding plants remain to be elucidated. The study described herein explores the primary traits contributing to the ammonium tolerance in three bedding plants. Three NH4+:NO3− ratios (0:100, 50:50, 100:0) were supplied to salvia, petunia, and ageratum. We determined that they possessed distinct ammonium tolerances: salvia and petunia were, respectively, extremely sensitive and moderately sensitive to high NH4+ concentrations, whereas ageratum was tolerant to NH4+, as characterized by the responses of the shoot and root growth, photosynthetic capacity, and nitrogen (amino acid and soluble protein)-carbohydrate (starch) distributions. An analysis of the major nitrogen assimilation enzymes showed that the root GS (glutamine synthetase) and NADH-GDH (glutamate dehydrogenase) activities in ageratum exhibited a dose-response relationship (reinforced by 25.24% and 6.64%, respectively) as the NH4+ level was raised from 50% to 100%; but both enzyme activities were significantly diminished in salvia. Besides, negligible changes of GS activities monitored in leaves revealed that only the root GS and NADH-GDH underpin the ammonium tolerances of the three bedding plants.
Collapse
Affiliation(s)
- Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
| | - Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1913
| |
Collapse
|
38
|
Comparing the Effects of N and P Deficiency on Physiology and Growth for Fast- and Slow-Growing Provenances of Fraxinus mandshurica. FORESTS 2021. [DOI: 10.3390/f12121760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continuous increase in atmospheric carbon dioxide emissions, nitrogen (N) and phosphorus (P) as mineral elements increasingly restrict plant growth. To explore the effect of deficiency of P and N on growth and physiology, Fraxinus mandshurica (hereafter “F. mandshurica”) Rupr. annual seedlings of Wuchang (WC) provenance with fast growth and Dailing (DL) provenance with slow growth were treated with complete nutrition or starvation of N (N-), P (P-) or both elements (NP-). Although P- and N- increased the use efficiency of P (PUE) and N (NUE), respectively, they reduced the leaf area, chlorophyll content and activities of N assimilation enzymes (NR, GS, GOGAT), which decreased the dry weight and P or N amount. The free amino acid content and activities of Phosphoenolpyruvate carboxylase (PEPC) and acid phosphatase enzymes were reduced by N-. The transcript levels of NRT2.1, NRT2.4, NRT2.5, NRT2.7, AVT1, AAP3, NIA2, PHT1-3, PHT1-4 and PHT2-1 in roots were increased, but those of NRT2.1, NRT2.4, NRT2.5, PHT1-3, PHT1-4, PHT2-1 and AAP3 in leaves were reduced by P-. WC was significantly greater than DL under P- in dry weight, C amount, N amount, leaf area, PUE, NUE, which related to greater chlorophyll content, PEPC enzyme activity, N assimilation enzyme activities, and transcript levels of N and P transporter genes in roots and foliage, indicating a greater ability of WC to absorb, transport and utilize N and P under P-. WC was also greater than DL under N- in terms of the above indicators except the transcript levels of N and P assimilation genes, but most of the indicators did not reach a significant level, indicating that WC might be more tolerant to N- than DL, which requires further verification. In summary, WC was identified as a P-efficient provenance, as the growth rate was greater for the genetic type with high than low tolerance to P-.
Collapse
|
39
|
Chen M, Yin Y, Zhang L, Yang X, Fu T, Huo X, Wang Y. Metabolomics and Transcriptomics Integration of Early Response of Populus tomentosa to Reduced Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:769748. [PMID: 34956269 PMCID: PMC8692568 DOI: 10.3389/fpls.2021.769748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Lichun Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Tiantian Fu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaowei Huo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
40
|
Song H, Chen Y, Cai Z, Wu X, Zhang S. Nitrogen-influenced competition between the genders of Salix rehderiana. TREE PHYSIOLOGY 2021; 41:2375-2391. [PMID: 34137865 DOI: 10.1093/treephys/tpab083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Male and female willow plants show spatial segregation of genders along the environmental gradients. The skewed gender ratio of willows is related not only to altitude, but also to nutrient status and sexual competition, which can affect their growth and defense by altering secondary metabolite production. The relationship between metabolites and nutrients in the two genders of Salix rehderiana was explored in the Gongga Mountain. We found that the gender ratio was altered with a change in soil nitrogen (N) status; in the high N habitats, secondary metabolites accumulated in males. Furthermore, a pot experiment was conducted to test the effect of N supply on gender competition in S. rehderiana. Sufficient N supply stimulated females to produce amino acids and carbon (C)-containing secondary metabolites for maintaining their C-N balance, but extra N for males was used for growth to occupy more space. Nitrogen supply induced foliar nutrient imbalances and growth of opportunistic species, allowing them to outcompete neighbors. Better C allocation and storage in male than female willows would benefit intersexual competitiveness of males if environment N increases. Competition between the genders has a significant correlation with skewed gender ratio, spatial separation and resource utilization. Female willows would suffer fiercer competition for space by males with the increased soil N, which would result in the gender ratio alteration. Therefore, gender ratio of willows is likely to convert to gender balance from female-biased with long-term N deposition in the future.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xinxin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Xie L, Zhou X, Liu Q, Zhao C, Yin C. Inorganic nitrogen uptake rate of Picea asperata curtailed by fine root acclimation to water and nitrogen supply and further by ectomycorrhizae. PHYSIOLOGIA PLANTARUM 2021; 173:2130-2141. [PMID: 34537962 DOI: 10.1111/ppl.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhizal (ECM) fungi colonization and function depend on soil water and nutrient supply. To study the effects of resource supply on ECM colonization and inorganic nitrogen (N) uptake by roots of Picea asperata seedlings, we conducted a study at the end of a 5-year long experiment consisting of five watering regimes (40, 50, 60, 80, and 100% of field capacity) and three NH4 NO3 application rates (0 [N0], 20 [N1], and 40 [N2] g N m-2 year-1 ). We measured fluxes of ammonium ( NH 4 + ) and nitrate ( NO 3 - ) into colonized and uncolonized roots using noninvasive microtest technology. We found that, across the N supply levels, ECM colonization rate increased by 53 ± 14% from the highest to the lowest level of water supply. Across the watering regimes, the fraction of mycorrhizal root tips was 39 ± 4% higher under native N supply compared to roots grown under N additions. As expected for conifers, both colonized and uncolonized roots absorbed NH 4 + at a higher rate than NO 3 - . N additions reduced the instantaneous ion uptake rates of uncolonized roots grown under low water supply but enhanced the fluxes into roots grown under sufficient soil water availability. Soil water supply improves inorganic N uptake by uncolonized roots but reduces the efficiency of colonized roots. Under the lowest water supply regime, the uptake rate of NH 4 + and NO 3 - by colonized roots was 40-80% of those by uncolonized roots, decreasing to 20-30% as soil water supply improved. Taken together, our results suggest that the role ectomycorrhizae play in the nutrient acquisition of P. asperata seedling likely diminishes with increasing availability of soil resources.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xingmei Zhou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chunzhang Zhao
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Chen C, Chu Y, Huang Q, Zhang W, Ding C, Zhang J, Li B, Zhang T, Li Z, Su X. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics 2021; 22:697. [PMID: 34579659 PMCID: PMC8474845 DOI: 10.1186/s12864-021-07991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nitrogen (N) is one of the main factors limiting the wood yield in poplar cultivation. Understanding the molecular mechanism of N utilization could play a guiding role in improving the nitrogen use efficiency (NUE) of poplar. Results In this study, three N-efficient genotypes (A1-A3) and three N-inefficient genotypes (C1-C3) of Populus deltoides were cultured under low N stress (5 μM NH4NO3) and normal N supply (750 μM NH4NO3). The dry matter mass, leaf morphology, and chlorophyll content of both genotypes decreased under N starvation. The low nitrogen adaptation coefficients of the leaves and stems biomass of group A were significantly higher than those of group C (p < 0.05). Interestingly, N starvation induced fine root growth in group A, but not in group C. Next, a detailed time-course analysis of enzyme activities and gene expression in leaves identified 2062 specifically differentially expressed genes (DEGs) in group A and 1118 in group C. Moreover, the sensitivity to N starvation of group A was weak, and DEGs related to hormone signal transduction and stimulus response played an important role in the low N response this group. Weighted gene co-expression network analysis identified genes related to membranes, catalytic activity, enzymatic activity, and response to stresses that might be critical for poplar’s adaption to N starvation and these genes participated in the negative regulation of various biological processes. Finally, ten influential hub genes and twelve transcription factors were identified in the response to N starvation. Among them, four hub genes were related to programmed cell death and the defense response, and PodelWRKY18, with high connectivity, was involved in plant signal transduction. The expression of hub genes increased gradually with the extension of low N stress time, and the expression changes in group A were more obvious than those in group C. Conclusions Under N starvation, group A showed stronger adaptability and better NUE than group C in terms of morphology and physiology. The discovery of hub genes and transcription factors might provide new information for the analysis of the molecular mechanism of NUE and its improvement in poplar. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07991-7.
Collapse
Affiliation(s)
- Cun Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Bo Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
43
|
Luo J, Nvsvrot T, Wang N. Comparative transcriptomic analysis uncovers conserved pathways involved in adventitious root formation in poplar. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1903-1918. [PMID: 34629770 PMCID: PMC8484428 DOI: 10.1007/s12298-021-01054-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cutting propagation is widely used in establishing poplar plantations, and this approach requires efficient adventitious root (AR) forming capacities. Although poplar species are considered to form roots easily, interspecific variations in AR formation are still observed. To better understand the gene regulatory network underlying the conserved modified pathways that are essential for AR formation in poplar species, comparative transcriptomic approaches were applied to identify the conserved common genes that were differentially expressed during the AR formation processes in two poplar species (Populus × euramericana and P. simonii) in woody plant medium (WPM). A total of 2146 genes were identified as conserved genes that shared similar gene expression profiles in at least one comparison. These conserved genes were enriched in diverse hormone signaling pathways, as well as the mitogen-associated protein kinase (MAPK) signaling pathway, suggesting an important role for signaling transduction in coordinating external stimuli and endogenous physiological status during AR regulation in poplar. Furthermore, the co-expression network analysis of conserved genes allowed identification of several co-expressed modules (CM) that are co-expressed with distinct biological functions, for instance, CM1 was enriched in defense response and hormone signaling, CM2 and CM3 were overrepresented in defense response-related pathways and for cell cycle, respectively. These results suggest that the AR formation processes in poplar were finely tuned at the transcriptomic level by integrating multiple biological processes essential for AR formation. Our results suggest conserved machinery for AR formation in poplar and generated informative gene co-expression networks that describe the basis of AR formation in these species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01054-7.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
44
|
Zhou J, Wu JT. Physiological characteristics and miRNA sequencing of two root zones with contrasting ammonium assimilation patterns in Populus. Genes Genomics 2021; 44:39-51. [PMID: 34455578 DOI: 10.1007/s13258-021-01156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The net ammonium fluxes differ among the different root zones of Populus, but the physiological and microRNA regulatory mechanisms are unclear. OBJECTIVE To elucidate the physiological and miRNA regulatory mechanisms, we investigated the two root zones displaying significant differences in net NH4+ effluxes of P. × canescens. METHODS Populus plantlets were cultivated with 500 μM NH4Cl for 10 days. Six plants were randomly selected to determine the net NH4+ fluxes using a noninvasive microtest technique. High-throughput sequencing were used to determine the dynamic expression profile of miRNA among the different root zones of Populus. RESULTS Net NH4+ efflux in zone I (from 0 to 40 mm from the root apex) was - 19.64 pmol cm-2 s-1 and in zone II (from 40 to 80 mm) it was - 43.96 pmol cm-2 s-1. The expression of eleven miRNAs was significantly upregulated, whereas fifteen miRNAs were downregulated. Moreover, eighty-eight target genes of the significantly differentially expressed miRNAs were identified in root zone II compared with zone I. Particularly, ptc-miR171a/b/e and their target, SCL6, were found to be important for the difference in net NH4+ effluxes in the two root zones. Moreover, the expression of the target of ptc-miR169d, NFYA3 was upregulated in root zone II compared with root zone I, contributing to increased NH4+ efflux and decreased NH4+ assimilation in root zone II. CONCLUSION These results indicate that miRNAs regulate the expression levels of their target genes and thus play key roles in net NH4+ fluxes and NH4+ assimilation in different poplar root zones.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
45
|
Xu C, Zhang S, Suo J, Chang R, Xu X, Xu Z, Yang C, Qu C, Liu G. Bioinformatics analysis of PAE family in Populus trichocarpa and responsiveness to carbon and nitrogen treatment. 3 Biotech 2021; 11:370. [PMID: 34295610 DOI: 10.1007/s13205-021-02918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Plant Pectin acetylesterase (PAE) belongs to family CE13 of carbohydrate esterases in the CAZy database. The ability of PAE to regulate the degree of acetylation of pectin, an important polysaccharide in the cell wall, affects the structure of plant cell wall. In this study, ten PtPAE genes were identified and characterized in Populus trichocarpa genome using bioinformatics methods, and the physiochemical properties such as molecular weight, isoelectric points, and hydrophilicity, as well as the secondary and tertiary structure of the protein were predicted. According to phylogenetic analysis, ten PtPAEs can be divided into three evolutionary clades, each of which had similar gene structure and motifs. Tissue-specific expression profiles indicated that the PtPAEs had different expression patterns. Real-time quantitative PCR (RT-qPCR) analysis showed that transcription level of PtPAEs was regulated by different CO2 and nitrogen concentrations. These results provide important information for the study of the phylogenetic relationship and function of PtPAEs in Populus trichocarpa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02918-1.
Collapse
|
46
|
Gülüt KY. Nitrogen and boron nutrition in grafted watermelon I: Impact on pomological attributes, yield and fruit quality. PLoS One 2021; 16:e0252396. [PMID: 34048470 PMCID: PMC8162669 DOI: 10.1371/journal.pone.0252396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Watermelon is extensively consumed fruit across the globe. However, limited is known about interactive effect of nitrogen (N) and boron (B) nutrition on pomological, yield and fruit quality attributes of grafted watermelon. This two-year study tested the influence of different N and B doses on pomological, yield and fruit quality attributes of grafted watermelon under field conditions in Çukurova plains of Turkey. Four different N (0, 90, 180 and 270 kg ha-1) and two B doses (0 and 2 kg ha-1 B) were tested. The individual and interactive effects of N and B significantly altered pomological, yield and fruit quality attributes during both years. Overall, application of 270 kg ha-1 N and 2 kg ha-1 B improved yield, pomological and fruit quality attributes during both years. The highest values for yield, main stem length, stem diameter, fruit weight, fruit width, number nodes and branches per stem were recorded for 270 kg ha-1 N during both years. However, rind thickness was not altered by N application. Similarly, the highest values for quality attributes such as sucrose, glucose, fructose, citric acid, tartaric acid and ascorbic acid were noted for 270 kg ha-1 N during both years. Interestingly, no N application and 90 kg ha-1 N recorded the highest values of maleic acid during both years. The highest values of rind thickness, fruit length, fruit width and fruit weight were noted for 2 kg ha-1 B during both years, while B application had no effect on main stem length, main stem diameter, number of nodes and number of branches. Regarding N by B interactions, 180 and 270 kg ha-1 N with both B doses observed the highest values for yield, pomological and quality attributes during each year. These results indicate that N has significant contribution towards yield, pomological attributes and fruit quality of grafted watermelon. Therefore, N should be applied at the rate of 270 kg ha-1 for better yield, pomological attributes and fruit quality. Nonetheless, where necessary grafted watermelon should be fertilized with 2 kg ha-1 B for better fruit quality and pomological attributes.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Çukurova University, Adana, Turkey
- * E-mail:
| |
Collapse
|
47
|
Gülüt KY, Duymuş E, Solmaz İ, Torun AA. Nitrogen and boron nutrition in grafted watermelon II: Impact on nutrient accumulation in fruit rind and flesh. PLoS One 2021; 16:e0252437. [PMID: 34043729 PMCID: PMC8158982 DOI: 10.1371/journal.pone.0252437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Turkey ranks second in watermelon (Citrullus lunatus L.) production globally and the highest production is witnessed for Çukurova plains the country. Although watermelon is extensively cultivated in the Çukurova region, studies on optimum nitrogen (N) and boron (B) doses for watermelon cultivation are quite limited. This study, evaluated the impact of increasing N (0, 90, 180 and 270 kg ha-1) and B (0 and 2 kg ha-1 B) doses on nutrient uptake in rind (exocarp) and flesh (endocarp) of watermelon fruit. Grafted watermelon variety ‘Starburst’, widely cultivated in the region was used as experimental material. The concentrations of different macro and micronutrients were analyzed from fruit rind and flesh. Individual and interactive effect of N and B doses significantly altered macro and micronutrients’ uptake in rind and flesh. Higher amounts of macro and micronutrients were accumulated in rind than flesh. Nutrients’ uptake was increased with increasing N doses, whereas B had limited impact. The accumulated nutrients were within the safe limits for human consumption. The N concentrations of rind and flesh increased with increasing N dose. Similarly, B concentration in rind and flesh and N concentration in rind significantly increased, while N concentration in flesh decreased with B application. It was concluded that 270 kg ha-1 N and 2 kg ha-1 B are optimum for better nutrient uptake in watermelon fruit. Thus, these doses must be used for watermelon cultivation in Çukurova plains of the country.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
- * E-mail:
| | - Ebru Duymuş
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
| | - İlknur Solmaz
- Faculty of Agriculture, Department of Horticulture, Çukurova University, Adana, Turkey
| | - Ayfer Alkan Torun
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
| |
Collapse
|
48
|
Comparative Transcriptome Analysis of Sophora japonica (L.) Roots Reveals Key Pathways and Genes in Response to PEG-Induced Drought Stress under Different Nitrogen Conditions. FORESTS 2021. [DOI: 10.3390/f12050650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sophora japonica is a native leguminous tree species in China. The high stress tolerance contributes to its long lifespan of thousands of years. The lack of genomic resources greatly limits genetic studies on the stress responses of S. japonica. In this study, RNA-seq was conducted for S. japonica roots grown under short-term 20% polyethylene glycol (PEG) 6000-induced drought stress under normal N and N starvation conditions (1 and 0 mM NH4NO3, respectively). In each of the libraries, we generated more than 25 million clean reads, which were then de novo assembled to 46,852 unigenes with an average length of 1310.49 bp. In the differential expression analyses, more differentially expressed genes (DEGs) were found under drought with N starvation than under single stresses. The number of transcripts identified under N starvation and drought in S. japonica was nearly the same, but more upregulated genes were induced by drought, while more downregulated genes were induced by N starvation. Genes involved in “phenylpropanoid biosynthesis” and “biosynthesis of amino acids” pathways were upregulated according to KEGG enrichment analyses, irrespective of the stress treatments. Additionally, upregulated N metabolism genes were enriched upon drought, and downregulated photosynthesis genes were enriched under N starvation. We found 4,372 and 5,430 drought-responsive DEGs under normal N and N starvation conditions, respectively. N starvation may aggravate drought by downregulating transcripts in the “carbon metabolism”, “ribosome”, “arginine biosynthesis pathway”, “oxidative phosphorylation” and “aminoacyl-tRNA biosynthesis” pathways. We identified 78 genes related to N uptake and assimilation, 38 of which exhibited differential expression under stress. A total of 395 DEGs were categorized as transcription factors, of which AR2/ERF-ERF, WRKY, NAC, MYB, bHLH, C3H and C2C2-Dof families played key roles in drought and N starvation stresses. The transcriptome data obtained, and the genes identified facilitate our understanding of the mechanisms of S. japonica responses to drought and N starvation stresses and provide a molecular foundation for understanding the mechanisms of its long lifespan for breeding resistant varieties for greening.
Collapse
|
49
|
Transcriptome Analysis for Fraxinus mandshurica Rupr. Seedlings from Different Carbon Sequestration Provenances in Response to Nitrogen Deficiency. FORESTS 2021. [DOI: 10.3390/f12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To explore the molecular regulatory mechanism of high-carbon (C) sequestration Fraxinus mandshurica Rupr. (F. mandshurica) provenance and the expression profile of F. mandshurica during nitrogen (N) starvation, the foliage and roots of the annual Wuchang (WC) seedlings with greater C amount and Hailin (HL) seedlings with smaller C amount, which were grown in N-deficient nutrition and complete N, were used for RNA-seq and physiological determination, respectively. One thousand and fifty-seven differentially expressed genes (DEGs) between WC and HL and 8173 DEGs related to N deficiency were identified, respectively. The root of F. mandshurica responded to N deficiency more strongly than foliar. The target genes that responded to N deficiency in roots were mainly regulatory genes (transcription factors, hormones and protein kinases), and their response patterns were upregulated. The growth and N concentration in both WC and HL were reduced by the N deficiency, which might result from the decrease of the leaf Nitrate reductase (NR) and glutamine synthetase (GS) enzyme activity and ABA content, although the root-to-shoot ratio; lateral root number; lignin content; endogenous hormones content (GA, IAA and ZR); root GS and glutamate synthetase activity and transcriptional level of most of the regulatory genes were increased. The C sequestration capacity in WC was greater than that in HL, which related to the higher GS enzymes activity and transcriptional levels of regulatory genes and metabolic genes (terpenes, carbohydrates, and lipid energy). However, the C sequestration advantage of WC was significantly reduced by the N deficiency, which was due to the smaller response to N deficiency compared to HL.
Collapse
|
50
|
Shi W, Zhou J, Li J, Ma C, Zhang Y, Deng S, Yu W, Luo ZB. Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116346. [PMID: 33387784 DOI: 10.1016/j.envpol.2020.116346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
To explore whether lead (Pb)-induced defense responses are responsible for the low root-to-shoot Pb translocation, we exposed saplings of the two contrasting poplar species, Populus × canescens with relatively high root-to-shoot Pb translocation and P. nigra with low Pb translocation, to 0 or 8 mM PbCl2. Pb translocation from the roots to aboveground tissues was lower by 57% in P. nigra than that in P. × canescens. Lower Pb concentrations in the roots and aerial tissues, greater root biomass, and lower ROS overproduction in the roots were found in P. nigra than those in P. × canescens treated with Pb. P. nigra roots had higher proportions of cell walls (CWs)-bound Pb and water insoluble Pb compounds, and higher transcript levels of some pivotal genes related to Pb vacuolar sequestration, such as phytochelatin synthetase 1.1 (PCS1.1), ATP-binding cassette transporter C1.1 (ABCC1.1) and ABCC3.1 than P. × canescens roots. Pb exposure induced defense responses including increases in the contents of pectin and hemicellulose, and elevated oxalic acid accumulation, and the transcriptional upregulation of PCS1.1, ABCC1.1 and ABCC3.1 in the roots of P. nigra and P. × canescens. These results suggest that the stronger defense barriers in P. nigra roots are probably associated with the lower Pb translocation from the roots to aerial tissues, and that Pb exposure-induced defense responses can enhance the barriers against Pb translocation in poplar roots.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|