1
|
Mendieta JP, Tu X, Jiang D, Yan H, Zhang X, Marand AP, Zhong S, Schmitz RJ. Investigating the cis-regulatory basis of C 3 and C 4 photosynthesis in grasses at single-cell resolution. Proc Natl Acad Sci U S A 2024; 121:e2402781121. [PMID: 39312655 PMCID: PMC11459142 DOI: 10.1073/pnas.2402781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-dependent malic enzyme), Panicum miliaceum (NAD-dependent malic enzyme), Urochloa fusca (phosphoenolpyruvate carboxykinase), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of cis-regulatory elements evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.
Collapse
Affiliation(s)
| | - Xiaoyu Tu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Daiquan Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA30605
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA30605
| | | | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR
| | | |
Collapse
|
2
|
Mendieta JP, Tu X, Jiang D, Yan H, Zhang X, Marand AP, Zhong S, Schmitz RJ. Investigating the cis-Regulatory Basis of C 3 and C 4 Photosynthesis in Grasses at Single-Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574340. [PMID: 38405933 PMCID: PMC10888913 DOI: 10.1101/2024.01.05.574340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-ME), Panicum miliaceum (NAD-ME), Urochloa fusca (PEPCK), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of CRE evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.
Collapse
Affiliation(s)
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiquan Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong
| | - Haidong Yan
- Department of Genetics, University of Georgia
| | - Xuan Zhang
- Department of Genetics, University of Georgia
| | - Alexandre P Marand
- Department of Genetics, University of Georgia
- Department of Molecular, Cellular, and Development Biology, University of Michigan
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong
| | | |
Collapse
|
3
|
Ludwig M, Hartwell J, Raines CA, Simkin AJ. The Calvin-Benson-Bassham cycle in C 4 and Crassulacean acid metabolism species. Semin Cell Dev Biol 2024; 155:10-22. [PMID: 37544777 DOI: 10.1016/j.semcdb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Andrew J Simkin
- University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
4
|
Liu Z, Cheng J. C 4 rice engineering, beyond installing a C 4 cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108256. [PMID: 38091938 DOI: 10.1016/j.plaphy.2023.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
C4 photosynthesis in higher plants is carried out by two distinct cell types: mesophyll cells and bundle sheath cells, as a result highly concentrated carbon dioxide is released surrounding RuBisCo in chloroplasts of bundle sheath cells and the photosynthetic efficiency is significantly higher than that of C3 plants. The evolution of the dual-cell C4 cycle involved complex modifications to leaf anatomy and cell ultra-structures. These include an increase in leaf venation, the formation of Kranz anatomy, changes in chloroplast morphology in bundle sheath cells, and increases in the density of plasmodesmata at interfaces between the bundle sheath and mesophyll cells. It is predicted that cereals will be in severe worldwide shortage at the mid-term of this century. Rice is a staple food that feeds more than half of the world's population. If rice can be engineered to perform C4 photosynthesis, it is estimated that rice yield will be increased by at least 50% due to enhanced photosynthesis. Thus, the Second Green Revolution has been launched on this principle by genetically installing C4 photosynthesis into C3 crops. The studies on molecular mechanisms underlying the changes in leaf morphoanatomy involved in C4 photosynthesis have made great progress in recent years. As there are plenty of reviews discussing the installment of the C4 cycle, we focus on the current progress and challenges posed to the research regarding leaf anatomy and cell ultra-structure modifications made towards the development of C4 rice.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinjin Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
5
|
Lambret‐Frotte J, Smith G, Langdale JA. GOLDEN2-like1 is sufficient but not necessary for chloroplast biogenesis in mesophyll cells of C 4 grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:416-431. [PMID: 37882077 PMCID: PMC10953395 DOI: 10.1111/tpj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Chloroplasts are the site of photosynthesis. In land plants, chloroplast biogenesis is regulated by a family of transcription factors named GOLDEN2-like (GLK). In C4 grasses, it has been hypothesized that genome duplication events led to the sub-functionalization of GLK paralogs (GLK1 and GLK2) to control chloroplast biogenesis in two distinct cell types: mesophyll and bundle sheath cells. Although previous characterization of golden2 (g2) mutants in maize has demonstrated a role for GLK2 paralogs in regulating chloroplast biogenesis in bundle sheath cells, the function of GLK1 has remained elusive. Here we show that, contrary to expectations, GLK1 is not required for chloroplast biogenesis in mesophyll cells of maize. Comparisons between maize and Setaria viridis, which represent two independent C4 origins within the Poales, further show that the role of GLK paralogs in controlling chloroplast biogenesis in mesophyll and bundle sheath cells differs between species. Despite these differences, complementation analysis revealed that GLK1 and GLK2 genes from maize are both sufficient to restore functional chloroplast development in mesophyll and bundle sheath cells of S. viridis mutants. Collectively our results suggest an evolutionary trajectory in C4 grasses whereby both orthologs retained the ability to induce chloroplast biogenesis but GLK2 adopted a more prominent developmental role, particularly in relation to chloroplast activation in bundle sheath cells.
Collapse
Affiliation(s)
- Julia Lambret‐Frotte
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
- Present address:
NIAB, Park FarmVilla Road, ImpingtonCB24 9NZCambridgeUK
| | - Georgia Smith
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
| | - Jane A. Langdale
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
| |
Collapse
|
6
|
Huang CF, Liu WY, Yu CP, Wu SH, Ku MSB, Li WH. C 4 leaf development and evolution. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102454. [PMID: 37743123 DOI: 10.1016/j.pbi.2023.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved efficient C4 enzymes to suppress wasteful photorespiration and enhance CO2 fixation. Second, C4 leaves have Kranz anatomy in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are functionally well differentiated and also well coordinated for rapid assimilation of atmospheric CO2 and transport of photo-assimilates between the two types of cells. Recent comparative transcriptomics of developing M and BS cells in young maize embryonic leaves revealed not only potential regulators of BS and M cell differentiation but also rapid early BS cell differentiation whereas slower, more prolonged M cell differentiation, contrary to the traditional view of a far simpler process of M cell development. Moreover, new upstream regulators of Kranz anatomy development have been identified and a number of gene co-expression modules for early vascular development have been inferred. Also, a candidate gene regulatory network associated with Kranz anatomy and vascular development has been constructed. Additionally, how whole genome duplication (WGD) may facilitate C4 evolution has been studied and the reasons for why the same WGD event led to successful C4 evolution in Gynandropsis gynandra but not in the sister species Tarenaya hassleriana have been proposed. Finally, new future research directions are suggested.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| | - Maurice S B Ku
- Institute of Bioagricultural Science, National Chiayi University, 600 Chiayi, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA.
| |
Collapse
|
7
|
Borba AR, Reyna-Llorens I, Dickinson PJ, Steed G, Gouveia P, Górska AM, Gomes C, Kromdijk J, Webb AAR, Saibo NJM, Hibberd JM. Compartmentation of photosynthesis gene expression in C4 maize depends on time of day. PLANT PHYSIOLOGY 2023; 193:2306-2320. [PMID: 37555432 PMCID: PMC10663113 DOI: 10.1093/plphys/kiad447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Compared with the ancestral C3 state, C4 photosynthesis occurs at higher rates with improved water and nitrogen use efficiencies. In both C3 and C4 plants, rates of photosynthesis increase with light intensity and are maximal around midday. We determined that in the absence of light or temperature fluctuations, photosynthesis in maize (Zea mays) peaks in the middle of the subjective photoperiod. To investigate the molecular processes associated with these temporal changes, we performed RNA sequencing of maize mesophyll and bundle sheath strands over a 24-h time course. Preferential expression of C4 cycle genes in these cell types was strongest between 6 and 10 h after dawn when rates of photosynthesis were highest. For the bundle sheath, DNA motif enrichment and gene coexpression analyses suggested members of the DNA binding with one finger (DOF) and MADS (MINICHROMOSOME MAINTENANCE FACTOR 1/AGAMOUS/DEFICIENS/Serum Response Factor)-domain transcription factor families mediate diurnal fluctuations in C4 gene expression, while trans-activation assays in planta confirmed their ability to activate promoter fragments from bundle sheath expressed genes. The work thus identifies transcriptional regulators and peaks in cell-specific C4 gene expression coincident with maximum rates of photosynthesis in the maize leaf at midday.
Collapse
Affiliation(s)
- Ana Rita Borba
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Alicja M Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Celia Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
8
|
Han SY, Kim WY, Kim JS, Hwang I. Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C 4 photosynthesis in Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2023; 14:1202521. [PMID: 37476170 PMCID: PMC10354284 DOI: 10.3389/fpls.2023.1202521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
9
|
Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song W, Hufford MB, Schnable JC, Jin W, Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat Genet 2023:10.1038/s41588-023-01419-6. [PMID: 37322109 DOI: 10.1038/s41588-023-01419-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Tong Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jiang Hu
- Grandomics Biosciences, Wuhan, P. R. China
| | - Kai Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Chao Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
10
|
Tao S, Zhang W. Network and epigenetic characterization of subsets of genes specifically expressed in maize bundle sheath cells. Comput Struct Biotechnol J 2022; 20:3581-3590. [PMID: 35860403 PMCID: PMC9287181 DOI: 10.1016/j.csbj.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
Bundle sheath (BS) cells exhibit dramatically structural differences and functional variations at physiological, biochemical and epigenetic levels as compared to mesophyll (M) cells in maize. The regulatory mechanisms controlling functional divergences between M and BS have been extensively investigated. However, BS cell-related regulatory networks are still not completely characterized. To address this, we herein conducted WGCNA-related co-expression assays using bulk M and BS cell RNA-seq data sets and identified a module containing 384 genes highly expressed in BS cells (including 20 hub TFs) instead of M cells. According to the hub TF centered regulatory network, we found that Dof22 and Dof30 might act as key regulators in the regulation of expression of BS-specific genes, and several MYB TFs exhibited a high collaboration with Dof TFs. By comparing the enrichment levels of histone modifications, we found that genes in the aforementioned module were more enriched with histone acetylation as compared to other BS-enriched DEGs with similar expression levels. Moreover, we found that a subset of genes functioning in photosynthesis, protein auto processing and enzymatic activities were significantly enriched with broad H3K4me3. Thus, our study provides evidence showing that regulatory network and histone modifications may play vital roles in the regulation of a subset of genes with important functions in BS cells.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
11
|
Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Sci Rep 2022; 12:5057. [PMID: 35322159 PMCID: PMC8943126 DOI: 10.1038/s41598-022-09135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
C4 photosynthesis in the maize leaf involves the exchange of organic acids between mesophyll (M) and the bundle sheath (BS) cells. The transport is mediated by plasmodesmata embedded in the suberized cell wall. We examined the maize Kranz anatomy with a focus on the plasmodesmata and cell wall suberization with microscopy methods. In the young leaf zone where M and BS cells had indistinguishable proplastids, plasmodesmata were simple and no suberin was detected. In leaf zones where dimorphic chloroplasts were evident, the plasmodesma acquired sphincter and cytoplasmic sleeves, and suberin was discerned. These modifications were accompanied by a drop in symplastic dye mobility at the M-BS boundary. We compared the kinetics of chloroplast differentiation and the modifications in M-BS connectivity in ppdk and dct2 mutants where C4 cycle is affected. The rate of chloroplast diversification did not alter, but plasmodesma remodeling, symplastic transport inhibition, and cell wall suberization were observed from younger leaf zone in the mutants than in wild type. Our results indicate that inactivation of the C4 genes accelerated the changes in the M-BS interface, and the reduced permeability suggests that symplastic transport between M and BS could be regulated for normal operation of C4 cycle.
Collapse
|
12
|
Dai X, Tu X, Du B, Dong P, Sun S, Wang X, Sun J, Li G, Lu T, Zhong S, Li P. Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:675-692. [PMID: 34783109 DOI: 10.1111/tpj.15586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C4 plants partition photosynthesis enzymes between the bundle sheath (BS) and the mesophyll (M) cells for the better delivery of CO2 to RuBisCO and to reduce photorespiration. To better understand how C4 photosynthesis is regulated at the transcriptional level, we performed RNA-seq, ATAC-seq, ChIP-seq and Bisulfite-seq (BS-seq) on BS and M cells isolated from maize leaves. By integrating differentially expressed genes with chromatin features, we found that chromatin accessibility coordinates with epigenetic features, especially H3K27me3 modification and CHH methylation, to regulate cell type-preferentially enriched gene expression. Not only the chromatin-accessible regions (ACRs) proximal to the genes (pACRs) but also the distal ACRs (dACRs) are determinants of cell type-preferentially enriched expression. We further identified cell type-preferentially enriched motifs, e.g. AAAG for BS cells and TGACC/T for M cells, and determined their corresponding transcription factors: DOFs and WRKYs. The complex interaction between cis and trans factors in the preferential expression of C4 genes was also observed. Interestingly, cell type-preferentially enriched gene expression can be fine-tuned by the coordination of multiple chromatin features. Such coordination may be critical in ensuring the cell type-specific function of key C4 genes. Based on the observed cell type-preferentially enriched expression pattern and coordinated chromatin features, we predicted a set of functionally unknown genes, e.g. Zm00001d042050 and Zm00001d040659, to be potential key C4 genes. Our findings provide deep insight into the architectures associated with C4 gene expression and could serve as a valuable resource to further identify the regulatory mechanisms present in C4 species.
Collapse
Affiliation(s)
- Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baijuan Du
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Pengfei Dong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilei Sun
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xianglan Wang
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Sun
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
13
|
Washburn JD, Strable J, Dickinson P, Kothapalli SS, Brose JM, Covshoff S, Conant GC, Hibberd JM, Pires JC. Distinct C 4 sub-types and C 3 bundle sheath isolation in the Paniceae grasses. PLANT DIRECT 2021; 5:e373. [PMID: 34988355 PMCID: PMC8711749 DOI: 10.1002/pld3.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.
Collapse
Affiliation(s)
- Jacob D. Washburn
- Plant Genetics Research Unit, USDA‐ARSUniversity of MissouriColumbiaMOUSA
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Josh Strable
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Julia M. Brose
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Sarah Covshoff
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gavin C. Conant
- Program in Genetics, Bioinformatics Research Center, Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | |
Collapse
|
14
|
Bi R, Liu P. A semi-parametric Bayesian approach for detection of gene expression heterosis with RNA-seq data. J Appl Stat 2021; 50:214-230. [DOI: 10.1080/02664763.2021.2004581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ran Bi
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Siadjeu C, Lauterbach M, Kadereit G. Insights into Regulation of C 2 and C 4 Photosynthesis in Amaranthaceae/ Chenopodiaceae Using RNA-Seq. Int J Mol Sci 2021; 22:12120. [PMID: 34830004 PMCID: PMC8624041 DOI: 10.3390/ijms222212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.
Collapse
Affiliation(s)
- Christian Siadjeu
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| | | | - Gudrun Kadereit
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| |
Collapse
|
16
|
Chotewutmontri P, Barkan A. Ribosome profiling elucidates differential gene expression in bundle sheath and mesophyll cells in maize. PLANT PHYSIOLOGY 2021; 187:59-72. [PMID: 34618144 PMCID: PMC8418429 DOI: 10.1093/plphys/kiab272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 05/20/2023]
Abstract
The efficiencies offered by C4 photosynthesis have motivated efforts to understand its biochemical, genetic, and developmental basis. Reactions underlying C4 traits in most C4 plants are partitioned between two cell types, bundle sheath (BS), and mesophyll (M) cells. RNA-seq has been used to catalog differential gene expression in BS and M cells in maize (Zea mays) and several other C4 species. However, the contribution of translational control to maintaining the distinct proteomes of BS and M cells has not been addressed. In this study, we used ribosome profiling and RNA-seq to describe translatomes, translational efficiencies, and microRNA abundance in BS- and M-enriched fractions of maize seedling leaves. A conservative interpretation of our data revealed 182 genes exhibiting cell type-dependent differences in translational efficiency, 31 of which encode proteins with core roles in C4 photosynthesis. Our results suggest that non-AUG start codons are used preferentially in upstream open reading frames of BS cells, revealed mRNA sequence motifs that correlate with cell type-dependent translation, and identified potential translational regulators that are differentially expressed. In addition, our data expand the set of genes known to be differentially expressed in BS and M cells, including genes encoding transcription factors and microRNAs. These data add to the resources for understanding the evolutionary and developmental basis of C4 photosynthesis and for its engineering into C3 crops.
Collapse
Affiliation(s)
- Prakitchai Chotewutmontri
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 USA
- Author for communication:
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 USA
| |
Collapse
|
17
|
Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T, Köhrer K, Frommer WB, Kim JY. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. THE PLANT CELL 2021; 33:531-547. [PMID: 33955497 PMCID: PMC8136869 DOI: 10.1093/plcell/koaa055] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 05/22/2023]
Abstract
Leaves are asymmetric, with different functions for adaxial and abaxial tissue. The bundle sheath (BS) of C3 barley (Hordeum vulgare) is dorsoventrally differentiated into three types of cells: adaxial structural, lateral S-type, and abaxial L-type BS cells. Based on plasmodesmatal connections between S-type cells and mestome sheath (parenchymatous cell layer below bundle sheath), S-type cells likely transfer assimilates toward the phloem. Here, we used single-cell RNA sequencing to investigate BS differentiation in C4 maize (Zea mays L.) plants. Abaxial BS (abBS) cells of rank-2 intermediate veins specifically expressed three SWEET sucrose uniporters (SWEET13a, b, and c) and UmamiT amino acid efflux transporters. SWEET13a, b, c mRNAs were also detected in the phloem parenchyma (PP). We show that maize has acquired a mechanism for phloem loading in which abBS cells provide the main route for apoplasmic sucrose transfer toward the phloem. This putative route predominates in veins responsible for phloem loading (rank-2 intermediate), whereas rank-1 intermediate and major veins export sucrose from the PP adjacent to the sieve element companion cell complex, as in Arabidopsis thaliana. We surmise that abBS identity is subject to dorsoventral patterning and has components of PP identity. These observations provide insights into the unique transport-specific properties of abBS cells and support a modification to the canonical phloem loading pathway in maize.
Collapse
Affiliation(s)
- Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Nora R Zöllner
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Colin P S Kruse
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tobias Lautwein
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Author for correspondence:
| | - Ji-Yun Kim
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
18
|
Miya M, Yoshikawa T, Sato Y, Itoh JI. Genome-wide analysis of spatiotemporal expression patterns during rice leaf development. BMC Genomics 2021; 22:169. [PMID: 33750294 PMCID: PMC7941727 DOI: 10.1186/s12864-021-07494-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. RESULTS In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages. The dynamics in each region revealed that the transcriptomes changed dramatically throughout the progress of tissue differentiation, and those of the leaf blade and sheath differed greatly at the mature stage. Cluster analysis of expression patterns among leaf parts revealed groups of genes that may be involved in specific biological processes related to rice leaf development. Moreover, we found novel genes potentially involved in rice leaf development using a combination of transcriptome data and in situ hybridization, and analyzed their spatial expression patterns at high resolution. We successfully identified multiple genes that exhibit localized expression in tissues characteristic of rice or grass leaves. CONCLUSIONS Although the genetic mechanisms of leaf development have been elucidated in several eudicots, direct application of that information to rice and grasses is not appropriate due to the morphological and developmental differences between them. Our analysis provides not only insights into the development of rice leaves but also expression profiles that serve as a valuable resource for gene discovery. The genes and gene clusters identified in this study may facilitate future research on the unique developmental mechanisms of rice leaves.
Collapse
Affiliation(s)
- Masayuki Miya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takanori Yoshikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
19
|
Weissmann S, Huang P, Wiechert MA, Furuyama K, Brutnell TP, Taniguchi M, Schnable JC, Mockler TC. DCT4-A New Member of the Dicarboxylate Transporter Family in C4 Grasses. Genome Biol Evol 2021; 13:6126432. [PMID: 33587128 PMCID: PMC7883667 DOI: 10.1093/gbe/evaa251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 11/15/2022] Open
Abstract
Malate transport shuttles atmospheric carbon into the Calvin–Benson cycle during NADP-ME C4 photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed that they efficiently exchange malate across membranes. Here, we identify and characterize a previously unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate across membranes and its expression pattern is consistent with a role in malate transport during C4 photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an ortholog is not detectable in the maize reference genome. We found that the expression patterns of DCT family genes in the leaves of Zea mays, and S. bicolor varied by cell type. Our results suggest that subfunctionalization, of members of the DCT family, for the transport of malate into the bundle sheath plastids, occurred during the process of independent recurrent evolution of C4 photosynthesis in grasses of the PACMAD clade. We also show that this subfunctionalization is lineage independent. Our results challenge the dogma that key C4 genes must be orthologues of one another among C4 species, and shed new light on the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Pu Huang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Koki Furuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Thomas P Brutnell
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - James C Schnable
- Computational Sciences Initiative, Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Lyu MJA, Wang Y, Jiang J, Liu X, Chen G, Zhu XG. What Matters for C 4 Transporters: Evolutionary Changes of Phospho enolpyruvate Transporter for C 4 Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:935. [PMID: 32695130 PMCID: PMC7338763 DOI: 10.3389/fpls.2020.00935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
C4 photosynthesis is a complex trait that evolved from its ancestral C3 photosynthesis by recruiting pre-existing genes. These co-opted genes were changed in many aspects compared to their counterparts in C3 species. Most of the evolutionary changes of the C4 shuttle enzymes are well characterized, however, evolutionary changes for the recruited metabolite transporters are less studied. Here we analyzed the evolutionary changes of the shuttle enzyme phosphoenolpyruvate (PEP) transporter (PPT) during its recruitment from C3 to C4 photosynthesis. Our analysis showed that among the two PPT paralogs PPT1 and PPT2, PPT1 was the copy recruited for C4 photosynthesis in multiple C4 lineages. During C4 evolution, PPT1 gained increased transcript abundance, shifted its expression from predominantly in root to in leaf and from bundle sheath cell to mesophyll cell, and gained more rapid and long-lasting responsiveness to light. Modifications occurred in both regulatory and coding regions in C4 PPT1 as compared to C3 PPT1, however, the PEP transporting function of PPT1 remained. We found that PPT1 of a Flaveria C4 species recruited a MEM1 B submodule in the promoter region, which might be related to the increased transcript abundance of PPT1 in C4 mesophyll cells. The case study of PPT further suggested that high transcript abundance in a proper location is of high priority for PPT to support C4 function.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yaling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianjun Jiang
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Xinyu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
22
|
Hendron RW, Kelly S. Subdivision of Light Signaling Networks Contributes to Partitioning of C 4 Photosynthesis. PLANT PHYSIOLOGY 2020; 182:1297-1309. [PMID: 31862840 PMCID: PMC7054874 DOI: 10.1104/pp.19.01053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Plants coordinate the expression of photosynthesis-related genes in response to growth and environmental changes. In species that conduct two-cell C4 photosynthesis, expression of photosynthesis genes is partitioned such that leaf mesophyll and bundle sheath cells accumulate different components of the photosynthetic pathway. The identities of the regulatory networks that facilitate this partitioning are unknown. Here, we show that differences in light perception between mesophyll and bundle sheath cells facilitate differential regulation and accumulation of photosynthesis gene transcripts in the C4 crop maize (Zea mays). Key components of the photosynthesis gene regulatory network differentially accumulated between mesophyll and bundle sheath cells, indicative of differential network activity across cell types. We further show that blue (but not red) light is necessary and sufficient to activate photosystem II assembly in mesophyll cells in etiolated maize. Finally, we demonstrate that 61% of all light-induced mesophyll and bundle sheath genes were induced only by blue light or only by red light, but not both. These findings provide evidence that subdivision of light signaling networks is a component of cellular partitioning of C4 photosynthesis in maize.
Collapse
Affiliation(s)
- Ross-W Hendron
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
23
|
Mai KKK, Gao P, Kang BH. Electron Microscopy Views of Dimorphic Chloroplasts in C4 Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1020. [PMID: 32719711 PMCID: PMC7350421 DOI: 10.3389/fpls.2020.01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 05/02/2023]
Abstract
C4 plants enhance photosynthesis efficiency by concentrating CO2 to the site of Rubisco action. Chloroplasts in C4 plants exhibit structural dimorphism because thylakoid architectures vary depending on energy requirements. Advances in electron microscopy imaging capacity and sample preparation technologies allowed characterization of thylakoid structures and their macromolecular arrangements with unprecedented precision mostly in C3 plants. The thylakoid is assembled during chloroplast biogenesis through collaboration between the plastid and nuclear genomes. Recently, the membrane dynamics involved in the assembly process has been investigated with 3D electron microscopy, and molecular factors required for thylakoid construction have been characterized. The two classes of chloroplasts in C4 plants arise from common precursors, but little is known about how a single type of chloroplasts grow, divide, and differentiate to mature into distinct chloroplasts. Here, we outline the thylakoid structure and its assembly processes in C3 plants to discuss ultrastructural analyses of dimorphic chloroplast biogenesis in C4 plant species. Future directions for electron microscopy research of C4 photosynthetic systems are also proposed.
Collapse
|
24
|
Osadchuk K, Cheng C, Irish EE. Jasmonic acid levels decline in advance of the transition to the adult phase in maize. PLANT DIRECT 2019; 3:e00180. [PMID: 31788658 PMCID: PMC6879778 DOI: 10.1002/pld3.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Leaf-derived signals drive the development of the shoot, eventually leading to flowering. In maize, transcripts of genes that facilitate jasmonic acid (JA) signaling are more abundant in juvenile compared to adult leaf primordia; exogenous application of JA both extends the juvenile phase and delays the decline in miR156 levels. To test the hypothesis that JA promotes juvenility, we measured JA and meJA levels using LC-MS in successive stages of leaf one development and in later leaves at stages leading up to phase change in both normal maize and phase change mutants. We concurrently measured gibberellic acid (GA), required for the timely transition to the adult phase. Jasmonic acid levels increased from germination through leaf one differentiation, declining in later formed leaves as the shoot approached phase change. In contrast, levels of GA were low in leaf one after germination and increased as the shoot matured to the adult phase. Multiple doses of exogenous JA resulted in the production of as many as three additional juvenile leaves. We analyzed two transcript expression datasets to investigate when gene regulation by miR156 begins in the context of spatiotemporal patterns of JA and GA signaling. Quantifying these hormones in phase change mutants provided insight into how these two hormones control phase-specific patterns of differentiation. We conclude that the hormone JA is a leaf-provisioned signal that influences the duration, and possibly the initiation, of the juvenile phase of maize by controlling patterns of differentiation in successive leaf primordia.
Collapse
Affiliation(s)
| | | | - Erin E. Irish
- Department of BiologyUniversity of IowaIowa CityIAUSA
| |
Collapse
|
25
|
Hughes TE, Sedelnikova OV, Wu H, Becraft PW, Langdale JA. Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 2019; 146:dev.177543. [PMID: 31235633 PMCID: PMC6679360 DOI: 10.1242/dev.177543] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023]
Abstract
The highly efficient C4 photosynthetic pathway is facilitated by ‘Kranz’ leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate – mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature. Summary: Two duplicated maize SCARECROW genes control the development of the endodermis in roots and the mesophyll in leaves.
Collapse
Affiliation(s)
- Thomas E Hughes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Philip W Becraft
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
26
|
Cacefo V, Ribas AF, Zilliani RR, Neris DM, Domingues DS, Moro AL, Vieira LGE. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions. BMC PLANT BIOLOGY 2019; 19:144. [PMID: 30991938 PMCID: PMC6469216 DOI: 10.1186/s12870-019-1745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND C4 plants have been classified into three subtypes based on the enzymes used to decarboxylate C4 acids in the bundle sheath cells (NADP-ME, NAD-ME and PEPCK pathways). Evidences indicate that, depending on environmental factors, C4 plants may exhibit a certain degree of flexibility in the use of the decarboxylation mechanisms. In this context, the objective was to extend the knowledge on the degree of flexibility between the pathways of decarboxylation in sugarcane, a NADP-ME species, at different levels of water deficit. RESULTS An experiment was carried out with two cultivars - RB92579 (tolerant to water deficit) and SP80-3280 (susceptible to water deficit) subjected to moderate level (- 1.5 to - 1.8 MPa), severe level (below - 2.0 MPa) and recovery (48 h after rehydration) and changes in the activities of the enzymes involved in the three C4 mechanisms and in gene expression were investigated. Our results showed that sugarcane uses the PEPCK pathway as a decarboxylation mechanism in addition to the NADP-ME, which was more evident under water deficit conditions for both cultivars. CONCLUSIONS The results obtained here, show that sugarcane increases the use of the PEPCK pathway as a decarboxylation mechanism, in addition to the NADP-ME pathway, under conditions of water deficit, particularly in the tolerant cultivar.
Collapse
Affiliation(s)
- Viviane Cacefo
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Alessandra Ferreira Ribas
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Rafael Rebes Zilliani
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Daniel Moreira Neris
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515, CEP, Rio Claro, SP 13506-900 Brazil
| | - Adriana Lima Moro
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Luiz Gonzaga Esteves Vieira
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| |
Collapse
|
27
|
Avila LM, Obeidat W, Earl H, Niu X, Hargreaves W, Lukens L. Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genomics 2018; 19:761. [PMID: 30342485 PMCID: PMC6196024 DOI: 10.1186/s12864-018-5134-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold temperatures and their alleviation affect many plant traits including the abundance of protein coding gene transcripts. Transcript level changes that occur in response to cold temperatures and their alleviation are shared or vary across genotypes. In this study we identify individual transcripts and groups of functionally related transcripts that consistently respond to cold and its alleviation. Genes that respond differently to temperature changes across genotypes may have limited functional importance. We investigate if these genes share functions, and if their genotype-specific gene expression levels change in magnitude or rank across temperatures. RESULTS We estimate transcript abundances from over 22,000 genes in two unrelated Zea mays inbred lines during and after cold temperature exposure. Genotype and temperature contribute to many genes' abundances. Past cold exposure affects many fewer genes. Genes up-regulated in cold encode many cytokinin glucoside biosynthesis enzymes, transcription factors, signalling molecules, and proteins involved in diverse environmental responses. After cold exposure, protease inhibitors and cuticular wax genes are newly up-regulated, and environmentally responsive genes continue to be up-regulated. Genes down-regulated in response to cold include many photosynthesis, translation, and DNA replication associated genes. After cold exposure, DNA replication and translation genes are still preferentially downregulated. Lignin and suberin biosynthesis are newly down-regulated. DNA replication, reactive oxygen species response, and anthocyanin biosynthesis genes have strong, genotype-specific temperature responses. The ranks of genotypes' transcript abundances often change across temperatures. CONCLUSIONS We report a large, core transcriptome response to cold and the alleviation of cold. In cold, many of the core suite of genes are up or downregulated to control plant growth and photosynthesis and limit cellular damage. In recovery, core responses are in part to prepare for future stress. Functionally related genes are consistently and greatly up-regulated in a single genotype in response to cold or its alleviation, suggesting positive selection has driven genotype-specific temperature responses in maize.
Collapse
Affiliation(s)
- Luis M Avila
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Wisam Obeidat
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Hugh Earl
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Xiaomu Niu
- Dupont/Pioneer, 7300 NW 62nd Ave, DuPont Pioneer, Johnston, Iowa, 50131 USA
| | - William Hargreaves
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
28
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
29
|
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. THE NEW PHYTOLOGIST 2018; 218:594-603. [PMID: 29451311 DOI: 10.1111/nph.15021] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/28/2017] [Indexed: 05/02/2023]
Abstract
Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H+ symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays.
Collapse
Affiliation(s)
- Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Marc Horschman
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Si Nian Char
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Davide Sosso
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| |
Collapse
|
30
|
Kolbe AR, Studer AJ, Cousins AB. Biochemical and transcriptomic analysis of maize diversity to elucidate drivers of leaf carbon isotope composition. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:489-500. [PMID: 32290988 DOI: 10.1071/fp17265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/01/2017] [Indexed: 05/13/2023]
Abstract
Carbon isotope discrimination is used to study CO2 diffusion, substrate availability for photosynthesis, and leaf biochemistry, but the intraspecific drivers of leaf carbon isotope composition (δ13C) in C4 species are not well understood. In this study, the role of photosynthetic enzymes and post-photosynthetic fractionation on δ13C (‰) was explored across diverse maize inbred lines. A significant 1.3‰ difference in δ13C was observed between lines but δ13C did not correlate with in vitro leaf carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity. RNA-sequencing was used to identify potential differences in post-photosynthetic metabolism that would influence δ13C; however, no correlations were identified that would indicate significant differences in post-photosynthetic fractionation between lines. Variation in δ13C has been observed between C4 subtypes, but differential expression of NADP-ME and PEP-CK pathways within these lines did not correlate with δ13C. However, co-expression network analysis provided novel evidence for isoforms of C4 enzymes and putative transporters. Together, these data indicate that diversity in maize δ13C cannot be fully explained by variation in CA, PEPC, or Rubisco activity or gene expression. The findings further emphasise the need for future work exploring the influence of stomatal sensitivity and mesophyll conductance on δ13C in maize.
Collapse
Affiliation(s)
- Allison R Kolbe
- School of Biological Sciences, PO Box 644236, Washington State University, Pullman, WA 99164, USA
| | - Anthony J Studer
- Department of Crop Sciences, 1201 West Gregory Drive, Edward R. Madigan Laboratory 289, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Asaph B Cousins
- School of Biological Sciences, PO Box 644236, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
31
|
Chastain CJ, Baird LM, Walker MT, Bergman CC, Novbatova GT, Mamani-Quispe CS, Burnell JN. Maize leaf PPDK regulatory protein isoform-2 is specific to bundle sheath chloroplasts and paradoxically lacks a Pi-dependent PPDK activation activity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1171-1181. [PMID: 29281064 PMCID: PMC6019023 DOI: 10.1093/jxb/erx471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In C4 plants, the pyruvate phosphate dikinase regulatory protein (PDRP) regulates the C4 pathway enzyme pyruvate phosphate dikinase (PPDK) in response to changes in incident light intensity. In maize (Zea mays) leaves, two distinct isoforms of PDRP are expressed, ZmPDRP1 and ZmPDRP2. The properties and C4 function of the ZmPDRP1 isoform are well understood. However, the PDRP2 isoform has only recently been identified and its properties and function(s) in maize leaves are unknown. We therefore initiated an investigation into the maize PDRP2 isoform by performing a side by side comparison of its enzyme properties and cell-specific distribution with PDRP1. In terms of enzyme functionality, PDRP2 was found to possess the same protein kinase-specific activity as PDRP1. However, the PDRP2 isoform was found to lack the phosphotransferase activity of the bifunctional PDRP1 isoform except when PDRP2 in the assays is elevated 5- to 10-fold. A primarily immuno-based approach was used to show that PDRP1 is strictly expressed in mesophyll cells and PDRP2 is strictly expressed in bundle sheath strand cells (BSCs). Additionally, using in situ immunolocalization, we establish a regulatory target for PDRP2 by showing a significant presence of C4 PPDK in BSC chloroplasts. However, a metabolic role for PPDK in this compartment is obscure, assuming PPDK accumulating in this compartment would be irreversibly inactivated each dark cycle by a monofunctional PDRP2.
Collapse
Affiliation(s)
- Chris J Chastain
- Department of Biosciences, Minnesota State University-Moorhead, USA
- Correspondence:
| | - Lisa M Baird
- Department of Biology, University of San Diego, San Diego, CA, USA
| | | | | | | | | | - Jim N Burnell
- Department of Molecular and Cell Biology, James Cook University, Australia
| |
Collapse
|
32
|
Nelissen H, Sun X, Rymen B, Jikumaru Y, Kojima M, Takebayashi Y, Abbeloos R, Demuynck K, Storme V, Vuylsteke M, De Block J, Herman D, Coppens F, Maere S, Kamiya Y, Sakakibara H, Beemster GT, Inzé D. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:615-627. [PMID: 28730636 PMCID: PMC5787831 DOI: 10.1111/pbi.12801] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Xiao‐Huan Sun
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Bart Rymen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Yusuke Jikumaru
- Growth Regulation Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Mikko Kojima
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Yumiko Takebayashi
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Rafael Abbeloos
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Veronique Storme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Marnik Vuylsteke
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Frederik Coppens
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Yuji Kamiya
- Growth Regulation Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research GroupPlant Science CenterRIKENYokohamaJapan
| | - Gerrit T.S. Beemster
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| |
Collapse
|
33
|
Schuler ML, Sedelnikova OV, Walker BJ, Westhoff P, Langdale JA. SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency. PLANT PHYSIOLOGY 2018; 176:757-772. [PMID: 29127261 PMCID: PMC5761779 DOI: 10.1104/pp.17.01005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/09/2017] [Indexed: 05/17/2023]
Abstract
The coordinated positioning of veins, mesophyll cells, and stomata across a leaf is crucial for efficient gas exchange and transpiration and, therefore, for overall function. In monocot leaves, stomatal cell files are positioned at the flanks of underlying longitudinal leaf veins, rather than directly above or below. This pattern suggests either that stomatal formation is inhibited in epidermal cells directly in contact with the vein or that specification is induced in cell files beyond the vein. The SHORTROOT pathway specifies distinct cell types around the vasculature in subepidermal layers of both root and shoots, with cell type identity determined by distance from the vein. To test whether the pathway has the potential to similarly pattern epidermal cell types, we expanded the expression domain of the rice (Oryza sativa ssp japonica) OsSHR2 gene, which we show is restricted to developing leaf veins, to include bundle sheath cells encircling the vein. In transgenic lines, which were generated using the orthologous ZmSHR1 gene to avoid potential silencing of OsSHR2, stomatal cell files were observed both in the normal position and in more distant positions from the vein. Contrary to theoretical predictions, and to phenotypes observed in eudicot leaves, the increase in stomatal density did not enhance photosynthetic capacity or increase mesophyll cell density. Collectively, these results suggest that the SHORTROOT pathway may coordinate the positioning of veins and stomata in monocot leaves and that distinct mechanisms may operate in monocot and eudicot leaves to coordinate stomatal patterning with the development of underlying mesophyll cells.
Collapse
Affiliation(s)
- Mara L Schuler
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
- Institute for Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Science, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Berkley J Walker
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Peter Westhoff
- Institute for Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Science, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
34
|
Qin J, Zhang J, Wang F, Wang J, Zheng Z, Yin C, Chen H, Shi A, Zhang B, Chen P, Zhang M. iTRAQ protein profile analysis of developmental dynamics in soybean [Glycine max (L.) Merr.] leaves. PLoS One 2017; 12:e0181910. [PMID: 28953898 PMCID: PMC5617144 DOI: 10.1371/journal.pone.0181910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
Zao5241 is an elite soybean [Glycine max (L.) Merr.] line and backbone parent. In this study, we employed iTRAQ to analyze the proteomes and protein expression profiles of Zao5241 during leaf development. We identified 1,245 proteins in all experiments, of which only 45 had been previously annotated. Among overlapping proteins between three biological replicates, 598 proteins with 2 unique peptides identified were reliably quantified. The protein datasets were classified into 36 GO functional terms, and the photosynthesis term was most significantly enriched. A total of 113 proteins were defined as being differentially expressed during leaf development; 41 proteins were found to be differently expressed between two and four week old leaves, and 84 proteins were found to be differently expressed between two and six week old leaves, respectively. Cluster analysis of the data revealed dynamic proteomes. Proteins annotated as electron carrier activity were greatly enriched in the peak expression profiles, and photosynthesis proteins were negatively modulated along the whole time course. This dataset will serve as the foundation for a systems biology approach to understanding photosynthetic development.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Jianan Zhang
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, P. R. China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| | - Jinghua Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| | - Zhi Zheng
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, P. R. China
| | - Changcheng Yin
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, People’s Republic of China
| | - Hao Chen
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, People’s Republic of China
| | - Ainong Shi
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Bo Zhang
- Department of Crop, Soil and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Pengyin Chen
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| |
Collapse
|
35
|
Wigoda N, Pasmanik-Chor M, Yang T, Yu L, Moshelion M, Moran N. Differential gene expression and transport functionality in the bundle sheath versus mesophyll - a potential role in leaf mineral homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3179-3190. [PMID: 28407076 PMCID: PMC5853479 DOI: 10.1093/jxb/erx067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/09/2017] [Indexed: 05/08/2023]
Abstract
Under fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions.
Collapse
Affiliation(s)
- Noa Wigoda
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Tianyuan Yang
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, P.R. China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Menachem Moshelion
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nava Moran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
36
|
Dueñas ME, Klein AT, Alexander LE, Yandeau-Nelson MD, Nikolau BJ, Lee YJ. High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:825-838. [PMID: 27859865 DOI: 10.1111/tpj.13422] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/04/2016] [Indexed: 05/13/2023]
Abstract
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single-cell resolution. Here we applied 5- and 10 μm high spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG 32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. This study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single-cell resolution.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| | - Adam T Klein
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| | - Liza E Alexander
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Basil J Nikolau
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| |
Collapse
|
37
|
Reeves G, Grangé-Guermente MJ, Hibberd JM. Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:107-116. [PMID: 27940469 DOI: 10.1093/jxb/erw438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that increases delivery of carbon dioxide to RuBisCO and as a consequence reduces photorespiration. The C4 pathway is therefore beneficial in environments that promote high photorespiration. This pathway has evolved many times, and involves restricting gene expression to either mesophyll or bundle sheath cells. Here we review the regulatory mechanisms that control cell-preferential expression of genes in the C4 cycle. From this analysis, it is clear that the C4 pathway has a complex regulatory framework, with control operating at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels. Some genes of the C4 pathway are regulated at multiple levels, and we propose that this ensures robust expression in each cell type. Accumulating evidence suggests that multiple genes of the C4 pathway may share the same regulatory mechanism. The control systems for C4 photosynthesis gene expression appear to operate in C3 plants, and so it appears that pre-existing mechanisms form the basis of C4 photosynthesis gene expression.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
38
|
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:147-160. [PMID: 28043950 PMCID: PMC5853576 DOI: 10.1093/jxb/erw463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrichment, it is the only one that shows neither strong 3' (degradation) bias, nor different severity of 3' bias between samples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full comparative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consistencies and their conflicts.
Collapse
Affiliation(s)
- Alisandra K Denton
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Janina Maß
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Network Analysis and Modeling Group, IPK Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Schulze S, Westhoff P, Gowik U. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:29-35. [PMID: 27038285 DOI: 10.1016/j.pbi.2016.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 05/09/2023]
Abstract
The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump.
Collapse
Affiliation(s)
- Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', 40225 Duesseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
40
|
Wang P, Vlad D, Langdale JA. Finding the genes to build C4 rice. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:44-50. [PMID: 27055266 DOI: 10.1016/j.pbi.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Rice, a C3 crop, is a staple food for more than half of the world's population, with most consumers living in developing countries. Engineering C4 photosynthetic traits into rice is increasingly suggested as a way to meet the 50% yield increase that is predicted to be needed by 2050. Advances in genome-wide deep-sequencing, gene discovery and genome editing platforms have brought the possibility of engineering a C3 to C4 conversion closer than ever before. Because C4 plants have evolved independently multiple times from C3 origins, it is probably that key genes and gene regulatory networks that regulate C4 were recruited from C3 ancestors. In the past five years there have been over 20 comparative transcriptomic studies published that aimed to identify these recruited C4 genes and regulatory mechanisms. Here we present an overview of what we have learned so far and preview the efforts still needed to provide a practical blueprint for building C4 rice.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Daniela Vlad
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
41
|
Huang P, Brutnell TP. A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:91-9. [PMID: 27078208 DOI: 10.1016/j.pbi.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is used by only three percent of all flowering plants, but explains a quarter of global primary production, including some of the worlds' most important cereals and bioenergy grasses. Recent advances in our understanding of C4 development can be attributed to the application of comparative transcriptomics approaches that has been fueled by high throughput sequencing. Global surveys of gene expression conducted between different developmental stages or on phylogenetically closely related C3 and C4 species are providing new insights into C4 function, development and evolution. Importantly, through co-expression analysis and comparative genomics, these studies help define novel candidate genes that transcend traditional genetic screens. In this review, we briefly summarize the major findings from recent transcriptomic studies, compare and contrast these studies to summarize emerging consensus, and suggest new approaches to exploit the data. Finally, we suggest using Setaria viridis as a model system to relieve a major bottleneck in genetic studies of C4 photosynthesis, and discuss the challenges and new opportunities for future comparative transcriptomic studies.
Collapse
Affiliation(s)
- Pu Huang
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA.
| |
Collapse
|
42
|
Sharwood RE, Ghannoum O, Whitney SM. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:135-42. [PMID: 27131319 DOI: 10.1016/j.pbi.2016.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 05/09/2023]
Abstract
By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia.
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Spencer M Whitney
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
43
|
Döring F, Streubel M, Bräutigam A, Gowik U. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3053-64. [PMID: 26976818 PMCID: PMC4867894 DOI: 10.1093/jxb/erw041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath.
Collapse
Affiliation(s)
- Florian Döring
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Monika Streubel
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS) 'From Complex Traits towards Synthetic Modules', D-40225 Düsseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Robaina-Estévez S, Nikoloski Z. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize. PLANT & CELL PHYSIOLOGY 2016; 57:933-43. [PMID: 26903529 PMCID: PMC4867049 DOI: 10.1093/pcp/pcw034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/09/2016] [Indexed: 05/21/2023]
Abstract
Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops.
Collapse
Affiliation(s)
- Semidán Robaina-Estévez
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Huang CF, Chang YM, Lin JJ, Yu CP, Lin HH, Liu WY, Yeh S, Tu SL, Wu SH, Ku MS, Li WH. Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:1-10. [PMID: 26828378 DOI: 10.1016/j.pbi.2015.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved a repertoire of C4 enzymes to enhance CO2 fixation. Second, C4 leaves have Kranz anatomy with a high vein density in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are not only functionally well differentiated, but also well-coordinated for rapid transport of photo-assimilates between the two types of photosynthetic cells. Recent comparative transcriptomic and anatomical analyses of C3 and C4 leaves have revealed early onset of C4-related processes in leaf development, suggesting that delayed mesophyll differentiation contributes to higher C4 vein density, and have identified some candidate regulators for the higher vein density in C4 leaves. Moreover, comparative transcriptomics of maize husk (C3) and foliar leaves (C4) has identified a cohort of candidate regulators of Kranz anatomy development. In addition, there has been major progress in the identification of transcription factor binding sites, greatly increasing our knowledge of gene regulation in plants.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yao-Ming Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jinn-Jy Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan; Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Yu
- Biotechnology Center, National Chung-Hsing Unviersity, Taichung 40227, Taiwan
| | - Hsin-Hung Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Suying Yeh
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Maurice Sb Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA.
| |
Collapse
|
46
|
Bi R, Liu P. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. BMC Bioinformatics 2016; 17:146. [PMID: 27029470 PMCID: PMC4815167 DOI: 10.1186/s12859-016-0994-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/20/2016] [Indexed: 11/27/2022] Open
Abstract
Background RNA-Sequencing (RNA-seq) experiments have been popularly applied to transcriptome studies in recent years. Such experiments are still relatively costly. As a result, RNA-seq experiments often employ a small number of replicates. Power analysis and sample size calculation are challenging in the context of differential expression analysis with RNA-seq data. One challenge is that there are no closed-form formulae to calculate power for the popularly applied tests for differential expression analysis. In addition, false discovery rate (FDR), instead of family-wise type I error rate, is controlled for the multiple testing error in RNA-seq data analysis. So far, there are very few proposals on sample size calculation for RNA-seq experiments. Results In this paper, we propose a procedure for sample size calculation while controlling FDR for RNA-seq experimental design. Our procedure is based on the weighted linear model analysis facilitated by the voom method which has been shown to have competitive performance in terms of power and FDR control for RNA-seq differential expression analysis. We derive a method that approximates the average power across the differentially expressed genes, and then calculate the sample size to achieve a desired average power while controlling FDR. Simulation results demonstrate that the actual power of several popularly applied tests for differential expression is achieved and is close to the desired power for RNA-seq data with sample size calculated based on our method. Conclusions Our proposed method provides an efficient algorithm to calculate sample size while controlling FDR for RNA-seq experimental design. We also provide an R package ssizeRNA that implements our proposed method and can be downloaded from the Comprehensive R Archive Network (http://cran.r-project.org). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0994-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Bi
- Department of Statistics, Iowa State University, Snedecor Hall, Ames, Iowa, 50011, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Snedecor Hall, Ames, Iowa, 50011, USA.
| |
Collapse
|
47
|
Bogart E, Myers CR. Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves. PLoS One 2016; 11:e0151722. [PMID: 26990967 PMCID: PMC4807923 DOI: 10.1371/journal.pone.0151722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/03/2016] [Indexed: 11/18/2022] Open
Abstract
C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment surrounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation. Nonlinear relationships between carbon dioxide and oxygen levels and reaction rates are key to their physiology but cannot be handled with standard techniques of constraint-based metabolic modeling. We demonstrate that incorporating these relationships as constraints on reaction rates and solving the resulting nonlinear optimization problem yields realistic predictions of the response of C4 systems to environmental and biochemical perturbations. Using a new genome-scale reconstruction of maize metabolism, we build an 18000-reaction, nonlinearly constrained model describing mesophyll and bundle sheath cells in 15 segments of the developing maize leaf, interacting via metabolite exchange, and use RNA-seq and enzyme activity measurements to predict spatial variation in metabolic state by a novel method that optimizes correlation between fluxes and expression data. Though such correlations are known to be weak in general, we suggest that developmental gradients may be particularly suited to the inference of metabolic fluxes from expression data, and we demonstrate that our method predicts fluxes that achieve high correlation with the data, successfully capture the experimentally observed base-to-tip transition between carbon-importing tissue and carbon-exporting tissue, and include a nonzero growth rate, in contrast to prior results from similar methods in other systems.
Collapse
Affiliation(s)
- Eli Bogart
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States of America
- Institute of Biotechnology, Cornell University, Ithaca, NY, United States of America
| | - Christopher R. Myers
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States of America
- Institute of Biotechnology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
48
|
Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1649-62. [PMID: 26896851 PMCID: PMC4783356 DOI: 10.1093/jxb/erv553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species.
Collapse
Affiliation(s)
- Xiaolan Rao
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| | - Nan Lu
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Guifen Li
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jin Nakashima
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| |
Collapse
|
49
|
van Campen JC, Yaapar MN, Narawatthana S, Lehmeier C, Wanchana S, Thakur V, Chater C, Kelly S, Rolfe SA, Quick WP, Fleming AJ. Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic Development. PLANT PHYSIOLOGY 2016; 170:1655-74. [PMID: 26813793 PMCID: PMC4775128 DOI: 10.1104/pp.15.01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/22/2016] [Indexed: 05/24/2023]
Abstract
Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective.
Collapse
Affiliation(s)
- Julia C van Campen
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Muhammad N Yaapar
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Supatthra Narawatthana
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Christoph Lehmeier
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Samart Wanchana
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Vivek Thakur
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Caspar Chater
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Steve Kelly
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - W Paul Quick
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.C.v.C., M.N.Y., S.N., C.L., C.C., S.A.R., A.J.F.);International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines (S.W., V.T., W.P.Q.);National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani 12120, Thailand (S.W.);Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Mexico (C.C.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (S.K.)
| |
Collapse
|
50
|
Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP. Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants. THE PLANT CELL 2016; 28:466-84. [PMID: 26813621 PMCID: PMC4790864 DOI: 10.1105/tpc.15.00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localized malate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the loss of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ∼ 25% of the photosynthetic activity. The results emphasize the importance of malate transport during C4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.
Collapse
Affiliation(s)
- Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Fangfang Ma
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Koki Furuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - James Gierse
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 U.S. Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132
| | - Howard Berg
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Ying Shao
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 U.S. Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132
| | | |
Collapse
|