1
|
Prévitali T, Rouault M, Pichereaux C, Gourion B. Lotus resistance against Ralstonia is enhanced by Mesorhizobium and does not impair mutualism. THE NEW PHYTOLOGIST 2025; 245:1249-1262. [PMID: 39562505 DOI: 10.1111/nph.20276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Legumes establish nitrogen-fixing symbioses with rhizobia. On the contrary, they can be attacked concomitantly by pathogens, raising the question of potential trade-offs between mutualism and immunity. In order to study such trade-offs, we used a tripartite system involving the model legume Lotus japonicus, its rhizobial symbiont Mesorhizobium loti and the soilborne pathogen Ralstonia solanacearum. We investigated the impact of mutualism on plant defense and the reciprocal influence of plant defense on mutualism. We found that Lotus age-related resistance against Ralstonia was improved by the interaction with rhizobia especially when nodulation is triggered. Conversely, age-related resistance did not compromise nodule organogenesis or functioning under pathogen attack. Proteomic characterization indicates that this resistance is associated with distinct proteome modifications in roots and nodules. This resistance questions the concept of interference between efficient defense reactions and mutualistic interactions and is of great interest for agricultural purposes as it not only restricts pathogen colonization, but would also preserve nitrogen fixation and yield.
Collapse
Affiliation(s)
- Thomas Prévitali
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Mathilde Rouault
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Castanet-Tolosan, F-31326, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, F-31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, F-31077, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| |
Collapse
|
2
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants FA. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Rzemieniewski J, Leicher H, Lee HK, Broyart C, Nayem S, Wiese C, Maroschek J, Camgöz Z, Olsson Lalun V, Djordjevic MA, Vlot AC, Hückelhoven R, Santiago J, Stegmann M. CEP signaling coordinates plant immunity with nitrogen status. Nat Commun 2024; 15:10686. [PMID: 39681561 DOI: 10.1038/s41467-024-55194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv. tomato. We show that effective immunity requires CEP perception by tissue-specific CEP RECEPTOR 1 (CEPR1) and CEPR2. Moreover, we identify the related RECEPTOR-LIKE KINASE 7 (RLK7) as a CEP4-specific CEP receptor contributing to CEP-mediated immunity, suggesting a complex interplay of multiple CEP ligands and receptors in different tissues during biotic stress. CEPs have a known role in the regulation of root growth and systemic nitrogen (N)-demand signaling. We provide evidence that CEPs and their receptors promote immunity in an N status-dependent manner, suggesting a previously unknown molecular crosstalk between plant nutrition and cell surface immunity. We propose that CEPs and their receptors are central regulators for the adaptation of biotic stress responses to plant-available resources.
Collapse
Affiliation(s)
- Jakub Rzemieniewski
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Henriette Leicher
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Shahran Nayem
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Christian Wiese
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julian Maroschek
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Zeynep Camgöz
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vilde Olsson Lalun
- Department of Biosciences Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - A Corina Vlot
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Martin Stegmann
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute of Botany, Molecular Botany, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Zhang L, Rong Y, Zhang P, Lin Z, Hu K, Wang X, Liu X, Liu M. Independent and differential effects of arbuscular mycorrhizal fungal composition and plant pathogens on plant traits and nitrogen uptake. Proc Biol Sci 2024; 291:20242344. [PMID: 39689877 DOI: 10.1098/rspb.2024.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF), as microbial mutualists, interact with various microbial taxa, including pathogens, and significantly shape the ecology and evolution of their host species. However, how AMF and pathogens jointly or independently affect plant traits and nitrogen uptake remains unclear. Here, we conducted a factorial experiment with three AMF treatments (AMF-free-control, Funneliformis mosseae, and a mixture of AMF species of F. mosseae and C. etunicatum), four plant-pathogen pairs, each under two pathogen treatments (one pathogen and a pathogen-free control). After 65 days of growth, we measured AMF colonization, pathogen infection, plant functional traits and ammonium and nitrate uptake. Our findings reveal that AMF and pathogens independently influence plant traits and nitrogen uptake, with no observed interactions between them. Specifically, colonization by F. mosseae or a mixed AMF species reduced nitrate uptake and plant height, without affecting root traits or ammonium uptake. In contrast, pathogen infection enhanced acquisitive root traits, such as increased specific root length and area but did not impact shoot traits or nitrogen uptake. These results broaden our understanding of the tripartite interactions among plants, AMF and pathogens, offering insights into how plant-microbial relationships influence plant health, growth and nitrogen cycling.
Collapse
Affiliation(s)
- Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yizhong Rong
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xingxing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Liu W, Wang Y, Ji T, Wang C, Shi Q, Li C, Wei JW, Gong B. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. THE NEW PHYTOLOGIST 2024; 244:1537-1551. [PMID: 39253785 DOI: 10.1111/nph.20102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Yushu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
6
|
Stałanowska K, Railean V, Pomastowski P, Pszczółkowska A, Okorski A, Lahuta LB. Seeds Priming with Bio-Silver Nanoparticles Protects Pea ( Pisum sativum L.) Seedlings Against Selected Fungal Pathogens. Int J Mol Sci 2024; 25:11402. [PMID: 39518955 PMCID: PMC11546818 DOI: 10.3390/ijms252111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Nano-priming is a relatively new seed treatment technique using metal and metal oxide nanoparticles (NPs), and such application of NPs may support the plants' immunity. Recently we have shown that the that biologically synthesized silver nanoparticles (bio-AgNPs) used as short-term foliar treatment protect pea seedlings against D. pinodes and F. avenaceum. In the present study, the protection of peas against both fungal pathogens via seed priming with bio-AgNPs was analyzed. Moreover, the changes in the polar metabolic profiles of the seedlings caused by priming and infection were also compared. Seed priming with bio-AgNPs at concentrations of 50 and 100 mg/L considerably reduced the symptoms and infection levels of both pathogens by over 70% and 90% for F. avenaceum and D. pinodes, respectively. Pathogens infection and nano-priming affected the metabolic profile of pea seedlings. The major changes in the primary metabolism were observed among carbohydrates and amino acids. In turn, this may result in changes in the expression and accumulation of secondary metabolites. Therefore, further investigation of the effect of nano-priming should focus on the changes in the secondary metabolism.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland;
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland; (A.P.); (A.O.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland; (A.P.); (A.O.)
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| |
Collapse
|
7
|
Guan X, Xu Y, Zhang D, Li H, Li R, Shi R. Microbial nitrogen transformation regulates pathogenic virulence in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122280. [PMID: 39226813 DOI: 10.1016/j.jenvman.2024.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Soil nitrogen addition induces the generation and proliferation of some bacterial virulence, yet the interactive mechanisms between the two remain unclear. Here we investigated the variation of virulence genes (VGs) abundance during soil nitrogen transformation, and explored the biological mechanism and key pathways involved in the regulation of VGs by nitrogen transformation. The results showed that the diversity and abundance of virulence genes in soil under high nitrogen input (100 mg/kg) were markedly higher than those under low nitrogen input (50 mg/kg), suggesting a trade-off between the prevalence of virulence genes and nitrogen metabolism. Nutritional/metabolic factor, regulation, immune modulation and motility were the dominant virulence types. Linear regression analysis showed that soil nitrogen mineralization and nitrification rate were closely correlated with the abundance of virulence genes, mainly involving adherence, nutritional/metabolic factors and immune modulation (p < 0.05). Structural equations indicated that microbial community succession associated with nitrogen transformation largely contributed to the changes in VGs abundance. Metagenomic analysis revealed that major virulence genes pilE, pchB, and galE were regulated by nitrogen-functional genes gdh, ureC, and amoC, implying that microbial nitrogen transformation influences immune modulation, nutritional/metabolic factors, and adherence-like virulence. The meta-transcriptome reiterated their co-regulation, and the key pathway may be glutamate/urea> α-ketoglutarate/ammonia > pyruvate/amino acid. The outcome provides strong evidence on the linkage between microbial nitrogen transformation and pathogenic virulence factors development in the soil environment, which will aid in the effective suppression of the prevalence of soil pathogenic virulence.
Collapse
Affiliation(s)
- Xiujing Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ruolan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
8
|
Pishchik VN, Chizhevskaya EP, Kichko AA, Aksenova TS, Andronov EE, Chebotar VK, Filippova PS, Shelenga TV, Belousova MH, Chikida NN. Metabolome and Mycobiome of Aegilops tauschii Subspecies Differing in Susceptibility to Brown Rust and Powdery Mildew Are Diverse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2343. [PMID: 39273827 PMCID: PMC11397189 DOI: 10.3390/plants13172343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The present study demonstrated the differences in the seed metabolome and mycobiome of two Aegilops tauschii Coss accessions with different resistance to brown rust and powdery mildew. We hypothesized that the seeds of resistant accession k-1958 Ae. tauschii ssp. strangulata can contain a larger number of metabolites with antifungal activity compared with the seeds of susceptible Ae. tauschii ssp meyeri k-340, which will determine differences in the seed fungal community. Our study emphasizes the differences in the seed metabolome of the studied Ae. tauschii accessions. The resistant accession k-1958 had a higher content of glucose and organic acids, including pyruvic, salicylic and azelaic acid, as well as pipecolic acids, galactinol, glycerol and sitosterol. The seeds of Ae. tauschii-resistant accession k-1958 were found to contain more active substances with antifungal activity. The genera Cladosporium and Alternaria were dominant in the seed mycobiome of the resistant accession. The genera Alternaria, Blumeria and Cladosporium dominated in seed mycobiome of susceptible accession k-340. In the seed mycobiome of the resistant k-1958, a higher occurrence of saprotrophic micromycetes was found, and many of the micromycetes were biocontrol agents. It was concluded that differences in the seed metabolome of Ae. tauschii contributed to the determination of the differences in mycobiomes.
Collapse
Affiliation(s)
- Veronika N Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena P Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Arina A Kichko
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana S Aksenova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Evgeny E Andronov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Vladimir K Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Polina S Filippova
- St. Petersburg North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana V Shelenga
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Maria H Belousova
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Nadezhda N Chikida
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| |
Collapse
|
9
|
Lacrampe N, Lugan R, Dumont D, Nicot PC, Lecompte F, Colombié S. Modelling metabolic fluxes of tomato stems reveals that nitrogen shapes central metabolism for defence against Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4093-4110. [PMID: 38551810 PMCID: PMC11233421 DOI: 10.1093/jxb/erae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 07/11/2024]
Abstract
Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions for 7 d post-inoculation, using a reconstructed metabolic model constrained by a large and consistent metabolic dataset acquired under four different N supplies. An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the tricarboxylic acid cycle, and amino acid and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, F-84914 Avignon, France
- UMR Qualisud, Avignon Université, F-84916 Avignon, France
| | | | | | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, F-33883 Villenave d’Ornon, France
| |
Collapse
|
10
|
Wang M, Xiang L, Tang W, Chen X, Li C, Yin C, Mao Z. Apple-arbuscular mycorrhizal symbiosis confers resistance to Fusarium solani by inducing defense response and elevating nitrogen absorption. PHYSIOLOGIA PLANTARUM 2024; 176:e14355. [PMID: 38783519 DOI: 10.1111/ppl.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Fusarium solani exerts detrimental effects on plant growth, which is one of the reasons for the incidence of apple replant disease. Arbuscular mycorrhizal fungi (AMF) enhance plant resistance to Fusarium wilt; however, the mechanism remains poorly understood. Therefore, the present study investigated the symbiosis between apple and AMF and explored the physiology, especially nitrate metabolism, antioxidant defense, and photosynthetic performance, when infected by F. solani. The experiment was carried out with four treatments, namely -AMF - F. solani, -AMF + F. solani, -AMF + F. solani, and + AMF + F. solani. In this study, the -AMF + F. solani treatment increased the activity of enzymes associated with nitrogen metabolism, such as the nitrate and nitrite reductases, in the apple root system. The +AMF + F. solani treatment showed higher antioxidant enzyme activities than the -AMF + F. solani by F. solani infection. The apple seedlings of the +AMF + F. solani treatment decreased reactive oxygen accumulation and reduced the oxidative damages triggered by F. solani infection. The improvement in antioxidant capacity due to the +AMF + F. solani treatment was closely associated with the upregulation of genes related to the antioxidant system. The F. solani infection greatly damaged the photosynthetic process, while the +AMF + F. solani treatment significantly improved it compared to the -AMF + F. solani treatment. In conclusion, the study demonstrated that the apple-AMF symbiosis plays an active role in regulating the resistance against F. solani infection by enhancing defense response and nitrogen metabolism.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
- Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
| | - Li Xiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Weixiao Tang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chuanrong Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
- Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
| | - Chengmiao Yin
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
11
|
Stałanowska K, Szablińska-Piernik J, Pszczółkowska A, Railean V, Wasicki M, Pomastowski P, Lahuta LB, Okorski A. Antifungal Properties of Bio-AgNPs against D. pinodes and F. avenaceum Infection of Pea ( Pisum sativum L.) Seedlings. Int J Mol Sci 2024; 25:4525. [PMID: 38674112 PMCID: PMC11050071 DOI: 10.3390/ijms25084525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Ascochyta blight and Fusarium root rot are the most serious fungal diseases of pea, caused by D. pinodes and F. avenaceum, respectively. Due to the lack of fully resistant cultivars, we proposed the use of biologically synthesized silver nanoparticles (bio-AgNPs) as a novel protecting agent. In this study, we evaluated the antifungal properties and effectiveness of bio-AgNPs, in in vitro (poisoned food technique; resazurin assay) and in vivo (seedlings infection) experiments, against D. pinodes and F. avenaceum. Moreover, the effects of diseases on changes in the seedlings' metabolic profiles were analyzed. The MIC for spores of both fungi was 125 mg/L, and bio-AgNPs at 200 mg/L most effectively inhibited the mycelium growth of D. pinodes and F. avenaceum (by 45 and 26%, respectively, measured on the 14th day of incubation). The treatment of seedlings with bio-AgNPs or fungicides before inoculation prevented the development of infection. Bio-AgNPs at concentrations of 200 mg/L for D. pinodes and 100 mg/L for F. avenaceum effectively inhibited infections' spread. The comparison of changes in polar metabolites' profiles revealed disturbances in carbon and nitrogen metabolism in pea seedlings by both pathogenic fungi. The involvement of bio-AgNPs in the mobilization of plant metabolism in response to fungal infection is also discussed.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Joanna Szablińska-Piernik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-719 Olsztyn, Poland;
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Miłosz Wasicki
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| |
Collapse
|
12
|
Liu M, Wang H, Lin Z, Ke J, Zhang P, Zhang F, Ru D, Zhang L, Xiao Y, Liu X. Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: a meta-analysis and experimental study. THE NEW PHYTOLOGIST 2024; 241:1308-1320. [PMID: 37964601 DOI: 10.1111/nph.19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Microbial mutualists can profoundly modify host species ecology and evolution, by extension altering interactions with other microbial species, including pathogens. Arbuscular mycorrhizal fungi (AMF) may moderate infections by pathogens, but the direction and strength of these effects can be idiosyncratic. To assess how the introduction of AMF impacts the incidence and severity of aboveground plant diseases (i.e. 'disease impact'), we conducted a meta-analysis of 130 comparisons derived from 69 published studies. To elucidate the potential mechanisms underlying the influence of AMF on pathogens, we conducted three glasshouse experiments involving six non-woody plant species, yielded crucial data on leaf nutrient composition, plant defense compounds, and transcriptomes. Our meta-analysis revealed that the inoculation of AMF lead to a reduction in disease impact. More precisely, AMF inoculation was associated with a decrease in necrotrophic diseases, while no significant impact on biotrophic diseases. Chemical and transcriptome analyses suggested that these effects may be driven by AMF regulation of jasmonic acid and salicylic acid signaling pathways in glasshouse experiments. However, changes in plant nutritional status and secondary chemicals may also regulate disease impact. These results emphasize the importance of incorporating pathogen life history when predicting how microbial mutualisms affect disease impact.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongqian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Feng S, Jiang X, Huang Z, Li F, Wang R, Yuan X, Sun Z, Tan H, Zhong L, Li S, Cheng Y, Bao M, Qiao H, Song Q, Wang J, Zhang F. DNA methylation remodeled amino acids biosynthesis regulates flower senescence in carnation (Dianthus caryophyllus). THE NEW PHYTOLOGIST 2024; 241:1605-1620. [PMID: 38179647 DOI: 10.1111/nph.19499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.
Collapse
Affiliation(s)
- Shan Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiheng Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Li
- Yunnan Seed Laboratory, Kunming, 650200, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, 650200, China
| | - Ruiming Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualiang Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenchong Li
- Yunnan Seed Laboratory, Kunming, 650200, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, 650200, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jihua Wang
- Yunnan Seed Laboratory, Kunming, 650200, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, 650200, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Yunnan Seed Laboratory, Kunming, 650200, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
15
|
Li D, Wu X, Huang C, Lin Q, Wang Y, Yang X, Wang C, Xuan Y, Wei S, Mei Q. Enhanced Rice Resistance to Sheath Blight through Nitrate Transporter 1.1B Mutation without Yield Loss under NH 4+ Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19958-19969. [PMID: 38085756 DOI: 10.1021/acs.jafc.3c05350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nitrogen fertilization can promote rice yield but decrease resistance to sheath blight (ShB). In this study, the nitrate transporter 1.1b (nrt1.1b) mutant that exhibited less susceptibility to ShB but without compromising yield under NH4+ fertilization was screened. NRT1.1B's regulation of ShB resistance was independent of the total nitrogen concentration in rice under NH4+ conditions. In nrt1.1b mutant plants, the NH4+ application modulated auxin signaling, chlorophyll content, and phosphate signaling to promote ShB resistance. Furthermore, the findings indicated that NRT1.1B negatively regulated ShB resistance by positively modulating the expression of H+-ATPase gene OSA3 and phosphate transport gene PT8. The mutation of OSA3 and PT8 promoted ShB resistance by increasing the apoplastic pH in rice. Our study identified the ShB resistance mutant nrt1.1b, which maintained normal nitrogen use efficiency without compromising yield.
Collapse
Affiliation(s)
- Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Xianxin Wu
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, People's Republic of China
| | - Chunyan Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Qiujun Lin
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, People's Republic of China
| | - Yan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Xu Yang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| |
Collapse
|
16
|
Ueda Y, Yanagisawa S. Transcription factor module NLP-NIGT1 fine-tunes NITRATE TRANSPORTER2.1 expression. PLANT PHYSIOLOGY 2023; 193:2865-2879. [PMID: 37595050 PMCID: PMC10663117 DOI: 10.1093/plphys/kiad458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) high-affinity NITRATE TRANSPORTER2.1 (NRT2.1) plays a dominant role in the uptake of nitrate, the most important nitrogen (N) source for most terrestrial plants. The nitrate-inducible expression of NRT2.1 is regulated by NIN-LIKE PROTEIN (NLP) family transcriptional activators and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) family transcriptional repressors. Phosphorus (P) availability also affects the expression of NRT2.1 because the PHOSPHATE STARVATION RESPONSE1 transcriptional activator activates NIGT1 genes in P-deficient environments. Here, we show a biology-based mathematical understanding of the complex regulation of NRT2.1 expression by multiple transcription factors using 2 different approaches: a microplate-based assay for the real-time measurement of temporal changes in NRT2.1 promoter activity under different nutritional conditions, and an ordinary differential equation (ODE)-based mathematical modeling of the NLP- and NIGT1-regulated expression patterns of NRT2.1. Both approaches consistently reveal that NIGT1 stabilizes the amplitude of NRT2.1 expression under a wide range of nitrate concentrations. Furthermore, the ODE model suggests that parameters such as the synthesis rate of NIGT1 mRNA and NIGT1 proteins and the affinity of NIGT1 proteins for the NRT2.1 promoter substantially influence the temporal expression patterns of NRT2.1 in response to nitrate. These results suggest that the NLP-NIGT1 feedforward loop allows a precise control of nitrate uptake. Hence, this study paves the way for understanding the complex regulation of nutrient acquisition in plants, thus facilitating engineered nutrient uptake and plant response patterns using synthetic biology approaches.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki 305-8686, Japan
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Moola N, Jardine A, Audenaert K, Rafudeen MS. 6-deoxy-6-amino chitosan: a preventative treatment in the tomato/ Botrytis cinerea pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1282050. [PMID: 37881612 PMCID: PMC10595175 DOI: 10.3389/fpls.2023.1282050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
6-deoxy-6-amino chitosan (aminochitosan) is a water-soluble chitosan derivative with an additional amine group at the C-6 position. This modification has improved aqueous solubility, in vitro antifungal activity and is hypothesized to have enhanced in vivo antifungal activity compared to native chitosan. Gray mold disease in tomatoes is caused by the fungus, Botrytis cinerea, and poses a severe threat both pre- and post-harvest. To investigate the optimal concentration of aminochitosan and its lower molecular weight fractions for antifungal and priming properties in the tomato/B. cinerea pathosystem, different concentrations of aminochitosan were tested in vitro on B. cinerea growth and sporulation and in vivo as a foliar pre-treatment in tomato leaves. The leaves were monitored for photosynthetic changes using multispectral imaging and hydrogen peroxide accumulation using DAB. Despite batch-to-batch variations in aminochitosan, it displayed significantly greater inhibition of B. cinerea in vitro than native chitosan at a minimum concentration of 1 mg/mL. A concentration-dependent increase in the in vitro antifungal activities was observed for radial growth, sporulation, and germination with maximum in vitro inhibition for all the biopolymer batches and lower MW fractions at 2.5 and 5 mg/mL, respectively. However, the inhibition threshold for aminochitosan was identified as 1 mg/mL for spores germinating in vivo, compared to the 2.5 mg/mL threshold in vitro. The pre-treatment of leaves displayed efficacy in priming direct and systemic resistance to B. cinerea infection at 4, 6 and 30 days post-inoculation by maintaining elevated Fv/Fm activity and chlorophyll content due to a stronger and more rapid elicitation of the defense systems at earlier time points. Moreover, these defense systems appear to be ROS-independent at higher concentrations (1 and 2.5 mg/mL). In addition, aminochitosan accumulates in the cell membrane and therefore acts to increase the membrane permeability of cells after foliar spray. These observations corroborate the notion that aminochitosan biopolymers can exert their effects through both direct mechanisms of action and indirect immunostimulatory mechanisms. The contrast between in vitro and in vivo efficacy highlights the bimodal mechanisms of action of aminochitosan and the advantageous role of primed plant defense systems.
Collapse
Affiliation(s)
- Naadirah Moola
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Anwar Jardine
- Department of Chemistry, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mohamed Suhail Rafudeen
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Wang Y, Wu W, Zhang L, Jiang H, Mei L. Variations in amino acids caused by drought stress mediate the predisposition of Carya cathayensis to Botryosphaeria canker disease. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4628-4641. [PMID: 37129574 DOI: 10.1093/jxb/erad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Abiotic stresses can affect the outcome of plant-pathogen interactions, mostly by predisposing the host plant to infection; however, the crosstalk between pathogens and plants related to such predisposition remains unclear. Here, we investigated the predisposition of Carya cathayensis to infection by the fungal pathogen Botryosphaeria dothidea (Bd) caused by drought in the host plant. High levels of drought stress resulted in a significant increase in plant susceptibility to Bd. Drought significantly induced the accumulation of H2O2 and the free amino acids Pro, Leu, and Ile, and in the phloem tissues of plants, and decreased the content of non-structural carbohydrates. In vitro assays showed that Bd was sensitive to H2O2; however, Pro played a protective role against exogenous H2O2. Leu, Ile, and Pro induced asexual reproduction of Bd. Our results provide the first analysis of how drought predisposes C. cathayensis to Botrysphaeria canker via amino acid accumulation in the host plant, and we propose a model that integrates the plant-pathogen interactions involved.
Collapse
Affiliation(s)
- Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenbin Wu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Li Mei
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
19
|
Hubbard M, Thomson M, Menun A, May WE, Peng G, Bainard LD. Effects of nitrogen fertilization and a commercial arbuscular mycorrhizal fungal inoculant on root rot and agronomic production of pea and lentil crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1120435. [PMID: 37575917 PMCID: PMC10420092 DOI: 10.3389/fpls.2023.1120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
In the Canadian prairies, pulse crops such as field pea (Pisum sativum L.) and lentil (Lens culinaris L.) are economically important and widely grown. However, in recent years, root rot, caused by a variety of fungal and oomycete pathogens, including Aphanomyces euteiches, has become a limiting factor on yield. In this study, we examined the impacts of nitrogen (N) fertilization and a commercial arbuscular mycorrhizal fungal (AMF) inoculant on pea and lentil plant health and agronomic production at three locations in Saskatchewan: Swift Current, Indian Head and Melfort. The AMF inoculation had no impact on root rot severity, and therefore is not considered a reliable method to manage root rot in pea and lentil. In contrast, N fertilization led to reductions in root rot in Swift Current, but not the other two sites. However, N fertilization did reduce nodulation. When both pea and lentil are considered, the abundance of A. euteiches in soil increased from pre-seeding to mid-bloom. A negative correlation between soil pH and disease severity was also observed. The high between-site variability highlights the importance of testing root rot mitigation strategies under multiple soil conditions to develop site-specific recommendations. Use of N fertilizer as a root rot management strategy merits further exploration, including investigation into its interactions with other management strategies, soil properties, and costs and benefits.
Collapse
Affiliation(s)
- Michelle Hubbard
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Madeleine Thomson
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Alexander Menun
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - William E. May
- Indian Head Research Farm, Agriculture and Agri-Food Canada, Indian Head, SK, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Luke D. Bainard
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
- Agassiz Research and Development Center, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| |
Collapse
|
20
|
Guo H, Xu C, Wang F, Jiang L, Lei X, Zhang M, Li R, Lan X, Xia Z, Wang Z, Wu Y. Transcriptome sequencing and functional verification revealed the roles of exogenous magnesium in tobacco anti-PVY infection. Front Microbiol 2023; 14:1232279. [PMID: 37577430 PMCID: PMC10414187 DOI: 10.3389/fmicb.2023.1232279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Potato virus Y (PVY) infection causes necrosis and curling of leaves, which seriously affect the yield and quality of Solanaceous crops. The roles of nutrient elements in the regulation of plant resistance to virus infection has been widely reported, while the mechanisms are poorly studied. Previous studies in our laboratory have demonstrated that foliar spraying of MgSO4 could induce Nicotiana tabacum resistance to PVY by increasing the activity of defense-related enzymes. Consistent with the results, we found that exogenous magnesium (Mg) had a certain effect on N. tabacum anti-PVY infection. Meanwhile, Illumina RNA sequencing revealed that Mg induced resistance to PVY infection was mainly by regulating carbohydrate metabolism and transportation, nitrogen metabolism, Ca2+ signal transduction and oxidative phosphorylation. Moreover, we used virus-induced gene silencing assays to verify the function of homologs of five N. tabacum genes involved in above pathways in N. benthamiana. The results showed that NbTPS and NbGBE were conducive to PVY infection, while NbPPases and NbNR were related to resistance to PVY infection. These results suggested a novel strategy for resistance to PVY infection and provided a theoretical basis for virus-resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Fei Wang
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Lianqiang Jiang
- Liangshan Branch of Sichuan Province Tobacco Company, Xichang, China
| | - Xiao Lei
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Mingjin Zhang
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Rui Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyu Lan
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
22
|
He C, Jia Z, Fan P, Ruan Y, Liang Y, Ma J, Li J. 15N tracing reveals preference for different nitrogen forms of Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol 2023; 14:1102720. [PMID: 36819036 PMCID: PMC9936223 DOI: 10.3389/fmicb.2023.1102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Plant uptake of nitrogen is often associated with increased incidence of banana Fusarium wilt, a disease caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). However, the nitrogen metabolic preferences of Foc TR4 pathogens remain unknown. In this study, we investigated the ecophysiological patterns of Foc TR4 grown on different combinations of organic and inorganic nitrogen. Potato Dextrose Agar (PDA) and Rose Bengal Medium (RBM) were used as an organic nitrogen source, which was sequentially replaced with inorganic N (0, 50% or 90%) in the form 15NH4NO3 or NH4 15NO3 to reveal preferential assimilation of ammonium or nitrate. The results showed that mycelium biomass and nitrogen content decreased significantly, while the carbon content and C:N ratio increased in Foc TR4 grown on media containing inorganic nitrogen sources. Mycelium biomass was negatively correlated with C:N ratio. Mycelium 15N abundance increased significantly between the PDA50 + A50/RBM50 + A50 treatments (50% organic nitrogen+50%15NH4NO3) and the PDA10 + A90/RBM10 + A90 treatments (10% organic nitrogen+90%15NH4NO3). These results indicate that the higher C:N ratio reduced mycelium growth by reducing its biomass and diameter and showed that Foc TR4 preferred to use ammonium nitrogen to promote the growth. These findings suggest that treating banana crops with a combination of organic and inorganic (i.e., nitrate) nitrogen could be a better way to defend against Fusarium wilt of banana.
Collapse
Affiliation(s)
- Chen He
- College of Tropical Crops, Hainan University, Haikou, China,State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China,*Correspondence: Zhongjun Jia, ✉ ; ✉
| | - Pingshan Fan
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yunze Ruan
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ye Liang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jingjing Ma
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jinku Li
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
23
|
Lacrampe N, Colombié S, Dumont D, Nicot P, Lecompte F, Lugan R. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems. PLANTA 2023; 257:41. [PMID: 36680621 PMCID: PMC9867679 DOI: 10.1007/s00425-022-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Severe N stress allows an accumulation of C-based compounds but impedes that of N-based compounds required to lower the susceptibility of tomato stem to Botrytis cinerea. Botrytis cinerea, a necrotrophic filamentous fungus, forms potentially lethal lesions on the stems of infected plants. Contrasted levels of susceptibility to B. cinerea were obtained in a tomato cultivar grown on a range of nitrate concentration: low N supply resulted in high susceptibility while high N supply conferred a strong resistance. Metabolic deviations and physiological traits resulting from both infection and nitrogen limitation were investigated in the symptomless stem tissue surrounding the necrotic lesion. Prior to infection, nitrogen-deficient plants showed reduced levels of nitrogen-based compounds such as amino acids, proteins, and glutathione and elevated levels of carbon-based and defence compounds such as α-tomatine and chlorogenic acid. After B. cinerea inoculation, all plants displayed a few common responses, mainly alanine accumulation and galactinol depletion. The metabolome of resistant plants grown under high N supply showed no significant change after inoculation. On the contrary, the metabolome of susceptible plants grown under low N supply showed massive metabolic adjustments, including changes in central metabolism around glutamate and respiratory pathways, suggesting active resource mobilization and production of energy and reducing power. Redox and defence metabolisms were also stimulated by the infection in plants grown under low N supply; glutathione and chlorogenic acid accumulated, as well as metabolites with more controversial defensive roles, such as polyamines, GABA, branched-chain amino acids and phytosterols. Taken together, the results showed that nitrogen deficiency, although leading to an increase in secondary metabolites even before the pathogen attack, must have compromised the constitutive levels of defence proteins and delayed or attenuated the induced responses. The involvement of galactinol, alanine, cycloartenol and citramalate in the tomato stem response to B. cinerea is reported here for the first time.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH Unit, INRAE, 84914 Avignon, France
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, 33883 Villenave d’Ornon, France
| | | | | | | | - Raphaël Lugan
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| |
Collapse
|
24
|
Marcianò D, Ricciardi V, Maddalena G, Massafra A, Marone Fassolo E, Masiero S, Bianco PA, Failla O, De Lorenzis G, Toffolatti SL. Influence of Nitrogen on Grapevine Susceptibility to Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2023; 12:263. [PMID: 36678977 PMCID: PMC9867458 DOI: 10.3390/plants12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Downy mildew, caused by the obligate parasite Plasmopara viticola, is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction. A previous RNAseq study showed that several genes of N metabolism are differentially regulated in grapevine upon P. viticola inoculation, and could be involved in susceptibility or resistance to the pathogen. The aim of this study was to evaluate if N fertilization influences: (i) the foliar leaf content and photosynthetic activity of the plant, (ii) P. viticola infectivity, and (iii) the expression of the candidate susceptibility/resistance genes. Results showed that N level positively correlated with P. viticola infectivity, confirming that particular attention should be taken in vineyard to the fertilization, but did not influence the expression of the candidate genes. Therefore, these genes are manipulated by the pathogen and can be exploited for developing new, environmentally friendly disease management tools, such as dsRNAs, to silence the susceptibility genes or breeding for resistance.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | | | - Simona Masiero
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
25
|
Gagliardi S, Avelino J, Martin AR, Cadotte M, Virginio Filho EDM, Isaac ME. Leaf functional traits and pathogens: Linking coffee leaf rust with intraspecific trait variation in diversified agroecosystems. PLoS One 2023; 18:e0284203. [PMID: 37053244 PMCID: PMC10101423 DOI: 10.1371/journal.pone.0284203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Research has demonstrated that intraspecific functional trait variation underpins plant responses to environmental variability. However, few studies have evaluated how trait variation shifts in response to plant pathogens, even though pathogens are a major driver of plant demography and diversity, and despite evidence of plants expressing distinct strategies in response to pathogen pressures. Understanding trait-pathogen relationships can provide a more realistic understanding of global patterns of functional trait variation. We examined leaf intraspecific trait variability (ITV) in response to foliar disease severity, using Coffea arabica cv. Caturra as a model species. We quantified coffee leaf rust (CLR) severity-a fungal disease prominent in coffee systems-and measured key coffee leaf functional traits under contrasting, but widespread, management conditions in an agroforestry system. We found that coffee plants express significant ITV, which is largely related to shade tree treatment and leaf position within coffee canopy strata. Yet within a single plant canopy stratum, CLR severity increased with increasing resource conserving trait values. However, coffee leaves with visible signs of disease expressed overall greater resource acquiring trait values, as compared to plants without visible signs of disease. We provide among the first evidence that leaf traits are correlated with foliar disease severity in coffee, and that functional trait relationships and syndromes shift in response to increased disease prevalence in this plant-pathogen system. In doing so, we address a vital gap in our understanding of global patterns of functional trait variation and highlight the need to further explore the potential role of pathogens within established global trait relationships and spectra.
Collapse
Affiliation(s)
- Stephanie Gagliardi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jacques Avelino
- CIRAD, UMR PHIM, Montpellier, France
- Institute Agro, PHIM, University Montpellier, CIRAD, INRAE, IRD, Montpellier, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Marc Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Does Potassium (K +) Contribute to High-Nitrate (NO 3-) Weakening of a Plant's Defense System against Necrotrophic Fungi? Int J Mol Sci 2022; 23:ijms232415631. [PMID: 36555267 PMCID: PMC9778958 DOI: 10.3390/ijms232415631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In this opinion article, we have analyzed the relevancy of a hypothesis which is based on the idea that in Arabidopsis thaliana jasmonic acid, a (JA)-mediated defense system against necrotrophic fungi is weakened when NO3- supply is high. Such a hypothesis is based on the fact that when NO3- supply is high, it induces an increase in the amount of bioactive ABA which induces the sequestration of the phosphatase ABI2 (PP2C) into the PYR/PYL/RCAR receptor. Consequently, the Ca sensors CBL1/9-CIPK23 are not dephosphorylated by ABI2, thus remaining able to phosphorylate targets such as AtNPF6.3 and AtKAT1, which are NO3- and K+ transporters, respectively. Therefore, the impact of phosphorylation on the regulation of these two transporters, could (1) reduce NO3- influx as in its phosphorylated state AtNPF6.3 shifts to low capacity state and (2) increase K+ influx, as in its phosphorylated state KAT1 becomes more active. It is also well known that in roots, K+ loading in the xylem and its transport to the shoot is activated in the presence of NO3-. As such, the enrichment of plant tissues in K+ can impair a jasmonic acid (JA) regulatory pathway and the induction of the corresponding biomarkers. The latter are known to be up-regulated under K+ deficiency and inhibited when K+ is resupplied. We therefore suggest that increased K+ uptake and tissue content induced by high NO3- supply modifies the JA regulatory pathway, resulting in a weakened JA-mediated plant's defense system against necrotrophic fungi.
Collapse
|
27
|
Nykiel M, Gietler M, Fidler J, Graska J, Rybarczyk-Płońska A, Prabucka B, Muszyńska E, Bocianowski J, Labudda M. Differential Water Deficit in Leaves Is a Principal Factor Modifying Barley Response to Drought Stress. Int J Mol Sci 2022; 23:ijms232315240. [PMID: 36499563 PMCID: PMC9739961 DOI: 10.3390/ijms232315240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59-32575
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
28
|
Frontini M, Morel JB, Gravot A, Lafarge T, Ballini E. Increased Rice Susceptibility to Rice Blast Is Related to Post-Flowering Nitrogen Assimilation Efficiency. J Fungi (Basel) 2022; 8:1217. [PMID: 36422038 PMCID: PMC9694259 DOI: 10.3390/jof8111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Reducing nitrogen leaching and nitrous oxide emissions with the goal of more sustainability in agriculture implies better identification and characterization of the different patterns in nitrogen use efficiency by crops. However, a change in the ability of varieties to use nitrogen resources could also change the access to nutrient resources for a foliar pathogen such as rice blast and lead to an increase in the susceptibility of these varieties. This study focuses on the pre- and post-floral biomass accumulation and nitrogen uptake and utilization of ten temperate japonica rice genotypes grown in controlled conditions, and the relationship of these traits with molecular markers and susceptibility to rice blast disease. After flowering, the ten varieties displayed diversity in nitrogen uptake and remobilization. Surprisingly, post-floral nitrogen uptake was correlated with higher susceptibility to rice blast, particularly in plants fertilized with nitrogen. This increase in susceptibility is associated with a particular metabolite profile in the upper leavers of these varieties.
Collapse
Affiliation(s)
- Mathias Frontini
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Jean-Benoit Morel
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, University Rennes, 35000 Rennes, France
| | - Tanguy Lafarge
- AGAP, INRAE, CIRAD, Institut Agro, University Montpellier, 34090 Montpellier, France
| | - Elsa Ballini
- PHIM, INRAE, CIRAD, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
29
|
He L, Wang H, Sui Y, Miao Y, Jin C, Luo J. Genome-wide association studies of five free amino acid levels in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1048860. [PMID: 36420042 PMCID: PMC9676653 DOI: 10.3389/fpls.2022.1048860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.) is one of the important staple foods for human consumption and livestock use. As a complex quality trait, free amino acid (FAA) content in rice is of nutritional importance. To dissect the genetic mechanism of FAA level, five amino acids' (Val, Leu, Ile, Arg, and Trp) content and 4,325,832 high-quality SNPs of 448 rice accessions were used to conduct genome-wide association studies (GWAS) with nine different methods. Of these methods, one single-locus method (GEMMA), seven multi-locus methods (mrMLM, pLARmEB, FASTmrEMMA, pKWmEB, FASTmrMLM, ISIS EM-BLASSO, and FarmCPU), and the recent released 3VmrMLM were adopted for methodological comparison of quantitative trait nucleotide (QTN) detection and identification of stable quantitative trait nucleotide loci (QTLs). As a result, 987 QTNs were identified by eight multi-locus GWAS methods; FASTmrEMMA detected the most QTNs (245), followed by 3VmrMLM (160), and GEMMA detected the least QTNs (0). Among 88 stable QTLs identified by the above methods, 3VmrMLM has some advantages, such as the most common QTNs, the highest LOD score, and the highest proportion of all detected stable QTLs. Around these stable QTLs, candidate genes were found in the GO classification to be involved in the primary metabolic process, biosynthetic process, and catalytic activity, and shown in KEGG analysis to have participated in metabolic pathways, biosynthesis of amino acids, and tryptophan metabolism. Natural variations of candidate genes resulting in the content alteration of five FAAs were identified in this association panel. In addition, 95 QTN-by-environment interactions (QEIs) of five FAA levels were detected by 3VmrMLM only. GO classification showed that the candidate genes got involved in the primary metabolic process, transport, and catalytic activity. Candidate genes of QEIs played important roles in valine, leucine, and isoleucine degradation (QEI_09_03978551 and candidate gene LOC_Os09g07830 in the Leu dataset), tryptophan metabolism (QEI_01_00617184 and candidate gene LOC_Os01g02020 in the Trp dataset), and glutathione metabolism (QEI_12_09153839 and candidate gene LOC_Os12g16200 in the Arg dataset) pathways through KEGG analysis. As an alternative of the multi-locus GWAS method, these findings suggested that the application of 3VmrMLM may provide new insights into better understanding FAA accumulation and facilitate the molecular breeding of rice with high FAA level.
Collapse
Affiliation(s)
- Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Huixian Wang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yao Sui
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yuanyuan Miao
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
30
|
Yang Z, Chen Y, Wang Y, Xia H, Zheng S, Xie S, Cao Y, Liu J, Sehar S, Lin Y, Guo Y, Shamsi IH. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:1003534. [PMID: 36212279 PMCID: PMC9538177 DOI: 10.3389/fpls.2022.1003534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Nutritional correlations between plants and pathogens can crucially affect disease severity. As an essential macronutrient, the availability of nitrogen (N) and the types of N content play a fundamental part not only in energy metabolism and protein synthesis but also in pathogenesis. However, a direct connection has not yet been established between differences in the level of resistance and N metabolism. Pertinently, former studies hold ammonia (NH3) accountable for the development of diseases in tobacco (Nicotiana tabacum L.) and in some post-harvest fruits. With a purpose of pinpointing the function of NH3 volatilization on Alternaria alternata (Fries) Keissl pathogenesis and its correlation with both N metabolism and resistance differences to Alternaria alternata infection in tobacco, leaf tissue of two tobacco cultivars with susceptibility (Changbohuang; CBH), or resistance (Jingyehuang; JYH) were analyzed apropos of ammonia compensation point, apoplastic NH4 + concentration, pH value as well as activities of key enzymes and N status. At the leaf age of 40 to 60 d, the susceptible cultivar had a significantly higher foliar apoplastic ammonium (NH4 +) concentration, pH value and NH3 volatilization potential compared to the resistant one accompanied by a significant reduction in glutamine synthetase (GS), which in particular was a primary factor causing the NH3 volatilization. The NH4 + concentration in CBH was 1.44 times higher than that in JYH, and CBH had NH3 compensation points that were 7.09, 6.15 and 4.35-fold higher than those of JYH at 40, 50 and 60 d, respectively. Moreover, the glutamate dehydrogenase (GDH) activity had an upward tendency related to an increased NH4 + accumulation in both leaf tissues and apoplast but not with the NH3 compensation point. Collectively, our results strongly suggest that the accumulation of NH3 volatilization, rather than NH4 + and total N, was the primary factor inducing the Alternaria alternata infection in tobacco. Meanwhile, the susceptible cultivar was characterized by a higher N re-transfer ability of NH3 volatilization, in contrast to the disease-resistant cultivar, and had a stronger capability of N assimilation and reutilization. This study provides a deeper understanding of the pathogenicity mechanism induced by Alternaria alternata, which is useful for breeding Alternaria alternata-resistant varieties of tobacco, at the same time, our research is also conducive to control tobacco brown spot caused by Alternaria alternata in the field.
Collapse
Affiliation(s)
- Zhixiao Yang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Chen
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Haiqian Xia
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Shaoqing Zheng
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Shengdong Xie
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yingchao Lin
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Maywald NJ, Mang M, Pahls N, Neumann G, Ludewig U, Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:946584. [PMID: 36160997 PMCID: PMC9500508 DOI: 10.3389/fpls.2022.946584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil-plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host-pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.
Collapse
|
32
|
Li C, Lai X, Luo K, Zheng Y, Liu K, Wan X. Integrated metabolomic and transcriptomic analyses of two peanut (Arachis hypogaea L.) cultivars differing in amino acid metabolism of the seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:132-143. [PMID: 35688083 DOI: 10.1016/j.plaphy.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 05/02/2023]
Abstract
Peanut is an important economic crop worldwide. The content of amino acids, especially essential amino acids, is an important nutritional quality trait of peanut seeds. However, the regulation of amino acid metabolism in peanut seeds is poorly understood. Here, two peanut cultivars, Zhonghuahei 1 and Zhongkaihua 151, with high and low free amino acids in mature seeds, respectively, were selected to investigate the regulatory mechanisms of amino acids during seed development. Zhonghuahei 1 is composed of significantly higher arginine (Arg), asparagine (Asn), and glutamate (Glu) contents than Zhongkaihua 151. However, the metabolomic analyses indicated that the contents of most amino acids were significantly lower in Zhonghuahei 1 at the early developmental stage, while they were reverse at the middle and late stages. Transcriptomic analyses also revealed that the differentially expressed genes between the two cultivars during different stages were enriched in multiple pathways associated with amino acid metabolism. Among them, the Arg biosynthesis pathway showed different regulatory profiles between the two cultivars according to the temporal analysis of gene expression patterns. Subsequent gene co-expression network analysis showed that the gene module darkorange was significantly correlated with Arg content, with an enriched Arg biosynthesis pathway. Accordingly, a gene regulatory network for Arg biosynthesis and metabolism, including key genes (ALDH, ASS1, OTC, and GAD) and transcription factors (GATA, HEX, and ATF), was constructed. These findings provide insights into the regulatory network of amino acid metabolism in peanuts and provide candidate genes that can be applied to facilitate peanut breeding with desirable seeds.
Collapse
Affiliation(s)
- Chunmei Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Kaiqing Luo
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Kai Liu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
33
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
34
|
Chardon F, De Marco F, Marmagne A, Le Hir R, Vilaine F, Bellini C, Dinant S. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153707. [PMID: 35550522 DOI: 10.1016/j.jplph.2022.153707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.
Collapse
Affiliation(s)
- Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Federica De Marco
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Vilaine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Catherine Bellini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France; Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
35
|
Alors D, Amses KR, James TY, Boussiba S, Zarka A. Paraphysoderma sedebokerense GlnS III Is Essential for the Infection of Its Host Haematococcus lacustris. J Fungi (Basel) 2022; 8:561. [PMID: 35736044 PMCID: PMC9224648 DOI: 10.3390/jof8060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Glutamine synthetase (GlnS) is a key enzyme in nitrogen metabolism. We investigated the effect of the GlnS inhibitor glufosinate on the infection of H. lacustris by the blastocladialean fungus P. sedebokerense, assuming that interfering with the host nitrogen metabolism will affect the success of the parasite. Complete inhibition of infection, which could be bypassed by the GlnS product glutamine, was observed at millimolar concentrations of glufosinate. However, this effect of glufosinate was attributed to its direct interaction with the blastoclad and not the host, which results in development and growth inhibition of the blastoclad. In our P. sedebokerense draft genome, we found that the sequence of GlnS is related to another fungal GlnS, type III, found in many poor known phyla of fungi, including Blastocladiomycota and Chytridiomycota, and absent in the main subkingdom of fungi, the Dikarya. We further tested the ability of the blastoclad to utilize nitrate and ammonia as inorganic nitrogen sources and glutamine for growth. We found that P. sedebokerense equally use ammonia and glutamine and use also nitrate, but with less efficiency. Altogether, our results show that GlnS type III is mandatory for the development and growth of P. sedebokerense and could be an efficient target to develop strategies for the control of the fungal parasite of H. lacustris.
Collapse
Affiliation(s)
- David Alors
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
- Departamento de Biología y Químicas, Facultad de Recursos Naturales, Campus San Juan Pablo II, Universidad Católica de Temuco, Temuco 478 0694, Chile
| | - Kevin R. Amses
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.R.A.); (T.Y.J.)
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.R.A.); (T.Y.J.)
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
36
|
Abstract
Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice. The use of elicitors in viticulture to control disease and improve phenolic compounds is widely recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma compounds. Grape and wine aroma compounds are an important quality factor that reflects nutritional information and influences consumer preference. However, the effects of elicitors on aroma compounds are diverse, as different grape varieties respond differently to treatments. Among the numerous commercialized elicitors, some have proven very effective in improving the quality of grapes and the resulting wines. This review summarizes some of the elicitors commonly used in grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile compounds. The work is intended to serve as a reference for growers for the sustainable development of high-quality grapes.
Collapse
|
37
|
Du S, Trivedi P, Wei Z, Feng J, Hu HW, Bi L, Huang Q, Liu YR. The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. mSystems 2022; 7:e0133721. [PMID: 35311561 PMCID: PMC9040864 DOI: 10.1128/msystems.01337-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Soil-borne fungal phytopathogens are important threats to soil and crop health. However, their community composition and environmental determinants remain unclear. Here, we explored the effects of agricultural fertilization regime (i.e., organic material application) on soil fungal phytopathogens, using data sets from a combination of field survey and long-term experiment. We found that soil organic carbon was the key factor that affected the diversity and relative abundance of fungal phytopathogens in agricultural soils. The dominant genera of phytopathogens including Monographella was also strongly associated with soil organic carbon. In addition, the elevated soil organic carbon enhanced the node proportion of phytopathogens and the positive interactions within the fungal community in the network. Results of the long-term experiment revealed that applications of crop straw and fresh livestock manure significantly increased the proportion of phytopathogens, which were associated with the elevated soil organic carbon. This work offers new insights into the occurrence and environmental factors of fungal phytopathogens in agricultural soils, which are fundamental to control their impacts on the soil and crop systems. IMPORTANCE Fungal phytopathogens are important threats to soil and crop health, but their community composition and environmental determinants remain unclear. We found that soil organic carbon is the key factor of the prevalence of fungal phytopathogens through a field survey, which is also supported by our long-term (6-year) experiment showing the applications of crop straw and fresh livestock manure significantly increased the proportion of fungal phytopathogens. These findings advance our understanding of the occurrence and environmental drivers of soil-borne fungal phytopathogens under agricultural fertilization regime and have important implications for the control of soil-borne pathogens.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
39
|
Dorostkar S, Dadkhodaie A, Ebrahimie E, Heidari B, Ahmadi-Kordshooli M. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Sci Rep 2022; 12:821. [PMID: 35039525 PMCID: PMC8764039 DOI: 10.1038/s41598-021-04329-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.
Collapse
Affiliation(s)
- Saeideh Dorostkar
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
40
|
Aigu Y, Daval S, Gazengel K, Marnet N, Lariagon C, Laperche A, Legeai F, Manzanares-Dauleux MJ, Gravot A. Multi-Omic Investigation of Low-Nitrogen Conditional Resistance to Clubroot Reveals Brassica napus Genes Involved in Nitrate Assimilation. FRONTIERS IN PLANT SCIENCE 2022; 13:790563. [PMID: 35222461 PMCID: PMC8874135 DOI: 10.3389/fpls.2022.790563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 05/10/2023]
Abstract
Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.
Collapse
Affiliation(s)
- Yoann Aigu
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | | | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
- *Correspondence: Gravot Antoine,
| |
Collapse
|
41
|
Amaral J, Valledor L, Alves A, Martín-García J, Pinto G. Studying tree response to biotic stress using a multi-disciplinary approach: The pine pitch canker case study. FRONTIERS IN PLANT SCIENCE 2022; 13:916138. [PMID: 36160962 PMCID: PMC9501998 DOI: 10.3389/fpls.2022.916138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/18/2022] [Indexed: 05/09/2023]
Abstract
In an era of climate change and global trade, forests sustainability is endangered by several biotic threats. Pine pitch canker (PPC), caused by Fusarium circinatum, is one of the most important disease affecting conifers worldwide. To date, no effective control measures have been found for this disease. Earlier studies on PPC were mainly focused on the pathogen itself or on determining the levels of susceptibility of different hosts to F. circinatum infection. However, over the last years, plenty of information on the mechanisms that may explain the susceptibility or resistance to PPC has been published. This data are useful to better understand tree response to biotic stress and, most importantly, to aid the development of innovative and scientific-based disease control measures. This review gathers and discusses the main advances on PPC knowledge, especially focusing on multi-disciplinary studies investigating the response of pines with different levels of susceptibility to PPC upon infection. After an overview of the general knowledge of the disease, the importance of integrating information from physiological and Omics studies to unveil the mechanisms behind PPC susceptibility/resistance and to develop control strategies is explored. An extensive review of the main host responses to PPC was performed, including changes in water relations, signalling (ROS and hormones), primary metabolism, and defence (resin, phenolics, and PR proteins). A general picture of pine response to PPC is suggested according to the host susceptibility level and the next steps and gaps on PPC research are pointed out.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- *Correspondence: Joana Amaral,
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Glória Pinto,
| |
Collapse
|
42
|
Easterday CA, Kendig AE, Lacroix C, Seabloom EW, Borer ET. Long-term nitrogen enrichment mediates the effects of nitrogen supply and co-inoculation on a viral pathogen. Ecol Evol 2022; 12:e8450. [PMID: 35136545 PMCID: PMC8809429 DOI: 10.1002/ece3.8450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022] Open
Abstract
Host nutrient supply can mediate host-pathogen and pathogen-pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil-borne pathogens and induced plant defenses. Long-term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant-pathogen and pathogen-pathogen interactions. In a growth chamber experiment, we tested the effect of long-term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV-PAV) and Cereal Yellow Dwarf Virus (CYDV-RPV), aphid-vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long-term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock-, singly-, and co-inoculated) to evaluate the effects of long-term N enrichment on plant-pathogen and pathogen-pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV-PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co-inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV-PAV: instead of N supply reducing BYDV-PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co-inoculation on BYDV-PAV incidence. BYDV-PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long-term N soil on CYDV-RPV incidence. Soil inoculant with different levels of long-term N enrichment had different effects on host-pathogen and pathogen-pathogen interactions, suggesting that shifts in soil microbial communities with long-term N enrichment may mediate disease dynamics.
Collapse
Affiliation(s)
- Casey A. Easterday
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Present address:
Carlson School of ManagementUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Amy E. Kendig
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Christelle Lacroix
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Present address:
Pathologie VégétaleINRAEMontfavetFrance
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
43
|
Barrit T, Porcher A, Cukier C, Satour P, Guillemette T, Limami AM, Teulat B, Campion C, Planchet E. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus, Alternaria brassicicola. PHYSIOLOGIA PLANTARUM 2022; 174:e13621. [PMID: 34989007 DOI: 10.1111/ppl.13621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.
Collapse
Affiliation(s)
| | - Alexis Porcher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Pascale Satour
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Anis M Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Claire Campion
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | |
Collapse
|
44
|
Amaral J, Lamelas L, Valledor L, Castillejo MÁ, Alves A, Pinto G. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. PHYSIOLOGIA PLANTARUM 2021; 173:2142-2154. [PMID: 34537969 DOI: 10.1111/ppl.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
45
|
Kthiri Z, Jabeur MB, Harbaoui K, Karmous C, Chamekh Z, Chairi F, Serret MD, Araus JL, Hamada W. Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight. Microorganisms 2021; 9:microorganisms9122410. [PMID: 34946012 PMCID: PMC8705052 DOI: 10.3390/microorganisms9122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Durum wheat production is seriously threatened by Fusarium head blight (FHB) attacks in Tunisia, and the seed coating by bio-agents is a great alternative for chemical disease control. This study focuses on evaluating, under field conditions, the effect of seed coating with Trichoderma harzianum, Meyerozyma guilliermondii and their combination on (i) FHB severity, durum wheat grain yield and TKW in three crop seasons, and (ii) on physiological parameters and the carbon and nitrogen content and isotope composition in leaves and grains of durum wheat. The results indicated that the treatments were effective in reducing FHB severity by 30 to 70% and increasing grain yield with an increased rate ranging from 25 to 68%, compared to the inoculated control. The impact of treatments on grain yield improvement was associated with higher NDVI and chlorophyll content and lower canopy temperature. Furthermore, the treatments mitigated the FHB adverse effects on N and C metabolism by resulting in a higher δ13Cgrain (13C/12Cgrain) and δ15Ngrain (15N/14Ngrain). Overall, the combination outperformed the other seed treatments by producing the highest grain yield and TKW. The high potency of seed coating with the combination suggests that the two microorganisms have synergetic or complementary impacts on wheat.
Collapse
Affiliation(s)
- Zayneb Kthiri
- Laboratory of Genetics and Cereals Breeding, National Institute of Agronomy of Tunisia, Carthage University, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
- Correspondence: ; Tel.: +216-53-556-610
| | - Maissa Ben Jabeur
- Laboratory of Genetics and Cereals Breeding, National Institute of Agronomy of Tunisia, Carthage University, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| | - Kalthoum Harbaoui
- High School of Agriculture of Mateur, Department of Plant Sciences, Carthage University, Mateur 7030, Tunisia;
| | - Chahine Karmous
- Laboratory of Genetics and Cereals Breeding, National Institute of Agronomy of Tunisia, Carthage University, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| | - Zoubeir Chamekh
- National Institute of Agricultural Research of Tunisia, Field Crop, Carthage University, Tunis 2049, Tunisia;
| | - Fadia Chairi
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (M.D.S.); (J.L.A.)
| | - Maria Dolores Serret
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (M.D.S.); (J.L.A.)
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain
| | - Jose Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (M.D.S.); (J.L.A.)
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain
| | - Walid Hamada
- Laboratory of Genetics and Cereals Breeding, National Institute of Agronomy of Tunisia, Carthage University, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| |
Collapse
|
46
|
Zhao P, Gu S, Han C, Lu Y, Ma C, Tian J, Bi J, Deng Z, Wang Q, Xu Q. Targeted and Untargeted Metabolomics Profiling of Wheat Reveals Amino Acids Increase Resistance to Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:762605. [PMID: 34868158 PMCID: PMC8639535 DOI: 10.3389/fpls.2021.762605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB), a notorious plant disease caused by Fusarium graminearum (F. graminearum), is severely harmful to wheat production, resulting in a decline in grain quality and yield. In order to develop novel control strategies, metabolomics has been increasingly used to characterize more comprehensive profiles of the mechanisms of underlying plant-pathogen interactions. In this research, untargeted and targeted metabolomics were used to analyze the metabolite differences between two wheat varieties, the resistant genotype Sumai 3 and the susceptible genotype Shannong 20, after F. graminearum inoculation. The untargeted metabolomics results showed that differential amino acid metabolic pathways existed in Sumai 3 and Shannong 20 after F. graminearum infection. Additionally, some of the amino acid contents changed greatly in different cultivars when infected with F. graminearum. Exogenous application of amino acids and F. graminearum inoculation assay showed that proline (Pro) and alanine (Ala) increased wheat resistance to FHB, while cysteine (Cys) aggravated the susceptibility. This study provides an initial insight into the metabolite differences of two wheat cultivars under the stress of F. graminearum. Moreover, the method of optimization metabolite extraction presents an effective and feasible strategy to explore the understanding of the mechanisms involved in the FHB resistance.
Collapse
Affiliation(s)
- Peiying Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shubo Gu
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Chao Han
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yaru Lu
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Chunyang Ma
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Jichun Tian
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Jianjie Bi
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Zhiying Deng
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Qunqing Wang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
47
|
The Effects of Different Fertilization Practices in Combination with the Use of PGPR on the Sugar and Amino Acid Content of Asparagus officinalis. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined the effects of different nitrogen (NH4NO3) and potassium (KNO3) fertilization levels in combination with a nitrogen-fixing, plant growth-promoting rhizobacteria (PGPR) inoculation on the carbohydrate (CHO), amino acid content, and nutrient concentrations (N, P, K) in the spears and the root system of asparagus plants. No significant differences were indicated between the different fertilization treatments regarding N, P, and K in the leaves and roots of asparagus. The inoculation of the asparagus fields with PGPR, no matter the type of the inorganic fertilizer, resulted in increased CHO and amino acid content of the foliage and roots of asparagus. The highest CHO content and amino acid content were recorded in the treatment that combined PGPR inoculation along with KNO3 fertilizer, indicating that higher K applications acted synergistically with the added PGPR.
Collapse
|
48
|
Sampaio AM, Alves ML, Pereira P, Valiollahi E, Santos C, Šatović Z, Rubiales D, Araújo SDS, van Eeuwijk F, Vaz Patto MC. Grass pea natural variation reveals oligogenic resistance to Fusarium oxysporum f. sp. pisi. THE PLANT GENOME 2021; 14:e20154. [PMID: 34617677 DOI: 10.1002/tpg2.20154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 05/28/2023]
Abstract
Grass pea (Lathyrus sativus L.) is an annual legume species, phylogenetically close to pea (Pisum sativum L.), that may be infected by Fusarium oxysporum f. sp. pisi (Fop), the causal agent of fusarium wilt in peas with vast worldwide yield losses. A range of responses varying from high resistance to susceptibility to this pathogen has been reported in grass pea germplasm. Nevertheless, the genetic basis of that diversity of responses is still unknown, hampering its breeding exploitation. To identify genomic regions controlling grass pea resistance to fusarium wilt, a genome-wide association study approach was applied on a grass pea worldwide collection of accessions inoculated with Fop race 2. Disease responses were scored in this collection that was also subjected to high-throughput based single nucleotide polymorphisms (SNP) screening through genotyping-by-sequencing. A total of 5,651 high-quality SNPs were considered for association mapping analysis, performed using mixed linear models accounting for population structure. Because of the absence of a fully assembled grass pea reference genome, SNP markers' genomic positions were retrieved from the pea's reference genome v1a. In total, 17 genomic regions were associated with three fusarium wilt response traits in grass pea, anticipating an oligogenic control. Seven of these regions were located on pea chromosomes 1, 6, and 7. The candidate genes underlying these regions were putatively involved in secondary and amino acid metabolism, RNA (regulation of transcription), transport, and development. This study revealed important fusarium wilt resistance favorable grass pea SNP alleles, allowing the development of molecular tools for precision disease resistance breeding.
Collapse
Affiliation(s)
- Ana Margarida Sampaio
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Priscila Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Ehsan Valiollahi
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Current address: Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad Univ. of Medical Sciences, Mashhad, Iran
| | - Carmen Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Zlatko Šatović
- Faculty of Agriculture, Univ. of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Association BLC3, Technology and Innovation Campus, Centre Bio R&D Unit, Rua Comendador Emílio Augusto Pires, 14, Edifício SIDE UP, 5340-257, Macedo de Cavaleiros, Portugal
| | - Fred van Eeuwijk
- Wageningen Univ. & Research, Biometrics, Applied Statistics, Droevendaalsesteeg 1 6708PB, Wageningen, The Netherlands
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| |
Collapse
|
49
|
Farjad M, Clément G, Launay A, Jeridi R, Jolivet S, Citerne S, Rigault M, Soulie M, Dinant S, Fagard M. Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:1332-1346. [PMID: 34382308 PMCID: PMC8518577 DOI: 10.1111/mpp.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 05/03/2023]
Abstract
We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites.
Collapse
Affiliation(s)
- Mahsa Farjad
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Gilles Clément
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Alban Launay
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Roua Jeridi
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
- Laboratoire des Risques Liés Aux Stress EnvironnementauxFaculté des Sciences de Bizerte, Université de CarthageBizerteTunisia
| | - Sylvie Jolivet
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Martine Rigault
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Marie‐Christine Soulie
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
- Sorbonne UniversitéUPMC Université Paris 06ParisFrance
| | - Sylvie Dinant
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Mathilde Fagard
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| |
Collapse
|
50
|
de Abreu LGF, Silva NV, Ferrari AJR, de Carvalho LM, Fiamenghi MB, Carazzolle MF, Fill TP, Pilau EJ, Pereira GAG, Grassi MCB. Metabolite profiles of energy cane and sugarcane reveal different strategies during the axillary bud outgrowth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:504-516. [PMID: 34425395 DOI: 10.1016/j.plaphy.2021.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Commercial cultivation of sugarcane is usually carried out by planting culm segments (sett) carrying buds in their internodes. However, this is an inefficient practice due to high sprouting irregularity. In this work, we inspect the first stages of the physiological preparation of the culm for sprouting, trying to identify compounds that actively participate in this process. We compared, during the first 48 h, the metabolic profile of sugarcane against energy cane, a cultivar known to have higher sprouting speed and consistency. In fact, during this short period it was possible to observe that energy cane already had a higher physiological activity than sugarcane, with significant changes in the catabolism of amino acids, increased levels of reducing sugars, lipids and metabolic activity in the phenylpropanoid pathway. On the other hand, sugarcane samples had just begun their activity during this same period, with an increase in the level of glutamate as the most significant change, which may be linked to the strategy of these cultivars to develop their roots before leaves, opposite of what is seen for energy cane. These results contribute to the development of strategies for increasing the efficiency of sprouting in sugarcane.
Collapse
Affiliation(s)
- Luís Guilherme F de Abreu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Nicholas V Silva
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Allan Jhonathan R Ferrari
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Center for Computing in Engineering and Sciences. Campinas State University (UNICAMP), 13083-861, Campinas, SP, Brazil
| | - Lucas M de Carvalho
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Center for Computing in Engineering and Sciences. Campinas State University (UNICAMP), 13083-861, Campinas, SP, Brazil
| | - Mateus B Fiamenghi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Taícia P Fill
- Laboratory of Biology Chemical Microbial (LaBioQuiMi). Institute of Chemistry, Campinas State University (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Eduardo J Pilau
- Laboratory of Biomolecules and Mass Spectrometry (LabioMass). Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Gonçalo Amarante G Pereira
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil.
| | - Maria Carolina B Grassi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Roundtable on Sustainable Biomaterials (RSB), Impact Hub Geneva, Rue Fendt 1, 1201, Geneva, Switzerland
| |
Collapse
|