1
|
Kanna VK, Djanaguiraman M, Senthil A, Moorthy PS, Iyanar K, Veerappan A. Improvement of maize drought tolerance by foliar application of zinc selenide quantum dots. FRONTIERS IN PLANT SCIENCE 2024; 15:1478654. [PMID: 39703559 PMCID: PMC11658264 DOI: 10.3389/fpls.2024.1478654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Maize (Zea mays L.) is an important cereal crop grown in arid and semiarid regions of the world. During the reproductive phase, it is more frequently exposed to drought stress, resulting in lower grain yield due to oxidative damage. Selenium and zinc oxide nanoparticles possess inherent antioxidant properties that can alleviate drought-induced oxidative stress by the catalytic scavenging of reactive oxygen species, thereby protecting maize photosynthesis and grain yield. However, the effect of zinc selenide quantum dots (ZnSe QDs) under drought stress was not been quantified. Hence, the aim of this study was to quantify the (i) toxicity potential of ZnSe QDs and (ii) drought mitigation potential of ZnSe QDs by assessing the transpiration rate, photosynthetic rate, oxidant production, antioxidant enzyme activity and seed yield of maize under limited soil moisture levels. Toxicity experiments were carried out with 0 mg L-1 to 500 mg L-1 of ZnSe QDs on earthworms and azolla. The results showed that up to 20 mg L-1, the growth rates of earthworms and azolla were not affected. The dry-down experiment was conducted with three treatments: foliar spray of (i) water, (ii) ZnSe QDs (20 mg L-1), and (iii) combined zinc sulfate (10 mg L-1) and sodium selenate (10 mg L-1). ZnSe or Se applications under drying soil reduced the transpiration rate compared to water spray by partially closing the stomata. ZnSe application at 20 mg L-1 at the tasselling stage significantly increased the photosynthetic rate (25%) by increasing catalase (98%) and peroxidase (85%) enzyme activity and decreased the hydrogen peroxide (23%) content compared to water spray, indicating that premature leaf senescence was delayed under rainfed conditions. ZnSe spray increased seed yield (26%) over water spray by increasing the number of seeds cob-1 (42%). The study concluded that foliar application of ZnSe (20 mg L-1) could decrease drought-induced effects in maize.
Collapse
Affiliation(s)
| | | | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnuraj Sathya Moorthy
- Department of Basic Engineering & Applied Sciences, Agricultural Engineering College & Research Institute, Kumulur, India
| | | | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
2
|
Santoyo G, Orozco-Mosqueda MDC, Afridi MS, Mitra D, Valencia-Cantero E, Macías-Rodríguez L. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Front Microbiol 2024; 15:1423980. [PMID: 39176277 PMCID: PMC11338895 DOI: 10.3389/fmicb.2024.1423980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | | | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| |
Collapse
|
3
|
Wu W, Wang L, Huang W, Zhang X, Li Y, Guo W. A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus. DNA Res 2024; 31:dsae024. [PMID: 39101533 PMCID: PMC11347754 DOI: 10.1093/dnares/dsae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024] Open
Abstract
With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90, and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Weicheng Huang
- Plant Science Center, South China Botanical Garden, Chinese Academy of Science, , Guangzhou, 510650, Guangzhou, China
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
4
|
Nguyen HA, Martre P, Collet C, Draye X, Salon C, Jeudy C, Rincent R, Muller B. Are high-throughput root phenotyping platforms suitable for informing root system architecture models with genotype-specific parameters? An evaluation based on the root model ArchiSimple and a small panel of wheat cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2510-2526. [PMID: 38520390 DOI: 10.1093/jxb/erae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Given the difficulties in accessing plant roots in situ, high-throughput root phenotyping (HTRP) platforms under controlled conditions have been developed to meet the growing demand for characterizing root system architecture (RSA) for genetic analyses. However, a proper evaluation of their capacity to provide the same estimates for strictly identical root traits across platforms has never been achieved. In this study, we performed such an evaluation based on six major parameters of the RSA model ArchiSimple, using a diversity panel of 14 bread wheat cultivars in two HTRP platforms that had different growth media and non-destructive imaging systems together with a conventional set-up that had a solid growth medium and destructive sampling. Significant effects of the experimental set-up were found for all the parameters and no significant correlations across the diversity panel among the three set-ups could be detected. Differences in temperature, irradiance, and/or the medium in which the plants were growing might partly explain both the differences in the parameter values across the experiments as well as the genotype × set-up interactions. Furthermore, the values and the rankings across genotypes of only a subset of parameters were conserved between contrasting growth stages. As the parameters chosen for our analysis are root traits that have strong impacts on RSA and are close to parameters used in a majority of RSA models, our results highlight the need to carefully consider both developmental and environmental drivers in root phenomics studies.
Collapse
Affiliation(s)
- Hong Anh Nguyen
- LEPSE, Université de Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Pierre Martre
- LEPSE, Université de Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Clothilde Collet
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Xavier Draye
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Christian Jeudy
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Renaud Rincent
- GDEC, Université Clermont-Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Muller
- LEPSE, Université de Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| |
Collapse
|
5
|
Duddek P, Ahmed MA, Javaux M, Vanderborght J, Lovric G, King A, Carminati A. The effect of root hairs on root water uptake is determined by root-soil contact and root hair shrinkage. THE NEW PHYTOLOGIST 2023; 240:2484-2497. [PMID: 37525254 DOI: 10.1111/nph.19144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.
Collapse
Affiliation(s)
- Patrick Duddek
- Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Mutez Ali Ahmed
- Root-Soil Interactions, School of Life Sciences, Technical University of Munich, D-85354, Freising, Germany
| | - Mathieu Javaux
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Vanderborght
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Goran Lovric
- Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192, Gif-sur-Yvette Cedex, France
| | - Andrea Carminati
- Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
| |
Collapse
|
6
|
Ruppel M, Nelson SK, Sidberry G, Mitchell M, Kick D, Thomas SK, Guill KE, Oliver MJ, Washburn JD. RootBot: High-throughput root stress phenotyping robot. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11541. [PMID: 38106535 PMCID: PMC10719875 DOI: 10.1002/aps3.11541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 12/19/2023]
Abstract
Premise Higher temperatures across the globe are causing an increase in the frequency and severity of droughts. In agricultural crops, this results in reduced yields, financial losses, and increased food costs at the supermarket. Root growth maintenance in drying soils plays a major role in a plant's ability to survive and perform under drought, but phenotyping root growth is extremely difficult due to roots being under the soil. Methods and Results RootBot is an automated high-throughput phenotyping robot that eliminates many of the difficulties and reduces the time required for performing drought-stress studies on primary roots. RootBot simulates root growth conditions using transparent plates to create a gap that is filled with soil and polyethylene glycol (PEG) to simulate low soil moisture. RootBot has a gantry system with vertical slots to hold the transparent plates, which theoretically allows for evaluating more than 50 plates at a time. Software pipelines were also co-opted, developed, tested, and extensively refined for running the RootBot imaging process, storing and organizing the images, and analyzing and extracting data. Conclusions The RootBot platform and the lessons learned from its design and testing represent a valuable resource for better understanding drought tolerance mechanisms in roots, as well as for identifying breeding and genetic engineering targets for crop plants.
Collapse
Affiliation(s)
- Mia Ruppel
- Department of Biomedical, Biological, and Chemical EngineeringUniversity of MissouriColumbiaMissouriUSA
| | - Sven K. Nelson
- Director of Plant ScienceHeliponix, LLCEvansvilleIndianaUSA
- Plant Genetics Research UnitUSDA‐ARSColumbiaMissouriUSA
| | - Grace Sidberry
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Madison Mitchell
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Daniel Kick
- Plant Genetics Research UnitUSDA‐ARSColumbiaMissouriUSA
| | - Shawn K. Thomas
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Katherine E. Guill
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Melvin J. Oliver
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | |
Collapse
|
7
|
Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased auxin levels in root primordia are important in controlling root branching, while their interaction with abscisic acid (ABA) likely regulates lateral root development in water-deficient plants. The role of ABA accumulation in regulating root branching was investigated using immunolocalization to detect auxin (indoleacetic acid, IAA) and ABA (abscisic acid) in root primordia of the ABA-deficient barley mutant Az34 and its parental genotype (cv. Steptoe) barley plants. Osmotic stress strongly inhibited lateral root branching in Steptoe plants, but hardly affected Az34. Root primordial cells of Steptoe plants had increased immunostaining for ABA but diminished staining for IAA. ABA did not accumulate in root primordia of the Az34, and IAA levels and distribution were unaltered. Treating Az34 plants with exogenous ABA decreased root IAA concentration, while increasing root primordial ABA accumulation and decreasing root primordial IAA concentration. Although ABA treatment of Az34 plants increased the root primordial number, it decreased the number of visible emerged lateral roots. These effects were qualitatively similar to that of osmotic stress on the number of lateral root primordia and emerged lateral roots in Steptoe. Thus ABA accumulation (and its crosstalk with auxin) in root primordia seems important in regulating lateral root branching in response to water stress.
Collapse
|
8
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
9
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Melton AE, Galla SJ, Dumaguit CDC, Wojahn JMA, Novak S, Serpe M, Martinez P, Buerki S. Meta-Analysis Reveals Challenges and Gaps for Genome-to-Phenome Research Underpinning Plant Drought Response. Int J Mol Sci 2022; 23:12297. [PMID: 36293161 PMCID: PMC9602940 DOI: 10.3390/ijms232012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
12
|
Zhou Y, Lu Q, Ma J, Wang D, Li X, Di H, Zhang L, Hu X, Dong L, Liu X, Zeng X, Zhou Z, Weng J, Wang Z. Using a high density bin map to analyze quantitative trait locis of germination ability of maize at low temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:978941. [PMID: 36072324 PMCID: PMC9441762 DOI: 10.3389/fpls.2022.978941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Low temperatures in the spring often lead to a decline in the emergence rate and uniformity of maize, which can affect yield in northern regions. This study used 365 recombinant inbred lines (RILs), which arose from crossing Qi319 and Ye478, to identify low-temperature resistance during the germination stage by measuring eight low-temperature-related traits. The quantitative trait locis (QTLs) were mapped using R/qtl software by combining phenotypic data, and the genotyping by sequencing (GBS) method to produce a high-density genetic linkage map. Twenty QTLs were detected during QTL mapping, of which seven QTLs simultaneously detected a consistent 197.10-202.30 Mb segment on chromosome 1. The primary segment was named cQTL1-2, with a phenotypic variation of 5.18-25.96% and a physical distance of 5.2 Mb. This combines the phenotype and genotype with the identification of seven chromosome segment substitution lines (CSSLs), which were derived from Ye478*Qi319 and related to cQTL1-2. The physical distance of cQTL1-2 was reduced to approximately 1.9 Mb. The consistent meta-QTL mQTL1 was located at 619.06 cM on chromosome 1, had a genetic distance of 7.27 cM, and overlapped with cQTL1-2. This was identified by combining the results of previous QTL studies assessing maize tolerance to low temperatures at the germination stage. An assessment of the results of the RIL population, CSSLs, and mQTL1 found the consistent QTL to be LtQTL1-1. It was identified in bin1.06-1.07 at a confidence interval of between 200,400,148 and 201,775,619 bp. In this interval, qRT-PCR found that relative expression of the candidate genes GRMZM2G082630 and GRMZM2G115730 were both up-regulated in low-temperature tolerant lines and down-regulated in sensitive lines (P < 0.01).
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qing Lu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jinxin Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dandan Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinge Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Xu Q, Wang X, Wang Y, Zhang H, Zhang H, Di H, Zhang L, Dong L, Zeng X, Liu X, Lee M, Wang Z, Zhou Y. Combined QTL mapping and RNA-Seq pro-filing reveal candidate genes related to low-temperature tolerance in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:33. [PMID: 37312966 PMCID: PMC10248625 DOI: 10.1007/s11032-022-01297-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Maize (Zea mays L.) is the most important food crop in the world, with significant acreage and production across the globe. However, it is affected by low temperatures throughout its growth process, especially during germination. Therefore, it is important to identify more QTLs or genes associated with germination under low-temperature conditions. For the QTL analysis of traits related to low-temperature germination, we used a high-res genetic map of 213 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, which had 6618 bin markers. We detected 28 QTLs of eight phenotypic characteristics associated with low-temperature germination, while they explained the phenotypic contribution rate of 5.4 ~ 13.34%. Additionally, 14 overlapping QTLs produced six QTL clusters on every chromosome, except for 8 and 10. RNA-Seq found six genes related to low-temperature tolerance in these QTLs, while qRT-PCR analysis demonstrated that the expression trends of the Zm00001d045568 gene in the LT_BvsLT_M group and the CK_BvsCK_M group were highly significantly different at all four-time points (P < 0.01), and encoded the RING zinc finger protein. It was located on qRTL9-2 and qRSVI9-1 and is related to the total length and simple vitality index. These results provided potential candidate genes for further gene cloning and improving the low-temperature tolerance of maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01297-6.
Collapse
Affiliation(s)
- Qingyu Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xuerui Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Yuhe Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hongzhou Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Michael Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| |
Collapse
|
14
|
Xu Z, York LM, Seethepalli A, Bucciarelli B, Cheng H, Samac DA. Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.). PLANT PHENOMICS (WASHINGTON, D.C.) 2022; 2022:9879610. [PMID: 35479182 PMCID: PMC9012978 DOI: 10.34133/2022/9879610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Active breeding programs specifically for root system architecture (RSA) phenotypes remain rare; however, breeding for branch and taproot types in the perennial crop alfalfa is ongoing. Phenotyping in this and other crops for active RSA breeding has mostly used visual scoring of specific traits or subjective classification into different root types. While image-based methods have been developed, translation to applied breeding is limited. This research is aimed at developing and comparing image-based RSA phenotyping methods using machine and deep learning algorithms for objective classification of 617 root images from mature alfalfa plants collected from the field to support the ongoing breeding efforts. Our results show that unsupervised machine learning tends to incorrectly classify roots into a normal distribution with most lines predicted as the intermediate root type. Encouragingly, random forest and TensorFlow-based neural networks can classify the root types into branch-type, taproot-type, and an intermediate taproot-branch type with 86% accuracy. With image augmentation, the prediction accuracy was improved to 97%. Coupling the predicted root type with its prediction probability will give breeders a confidence level for better decisions to advance the best and exclude the worst lines from their breeding program. This machine and deep learning approach enables accurate classification of the RSA phenotypes for genomic breeding of climate-resilient alfalfa.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | - Bruna Bucciarelli
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Hao Cheng
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave., Davis, CA 95616, USA
| | - Deborah A. Samac
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
15
|
Li H, Chen H, Chen L, Wang C. The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23031024. [PMID: 35162947 PMCID: PMC8835357 DOI: 10.3390/ijms23031024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2S) is regarded as a “New Warrior” for managing plant stress. It also plays an important role in plant growth and development. The regulation of root system architecture (RSA) by H2S has been widely recognized. Plants are dependent on the RSA to meet their water and nutritional requirements. They are also partially dependent on the RSA for adapting to environment change. Therefore, a good understanding of how H2S affects the RSA could lead to improvements in both crop function and resistance to environmental change. In this review, we summarized the regulating effects of H2S on the RSA in terms of primary root growth, lateral and adventitious root formation, root hair development, and the formation of nodules. We also discussed the genes involved in the regulation of the RSA by H2S, and the relationships with other signal pathways. In addition, we discussed how H2S regulates root growth in response to abiotic stress. This review could provide a comprehensive understanding of the role of H2S in roots during development and under abiotic stress.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
- Correspondence: (H.L.); (C.W.)
| | - Hongyu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University,
Zhengzhou 450002, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
16
|
Verslues PE, Longkumer T. Size and activity of the root meristem: A key for drought resistance and a key model of drought-related signaling. PHYSIOLOGIA PLANTARUM 2022; 174:e13622. [PMID: 34988997 DOI: 10.1111/ppl.13622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Plants make many adjustments to their growth and development in response to even small changes in water availability. Under such conditions, root elongation can be actively restricted by stress-related signaling mechanisms. Here we look at how the Arabidopsis thaliana root meristem can be affected by moderate water limitation (low water potential, ψw ). Recent characterization of the clade E Growth-Regulating (EGR) protein phosphatases and Microtubule Associated Stress Protein 1 (MASP1) provides an example of how active restriction of root meristem size allows the plant to downregulate root elongation during low ψw stress. EGR2 protein accumulation in cortex cells of the transition zone at the distal end of the root meristem illustrates how the balance of cell division versus cell expansion signals at this critical location can determine meristem size and root elongation during low ψw . These characteristics of EGRs also raise the question of whether they may also be involved in hydrotropism, and, more broadly, whether hydrotropism is a distinct response or a specific manifestation of more general mechanisms used to adjust root growth under moderate severity low ψw whether or not a gradient of water availability is present. These questions, as well as a better understanding of how specific cell layers (cortex and endodermis) seem to have an outsized role in growth regulation and better understanding the roles of plasma membrane-based signaling and polar-localized proteins in the regulation of root meristem size and cell division activity are key to elucidating the cellular mechanisms that determine root growth behavior during soil drying.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
17
|
Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harb Perspect Biol 2021; 13:a040014. [PMID: 33903159 PMCID: PMC8559545 DOI: 10.1101/cshperspect.a040014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since colonizing land, plants have developed mechanisms to tolerate a broad range of abiotic stresses that include flooding, drought, high salinity, and nutrient limitation. Roots play a key role acclimating plants to these as their developmental plasticity enables them to grow toward more favorable conditions and away from limiting or harmful stresses. The phytohormone auxin plays a key role translating these environmental signals into developmental outputs. This is achieved by modulating auxin levels and/or signaling, often through cross talk with other hormone signals like abscisic acid (ABA) or ethylene. In our review, we discuss how auxin controls root responses to water, osmotic and nutrient-related stresses, and describe how the synthesis, degradation, transport, and response of this key signaling hormone helps optimize root architecture to maximize resource acquisition while limiting the impact of abiotic stresses.
Collapse
Affiliation(s)
- Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bipin Pandey
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ute Voß
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
18
|
Hendel E, Bacher H, Oksenberg A, Walia H, Schwartz N, Peleg Z. Deciphering the genetic basis of wheat seminal root anatomy uncovers ancestral axial conductance alleles. PLANT, CELL & ENVIRONMENT 2021; 44:1921-1934. [PMID: 33629405 DOI: 10.1111/pce.14035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 05/24/2023]
Abstract
Root axial conductance, which describes the ability of water to move through the xylem, contributes to the rate of water uptake from the soil throughout the whole plant lifecycle. Under the rainfed wheat agro-system, grain-filling is typically occurring during declining water availability (i.e., terminal drought). Therefore, preserving soil water moisture during grain filling could serve as a key adaptive trait. We hypothesized that lower wheat root axial conductance can promote higher yields under terminal drought. A segregating population derived from a cross between durum wheat and its direct progenitor wild emmer wheat was used to underpin the genetic basis of seminal root architectural and functional traits. We detected 75 QTL associated with seminal roots morphological, anatomical and physiological traits, with several hotspots harbouring co-localized QTL. We further validated the axial conductance and central metaxylem QTL using wild introgression lines. Field-based characterization of genotypes with contrasting axial conductance suggested the contribution of low axial conductance as a mechanism for water conservation during grain filling and consequent increase in grain size and yield. Our findings underscore the potential of harnessing wild alleles to reshape the wheat root system architecture and associated hydraulic properties for greater adaptability under changing climate.
Collapse
Affiliation(s)
- Elisha Hendel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Harel Bacher
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Adi Oksenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nimrod Schwartz
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
19
|
Predicting Water Stress in Wild Blueberry Fields Using Airborne Visible and Near Infrared Imaging Spectroscopy. REMOTE SENSING 2021. [DOI: 10.3390/rs13081425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Water management and irrigation practices are persistent challenges for many agricultural systems, exacerbated by changing seasonal and weather patterns. The wild blueberry industry is at heightened susceptibility due to its unique growing conditions and uncultivated nature. Stress detection in agricultural fields can prompt management responses to mitigate detrimental conditions, including drought and disease. We assessed airborne spectral data accompanied by ground sampled water potential over three developmental stages of wild blueberries collected throughout the 2019 summer on two adjacent fields, one irrigated and one non-irrigated. Ground sampled leaves were collected in tandem to the hyperspectral image collection with an unoccupied aerial vehicle (UAV) and then measured for leaf water potential. Using methods in machine learning and statistical analysis, we developed models to determine irrigation status and water potential. Seven models were assessed in this study, with four used to process six hyperspectral cube images for analysis. These images were classified as irrigated or non-irrigated and estimated for water potential levels, resulting in an R2 of 0.62 and verified with a validation dataset. Further investigation relating imaging spectroscopy and water potential will be beneficial in understanding the dynamics between the two for future studies.
Collapse
|
20
|
Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proc Natl Acad Sci U S A 2021; 118:2012892118. [PMID: 33443178 DOI: 10.1073/pnas.2012892118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We hereby show that root systems adapt to a spatially discontinuous pattern of water availability even when the gradients of water potential across them are vanishingly small. A paper microfluidic approach allowed us to expose the entire root system of Brassica rapa plants to a square array of water sources, separated by dry areas. Gradients in the concentration of water vapor across the root system were as small as 10-4⋅mM⋅m-1 (∼4 orders of magnitude smaller than in conventional hydrotropism assays). Despite such minuscule gradients (which greatly limit the possible influence of the well-understood gradient-driven hydrotropic response), our results show that 1) individual roots as well as the root system as a whole adapt to the pattern of water availability to maximize access to water, and that 2) this adaptation increases as water sources become more rare. These results suggest that either plant roots are more sensitive to water gradients than humanmade water sensors by 3-5 orders of magnitude, or they might have developed, like other organisms, mechanisms for water foraging that allow them to find water in the absence of an external gradient in water potential.
Collapse
|
21
|
Villaécija-Aguilar JA, Struk S, Goormachtig S, Gutjahr C. Bioassays for the Effects of Strigolactones and Other Small Molecules on Root and Root Hair Development. Methods Mol Biol 2021; 2309:129-142. [PMID: 34028684 DOI: 10.1007/978-1-0716-1429-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Growth and development of plant roots are highly dynamic and adaptable to environmental conditions. They are under the control of several plant hormone signaling pathways, and therefore root developmental responses can be used as bioassays to study the action of plant hormones and other small molecules. In this chapter, we present different procedures to measure root traits of the model plant Arabidopsis thaliana. We explain methods for phenotypic analysis of lateral root development, primary root length, root skewing and straightness, and root hair density and length. We describe optimal growth conditions for Arabidopsis seedlings for reproducible root and root hair developmental outputs; and how to acquire images and measure the different traits using image analysis with relatively low-tech equipment. We provide guidelines for a semiautomatic image analysis of primary root length, root skewing, and root straightness in Fiji and a script to automate the calculation of root angle deviation from the vertical and root straightness. By including mutants defective in strigolactone (SL) or KAI2 ligand (KL) synthesis and/or signaling, these methods can be used as bioassays for different SLs or SL-like molecules. In addition, the techniques described here can be used for studying seedling root system architecture, root skewing, and root hair development in any context.
Collapse
Affiliation(s)
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
22
|
Wang ZQ, Yu TF, Sun GZ, Zheng JC, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:614909. [PMID: 33815437 PMCID: PMC8012678 DOI: 10.3389/fpls.2021.614909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Qi Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- *Correspondence: Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Wen-Liang Wei,
| |
Collapse
|
23
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Jadczak P, Mhimdi M, Ibáñez S, Bres C, Just D, Rothan C, Pérez-Pérez JM. A quick protocol for the identification and characterization of early growth mutants in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110673. [PMID: 33218638 DOI: 10.1016/j.plantsci.2020.110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.
Collapse
Affiliation(s)
| | | | - Paula Jadczak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Cécile Bres
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | | |
Collapse
|
24
|
Smokvarska M, Francis C, Platre MP, Fiche JB, Alcon C, Dumont X, Nacry P, Bayle V, Nollmann M, Maurel C, Jaillais Y, Martiniere A. A Plasma Membrane Nanodomain Ensures Signal Specificity during Osmotic Signaling in Plants. Curr Biol 2020; 30:4654-4664.e4. [PMID: 33035478 DOI: 10.1016/j.cub.2020.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023]
Abstract
In the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown. With a focus on the hyperosmotic stimulus, we use live super-resolution light imaging methods to demonstrate that a Rho GTPase, Rho-of-Plant 6 (ROP6), forms stimuli-dependent nanodomains within the plasma membrane (PM). These nanodomains are necessary and sufficient to transduce production of reactive oxygen species (ROS) that act as secondary messengers and trigger several plant adaptive responses to osmotic constraints. Furthermore, osmotic signal triggers interaction between ROP6 and two NADPH oxidases that subsequently generate ROS. ROP6 nanoclustering is also needed for cell surface auxin signaling, but short-time auxin treatment does not induce ROS accumulation. We show that auxin-induced ROP6 nanodomains, unlike osmotically driven ROP6 clusters, do not recruit the NADPH oxidase, RBOHD. Together, our results suggest that Rho GTPase nano-partitioning at the PM ensures signal specificity downstream of independent stimuli.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Charbel Francis
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Xavier Dumont
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Philippe Nacry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Y Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | | |
Collapse
|
25
|
A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops. SUSTAINABILITY 2020. [DOI: 10.3390/su12103945] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Area under vegetable cultivation is expanding in arid and semi-arid regions of the world to meet the nutritional requirements of an ever-growing population. However, water scarcity in these areas is limiting vegetable productivity. New water-conserving irrigation management practices are being implemented in these areas. Under these irrigation management practices, crops are frequently exposed to some extent of water stress. Vegetables are highly sensitive to water stress. For the successful implementation of new irrigation practices in vegetable crops, it is of immense importance to determine the threshold water deficit level which will not have a detrimental effect on plant growth and yield. Along with this, plant response and adaptation mechanisms to new irrigation practices need to be understood for the successful implementation of new irrigation practices. To understand this, water stress indicators that are highly responsive to water stress; and that can help in early detection of water stress need to be identified for vegetable crops. Plant-based water stress indicators are quite effective in determining the water stress level in plants because they take into account the cumulative effect of water stress due to declining soil moisture status and increased evaporative demand of the atmosphere while determining the water stress level in plant. Water stress quantification using plant-based approaches involves direct measurements of several aspects of plant water status and indirect measurements of plant processes which are highly sensitive to water deficit. In this article, a number of plant-based water stress indicators were critically reviewed for (1) their efficacy to determine the level of water stress, (2) their potential to predict the yield of a crop as affected by different water-deficit levels and (3) their suitability for irrigation scheduling in vegetable crops.
Collapse
|
26
|
Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH. Root Response to Drought Stress in Rice ( Oryza sativa L .). Int J Mol Sci 2020; 21:E1513. [PMID: 32098434 PMCID: PMC7073213 DOI: 10.3390/ijms21041513] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023] Open
Abstract
The current unpredictable climate changes are causing frequent and severe droughts. Such circumstances emphasize the need to understand the response of plants to drought stress, especially in rice, one of the most important grain crops. Knowledge of the drought stress response components is especially important in plant roots, the major organ for the absorption of water and nutrients from the soil. Thus, this article reviews the root response to drought stress in rice. It is presented to provide readers with information of use for their own research and breeding program for tolerance to drought stress in rice.
Collapse
Affiliation(s)
- Yoonha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.K.); (P.T.)
| | - Yong Suk Chung
- Faculty of Bioscience and Industry, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Korea;
| | - Eungyeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea;
| | - Pooja Tripathi
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.K.); (P.T.)
| | - Seong Heo
- Ganghwa Agricultural Technology Service Center, Incheon 23038, Korea;
| | - Kyung-Hwan Kim
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea;
| |
Collapse
|
27
|
O'Donnell L, Pickles BJ, Campbell CM, Moulton LL, Hauwert NM, Gorzelak MA. Native tree and shrub canopy facilitates oak seedling regeneration in semiarid woodland. Ecosphere 2020. [DOI: 10.1002/ecs2.3017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lisa O'Donnell
- City of Austin Balcones Canyonlands Preserve 3621 Ranch Road 620 South Austin Texas 78738 USA
| | - Brian J. Pickles
- School of Biological Sciences University of Reading Harborne Building, Whiteknights Reading RG6 6AS UK
| | - Cristina M. Campbell
- City of Austin Balcones Canyonlands Preserve 3621 Ranch Road 620 South Austin Texas 78738 USA
| | - Laurel L. Moulton
- City of Austin Balcones Canyonlands Preserve 3621 Ranch Road 620 South Austin Texas 78738 USA
| | - Nico M. Hauwert
- City of Austin Balcones Canyonlands Preserve 3621 Ranch Road 620 South Austin Texas 78738 USA
| | - Monika A. Gorzelak
- School of Biological Sciences University of Reading Harborne Building, Whiteknights Reading RG6 6AS UK
- Agriculture and Agri‐Food Canada Lethbridge Development and Research Centre 5403‐1 Avenue South Lethbridge Alberta T1J 4B1 Canada
| |
Collapse
|
28
|
Chandra P, Enespa, Singh R. Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Abstract
Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.
Collapse
Affiliation(s)
- José R. Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Wang J, Kuang L, Wang X, Liu G, Dun X, Wang H. Temporal genetic patterns of root growth in Brassica napus L. revealed by a low-cost, high-efficiency hydroponic system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2309-2323. [PMID: 31101925 DOI: 10.1007/s00122-019-03356-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Application of a low-cost and high-efficiency hydroponic system in a rapeseed population verified two types of genetic factors ("persistent" and "stage-specific") that control root development. The root system is a vital plant component for nutrient and water acquisition and is targeted to enhance plant productivity. Genetic dissection of the root system generally focuses on a single stage, but roots grow continuously during plant development. To reveal the temporal genetic patterns of root development, we measured nine root-related traits in a rapeseed recombinant inbred line population at six continuous stages during vegetative growth, using a modified hydroponic system with low-cost and high-efficiency features that could synchronize plant growth under controlled conditions. Phenotypic correlation and growth dynamic analysis suggested the existence of two types of genetic factors ("persistent" and "stage-specific") that control root development. Dynamic (unconditional and conditional) quantitative trait loci (QTL) mapping detected 28 stage-specific and 23 persistent QTLs related to root growth. Among them, 13 early stage-specific, 19 persistent and 8 later stage-specific QTLs were detected at 7 DAS (days after sowing), 16 DAS and 5 EL (expanding leaf stage), respectively, providing efficient and adaptable stages for QTL identification. The effective prediction of biomass accumulation using root morphological traits (up to 96.6% or 92.64% at a specific stage or the final stage, respectively) verified that root growth allocation with maximum root uptake area facilitated biomass accumulation. Furthermore, marker-assistant selection, which combined the "persistent" and "stage-specific" QTLs, proved their effectiveness for root improvement with an excellent uptake area. Our results highlight the potential of high-throughput and precise phenotyping to assess the dynamic genetics of root growth and provide new insights into ideotype root system-based biomass breeding.
Collapse
Affiliation(s)
- Jie Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
31
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Yu P, Hochholdinger F, Li C. Plasticity of Lateral Root Branching in Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:363. [PMID: 30984221 PMCID: PMC6449698 DOI: 10.3389/fpls.2019.00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/08/2019] [Indexed: 05/11/2023]
Abstract
Extensively branched root systems can efficiently capture soil resources by increasing their absorbing surface in soil. Lateral roots are the roots formed from pericycle cells of other roots that can be of any type. As a consequence, lateral roots provide a higher surface to volume ratio and are important for water and nutrients acquisition. Discoveries from recent studies have started to shed light on how plant root systems respond to environmental changes in order to improve capture of soil resources. In this Mini Review, we will mainly focus on the spatial distribution of lateral roots of maize and their developmental plasticity in response to the availability of water and nutrients.
Collapse
Affiliation(s)
- Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Justamante MS, Ibáñez S, Peidró A, Pérez-Pérez JM. A Genome-Wide Association Study Identifies New Loci Involved in Wound-Induced Lateral Root Formation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:311. [PMID: 30930926 PMCID: PMC6428781 DOI: 10.3389/fpls.2019.00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Root systems can display variable architectures that contribute to nutrient foraging or to increase the tolerance of abiotic stress conditions. Root tip excision promotes the developmental progression of previously specified lateral root (LR) founder cells, which allows to easily measuring the branching capacity of a given root as regards its genotype and/or growth conditions. Here, we describe the natural variation among 120 Arabidopsis thaliana accessions in root system architecture (RSA) after root tip excision. Wound-induced changes in RSA were associated with 19 genomic loci using genome-wide association mapping. Three candidate loci associated with wound-induced LR formation were investigated. Sequence variation in the hypothetical protein encoded by the At4g01090 gene affected wound-induced LR development and its loss-of-function mutants displayed a reduced number of LRs after root tip excision. Changes in a histidine phosphotransfer protein putatively involved in cytokinin signaling were significantly associated with LR number variation after root tip excision. Our results provide a better understanding of some of the genetic components involved in LR capacity variation among accessions.
Collapse
Affiliation(s)
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Adrián Peidró
- Departamento de Ingeniería de Sistemas y Automatización, Universidad Miguel Hernández de Elche, Elche, Spain
| | | |
Collapse
|
34
|
Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC, Saigo M. NADP-Dependent Malic Enzyme 1 Participates in the Abscisic Acid Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1637. [PMID: 30459802 PMCID: PMC6232891 DOI: 10.3389/fpls.2018.01637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/22/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana possesses three cytosolic (NADP-ME1-3) and one plastidic (NADP-ME4) NADP-dependent malic enzymes. NADP-ME2 and -ME4 show constitutive expression, in contrast to NADP-ME1 and -ME3, which are restricted to particular tissues. Here, we show that NADP-ME1 transcript and protein were almost undetectable during normal vegetative growth, but gradually increased and reached levels higher than those of the other isoforms in the latest stages of seed development. Accordingly, in knockout nadp-me1 mature seeds the total NADP-ME activity was significantly lower than in wild type mature seeds. The phenotypic analysis of nadp-me1 plants indicated alterations of seed viability and germination. Besides, the treatment with abscisic acid (ABA), NaCl and mannitol specifically induced the accumulation of NADP-ME1 in seedlings. In line with this, nadp-me1 plants show a weaker response of primary and lateral root length and stomatal opening to the presence of ABA. The results suggest that NADP-ME1 plays a specialized role, linked to ABA signaling during the seed development as well as in the response to water deficit stress.
Collapse
Affiliation(s)
- Cintia L. Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Giuliana Torcolese
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana B. Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Verónica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Carlos S. Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariel C. Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
35
|
Abstract
Plant roots play a significant role in plant growth by exploiting soil resources via the uptake of water and nutrients. Root traits such as fine root diameter, specific root length, specific root area, root angle, and root length density are considered useful traits for improving plant productivity under drought conditions. Therefore, understanding interactions between roots and their surrounding soil environment is important, which can be improved through root phenotyping. With the advancement in technologies, many tools have been developed for root phenotyping. Canopy temperature depression (CTD) has been considered a good technique for field phenotyping of crops under drought and is used to estimate crop yield as well as root traits in relation to drought tolerance. Both laboratory and field-based methods for phenotyping root traits have been developed including soil sampling, mini-rhizotron, rhizotrons, thermography and non-soil techniques. Recently, a non-invasive approach of X-ray computed tomography (CT) has provided a break-through to study the root architecture in three dimensions (3-D). This review summarizes methods for root phenotyping. On the basis of this review, it can be concluded that root traits are useful characters to be included in future breeding programs and for selecting better cultivars to increase crop yield under water-limited environments.
Collapse
|
36
|
Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S, Sturrock C, Xuan W, Novák O, Ljung K, Fernandez MA, Rodriguez PL, Dodd IC, De Smet I, Chaumont F, Batoko H, Périlleux C, Lynch JP, Bennett MJ, Beeckman T, Draye X. The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Curr Biol 2018; 28:3165-3173.e5. [DOI: 10.1016/j.cub.2018.07.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
37
|
Richard C, Christopher J, Chenu K, Borrell A, Christopher M, Hickey L. Selection in Early Generations to Shift Allele Frequency for Seminal Root Angle in Wheat. THE PLANT GENOME 2018; 11:170071. [PMID: 30025018 DOI: 10.3835/plantgenome2017.08.0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A current challenge for plant breeders is the limited ability to phenotype and select for root characteristics to enhance crop productivity. The development of a high-throughput phenotyping method has recently offered new opportunities for the selection of root characteristics in breeding programs. Here, we investigated prospects for phenotypic and molecular selection for seminal root angle (SRA), a key trait associated with mature root system architecture in wheat ( L.). We first investigated genetic diversity for this trait in a panel of 22 wheat lines adapted to Australian environments. The angle between the first pair of seminal roots ranged from 72 to 106°. We then evaluated selection gain via direct phenotypic selection in early generations by comparing the resulting shift in population distribution in tail populations selected for "narrow" and "wide" root angle. Overall, two rounds of selection significantly shifted the mean root angle as much as 10°. Furthermore, comparison of allele frequencies in the tail populations revealed genomic regions under selection, for which marker-assisted selection appeared to be successful. By combining efficient phenotyping and rapid generation advance, lines enriched with alleles for either narrow or wide SRA were developed within only 18 mo. These results suggest that there is a valuable source of allelic variation for SRA that can be harnessed and rapidly introgressed into elite wheat lines.
Collapse
|
38
|
Cheng D, Liu Y, Yang G, Zhang A. Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5762-5769. [PMID: 29782162 DOI: 10.1021/acs.jafc.8b00872] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To reduce the preparation cost of superabsorbent and improve the N release rate at the same time, a novel low-cost superabsorbent (SA) with the function of N slow release was prepared by chemical synthesis with neutralized acrylic acid (AA), urea, potassium persulfate (KPS), and N, N'-methylenebis(acrylamide) (MBA). The order of influence factors on the water absorbency property was determined by an orthogonal L18(3)7 experiment. On the basis of the optimization results of the orthogonal experiment, the effects of a single factor on the water absorption were investigated, and the highest water absorbency (909 g/g) was achieved for the conditions of 1.0 mol urea/mol AA ratio, 100% of AA neutralized, K+, 1.5% KPS to AA mass fraction, 0.02% MBA to AA mass fraction, 45 °C reaction temperature, and 4.0 h reaction time. The optimal sample was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Swelling behaviors of the superabsorbent were investigated in distilled water and various soil and salt solutions. The water-release kinetics of SA in different negative pressures and soils were systematically investigated. Additionally, the maize seed germination in various types of soil with different amounts of SA was proposed, and the N could release 3.71% after being incubated in distilled water for 40 days. After 192 h, the relative water content of SA-treated sandy loam, loam, and paddy soil were 42, 56, and 45%, respectively. All of the results in this work showed that SA had good water retention and slow N-release properties, which are expected to have potential applications in sustainable modern agriculture.
Collapse
Affiliation(s)
- Dongdong Cheng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
- State Key Laboratory of Nutrition Resources Integrated Utilization , Shandong Kingenta Ecological Engineering Company, Ltd. , Linyi , Shandong 276700 , China
| | - Yan Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Guiting Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Aiping Zhang
- Institute of Agricultural Environment and Sustainable Development , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
39
|
Ahmed MA, Zarebanadkouki M, Meunier F, Javaux M, Kaestner A, Carminati A. Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1199-1206. [PMID: 29304205 PMCID: PMC6019006 DOI: 10.1093/jxb/erx439] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/11/2017] [Indexed: 05/20/2023]
Abstract
The ability of plants to take up water from the soil depends on both the root architecture and the distribution and evolution of the hydraulic conductivities among root types and along the root length. The mature maize (Zea mays L.) root system is composed of primary, seminal, and crown roots together with their respective laterals. Our understanding of root water uptake of maize is largely based on measurements of primary and seminal roots. Crown roots might have a different ability to extract water from the soil, but their hydraulic function remains unknown. The aim of this study was to measure the location of water uptake in mature maize and investigate differences between seminal, crown, and lateral roots. Neutron radiography and injections of deuterated water were used to visualize the root architecture and water transport in 5-week-old maize root systems. Water was mainly taken up by crown roots. Seminal roots and their laterals, which were the main location of water uptake in younger plants, made a minor contribution to water uptake. In contrast to younger seminal roots, crown roots were also able to take up water from their most distal segments. The greater uptake of crown roots compared with seminal roots is explained by their higher axial conductivity in the proximal parts and by the fact that they are connected to the shoot above the seminal roots, which favors the propagation of xylem tension along the crown roots. The deeper water uptake of crown roots is explained by their shorter and fewer laterals, which decreases the dissipation of water potential along the roots.
Collapse
Affiliation(s)
- Mutez Ali Ahmed
- Division of Soil Hydrology, University of Goettingen, Göttingen, Germany
- Chair of Soil Physics, University of Bayreuth, Bayreuth, Germany
- Correspondence:
| | | | - Félicien Meunier
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mathieu Javaux
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, Switzerland
| | - Andrea Carminati
- Chair of Soil Physics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
40
|
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca 2+ Signaling. Curr Biol 2018; 28:666-675.e5. [PMID: 29456142 PMCID: PMC5894116 DOI: 10.1016/j.cub.2018.01.023] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind diglucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall.
Collapse
Affiliation(s)
- Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Daniel Kita
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, UMR1318, Institut National pour la Recherche Agronomique-AgroParisTech, Saclay Plant Science, Route de St-Cyr, Versailles 78026, France; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Vinh Doan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Qiaohong Duan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jacob Maman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Ina Schmitz-Thom
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci U S A 2018; 115:E822-E831. [PMID: 29317538 PMCID: PMC5789911 DOI: 10.1073/pnas.1710709115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Plant roots activate lateral branching in response to contact with available water, but the mechanism by which this environmental signal is perceived is poorly understood. Through a combination of empirical and mathematical-modeling approaches we discovered a central role of tissue growth in this process. Growth causes water uptake, and the biophysical changes that occur during this process are interpreted by the organism to position new lateral branches. This observation is a significant advancement in our understanding of how the environment shapes plant development and demonstrates that perception of water is intimately tied to a core biological function of the root. Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a “sense-by-growth” mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement.
Collapse
|
42
|
Ait Mouheb H, Kadik L, Albert CH, Berrached R, Prinzing A. How do steppe plants follow their optimal environmental conditions or persist under suboptimal conditions? The differing strategies of annuals and perennials. Ecol Evol 2018; 8:135-149. [PMID: 29321858 PMCID: PMC5756872 DOI: 10.1002/ece3.3664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022] Open
Abstract
For a species to be able to respond to environmental change, it must either succeed in following its optimal environmental conditions or in persisting under suboptimal conditions, but we know very little about what controls these capacities. We parameterized species distribution models (SDMs) for 135 plant species from the Algerian steppes. We interpreted low false-positive rates as reflecting a high capacity to follow optimal environmental conditions and high false-negative rates as a high capacity to persist under suboptimal environmental conditions. We also measured functional traits in the field and built a unique plant trait database for the North-African steppe. For both perennial and annual species, we explored how these two capacities can be explained by species traits and whether relevant trait values reflect species strategies or biases in SDMs. We found low false-positive rates in species with small seeds, flowers attracting specialist pollinators, and specialized distributions (among annuals and perennials), low root:shoot ratios, wide root-systems, and large leaves (perennials only) (R2 = .52-58). We found high false-negative rates in species with marginal environmental distribution (among annuals and perennials), small seeds, relatively deep roots, and specialized distributions (annuals) or large leaves, wide root-systems, and monocarpic life cycle (perennials) (R2 = .38 for annuals and 0.65 for perennials). Overall, relevant traits are rarely indicative of the possible biases of SDMs, but rather reflect the species' reproductive strategy, dispersal ability, stress tolerance, and pollination strategies. Our results suggest that wide undirected dispersal in annual species and efficient resource acquisition in perennial species favor both capacities, whereas short life spans in perennial species favor persistence in suboptimal environmental conditions and flowers attracting specialist pollinators in perennial and annual species favor following optimal environmental conditions. Species that neither follow nor persist will be at risk under future environmental change.
Collapse
Affiliation(s)
- Hocine Ait Mouheb
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Leila Kadik
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Cécile Hélène Albert
- CNRSIRDIMBEEuropôle Méditerranéen de l'ArboisAix Marseille UnivUniv AvignonAix‐en‐Provence Cedex 04France
| | - Rachda Berrached
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Andreas Prinzing
- Research Unit “Ecosystèmes Biodiversité, Evolution”Centre National de la Recherche ScientifiqueUniversity Rennes 1RennesFrance
| |
Collapse
|
43
|
Fozard S, Forde BG. Novel Micro-Phenotyping Approach to Chemical Genetic Screening for Increased Plant Tolerance to Abiotic Stress. Methods Mol Biol 2018; 1795:9-25. [PMID: 29846915 DOI: 10.1007/978-1-4939-7874-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studying the effects of small molecules on root system development in the context of a large-scale chemical genetic screen has previously been a technical challenge. The recent development of novel seedling growth devices ("Phytostrips"), used in combination with standard 96-well microtiter plates, has made it possible to perform detailed studies of changes in root morphology and root system architecture following the application of a library of chemical compounds. Phytostrips were originally designed to allow automated robotic capture of images of roots and shoots of the model species Arabidopsis thaliana, but can also be used for manual screens that are more laborious but do not require the investment in expensive robotics.Here we describe a protocol for the use of Phytostrips to perform chemical genetic screens that rely on clearly observable changes in root morphology or root system architecture. As an example, we describe the use of polyethylene glycol to impose an abiotic stress related to reduced water potential and the application of a chemical screen for small molecules that are able to rescue Arabidopsis root development from the disruptive effect of the polyethylene glycol treatment. The protocol we describe provides a template for the application of a multiplicity of other screens for compounds that can antagonize the effects of a range of abiotic stresses on root development.
Collapse
Affiliation(s)
- Susan Fozard
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| |
Collapse
|
44
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
45
|
Natural variation identifies genes affecting drought-induced abscisic acid accumulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:11536-11541. [PMID: 29073083 DOI: 10.1073/pnas.1705884114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulation of the stress hormone abscisic acid (ABA) in response to drought and low water-potential controls many downstream acclimation mechanisms. However, mechanisms controlling ABA accumulation itself are less known. There was a 10-fold range of variation in ABA levels among nearly 300 Arabidopsis thaliana accessions exposed to the same low water-potential severity. Genome-wide association analysis (GWAS) identified genomic regions containing clusters of ABA-associated SNPs. Candidate genes within these regions included few genes with known stress or ABA-related function. The GWAS data were used to guide reverse genetic analysis, which found effectors of ABA accumulation. These included plasma-membrane-localized signaling proteins such as receptor-like kinases, aspartic protease, a putative lipid-binding START domain protein, and other membrane proteins of unknown function as well as a RING U-box protein and possible effect of tonoplast transport on ABA accumulation. Putative loss-of-function polymorphisms within the START domain protein were associated with climate factors at accession sites of origin, indicating its potential involvement in drought adaptation. Overall, using ABA accumulation as a basis for a combined GWAS-reverse genetic strategy revealed the broad natural variation in low-water-potential-induced ABA accumulation and was successful in identifying genes that affect ABA levels and may act in upstream drought-related sensing and signaling mechanisms. ABA effector loci were identified even when each one was of incremental effect, consistent with control of ABA accumulation being distributed among the many branches of ABA metabolism or mediated by genes with partially redundant function.
Collapse
|
46
|
|
47
|
Bucksch A, Atta-Boateng A, Azihou AF, Battogtokh D, Baumgartner A, Binder BM, Braybrook SA, Chang C, Coneva V, DeWitt TJ, Fletcher AG, Gehan MA, Diaz-Martinez DH, Hong L, Iyer-Pascuzzi AS, Klein LL, Leiboff S, Li M, Lynch JP, Maizel A, Maloof JN, Markelz RJC, Martinez CC, Miller LA, Mio W, Palubicki W, Poorter H, Pradal C, Price CA, Puttonen E, Reese JB, Rellán-Álvarez R, Spalding EP, Sparks EE, Topp CN, Williams JH, Chitwood DH. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. FRONTIERS IN PLANT SCIENCE 2017; 8:900. [PMID: 28659934 PMCID: PMC5465304 DOI: 10.3389/fpls.2017.00900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/12/2017] [Indexed: 05/21/2023]
Abstract
The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.
Collapse
Affiliation(s)
- Alexander Bucksch
- Department of Plant Biology, University of Georgia, AthensGA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, AthensGA, United States
- Institute of Bioinformatics, University of Georgia, AthensGA, United States
| | | | - Akomian F. Azihou
- Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-CalaviCotonou, Benin
| | - Dorjsuren Battogtokh
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Aly Baumgartner
- Department of Geosciences, Baylor University, WacoTX, United States
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | | - Cynthia Chang
- Division of Biology, University of Washington, BothellWA, United States
| | - Viktoirya Coneva
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | - Thomas J. DeWitt
- Department of Wildlife and Fisheries Sciences–Department of Plant Pathology and Microbiology, Texas A&M University, College StationTX, United States
| | - Alexander G. Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of SheffieldSheffield, United Kingdom
| | - Malia A. Gehan
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | | | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, IthacaNY, United States
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West LafayetteIN, United States
| | - Laura L. Klein
- Department of Biology, Saint Louis University, St. LouisMO, United States
| | - Samuel Leiboff
- School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Mao Li
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University ParkPA, United States
| | - Alexis Maizel
- Center for Organismal Studies, Heidelberg UniversityHeidelberg, Germany
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - R. J. Cody Markelz
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - Ciera C. Martinez
- Department of Molecular and Cell Biology, University of California, Berkeley, BerkeleyCA, United States
| | - Laura A. Miller
- Program in Bioinformatics and Computational Biology, The University of North Carolina, Chapel HillNC, United States
| | - Washington Mio
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Wojtek Palubicki
- The Sainsbury Laboratory, University of CambridgeCambridge, United Kingdom
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, JülichGermany
| | | | - Charles A. Price
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Eetu Puttonen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of FinlandMasala, Finland
- Centre of Excellence in Laser Scanning Research, National Land Survey of FinlandMasala, Finland
| | - John B. Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Rubén Rellán-Álvarez
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV)Irapuato, Mexico
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin–Madison, MadisonWI, United States
| | - Erin E. Sparks
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, NewarkDE, United States
| | | | - Joseph H. Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | |
Collapse
|
48
|
|
49
|
Bucksch A, Atta-Boateng A, Azihou AF, Battogtokh D, Baumgartner A, Binder BM, Braybrook SA, Chang C, Coneva V, DeWitt TJ, Fletcher AG, Gehan MA, Diaz-Martinez DH, Hong L, Iyer-Pascuzzi AS, Klein LL, Leiboff S, Li M, Lynch JP, Maizel A, Maloof JN, Markelz RJC, Martinez CC, Miller LA, Mio W, Palubicki W, Poorter H, Pradal C, Price CA, Puttonen E, Reese JB, Rellán-Álvarez R, Spalding EP, Sparks EE, Topp CN, Williams JH, Chitwood DH. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28659934 DOI: 10.3389/978-2-88945-297-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.
Collapse
Affiliation(s)
- Alexander Bucksch
- Department of Plant Biology, University of Georgia, AthensGA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, AthensGA, United States
- Institute of Bioinformatics, University of Georgia, AthensGA, United States
| | | | - Akomian F Azihou
- Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-CalaviCotonou, Benin
| | - Dorjsuren Battogtokh
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Aly Baumgartner
- Department of Geosciences, Baylor University, WacoTX, United States
| | - Brad M Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | | - Cynthia Chang
- Division of Biology, University of Washington, BothellWA, United States
| | - Viktoirya Coneva
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | - Thomas J DeWitt
- Department of Wildlife and Fisheries Sciences-Department of Plant Pathology and Microbiology, Texas A&M University, College StationTX, United States
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of SheffieldSheffield, United Kingdom
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | | | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, IthacaNY, United States
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West LafayetteIN, United States
| | - Laura L Klein
- Department of Biology, Saint Louis University, St. LouisMO, United States
| | - Samuel Leiboff
- School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Mao Li
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University ParkPA, United States
| | - Alexis Maizel
- Center for Organismal Studies, Heidelberg UniversityHeidelberg, Germany
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - R J Cody Markelz
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - Ciera C Martinez
- Department of Molecular and Cell Biology, University of California, Berkeley, BerkeleyCA, United States
| | - Laura A Miller
- Program in Bioinformatics and Computational Biology, The University of North Carolina, Chapel HillNC, United States
| | - Washington Mio
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Wojtek Palubicki
- The Sainsbury Laboratory, University of CambridgeCambridge, United Kingdom
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, JülichGermany
| | | | - Charles A Price
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Eetu Puttonen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of FinlandMasala, Finland
- Centre of Excellence in Laser Scanning Research, National Land Survey of FinlandMasala, Finland
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Rubén Rellán-Álvarez
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV)Irapuato, Mexico
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, MadisonWI, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, NewarkDE, United States
| | | | - Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | |
Collapse
|
50
|
Royer M, Cohen D, Aubry N, Vendramin V, Scalabrin S, Cattonaro F, Bogeat-Triboulot MB, Hummel I. The build-up of osmotic stress responses within the growing root apex using kinematics and RNA-sequencing. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5961-5973. [PMID: 27702994 PMCID: PMC5100013 DOI: 10.1093/jxb/erw350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and RNA-sequencing were used to analyze the immediate growth response of hydroponically grown Populus nigra cuttings submitted to osmotic stress. About 7400 genes and unannotated transcriptionally active regions were differentially expressed between the division and elongation zones. Following the onset of stress, growth decreased sharply, probably due to mechanical effects, before recovering partially. Stress impaired cell expansion over the apex, progressively shortened the elongation zone, and reduced the cell production rate. Changes in gene expression revealed that growth reduction was mediated by a shift in hormone homeostasis. Osmotic stress rapidly elicited auxin, ethylene, and abscisic acid. When growth restabilized, transcriptome remodeling became complex and zone specific, with the deployment of hormone signaling cascades, transcriptional regulators, and stress-responsive genes. Most transcriptional regulations fit growth reduction, but stress also promoted expression of some growth effectors, including aquaporins and expansins Together, osmotic stress interfered with growth by activating regulatory proteins rather than by repressing the machinery of expansive growth.
Collapse
Affiliation(s)
- Mathilde Royer
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - David Cohen
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - Nathalie Aubry
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | | | | | | | | | - Irène Hummel
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| |
Collapse
|