1
|
Paschoal D, Cazetta L, Mendes JVO, Dias NCF, Ometto V, Carrera E, Rossi ML, Aricetti JA, Mieczkowski P, Carvalho GG, Cesarino I, da Silva SF, Ribeiro RV, Teixeira PJPL, da Silva EM, Figueira A. Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39806925 DOI: 10.1111/pce.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition. Intense stem swelling coincided with a reduction in root biomass, predominantly affecting lateral roots. RNA-seq analyses of root samples identified only a few differentially expressed genes involved in hormone metabolism, and root hormone levels were not expressively altered. Inoculation of the auxin highly-sensitive entire mutant genotype maintained the impaired root phenotype; in contrast, the low-cytokinin MT transgenic line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2) with fewer symptoms did not exhibit root growth impairment. Genes involved in cell wall, carbohydrate, and amino acid metabolism were downregulated, accompanied by lower levels of carbohydrate and amino acid in roots, suggesting a reduction in metabolite availability. 13CO2 was supplied to MT plants, and less 13C was detected in the roots of infected MT but not in those of 35S::AtCKX2 line plants, suggesting that cytokinin-mediated sugar sink establishment at the infection site may contribute to impaired root growth. Exogenous sucrose application to roots of infected MT plants partially restored root growth. We propose that the impairment of lateral root development is likely attributed to disrupted sugar signalling and photoassimilate supply by establishing a strong sugar sink at the infected stem.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Laura Cazetta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - João V O Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Nathália C F Dias
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Campinas, São Paulo, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Igor Cesarino
- Instituto de Biociências, USP, São Paulo, São Paulo, Brazil
- Synthetic and System Biology Center, Inova USP, São Paulo, São Paulo, Brazil
| | - Simone F da Silva
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Rafael V Ribeiro
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
3
|
Gou H, Lu S, Nai G, Ma W, Ren J, Guo L, Chen B, Mao J. The role of gibberellin synthase gene VvGA2ox7 acts as a positive regulator to salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:1051. [PMID: 39506686 PMCID: PMC11542264 DOI: 10.1186/s12870-024-05708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Soil salinity is an important environmental component affecting plant growth and yield, but high-salinity soils are a major constraint to the development of the grape industry. Previous studies have provided lines of evidence that gibberellins (GAs) play a significant regulatory role in plant responses to salt stress. However, it remains unclear whether GA2ox, a key enzyme that maintains the balance of bioactive gibberellins and intermediates in plants, is involved in the mechanism of salt stress tolerance in grapes. RESULTS In this study, we found that GA2ox7 positively modulates salt stress via its ectopic expression in Arabidopsis thaliana. The GA2ox7 gene cloned from grape was a hydrophilic protein, its CDS length was 1002 bp. Besides, VvGA2ox7 protein contained DIOX_N and 2OG-FeII_Oxy domains and was localized at the nucleus and cytoplasm. Yeast two-hybrid (Y2H) showed VvARCN1, VvB5R, VvRUB2, and VvCAR11 might be potential interaction proteins of VvGA2ox7. Compared with the wild type, overexpression of VvGA2ox7 in Arabidopsis thaliana enhanced antioxidant enzymatic activities and proline, chlorophyll, and ABA contents, and decreased relative electrical conductivity, malondialdehyde, and GA3 contents. Moreover, overexpression of VvGA2ox7 positively regulated the expression of salt stress response genes (KAT1, APX1, LEA, P5CS1, AVP1, CBF1), indicating that the VvGA2ox7 overexpression improved the salt stress tolerance of plants. CONCLUSIONS Taken together, this investigation indicates that VvGA2ox7 may act as a positive regulator in response to salt stress and provide novel insights for a deeper understanding of the role of VvGA2ox7 in grapes.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China.
| |
Collapse
|
4
|
Maupilé L, Chaib J, Boualem A, Bendahmane A. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. TRENDS IN PLANT SCIENCE 2024; 29:1254-1265. [PMID: 39034223 DOI: 10.1016/j.tplants.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.
Collapse
Affiliation(s)
- Lea Maupilé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Vilmorin & Cie, Route d'Ennezat, 63720 Chappes, France
| | - Jamila Chaib
- Vilmorin & Cie, Paraje La Reserva, 04725 La Mojonera, Spain
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
5
|
Deng J, Deng X, Yao H, Ji S, Dong L. Gibberellins Play an Essential Role in the Bud Growth of Petunia hybrida. Curr Issues Mol Biol 2024; 46:9906-9915. [PMID: 39329942 PMCID: PMC11430761 DOI: 10.3390/cimb46090590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
This study delves into the role of gibberellin (GA) in governing plant branch development, a process that remains incompletely understood. Through a combination of exogenous hormone treatment, gene expression analysis, and transgenic phenotype investigations, the impact of GA on petunia's branch development was explored. The results showed that GA3 alone did not directly induce axillary bud germination. However, paclobutrazol (PAC), an inhibitor of GA synthesis, effectively inhibited bud growth. Interestingly, the simultaneous application of GA3 and 6-BA significantly promoted bud growth in both intact and decapitated plants compared to using 6-BA alone. Moreover, this study observed a significant downregulation of GA synthesis genes, including GA20ox1, GA20ox2, GA20ox3, GA3ox1, and CPS1, alongside an upregulation of GA degradation genes such as GA2ox2, GA2ox4, and GA2ox8. The expression of GA signal transduction gene GID1 and GA response factor RGA was found to be upregulated. Notably, the PhGID1 gene, spanning 1029 bp and encoding 342 amino acids, exhibited higher expression in buds and the lowest expression in leaves. The overexpression of PhGID1 in Arabidopsis resulted in a noteworthy rise in the number of branches. This study highlights the crucial role of GA in bud germination and growth and the positive regulatory function of GA signaling in shoot branching processes.
Collapse
Affiliation(s)
| | | | | | | | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.D.); (X.D.); (H.Y.); (S.J.)
| |
Collapse
|
6
|
Guan H, Yang X, Lin Y, Xie B, Zhang X, Ma C, Xia R, Chen R, Hao Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1404980. [PMID: 39119498 PMCID: PMC11306060 DOI: 10.3389/fpls.2024.1404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
Collapse
Affiliation(s)
- Hongling Guan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoxing Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinyue Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Garg R, Mahato H, Choudhury U, Thakur RS, Debnath P, Ansari NG, Sane VA, Sane AP. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:848-862. [PMID: 38127946 PMCID: PMC10955490 DOI: 10.1111/pbi.14228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.
Collapse
Affiliation(s)
- Rashmi Garg
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Hrishikesh Mahato
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Upasana Choudhury
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ravindra S. Thakur
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Pratima Debnath
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Nasreen G. Ansari
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Vidhu A. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
8
|
Kaur Y, Das N. Gibberellin 2-Oxidases in Potato (Solanum tuberosum L.): Cloning, Characterization, In Silico Analysis and Molecular Docking. Mol Biotechnol 2024; 66:902-917. [PMID: 37061992 DOI: 10.1007/s12033-023-00745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Gibberellins (GAs; tetracyclic di-terpenoid carboxylic acids) are endogenous plant growth regulators responsible for stimulating plant growth and development from seed germination to plant maturity. In potato (Solanum tuberosum L.), GA levels are known to be crucial in the complex process of tuberization. Gibberellin 2-oxidases (GA2oxs) inactivate bioactive GAs during stolon swelling and early stages of tuberization as evident from the predominant expression of a member of this gene family namely GA2ox1. We isolated and characterized a 1105-bp cDNA clone encoding a 340-aa GA2ox1 form, designated St-GA2ox1, using total RNA from growing tuber of a potato (Solanum tuberosum L.) cultivar, Kufri Chipsona-1 (KC-1) based on RT-PCR approach. A total of 26 GA2ox sequences were also retrieved from potato genome database and analysed. Multiple sequence alignment revealed sequence relatedness between the GA2oxs. Crucial protein motifs were identified. Phylogenetic analysis revealed the evolutionary relationships between the GA2oxs. Three-dimensional structure of St-GA2ox1 was predicted by using AlphaFold tool, validated by the predicted local-distance difference test and Ramachandran Plot. Structural analysis and molecular docking were carried out to identify domains, binding sites and affinity for the ligand. The STRING database and hydropathy analysis revealed the presence of a putative interaction site for other enzymes. Expression Atlas database and semi-quantitative RT-PCR revealed the expression patterns of various GA2ox forms in different potato organs. This comprehensive report would be useful in providing new insights into possible underlying mechanisms involved in tuber development, and could facilitate the targeted alteration of genes responsible to combat the stress and enhance tuber production.
Collapse
Affiliation(s)
- Yadveer Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
9
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Chen Y, Ling Q, Li X, Ma Q, Tang S, Yuanzhi P, Liu QL, Jia Y, Yong X, Jiang B. Transcriptome analysis during axillary bud growth in chrysanthemum ( chrysanthemum× morifolium). PeerJ 2023; 11:e16436. [PMID: 38111658 PMCID: PMC10726743 DOI: 10.7717/peerj.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/19/2023] [Indexed: 12/20/2023] Open
Abstract
The chrysanthemum DgLsL gene, homologous with tomato Ls, is one of the earliest expressed genes controlling axillary meristem initiation. In this study, the wild-type chrysanthemum (CW) and DgLsL-overexpressed line 15 (C15) were used to investigate the regulatory mechanism of axillary bud development in chrysanthemum. Transcriptome sequencing was carried out to detect the differentially expressed genes of the axillary buds 0 h, 24 h and 48 h after decapitation. The phenotypic results showed that the number of axillary buds of C15 was significantly higher than CW. A total of 9,224 DEGs were identified in C15-0 vs. CW-0, 10,622 DEGs in C15-24 vs. CW-24, and 8,929 DEGs in C15-48 vs. CW-48.GO and KEGG pathway enrichment analyses showed that the genes of the flavonoid, phenylpropanoids and plant hormone pathways appeared to be differentially expressed, indicating their important roles in axillary bud germination. DgLsL reduces GA content in axillary buds by promoting GA2ox expression.These results confirmed previous studies on axillary bud germination and growth, and revealed the important roles of genes involved in plant hormone biosynthesis and signal transduction, aiding in the study of the gene patterns involved in axillary bud germination and growth.
Collapse
Affiliation(s)
- Yijun Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qin Ling
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qiqi Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - ShaoKang Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Pan Yuanzhi
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qing-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| |
Collapse
|
11
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
13
|
Barrera-Rojas CH, Vicente MH, Pinheiro Brito DA, Silva EM, Lopez AM, Ferigolo LF, do Carmo RM, Silva CMS, Silva GFF, Correa JPO, Notini MM, Freschi L, Cubas P, Nogueira FTS. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5124-5139. [PMID: 37347477 DOI: 10.1093/jxb/erad238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Mateus Henrique Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Aitor Muñoz Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Rafael Monteiro do Carmo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Carolina M S Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, CEP: 05508-090, Brazil
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| |
Collapse
|
14
|
Wang T, Li J, Jiang Y, Zhang J, Ni Y, Zhang P, Yao Z, Jiao Z, Li H, Li L, Niu Y, Li Q, Yin G, Niu J. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 2023; 11:e15924. [PMID: 37671358 PMCID: PMC10476609 DOI: 10.7717/peerj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.
Collapse
Affiliation(s)
- Ting Wang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China, Shangqiu, China
| | - Peipei Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yufan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guihong Yin
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Tran LT, Sugimoto K, Kasozi M, Mitalo OW, Ezura H. Pollination, pollen tube growth, and fertilization independently contribute to fruit set and development in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1205816. [PMID: 37416886 PMCID: PMC10319911 DOI: 10.3389/fpls.2023.1205816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
In flowering plants, pollination, pollen tube growth, and fertilization are regarded as the first hierarchical processes of producing offspring. However, their independent contributions to fruit set and development remain unclear. In this study, we examined the effect of three different types of pollen, intact pollen (IP), soft X-ray-treated pollen (XP) and dead pollen (DP), on pollen tube growth, fruit development and gene expression in "Micro-Tom" tomato. Normal germination and pollen tube growth were observed in flowers pollinated with IP; pollen tubes started to penetrate the ovary at 9 h after pollination, and full penetration was achieved after 24 h (IP24h), resulting in ~94% fruit set. At earlier time points (3 and 6 h after pollination; IP3h and IP6h, respectively), pollen tubes were still in the style, and no fruit set was observed. Flowers pollinated with XP followed by style removal after 24 h (XP24h) also demonstrated regular pollen tubes and produced parthenocarpic fruits with ~78% fruit set. As expected, DP could not germinate and failed to activate fruit formation. Histological analysis of the ovary at 2 days after anthesis (DAA) revealed that IP and XP comparably increased cell layers and cell size; however, mature fruits derived from XP were significantly smaller than those derived from IP. Furthermore, there was a high correlation between seed number and fruit size in fruit derived from IP, illustrating the crucial role of fertilization in the latter stages of fruit development. RNA-Seq analysis was carried out in ovaries derived from IP6h, IP24h, XP24h and DP24h in comparison with emasculated and unpollinated ovaries (E) at 2 DAA. The results revealed that 65 genes were differentially expressed (DE) in IP6h ovaries; these genes were closely associated with cell cycle dormancy release pathways. Conversely, 5062 and 4383 DE genes were obtained in IP24h and XP24h ovaries, respectively; top enriched terms were mostly associated with cell division and expansion in addition to the 'plant hormone signal transduction' pathway. These findings indicate that full penetration of pollen tubes can initiate fruit set and development independently of fertilization, most likely by activating the expression of genes regulating cell division and expansion.
Collapse
Affiliation(s)
- Long T. Tran
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Koichi Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| | - Michael Kasozi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Oscar W. Mitalo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
Liu Y, Li Y, Guo H, Lv B, Feng J, Wang H, Zhang Z, Chai S. Gibberellin biosynthesis is required for CPPU-induced parthenocarpy in melon. HORTICULTURE RESEARCH 2023; 10:uhad084. [PMID: 37323228 PMCID: PMC10266944 DOI: 10.1093/hr/uhad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Spraying N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), an exogenous cytokinin (CK) growth regulator, is the conventional method for inducing fruit set during melon (Cucumis melo L.) production; however, the mechanism by which CPPU induces fruit set is unclear. Through histological and morphological observations, fruit size was comparable between CPPU-induced fruits and normal pollinated fruits because CPPU-induced fruits had higher cell density but smaller cell size compared with normal pollinated fruits. CPPU promotes the accumulation of gibberellin (GA) and auxin and decreases the level of abscisic acid (ABA) during fruit set. Moreover, application of the GA inhibitor paclobutrazol (PAC) partially inhibits CPPU-induced fruit set. Transcriptome analysis revealed that CPPU-induced fruit set specifically induced the GA-related pathway, in which the key synthase encoding gibberellin 20-oxidase 1 (CmGA20ox1) was specifically upregulated. Further study indicated that the two-component response regulator 2 (CmRR2) of the cytokinin signaling pathway, which is highly expressed at fruit setting, positively regulates the expression of CmGA20ox1. Collectively, our study determined that CPPU-induced melon fruit set is dependent on GA biosynthesis, providing a theoretical basis for the creation of parthenocarpic melon germplasm.
Collapse
Affiliation(s)
| | | | | | - Bingsheng Lv
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Feng
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Huihui Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Sen Chai
- Corresponding authors: E-mail: ;
| |
Collapse
|
17
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Wu W, Zhu L, Wang P, Liao Y, Duan L, Lin K, Chen X, Li L, Xu J, Hu H, Xu ZF, Ni J. Transcriptome-Based Construction of the Gibberellin Metabolism and Signaling Pathways in Eucalyptus grandis × E. urophylla, and Functional Characterization of GA20ox and GA2ox in Regulating Plant Development and Abiotic Stress Adaptations. Int J Mol Sci 2023; 24:ijms24087051. [PMID: 37108215 PMCID: PMC10138970 DOI: 10.3390/ijms24087051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Gibberellins (GAs) are the key regulators controlling plant growth, wood production and the stress responses in perennial woody plants. The role of GA in regulating the above-mentioned processes in Eucalyptus remain largely unclear. There is still a lack of systematic identification and functional characterization of GA-related genes in Eucalyptus. In this study, a total of 59,948 expressed genes were identified from the major vegetative tissues of the E. grandis × E. urophylla using transcriptome sequencing. Then, the key gene families in each step of GA biosynthesis, degradation and signaling were investigated and compared with those of Arabidopsis, rice, and Populus. The expression profile generated using Real-time quantitative PCR showed that most of these genes exhibited diverse expression patterns in different vegetative organs and in response to abiotic stresses. Furthermore, we selectively overexpressed EguGA20ox1, EguGA20ox2 and EguGA2ox1 in both Arabidopsis and Eucalyptus via Agrobacterium tumefaciens or A. rhizogenes-mediated transformation. Though both Arabidopsis EguGA20ox1- and EguGA20ox2-overexpressing (OE) lines exhibited better vegetative growth performance, they were more sensitive to abiotic stress, unlike EguGA2ox1-OE plants, which exhibited enhanced stress resistance. Moreover, overexpression of EguGA20ox in Eucalyptus roots caused significantly accelerated hairy root initiation and elongation and improved root xylem differentiation. Our study provided a comprehensive and systematic study of the genes of the GA metabolism and signaling and identified the role of GA20ox and GA2ox in regulating plant growth, stress tolerance, and xylem development in Eucalyptus; this could benefit molecular breeding for obtaining high-yield and stress-resistant Eucalyptus cultivars.
Collapse
Affiliation(s)
- Wenfei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Linhui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Pan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jiajing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Seedlessness Trait and Genome Editing—A Review. Int J Mol Sci 2023; 24:ijms24065660. [PMID: 36982733 PMCID: PMC10057249 DOI: 10.3390/ijms24065660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.
Collapse
|
20
|
Cheng Y, Liang C, Qiu Z, Zhou S, Liu J, Yang Y, Wang R, Yin J, Ma C, Cui Z, Song J, Li D. Jasmonic acid negatively regulates branch growth in pear. FRONTIERS IN PLANT SCIENCE 2023; 14:1105521. [PMID: 36824194 PMCID: PMC9941643 DOI: 10.3389/fpls.2023.1105521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The quality of seedlings is an important factor for development of the pear industry. A strong seedling with few branches and suitable internodes is ideal material as a rootstock for grafting and breeding. Several branching mutants of pear rootstocks were identified previously. In the present study, 'QAU-D03' (Pyrus communis L.) and it's mutants were used to explore the mechanism that affects branch formation by conducting phenotypic trait assessment, hormone content analysis, and transcriptome analysis. The mutant plant (MP) showed fewer branches, shorter 1-year-old shoots, and longer petiole length, compared to original plants (OP), i.e., wild type. Endogenous hormone analysis revealed that auxin, cytokinin, and jasmonic acid contents in the stem tips of MP were significantly higher than those of the original plants. In particular, the jasmonic acid content of the MP was 1.8 times higher than that of the original plants. Transcriptome analysis revealed that PcCOI1, which is a transcriptional regulatory gene downstream of the jasmonic acid signaling pathway, was expressed more highly in the MP than in the original plants, whereas the expression levels of PcJAZ and PcMYC were reduced in the MP compared with that of the original plants. In response to treatment with exogenous methyl jasmonate, the original plants phenotype was consistent with that of the MP in developing less branches. These results indicate that jasmonic acid negatively regulates branch growth of pear trees and that jasmonic acid downstream regulatory genes play a crucial role in regulating branching.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Siqi Zhou
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jie Yin
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chunhui Ma
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhenhua Cui
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiankun Song
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Guan J, Li J, Yao Q, Liu Z, Feng H, Zhang Y. Identification of two tandem genes associated with primary rosette branching in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1083528. [PMID: 36600928 PMCID: PMC9806259 DOI: 10.3389/fpls.2022.1083528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Branching is an important agronomic trait determining plant architecture and yield; however, the molecular mechanisms underlying branching in the stalk vegetable, flowering Chinese cabbage, remain unclear. The present study identified two tandem genes responsible for primary rosette branching in flowering Chinese cabbage by GradedPool-Seq (GPS) combined with Kompetitive Allele Specific PCR (KASP) genotyping. A 900 kb candidate region was mapped in the 28.0-28.9 Mb interval of chromosome A07 through whole-genome sequencing of three graded-pool samples from the F2 population derived by crossing the branching and non-branching lines. KASP genotyping narrowed the candidate region to 24.6 kb. Two tandem genes, BraA07g041560.3C and BraA07g041570.3C, homologous to AT1G78440 encoding GA2ox1 oxidase, were identified as the candidate genes. The BraA07g041560.3C sequence was identical between the branching and non-branching lines, but BraA07g041570.3C had a synonymous single nucleotide polymorphic (SNP) mutation in the first exon (290th bp, A to G). In addition, an ERE cis-regulatory element was absent in the promoter of BraA07g041560.3C, and an MYB cis-regulatory element in the promoter of BraA07g041570.3C in the branching line. Gibberellic acid (GA3) treatment decreased the primary rosette branch number in the branching line, indicating the significant role of GA in regulating branching in flowering Chinese cabbage. These results provide valuable information for revealing the regulatory mechanisms of branching and contributing to the breeding programs of developing high-yielding species in flowering Chinese cabbage.
Collapse
|
22
|
Molesini B, Pennisi F, Cressoni C, Vitulo N, Dusi V, Speghini A, Pandolfini T. Nanovector-mediated exogenous delivery of dsRNA induces silencing of target genes in very young tomato flower buds. NANOSCALE ADVANCES 2022; 4:4542-4553. [PMID: 36341284 PMCID: PMC9595187 DOI: 10.1039/d2na00478j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.
Collapse
Affiliation(s)
- B Molesini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - F Pennisi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - C Cressoni
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - V Dusi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - A Speghini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - T Pandolfini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| |
Collapse
|
23
|
Zhang X, Zhao B, Sun Y, Feng Y. Effects of gibberellins on important agronomic traits of horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:978223. [PMID: 36267949 PMCID: PMC9578688 DOI: 10.3389/fpls.2022.978223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Horticultural plants such as vegetables, fruits, and ornamental plants are crucial to human life and socioeconomic development. Gibberellins (GAs), a class of diterpenoid compounds, control numerous developmental processes of plants. The roles of GAs in regulating growth and development of horticultural plants, and in regulating significant progress have been clarified. These findings have significant implications for promoting the quality and quantity of the products of horticultural plants. Here we review recent progress in determining the roles of GAs (including biosynthesis and signaling) in regulating plant stature, axillary meristem outgrowth, compound leaf development, flowering time, and parthenocarpy. These findings will provide a solid foundation for further improving the quality and quantity of horticultural plants products.
Collapse
Affiliation(s)
- Xiaojia Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Baolin Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China
| | - Yibo Sun
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Li L, Xie C, Zong J, Guo H, Li D, Liu J. Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass ( Eremochloa ophiuroides (Munro) Hack.). Int J Mol Sci 2022; 23:ijms231911580. [PMID: 36232880 PMCID: PMC9569434 DOI: 10.3390/ijms231911580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.
Collapse
|
25
|
Mandal NK, Kumari K, Kundu A, Arora A, Bhowmick PK, Iquebal MA, Jaiswal S, Behera TK, Munshi AD, Dey SS. Cross-talk between the cytokinin, auxin, and gibberellin regulatory networks in determining parthenocarpy in cucumber. Front Genet 2022; 13:957360. [PMID: 36092914 PMCID: PMC9459115 DOI: 10.3389/fgene.2022.957360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cucumber is a model plant for studying parthenocarpy with abundant slicing- and pickling-type germplasm. This study was undertaken to understand the role of the important cytokines (CKs), auxin (AUX) and gibberellin (GA) biosynthesis and degradation genes for the induction of parthenocarpy in slicing and pickling germplasm. Two genotypes of gynoecious parthenocarpic cucumber, PPC-6 and DG-8, along with an MABC-derived gynoecious non-parthenocarpic line, IMPU-1, were evaluated in this study. The slicing and pickling cucumber genotypes PPC-6 and DG-8 were strongly parthenocarpic in nature and set fruit normally without pollination. Endogenous auxin and gibberellin were significantly higher in parthenocarpic than non-parthenocarpic genotypes, whereas the concentration of cytokinins varied among the genotypes at different developmental stages. However, the exogenous application of Zeatin and IAA + Zeatin was effective in inducing parthenocarpic fruit in IMPU-1. Expression analysis with important CK, AUX, and GA biosynthesis-related genes was conducted in IMPU-1, PPC-6, and DG-8. The expression of the CK synthase, IPT, IPT3, PaO, LOG1, LOG2, CYP735A1, and CYP735A2 was up-regulated in the parthenocarpic genotypes. Among the transcription factor response regulators (RRs), positive regulation of CSRR8/9b, CSRR8/9d, CSRR8/9e, and CSRR16/17 and negative feedback of the CK signalling genes, such as CsRR3/4a, CsRR3/4b, CsRR8/9a, and CsRR8/9c, were recorded in the parthenocarpic lines. Homeostasis between cytokinin biosynthesis and degradation genes such as CK oxidases (CKXs) and CK dehydrogenase resulted in a non-significant difference in the endogenous CK concentration in the parthenocarpic and non-parthenocarpic genotypes. In addition, up-regulation of the key auxin-inducing proteins and GA biosynthesis genes indicated their crucial role in the parthenocarpic fruit set of cucumber. This study establishes the critical role of the CKs, AUX, and GA regulatory networks and their cross-talk in determining parthenocarpy in slicing and pickling cucumber genotypes.
Collapse
Affiliation(s)
- Neha Kumari Mandal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prolay K. Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shyam S. Dey, , ; A. D. Munshi,
| | - Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shyam S. Dey, , ; A. D. Munshi,
| |
Collapse
|
26
|
Paschoal D, Costa JL, da Silva EM, da Silva FB, Capelin D, Ometto V, Aricetti JA, Carvalho GG, Pimpinato RF, de Oliveira RF, Carrera E, López-Díaz I, Rossi ML, Tornisielo V, Caldana C, Riano-Pachon DM, Cesarino I, Teixeira PJPL, Figueira A. Infection by Moniliophthora perniciosa reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3651-3670. [PMID: 35176760 DOI: 10.1093/jxb/erac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Fábia B da Silva
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Diogo Capelin
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil
| | - Gabriel G Carvalho
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo F Pimpinato
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Ricardo F de Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Isabel López-Díaz
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Valdemar Tornisielo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Diego M Riano-Pachon
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Igor Cesarino
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
27
|
Mesara SN, Dave KP, Subramanian RB. Comparative transcriptome analysis elucidates positive physiological effects of foliar application of pyraclostrobin on tomato ( Solanum lycopersicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:971-986. [PMID: 35722521 PMCID: PMC9203623 DOI: 10.1007/s12298-022-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
Strobilurins, including pyraclostrobin have frequently been reported showing positive physiological effects in various agricultural crops apart from fungicidal activity. Present study elucidates comparative transcriptome analysis of control and pyraclostrobin treated tomato leaf and identifies metabolic pathways and key genes responsible for positive effects of pyraclostrobin on tomato. Pair-end raw reads, generated by Illumina Hi-seq platform were pre-processed and good quality reads were mapped onto tomato reference genome using HISAT2 alignment programme. Transcript assembly and quantification were performed using StringTie assembler. Differential Gene Expression analysis by DESeq2 identified 1,952 upregulated genes including genes encoding pathogenesis related proteins and 835 downregulated genes. RT-PCR study showed increase in expression of RBCs (2.5-fold), GA20o (3-fold), and NR (1.4-fold) genes, which are the key genes of photosynthesis, gibberellic acid synthesis, and nitrogen assimilation pathways respectively identified in KEGG pathway analysis. Pyraclostrobin treated plants showed 1.6-folds increase in plant height, 3.3-folds increase in number of leaves, and 2.8-folds increase in number of flowers. Total protein content increased 1.7, 1.4, 1.2, 1.2, and 1.4 folds at 1 day after application (DAA), 4DAA, 7DAA, 10DAA, and 13DAA respectively in treated plants. Moreover, content of phenol also increased 1.14, 1.5, 2.4, and 1.5 folds in 4DAA, 7DAA, 10DAA, and 13DAA respectively. Nitrate reductase activity increased 2-fold, 1.8-fold, 1.5-fold and 1.15-fold in 1DAA, 7DAA, 10DAA and 13DAA respectively. Carbohydrate decreased in treated plants up to 7DAA. The present study is the first report of transcriptome analysis elucidating positive physiological effects of strobilurin on plant. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01191-7.
Collapse
Affiliation(s)
- Sureshkumar N. Mesara
- Department of Biosciences, Sardar Patel University, Satellite campus, Bakrol-Vadtal road, Bakrol, Anand, Gujarat 388315 India
| | - Kirtan P. Dave
- Indukaka Ipcowala Centre of Interdisciplinary Studies in Science and Technology–IICISST, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388120 India
| | - Ramalingam B. Subramanian
- Department of Biosciences, Sardar Patel University, Satellite campus, Bakrol-Vadtal road, Bakrol, Anand, Gujarat 388315 India
| |
Collapse
|
28
|
Gao L, Hao N, Wu T, Cao J. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality. FRONTIERS IN PLANT SCIENCE 2022; 13:836515. [PMID: 35371173 PMCID: PMC8964363 DOI: 10.3389/fpls.2022.836515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The quality of vegetables is facing new demands in terms of diversity and nutritional health. Given the improvements in living standards and the quality of consumed products, consumers are looking for vegetable products that maintain their nutrition, taste, and visual qualities. These requirements are directing scientists to focus on vegetable quality in breeding research. Thus, in recent years, research on vegetable quality has been widely carried out, and many applications have been developed via gene manipulation. In general, vegetable quality traits can be divided into three parts. First, commodity quality, which is most related to the commerciality of plants, refers to the appearance of the product. The second is flavor quality, which usually represents the texture and flavor of vegetables. Third, nutritional quality mainly refers to the contents of nutrients and health ingredients such as soluble solids (sugar), vitamin C, and minerals needed by humans. With biotechnological development, researchers can use gene manipulation technologies, such as molecular markers, transgenes and gene editing to improve the quality of vegetables. This review attempts to summarize recent studies on major vegetable crops species, with Brassicaceae, Solanaceae, and Cucurbitaceae as examples, to analyze the present situation of vegetable quality with the development of modern agriculture.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ning Hao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
29
|
Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:322-339. [PMID: 34728415 DOI: 10.1016/j.molp.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The gibberellins (GAs) are phytohormones that play fundamental roles in almost every aspect of plant growth and development. Although GA biosynthetic and signaling pathways are well understood, the mechanisms that control GA homeostasis remain largely unclear in plants. Here, we demonstrate that the homeobox transcription factor (TF) HB40 of the HD-Zip family regulates GA content at two additive control levels in Arabidopsis thaliana. We show that HB40 expression is induced by GA and in turn reduces the levels of endogenous bioactive GAs by simultaneously reducing GA biosynthesis and increasing GA deactivation. Consistently, HB40 overexpression leads to typical GA-deficiency traits, such as small rosettes, reduced plant height, delayed flowering, and male sterility. By contrast, a loss-of-function hb40 mutation enhances GA-controlled growth. Genome-wide RNA sequencing combined with molecular-genetic analyses revealed that HB40 directly activates the transcription of JUNGBRUNNEN1 (JUB1), a key TF that represses growth by suppressing GA biosynthesis and signaling. HB40 also activates genes encoding GA 2-oxidases (GA2oxs), which are major GA-catabolic enzymes. The effect of HB40 on plant growth is ultimately mediated through the induction of nuclear growth-repressing DELLA proteins. Collectively, our results reveal the important role of the HB40-JUB1 regulatory network in controlling GA homeostasis during plant growth.
Collapse
Affiliation(s)
- Shuchao Dong
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maryna Welsch
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Saurabh Gupta
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
30
|
Chen L, Li J, Zhu Y, Guo L, Ji R, Miao Y, Guo L, Du H, Liu D. Caffeic Acid, an Allelochemical in Artemisia argyi, Inhibits Weed Growth via Suppression of Mitogen-Activated Protein Kinase Signaling Pathway and the Biosynthesis of Gibberellin and Phytoalexin. FRONTIERS IN PLANT SCIENCE 2022; 12:802198. [PMID: 35069660 PMCID: PMC8770944 DOI: 10.3389/fpls.2021.802198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Artemisia argyi is widely distributed in Asia, and it often becomes the dominant population in the field because of its strong ecological niche competitiveness. Allelochemicals secreted by plants are generally considered an important reason for their dominance in ecological competition. In this study, the allelochemicals in A. argyi were screened by a series of experiments and their mechanisms were explored via transcriptomics. First, the inhibitory effects of A. argyi on Echinochloa crusgalli, Setaria viridis, Portulaca oleracea and Amaranthus retroflexus were evaluated. Then, we carried out a qualitative and quantitative analysis of the chemical composition of the aqueous extract of A. argyi to screen for potential allelochemicals that can inhibit weed growth. Four potential allelochemicals were quantified: neochlorogenic acid (5-CQA), chlorogenic acid (3-CQA), cryptochlorogenic acid (4-CQA), and caffeic acid (CA). Coincidentally, their allelopathic effects on weeds seemed to be identical to their content, in the order CA>4-CQA>5-CQA>3-CQA. These findings suggested that CA might be the main allelopathic compound in the aqueous extract of A. argyi. Subsequently, the allelopathic effect and molecular mechanism of CA on S. viridis leaves were investigated. The physiological results showed that CA significantly induced reactive oxygen species (ROS) production, led to malondialdehyde (MDA) accumulation, and disrupted enzyme activities (POD, SOD, CAT) in S. viridis leaves. Moreover, transcriptome results revealed that CA inhibited S. viridis growth by downregulating multiple genes involved in gibberellin (GA) and phytoalexin biosynthesis and Mitogen-activated protein kinase (MAPK) signaling pathways. In addition, differentially expressed genes (DEGs) related to the biosynthesis and signaling pathways of phytohormones were verified by Quantitative Real-Time PCR (RT-qPCR). Taken together, this study may be the first to identify allelochemicals and explore their molecular mechanism about A. argyi. Importantly, the ecological advantages of A. argyi could be applied to ecological regulation and the development of botanical herbicides.
Collapse
Affiliation(s)
- Le Chen
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Jinxin Li
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunyun Zhu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Lujuan Guo
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongsheng Ji
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuhuan Miao
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongzhi Du
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Dahui Liu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
31
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
32
|
Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, Guo WW, Wu XM, Kang C. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. PLANT PHYSIOLOGY 2021; 186:1970-1984. [PMID: 33890635 PMCID: PMC8331164 DOI: 10.1093/plphys/kiab184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Axillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary bud and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown. Here, we identified and characterized loss of axillary meristems (lam), an ethyl methanesulfonate-induced mutant of the diploid woodland strawberry (Fragaria vesca) that lacked stamens in flowers and had reduced numbers of branch crowns and runners. The reduced branch crown and runner phenotypes were caused by a failure of axillary meristem initiation. The causative mutation of lam was located in FvH4_3g41310, which encodes a GRAS transcription factor, and was validated by a complementation test. lamCR mutants generated by CRISPR/Cas9 produced flowers without stamens and had fewer runners than the wild-type. LAM was broadly expressed in meristematic tissues. Gibberellic acid (GA) application induced runner outgrowth from the remaining buds in lam, but failed to do so at the empty axils of lam. In contrast, treatment with the GA biosynthesis inhibitor paclobutrazol converted the runners into branch crowns. Moreover, genetic studies indicated that lam is epistatic to suppressor of runnerless (srl), a mutant of FveRGA1 in the GA pathway, during runner formation. Our results demonstrate that LAM is required for stamen and runner formation and acts sequentially with GA from bud initiation to runner outgrowth, providing insights into the molecular regulation of these economically important organs in strawberry.
Collapse
Affiliation(s)
- Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiqi Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
33
|
Hu L, Wang P, Hao Z, Lu Y, Xue G, Cao Z, Qu H, Cheng T, Shi J, Chen J. Gibberellin Oxidase Gene Family in L. chinense: Genome-Wide Identification and Gene Expression Analysis. Int J Mol Sci 2021; 22:ijms22137167. [PMID: 34281216 PMCID: PMC8268368 DOI: 10.3390/ijms22137167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.
Collapse
Affiliation(s)
- Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Pengkai Wang
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China;
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Guoxia Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Zijian Cao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Haoxian Qu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
- Correspondence: ; Tel.: +86-025-85428817-83
| |
Collapse
|
34
|
Costa JL, Paschoal D, da Silva EM, Silva JS, do Carmo RM, Carrera E, López-Díaz I, Rossi ML, Freschi L, Mieczkowski P, Peres LEP, Teixeira PJPL, Figueira A. Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao, interferes with cytokinin metabolism during infection of Micro-Tom tomato and promotes symptom development. THE NEW PHYTOLOGIST 2021; 231:365-381. [PMID: 33826751 DOI: 10.1111/nph.17386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.
Collapse
Affiliation(s)
- Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Jamille S Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Rafael M do Carmo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, Valencia, 46022, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, Valencia, 46022, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, R. do Matão 321, São Paulo, SP, 05508-090, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Lazaro E P Peres
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
35
|
Saidi A, Hajibarat Z. Phytohormones: plant switchers in developmental and growth stages in potato. J Genet Eng Biotechnol 2021; 19:89. [PMID: 34142228 PMCID: PMC8211815 DOI: 10.1186/s43141-021-00192-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Potato is one of the most important food crops worldwide, contributing key nutrients to the human diet. Plant hormones act as vital switchers in the regulation of various aspects of developmental and growth stages in potato. Due to the broad impacts of hormones on many developmental processes, their role in potato growth and developmental stages has been investigated. This review presents a description of hormonal basic pathways, various interconnections between hormonal network and reciprocal relationships, and clarification of molecular events underlying potato growth. In the last decade, new findings have emerged regarding their function during sprout development, vegetative growth, tuber initiation, tuber development, and maturation in potato. Hormones can control the regulation of various aspects of growth and development in potato, either individually or in combination with other hormones. The molecular characterization of interplay between cytokinins (CKs), abscisic acid (ABA), and auxin and/or gibberellins (GAs) during tuber formation requires further undertaking. Recently, new evidences regarding the relative functions of hormones during various stages and an intricate network of several hormones controlling potato tuber formation are emerging. Although some aspects of their functions are widely covered, remarkable breaks in our knowledge and insights yet exist in the regulation of hormonal networks and their interactions during different stages of growth and various aspects of tuber formation. SHORT CONCLUSION The present review focuses on the relative roles of hormones during various developmental stages with a view to recognize their mechanisms of function in potato tuber development. For better insight, relevant evidences available on hormonal interaction during tuber development in other species are also described. We predict that the present review highlights some of the conceptual developments in the interplay of hormones and their associated downstream events influencing tuber formation.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
36
|
Wang H, Zhang H, Liang F, Cong L, Song L, Li X, Zhai R, Yang C, Wang Z, Ma F, Xu L. PbEIL1 acts upstream of PbCysp1 to regulate ovule senescence in seedless pear. HORTICULTURE RESEARCH 2021; 8:59. [PMID: 33750791 PMCID: PMC7943805 DOI: 10.1038/s41438-021-00491-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 05/07/2023]
Abstract
Numerous environmental and endogenous signals control the highly orchestrated and intricate process of plant senescence. Ethylene, a well-known inducer of senescence, has long been considered a key endogenous regulator of leaf and flower senescence, but the molecular mechanism of ethylene-induced ovule senescence has not yet been elucidated. In this study, we found that blockage of fertilization caused ovule abortion in the pear cultivar '1913'. According to transcriptome and phytohormone content data, ethylene biosynthesis was activated by pollination. At the same time, ethylene overaccumulated in ovules, where cells were sensitive to ethylene signals in the absence of fertilization. We identified a transcription factor in the ethylene signal response, ethylene-insensitive 3-like (EIL1), as a likely participant in ovule senescence. Overexpression of PbEIL1 in tomato caused precocious onset of ovule senescence. We further found that EIL1 could directly bind to the promoter of the SENESCENCE-ASSOCIATED CYSTEINE PROTEINASE 1 (PbCysp1) gene and act upstream of senescence. Yeast one-hybrid and dual-luciferase assays revealed the interaction of the transcription factor and the promoter DNA sequence and demonstrated that PbEIL1 enhanced the action of PbCysp1. Collectively, our results provide new insights into how ethylene promotes the progression of unfertilized ovule senescence.
Collapse
Affiliation(s)
- Huibin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Haiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Fangfang Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Linyan Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xieyu Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China.
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China.
| |
Collapse
|
37
|
Zhao N, Ze S, Liu N, Hu L, Ji M, Li Q, Yang B. Exogenous phytohormone application and transcriptome analysis of Mikania micrantha provides insights for a potential control strategy. Genomics 2021; 113:964-975. [PMID: 33610796 DOI: 10.1016/j.ygeno.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Effective and complete control of the invasive weed Mikania micrantha is required to avoid increasing damages. We exogenously applied indole 3-acetic acid (IAA), gibberellin (GA), and N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), and their combinations i.e. IAA + CPPU (IC), GA + CPPU (GC), and GA + IAA + CPPU (GIC), at 5, 10, 25, 50, and 75 ppm against distilled water as a control (CK), to examine their effects on the weed. The increasing concentrations of these hormones when applied alone or in combination were fatal to M. micrantha and led towards the death of inflorescences and/or florets. CPPU and GIC were found as the most effective phytohormones. Transcriptome analysis revealed differential regulation of genes in auxin, cytokinin, gibberellin and abscisic acid signaling pathways, suggesting their role in the prohibition of axillary bud differentiation. Collectively, CPPU and GIC at a high concentration (75 ppm) could be used as a control measure to protect forests and other lands from the invasion of M. micrantha.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Lianrong Hu
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Mei Ji
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Qiao Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
38
|
How Hormones and MADS-Box Transcription Factors Are Involved in Controlling Fruit Set and Parthenocarpy in Tomato. Genes (Basel) 2020; 11:genes11121441. [PMID: 33265980 PMCID: PMC7760363 DOI: 10.3390/genes11121441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/03/2023] Open
Abstract
Fruit set is the earliest phase of fruit growth and represents the onset of ovary growth after successful fertilization. In parthenocarpy, fruit formation is less affected by environmental factors because it occurs in the absence of pollination and fertilization, making parthenocarpy a highly desired agronomic trait. Elucidating the genetic program controlling parthenocarpy, and more generally fruit set, may have important implications in agriculture, considering the need for crops to be adaptable to climate changes. Several phytohormones play an important role in the transition from flower to fruit. Further complexity emerges from functional analysis of floral homeotic genes. Some homeotic MADS-box genes are implicated in fruit growth and development, displaying an expression pattern commonly observed for ovary growth repressors. Here, we provide an overview of recent discoveries on the molecular regulatory gene network underlying fruit set in tomato, the model organism for fleshy fruit development due to the many genetic and genomic resources available. We describe how the genetic modification of components of this network can cause parthenocarpy, discussing the contribution of hormonal signals and MADS-box transcription factors.
Collapse
|
39
|
Cao D, Barbier F, Yoneyama K, Beveridge CA. A Rapid Method for Quantifying RNA and Phytohormones From a Small Amount of Plant Tissue. FRONTIERS IN PLANT SCIENCE 2020; 11:605069. [PMID: 33329677 PMCID: PMC7717934 DOI: 10.3389/fpls.2020.605069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 05/23/2023]
Abstract
Phytohormones are involved in most plant physiological processes and the quantification of endogenous phytohormone levels and related gene expressions is an important approach to studying phytohormone functions. However, the quantification of phytohormones is still challenging due to their extremely low endogenous level in plant tissues and their high chemical diversity. Therefore, developing a method to simultaneously quantify phytohormone levels and RNA would strongly facilitate comparative analyses of phytohormones and gene expression. The present work reports a convenient extraction protocol enabling multivariate analysis of phytohormones and RNA from small amounts of plant material (around 10 mg). This high-throughput ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method demonstrates quantification of phytohormones and their related metabolites from four plant hormone classes: cytokinin, auxin, abscisic acid, and gibberellin. The UPLC-MS/MS method can quantify thirteen phytohormones and their metabolites simultaneously in 14 min. To validate the developed method, we determined the dynamic profiles of phytohormones and gene expressions in small axillary shoot buds in garden pea. This new method is applicable to quantification analysis of gene expression and multiple phytohormone classes in small amounts of plant materials. The results obtained using this method in axillary buds provide a basis for understanding the phytohormone functions in shoot branching regulation.
Collapse
Affiliation(s)
- Da Cao
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
40
|
Li R, Sun S, Wang H, Wang K, Yu H, Zhou Z, Xin P, Chu J, Zhao T, Wang H, Li J, Cui X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat Commun 2020; 11:5844. [PMID: 33203832 PMCID: PMC7673020 DOI: 10.1038/s41467-020-19705-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fruit firmness is a target trait in tomato breeding because it facilitates transportation and storage. However, it is also a complex trait and uncovering the molecular genetic mechanisms controlling fruit firmness has proven challenging. Here, we report the map-based cloning and functional characterization of qFIRM SKIN 1 (qFIS1), a major quantitative trait locus that partially determines the difference in compression resistance between cultivated and wild tomato accessions. FIS1 encodes a GA2-oxidase, and its mutation leads to increased bioactive gibberellin content, enhanced cutin and wax biosynthesis, and increased fruit firmness and shelf life. Importantly, FIS1 has no unfavorable effect on fruit weight or taste, making it an ideal target for breeders. Our study demonstrates that FIS1 mediates gibberellin catabolism and regulates fruit firmness, and it offers a potential strategy for tomato breeders to produce firmer fruit.
Collapse
Affiliation(s)
- Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongmin Zhao
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Zhang X, He L, Zhao B, Zhou S, Li Y, He H, Bai Q, Zhao W, Guo S, Liu Y, Chen J. Dwarf and Increased Branching 1 controls plant height and axillary bud outgrowth in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6355-6365. [PMID: 32964922 DOI: 10.1093/jxb/eraa364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retrotransposon Tnt1-tagged mutant collection of M. truncatula and identified dwarf and increased branching 1 (dib1), which exhibited extreme dwarfism and increased numbers of lateral branches. By analysis of the flanking sequences of Tnt1 insertions in different alleles of the tagged lines, we were able to clone DIB1. Linkage analysis and reverse screening of the flanking-sequence tags identified Medtr2g102570 as the gene corresponding to the DIB1 locus in the dib1 loss-of-function mutants. Phylogenetic analysis indicated that DIB1 was the ortholog of PsGA3ox1/Le in Pisum sativum. Expression analysis using a GUS-staining reporter line showed that DIB1 was expressed in the root apex, pods, and immature seeds. Endogenous GA4 concentrations were markedly decreased whilst some of representative GA biosynthetic enzymes were up-regulated in the dib1 mutant. In addition, exogenous application of GA3 rescued the dib1 mutant phenotypes. Overall, our results suggest that DIB1 controls plant height and axillary bud outgrowth via an influence on the biosynthesis of bioactive GAs. DIB1 could therefore be a good candidate gene for breeders to optimize plant architecture for crop improvement.
Collapse
Affiliation(s)
- Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| |
Collapse
|
42
|
Singh SK, Richmond MD, Pearce RC, Bailey WA, Hou X, Pattanaik S, Yuan L. Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development. PLANTA 2020; 252:64. [PMID: 32968874 DOI: 10.1007/s00425-020-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Transcriptomic analysis revealed maleic hydrazide suppresses apical and axillary bud development by altering the expression of genes related to meristem development, cell division, DNA replication, DNA damage and recombination, and phytohormone signaling. Topping (removal of apical buds) is a common agricultural practice for some crop plants including cotton, cannabis, and tobacco. Maleic hydrazide (MH) is a systemic suckercide, a chemical that inhibits shoot bud growth, used to control the growth of apical (ApB) and axillary buds (AxB) following topping. However, the influence of MH on gene expression and the underlying molecular mechanism of controlling meristem development are not well studied. Our RNA sequencing analysis showed that MH significantly influences the transcriptomic landscape in ApB and AxB of chemically topped tobacco. Gene ontology (GO) enrichment analysis revealed that upregulated genes in ApB were enriched for phosphorelay signal transduction, and the regulation of transition timing from vegetative to reproductive phase, whereas downregulated genes were largely associated with meristem maintenance, cytokinin metabolism, cell wall synthesis, photosynthesis, and DNA metabolism. In MH-treated AxB, GO terms related to defense response and oxylipin metabolism were overrepresented in upregulated genes. GO terms associated with cell cycle, DNA metabolism, and cytokinin metabolism were enriched in downregulated genes. Expression of KNOX and MADS transcription factor (TF) family genes, known to be involved in meristem development, were affected in ApB and AxB by MH treatment. The promoters of MH-responsive genes are enriched for several known cis-acting elements, suggesting the involvement of a subset of TF families. Our findings suggest that MH affects shoot bud development in chemically topped tobacco by altering the expression of genes related to meristem development, DNA repair and recombination, cell division, and phytohormone signaling.
Collapse
Affiliation(s)
- Sanjay K Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Mitchell D Richmond
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Canadian Tobacco Research Foundation, Tillsonburg, ON, N4G 4H5, Canada
| | - Robert C Pearce
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - William A Bailey
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xin Hou
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
- Department of Tobacco, College of Plant Protection, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai`an, 271018, China
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
43
|
Kim JS, Ezura K, Lee J, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153238. [PMID: 32707453 DOI: 10.1016/j.jplph.2020.153238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
Parthenocarpic fruit formation can be achieved through the inhibition of SlIAA9, a negative regulator of auxin signalling in tomato plant. During early fruit development under SlIAA9 inhibition, cell division and cell expansion were observed. Bioactive gibberellin (GA) accumulated, but indole-3-acetic acid (IAA) and trans-zeatin did not accumulate substantially. Furthermore, under SlIAA9 inhibition, auxin-responsive genes such as SlIAA2, -3, and -14 were upregulated, and SlARF7 was downregulated. These results indicate that SlIAA9 inhibition mimics an increase in auxin. The auxin biosynthesis genes SlTAR1, ToFZY, and ToFZY5 were stimulated by an increase in auxin and by auxin mimicking under SlIAA9 inhibition. However, SlTAR2 and ToFZY2 were upregulated only by pollination followed by high IAA accumulation. These results suggest that SlTAR2 and ToFZY2 play an important role in IAA synthesis in growing ovaries. GA synthesis was also activated by SlIAA9 inhibition through both the early-13-hydroxylation (for GA1 synthesis) and non-13-hydroxylation (GA4) pathways, indicating that fruit set caused by SlIAA9 inhibition was partially mediated by the GA pathway. SlIAA9 inhibition induced the expression of GA inactivation genes as well as GA biosynthesis genes except SlCPS during early parthenocarpic fruit development in tomato. This result suggests that inactivation genes play a role in fine-tuning the regulation of bioactive GA accumulation.
Collapse
Affiliation(s)
- Ji-Seong Kim
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Department of Environmental Horticulture, The University of Seoul, Seoulsiripdae‑ro 163, Dongdaemun‑gu, Seoul 130‑743, South Korea
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan
| | - Jeongeun Lee
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Department of Environmental Horticulture, The University of Seoul, Seoulsiripdae‑ro 163, Dongdaemun‑gu, Seoul 130‑743, South Korea
| | - Mikkiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
44
|
Lange T, Krämer C, Pimenta Lange MJ. The Class III Gibberellin 2-Oxidases AtGA2ox9 and AtGA2ox10 Contribute to Cold Stress Tolerance and Fertility. PLANT PHYSIOLOGY 2020; 184:478-486. [PMID: 32661062 PMCID: PMC7479881 DOI: 10.1104/pp.20.00594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/05/2020] [Indexed: 05/05/2023]
Abstract
Many developmental processes in plants are regulated by GA hormones. GA homeostasis is achieved via complex biosynthetic and catabolic pathways. GA catabolic enzymes include GA 2-oxidases that are classified into three classes. Members of class III GA 2-oxidases typically act on GA precursors containing a C20-skeleton. Here, we identified two further members of this class of GA 2-oxidases, namely AtGA2ox9 and AtGA2ox10, in the Arabidopsis (Arabidopsis thaliana) genome. Both genes encode enzymes that have functional similarities to AtGA2ox7 and AtGA2ox8, which are class III GA 2-oxidases that 2β-hydroxylate C20-GAs. Previously unknown for GA 2-oxidases, AtGA2ox9 performs 2α-hydroxylation of C19-GAs and harbors putative desaturating activity of C20-GAs. Additionally, AtGA2ox9 and AtGA2ox10 exhibit GA 20-oxidase activity. AtGA2ox9 oxidizes carbon-20 to form tricarboxylic acid C20-GAs, whereas AtGA2ox10 produces C19-GA9 AtGA2ox9 transcript levels increase after cold treatment and AtGA2ox10 is expressed mainly in the siliques of Arabidopsis plants. Atga2ox9 loss-of-function mutants are more sensitive to freezing temperatures, whereas Atga2ox10 loss-of-function mutants produce considerably more seeds per silique than wild-type plants. We conclude that in Arabidopsis, AtGA2ox9 contributes to freezing tolerance and AtGA2ox10 regulates seed production.
Collapse
Affiliation(s)
- Theo Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Carolin Krämer
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Maria João Pimenta Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
45
|
Ding Q, Wang F, Xue J, Yang X, Fan J, Chen H, Li Y, Wu H. Identification and Expression Analysis of Hormone Biosynthetic and Metabolism Genes in the 2OGD Family for Identifying Genes That May Be Involved in Tomato Fruit Ripening. Int J Mol Sci 2020; 21:ijms21155344. [PMID: 32731334 PMCID: PMC7432023 DOI: 10.3390/ijms21155344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Phytohormones play important roles in modulating tomato fruit development and ripening. The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily containing several subfamilies involved in hormone biosynthesis and metabolism. In this study, we aimed to identify hormone biosynthesis and metabolism-related to 2OGD proteins in tomato and explored their roles in fruit development and ripening. We identified nine 2OGD protein subfamilies involved in hormone biosynthesis and metabolism, including the gibberellin (GA) biosynthetic protein families GA20ox and GA3ox, GA degradation protein families C19-GA2ox and C20-GA2ox, ethylene biosynthetic protein family ACO, auxin degradation protein family DAO, jasmonate hydroxylation protein family JOX, salicylic acid degradation protein family DMR6, and strigolactone biosynthetic protein family LBO. These genes were differentially expressed in different tomato organs. The GA degradation gene SlGA2ox2, and the auxin degradation gene SlDAO1, showed significantly increased expression from the mature-green to the breaker stage during tomato fruit ripening, accompanied by decreased endogenous GA and auxin, indicating that SlGA2ox2 and SlDAO1 were responsible for the reduced GA and auxin concentrations. Additionally, exogenous gibberellin 3 (GA3) and indole-3-acetic acid (IAA) treatment of mature-green fruits delayed fruit ripening and increased the expression of SlGA2ox2 and SlDAO1, respectively. Therefore, SlGA2ox2 and SlDAO1 are implicated in the degradation of GAs and auxin during tomato fruit ripening.
Collapse
Affiliation(s)
- Qiangqiang Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Juan Xue
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Xinxin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
- Correspondence:
| |
Collapse
|
46
|
Cong L, Wu T, Liu H, Wang H, Zhang H, Zhao G, Wen Y, Shi Q, Xu L, Wang Z. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in 'Dangshansu' pear. HORTICULTURE RESEARCH 2020; 7:68. [PMID: 32377358 PMCID: PMC7192895 DOI: 10.1038/s41438-020-0285-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Parthenocarpy is a valuable trait in self-incompatible plants, such as pear. N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), a synthetic cytokinin analog, can induce parthenocarpy in pear (Pyrus spp.), but the mechanism of induction is unclear. To investigate the role of gibberellin in CPPU-induced parthenocarpy in pear, CPPU supplemented with paclobutrazol (PAC) was sprayed onto 'Dangshansu' pear. We found that the fruit set rate of pear treated with CPPU supplemented with PAC was identical to that in a CPPU-alone treatment group. In regard to cell development, CPPU mainly promoted hypanthium cell division and expansion, and PAC application had no influence on CPPU-induced cell development. RNA sequencing revealed that gibberellin 20 oxidase and gibberellin 3 oxidase genes were not differentially expressed following CPPU treatment. According to the analysis of fruit phytohormone content, the CPPU treatments did not induce gibberellin biosynthesis. These results suggest that CPPU-induced parthenocarpy may be gibberellin independent in 'Dangshansu' pear. After CPPU treatment, the indole acetic acid (IAA) content in fruit was significantly increased, and the abscisic acid (ABA) content was significantly decreased. Similarly, RNA sequencing revealed that many genes involved in the auxin and ABA pathways were significantly differentially expressed in the CPPU treatment groups; among them, indole-3-pyruvate monooxygenase (YUCCA) was significantly upregulated and 9-cis-epoxycarotenoid dioxygenase (NCED) was significantly downregulated. IAA and ABA may thus play important roles in CPPU-induced parthenocarpy. PbTwo-component response regulator9 (PbRR9), PbYUCCA4, and PbNCED6 were then selected to further elucidate the mechanism of CPPU-induced parthenocarpy. A yeast one-hybrid assay indicated that PbRR9 can combine with the PbYUCCA4 and PbNCED6 promoters. Dual luciferase assays revealed that PbRR9 can promote and repress the activities of the PbYUCCA4 and PbNCED6 promoters, respectively. After the transient expression of PbRR9 in fruits, PbYUCCA4 expression was significantly upregulated, and PbNCED6 expression was significantly downregulated. This study uncovered a CPPU-induced parthenocarpy mechanism that is different from that in tomato. CPPU may upregulate PbYUCCA4 and downregulate PbNCED6 by upregulating PbRR9, thereby increasing IAA content and decreasing ABA content to ultimately induce parthenocarpy in 'Dangshansu' pear. However, because only a single time point was used and because 'botanical' and 'accessory' fruits have different structures, this conclusion is still preliminary.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Ting Wu
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Hanting Liu
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Huibin Wang
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Haiqi Zhang
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Guangping Zhao
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Yao Wen
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Qianrong Shi
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng, Road No.3, Yangling, Shaanxi, Province China
| |
Collapse
|
47
|
Zhang QQ, Wang JG, Wang LY, Wang JF, Wang Q, Yu P, Bai MY, Fan M. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:421-432. [PMID: 31001922 DOI: 10.1111/jipb.12818] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 05/25/2023]
Abstract
The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.
Collapse
Affiliation(s)
- Qi-Qi Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jia-Gang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ling-Yan Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jun-Fang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ping Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
48
|
Wang H, Wu T, Liu J, Cong L, Zhu Y, Zhai R, Yang C, Wang Z, Ma F, Xu L. PbGA20ox2 Regulates Fruit Set and Induces Parthenocarpy by Enhancing GA 4 Content. FRONTIERS IN PLANT SCIENCE 2020; 11:113. [PMID: 32133025 PMCID: PMC7039935 DOI: 10.3389/fpls.2020.00113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/24/2020] [Indexed: 05/07/2023]
Abstract
Fruit set and development occur following successful fertilization. Parthenocarpy, a valuable trait in some self-incompatible species, produces seedless fruit without fertilization. Gibberellin (GA) is a crucial hormone in fruit-set regulation and development. While investigating the development of parthenocarpy in pear (Pyrus bretschneideri Rehd.), we determined that GA 20-oxidases (GA20ox) may play key roles in seedless pear fruit development. Sequence analysis revealed three PbGA20ox genes: PbGA20ox1, PbGA20ox2, and PbGA20ox3. We analyzed the expression patterns of candidate genes and found that PbGA20ox2 levels significantly changed in pollinated fruits. Tissue-specific expression assays revealed that PbGA20ox2 is highly expressed in young fruit and leaves. Subcellular localization assays showed it was located in the cytoplasm, nucleus, and plasma membrane. Overexpressed PbGA20ox2 tomato plants were taller and had longer hypocotyls and internodes, and the emasculated flowers produced parthenocarpic fruit. In pear, the transient overexpression of PbGA20ox2 promoted fruit development and delayed the drop of nonpollinated fruit. Furthermore, the fruit of PbGA20ox2-overexpressing tomato and transient PbGA20ox2-overexpressing pear had increased GA4 (but not GA3 and GA1) contents. This result provided evidence that PbGA20ox2 was necessary for GA4-dependent pear fruit development. Our study revealed that PbGA20ox2 altered the GA biosynthetic pathway and enhanced GA4 synthesis, thereby promoting fruit set and parthenocarpic fruit development.
Collapse
|
49
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
50
|
Dexter-Boone A, Humphry M, Shi R, Lewis RS. Genetic Control of Facultative Parthenocarpy in Nicotiana tabacum L. J Hered 2019; 110:610-617. [PMID: 31002335 DOI: 10.1093/jhered/esz025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Investigation of parthenocarpy, the production of fruit without fertilization, in multiple plant species could result in development of technologies for conferring seedless fruits and increased stability of fruit formation in economically important plants. We studied parthenocarpy in the model species Nicotiana tabacum L., and observed variability for expression of the trait among diverse genetic materials. Parthenocarpy was found to be partially dominant, and a single major quantitative trait locus on linkage group 22 was found to control the trait in a doubled haploid mapping population derived from a cross between parthenocarpic cigar tobacco cultivar "Beinhart 1000" and nonparthenocarpic flue-cured tobacco cultivar, "Hicks." The same genomic region was found to be involved with control of the trait in the important flue-cured tobacco cultivar, "K326." We also investigated the potential for the production of maternal haploids due to parthenogenesis in parthenocarpic tobacco seed capsules. Maternal haploids were not observed in parthenocarpic capsules, suggesting a requirement of fertilization for maternal haploid production due to parthenogenesis in N. tabacum.
Collapse
Affiliation(s)
- Abigail Dexter-Boone
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| | - Matt Humphry
- British American Tobacco (Investments) Ltd, Cambridge, UK
| | - Rui Shi
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| |
Collapse
|