1
|
Ahmad N, Xu Y, Zang F, Li D, Liu Z. The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants. MOLECULAR HORTICULTURE 2024; 4:2. [PMID: 38212862 PMCID: PMC10785382 DOI: 10.1186/s43897-023-00078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.
Collapse
Affiliation(s)
- Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Faheng Zang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEPMS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Guan M, Shi X, Chen S, Wan Y, Tang Y, Zhao T, Gao L, Sun F, Yin N, Zhao H, Lu K, Li J, Qu C. Comparative transcriptome analysis identifies candidate genes related to seed coat color in rapeseed. FRONTIERS IN PLANT SCIENCE 2023; 14:1154208. [PMID: 36993847 PMCID: PMC10042178 DOI: 10.3389/fpls.2023.1154208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Yellow seed coat in rapeseed (Brassica napus) is a desirable trait that can be targeted to improve the quality of this oilseed crop. To better understand the inheritance mechanism of the yellow-seeded trait, we performed transcriptome profiling of developing seeds in yellow- and black-seeded rapeseed with different backgrounds. The differentially expressed genes (DEGs) during seed development showed significant characteristics, these genes were mainly enriched for the Gene Ontology (GO) terms carbohydrate metabolic process, lipid metabolic process, photosynthesis, and embryo development. Moreover, 1206 and 276 DEGs, which represent candidates to be involved in seed coat color, were identified between yellow- and black-seeded rapeseed during the middle and late stages of seed development, respectively. Based on gene annotation, GO enrichment analysis, and protein-protein interaction network analysis, the downregulated DEGs were primarily enriched for the phenylpropanoid and flavonoid biosynthesis pathways. Notably, 25 transcription factors (TFs) involved in regulating flavonoid biosynthesis pathway, including known (e.g., KNAT7, NAC2, TTG2 and STK) and predicted TFs (e.g., C2H2-like, bZIP44, SHP1, and GBF6), were identified using integrated gene regulatory network (iGRN) and weight gene co-expression networks analysis (WGCNA). These candidate TF genes had differential expression profiles between yellow- and black-seeded rapeseed, suggesting they might function in seed color formation by regulating genes in the flavonoid biosynthesis pathway. Thus, our results provide in-depth insights that facilitate the exploration of candidate gene function in seed development. In addition, our data lay the foundation for revealing the roles of genes involved in the yellow-seeded trait in rapeseed.
Collapse
Affiliation(s)
- Mingwei Guan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xiangtian Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Si Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuanyuan Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Tian Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lei Gao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
4
|
Jiang J, Zhu H, Li N, Batley J, Wang Y. The miR393-Target Module Regulates Plant Development and Responses to Biotic and Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23169477. [PMID: 36012740 PMCID: PMC9409142 DOI: 10.3390/ijms23169477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant’s responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Na Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (J.B.); (Y.W.)
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (J.B.); (Y.W.)
| |
Collapse
|
5
|
Zhang W, Shi H, Zhou Y, Liang X, Luo X, Xiao C, Li Y, Xu P, Wang J, Gong W, Zou Q, Tao L, Kang Z, Tang R, Li Z, Yang J, Fu S. Rapid and Synchronous Breeding of Cytoplasmic Male Sterile and Maintainer Line Through Mitochondrial DNA Rearrangement Using Doubled Haploid Inducer in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:871006. [PMID: 35557722 PMCID: PMC9087798 DOI: 10.3389/fpls.2022.871006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
When homozygously fertile plants were induced using doubled haploid (DH) induction lines Y3380 and Y3560, the morphology of the induced F1 generation was basically consistent with the female parent, but the fertility was separated, showing characteristics similar to cytoplasmic male sterile (CMS) and maintainer lines. In this study, the morphology, fertility, ploidy, and cytoplasm genotype of the induced progeny were identified, and the results showed that the sterile progeny was polima cytoplasm sterile (pol CMS) and the fertile progeny was nap cytoplasm. The molecular marker and test-cross experimental results showed that the fertile progeny did not carry the restorer gene of pol CMS and the genetic distance between the female parent and the offspring was 0.002. This suggested that those inductions which produced sterile and fertile progeny were coordinated to CMS and maintainer lines. Through the co-linearity analysis of the mitochondrial DNA (mtDNA), it was found that the rearrangement of mtDNA by DH induction was the key factor that caused the transformation of fertility (nap) into sterility (pol). Also, when heterozygous females were induced with DH induction lines, the induction F2 generation also showed the segregation of fertile and sterile lines, and the genetic distance between sterile and fertile lines was approximately 0.075. Therefore, the induction line can induce different types of female parents, and the breeding of the sterile line and the maintainer line can be achieved through the rapid synchronization of sister crosses and self-crosses. The induction of DH inducer in B. napus can provide a new model for the innovation of germplasm resources and open up a new way for its application.
Collapse
Affiliation(s)
- Wei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Ying Zhou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuan Luo
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yun Li
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jisheng Wang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Wanzhuo Gong
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Qiong Zou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Lanrong Tao
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Rong Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zhuang Li
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Jin Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Shaohong Fu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| |
Collapse
|
6
|
Wen Y, Raza A, Chu W, Zou X, Cheng H, Hu Q, Liu J, Wei W. Comprehensive In Silico Characterization and Expression Profiling of TCP Gene Family in Rapeseed. Front Genet 2021; 12:794297. [PMID: 34868279 PMCID: PMC8635964 DOI: 10.3389/fgene.2021.794297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
TCP proteins are plant-specific transcription factors that have multipurpose roles in plant developmental procedures and stress responses. Therefore, a genome-wide analysis was performed to categorize the TCP genes in the rapeseed genome. In this study, a total of 80 BnTCP genes were identified in the rapeseed genome and grouped into two main classes (PCF and CYC/TB1) according to phylogenetic analysis. The universal evolutionary analysis uncovered that BnTCP genes had experienced segmental duplications and positive selection pressure. Gene structure and conserved motif examination presented that Class I and Class II have diverse intron-exon patterns and motifs numbers. Overall, nine conserved motifs were identified and varied from 2 to 7 in all TCP genes; and some of them were gene-specific. Mainly, Class II (PCF and CYC/TB1) possessed diverse structures compared to Class I. We identified four hormone- and four stress-related responsive cis-elements in the promoter regions. Moreover, 32 bna-miRNAs from 14 families were found to be targeting 21 BnTCPs genes. Gene ontology enrichment analysis presented that the BnTCP genes were primarily related to RNA/DNA binding, metabolic processes, transcriptional regulatory activities, etc. Transcriptome-based tissue-specific expression analysis showed that only a few genes (mainly BnTCP9, BnTCP22, BnTCP25, BnTCP48, BnTCP52, BnTCP60, BnTCP66, and BnTCP74) presented higher expression in root, stem, leaf, flower, seeds, and silique among all tested tissues. Likewise, qRT-PCR-based expression analysis exhibited that BnTCP36, BnTCP39, BnTCP53, BnTCP59, and BnTCP60 showed higher expression at certain time points under various hormones and abiotic stress conditions but not by drought and MeJA. Our results opened the new groundwork for future understanding of the intricate mechanisms of BnTCP in various developmental processes and abiotic stress signaling pathways in rapeseed.
Collapse
Affiliation(s)
- Yunfei Wen
- College of Agriculture, Yangtze University, Jingzhou, China.,Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ali Raza
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Wen Chu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiling Zou
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongtao Cheng
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jia Liu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Li J, Duan Y, Sun N, Wang L, Feng S, Fang Y, Wang Y. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111062. [PMID: 34763855 DOI: 10.1016/j.plantsci.2021.111062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
As an ancient and conserved plant microRNA (miRNA) family, miR169 targets nuclear factor Y subunit alpha (NF-YA) family members. The miR169-NF-YA module is associated with plant development and various stress responses. However, the function of miR169 in response to drought stress in rapeseed (Brassica napus L.) is unclear. In the present study, we showed that miR169n acted as a negative regulator of drought resistance in rapeseed by targeting a nuclear factor Y-A gene, NF-YA8. miR169n was strongly down-regulated by drought stress. Expression of a miR169n target mimicry construct (MIM169n) which functioned as a sponge to trap miR169n resulted in enhanced resistance of transgenic plants to both osmotic stress at the post-germination stage and drought stress at the seedling stage. MIM169n plants had a higher relative water content (RWC) and proline content, lower relative electrolyte leakage (REL), and showed higher antioxidative capability compared with those of control (CK) plants under drought stress. Moreover, NF-YA8 was verified as a target of miR169n, and overexpression of NF-YA8 led to improved tolerance of rapeseed to osmotic stress at the post-germination stage. Overall, our findings implied that the miR169n-NF-YA8 regulatory module could serve as a potential target for genetic improvement of drought resistance in B. napus.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujing Duan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Nianli Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Lu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Shanshan Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
8
|
Wu X, Liu Y, Zhang Y, Gu R. Advances in Research on the Mechanism of Heterosis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:745726. [PMID: 34646291 PMCID: PMC8502865 DOI: 10.3389/fpls.2021.745726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Heterosis is a common biological phenomenon in nature. It substantially contributes to the biomass yield and grain yield of plants. Moreover, this phenomenon results in high economic returns in agricultural production. However, the utilization of heterosis far exceeds the level of theoretical research on this phenomenon. In this review, the recent progress in research on heterosis in plants was reviewed from the aspects of classical genetics, parental genetic distance, quantitative trait loci, transcriptomes, proteomes, epigenetics (DNA methylation, histone modification, and small RNA), and hormone regulation. A regulatory network of various heterosis-related genes under the action of different regulatory factors was summarized. This review lays a foundation for the in-depth study of the molecular and physiological aspects of this phenomenon to promote its effects on increasing the yield of agricultural production.
Collapse
Affiliation(s)
- Xilin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ran Gu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Genome-Wide Characterization of Glutathione Peroxidase (GPX) Gene Family in Rapeseed ( Brassica napus L.) Revealed Their Role in Multiple Abiotic Stress Response and Hormone Signaling. Antioxidants (Basel) 2021; 10:antiox10091481. [PMID: 34573113 PMCID: PMC8472808 DOI: 10.3390/antiox10091481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. To understand the major roles of the GPX gene family in rapeseed (Brassica napus L.), for the first time, a genome-wide study identified 25 BnGPX genes in the rapeseed genome. The phylogenetic analysis discovered that GPX genes were grouped into four major groups (Group I-Group IV) from rapeseed and three closely interrelated plant species. The universal investigation uncovered that the BnGPXs gene experienced segmental duplications and positive selection pressure. Gene structure and motifs examination recommended that most of the BnGPX genes demonstrated a comparatively well-maintained exon-intron and motifs arrangement within the identical group. Likewise, we recognized five hormones-, four stress-, and numerous light-reactive cis-elements in the promoters of BnGPXs. Five putative bna-miRNAs from two families were also prophesied, targeting six BnGPXs genes. Gene ontology annotation results proved the main role of BnGPXs in antioxidant defense systems, ROS, and response to stress stimulus. Several BnGPXs genes revealed boosted expression profiles in many developmental tissues/organs, i.e., root, seed, leaf, stem, flower, and silique. The qRT-PCR based expression profiling exhibited that two genes (BnGPX21 and BnGPX23) were suggestively up-regulated against different hormones (ABA, IAA, and MeJA) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. In short, our discoveries provide a basis for additional functional studies on the BnGPX genes in future rapeseed breeding programs.
Collapse
|
10
|
Su W, Raza A, Gao A, Jia Z, Zhang Y, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed ( Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants (Basel) 2021; 10:1182. [PMID: 34439430 PMCID: PMC8389029 DOI: 10.3390/antiox10081182] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/25/2023] Open
Abstract
Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome, including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes from rapeseed and other closely related plant species were clustered into three groups based on the binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes displayed a relatively well-maintained exon-intron and motif configuration within the same group. Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted, targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2, and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D structures discovered comparable conserved BnSOD protein structures. In short, our findings deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Lv
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| |
Collapse
|
11
|
Su W, Raza A, Zeng L, Gao A, Lv Y, Ding X, Cheng Y, Zou X. Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L. BMC Genomics 2021; 22:548. [PMID: 34273948 PMCID: PMC8286584 DOI: 10.1186/s12864-021-07862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.
Collapse
Affiliation(s)
- Wei Su
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ali Raza
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Liu Zeng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ang Gao
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yan Lv
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiaoyu Ding
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yong Cheng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiling Zou
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Parizad S, Bera S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021:10.1007/s11356-021-15258-7. [PMID: 34235694 DOI: 10.1007/s11356-021-15258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Water is a fundamental necessity for people's well-being and the ecosystem's sustainability; however, its toxicity due to agrochemicals usage for food production leads to the deterioration of water quality. The poor water quality diminishes its reusability, thus limiting efficient water usage. Organic farming is one of the best ways that does not only reduce the deterioration of water quality but also decrease food toxicity. In organic farming, the crop is grown with no/less chemical usage. Besides, organic farming maintains biodiversity and reduces the anthropogenic footprint on soil, air, water, wildlife, and especially on the farming communities. Fields that are organically managed continuously for years have fewer pest populations and were attributed to increased biodiversity and abundance of multi-trophic interactions as well as to changes in plant metabolites. Fewer insect pests (pathogen vectors), in turn, would result in fewer crop diseases and increase crop production. This review highlights that organic farming may play a critical role in the reduction of pests and pathogens, which eventually would reduce the need for chemical reagents to protect crops, improving yield quality and water reusability.
Collapse
Affiliation(s)
- Shirin Parizad
- Department of Research and Development (Plant Probiotics), Nature Biotechnology Company (Biorun), Karaj, Iran.
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Catalase (CAT) Gene Family in Rapeseed ( Brassica napus L.): Genome-Wide Analysis, Identification, and Expression Pattern in Response to Multiple Hormones and Abiotic Stress Conditions. Int J Mol Sci 2021; 22:ijms22084281. [PMID: 33924156 PMCID: PMC8074368 DOI: 10.3390/ijms22084281] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.
Collapse
|
14
|
Rong H, Yang W, Zhu H, Jiang B, Jiang J, Wang Y. Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus. BMC PLANT BIOLOGY 2021; 21:140. [PMID: 33726676 PMCID: PMC7968328 DOI: 10.1186/s12870-021-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/28/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.
Collapse
Affiliation(s)
- Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wenjing Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Bo Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 China
| |
Collapse
|
15
|
Wen Y, Raza A, Chu W, Zou X, Cheng H, Hu Q, Liu J, Wei W. Comprehensive In Silico Characterization and Expression Profiling of TCP Gene Family in Rapeseed. Front Genet 2021. [PMID: 34868279 DOI: 10.3389/fgene2021.794297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
TCP proteins are plant-specific transcription factors that have multipurpose roles in plant developmental procedures and stress responses. Therefore, a genome-wide analysis was performed to categorize the TCP genes in the rapeseed genome. In this study, a total of 80 BnTCP genes were identified in the rapeseed genome and grouped into two main classes (PCF and CYC/TB1) according to phylogenetic analysis. The universal evolutionary analysis uncovered that BnTCP genes had experienced segmental duplications and positive selection pressure. Gene structure and conserved motif examination presented that Class I and Class II have diverse intron-exon patterns and motifs numbers. Overall, nine conserved motifs were identified and varied from 2 to 7 in all TCP genes; and some of them were gene-specific. Mainly, Class II (PCF and CYC/TB1) possessed diverse structures compared to Class I. We identified four hormone- and four stress-related responsive cis-elements in the promoter regions. Moreover, 32 bna-miRNAs from 14 families were found to be targeting 21 BnTCPs genes. Gene ontology enrichment analysis presented that the BnTCP genes were primarily related to RNA/DNA binding, metabolic processes, transcriptional regulatory activities, etc. Transcriptome-based tissue-specific expression analysis showed that only a few genes (mainly BnTCP9, BnTCP22, BnTCP25, BnTCP48, BnTCP52, BnTCP60, BnTCP66, and BnTCP74) presented higher expression in root, stem, leaf, flower, seeds, and silique among all tested tissues. Likewise, qRT-PCR-based expression analysis exhibited that BnTCP36, BnTCP39, BnTCP53, BnTCP59, and BnTCP60 showed higher expression at certain time points under various hormones and abiotic stress conditions but not by drought and MeJA. Our results opened the new groundwork for future understanding of the intricate mechanisms of BnTCP in various developmental processes and abiotic stress signaling pathways in rapeseed.
Collapse
Affiliation(s)
- Yunfei Wen
- College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ali Raza
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Wen Chu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiling Zou
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongtao Cheng
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jia Liu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Summanwar A, Basu U, Kav NNV, Rahman H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2020; 64:547-566. [PMID: 33170735 DOI: 10.1139/gen-2020-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clubroot resistance in spring canola has been introgressed from different Brassica sources; however, molecular mechanism underlying this resistance, especially the involvement of long non-coding RNAs (lncRNAs), is yet to be understood. We identified 464 differentially expressed (DE) lncRNAs from the roots of clubroot-resistant canola, carrying resistance on chromosome BnaA03, and susceptible canola lines challenged with Plasmodiophora brassicae pathotype 3. Pathway enrichment analysis showed that most of the target genes regulated by these DE lncRNAs belonged to plant-pathogen interaction and hormone signaling, as well as primary and secondary metabolic pathways. Comparative analysis of these lncRNAs with 530 previously reported DE lncRNAs, identified using resistance located on BnaA08, detected 12 lncRNAs that showed a similar trend of upregulation in both types of resistant lines; these lncRNAs probably play a fundamental role in clubroot resistance. We identified SSR markers within 196 DE lncRNAs. Genotyping of two DH populations carrying resistance on BnaA03 identified a marker capable of detecting the resistance in 98% of the DH lines. To our knowledge, this is the first report of the identification of SSRs within lncRNAs responsive to P. brassicae infection, demonstrating the potential use of lncRNAs in the breeding of Brassica crops.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
17
|
Shen E, Chen T, Zhu X, Fan L, Sun J, Llewellyn DJ, Wilson I, Zhu QH. Expansion of MIR482/2118 by a class-II transposable element in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2084-2099. [PMID: 32578284 DOI: 10.1111/tpj.14885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Some plant microRNA (miRNA) families contain multiple members generating identical or highly similar mature miRNA variants. Mechanisms underlying the expansion of miRNA families remain elusive, although tandem and/or segmental duplications have been proposed. In this study of two tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, and their extant diploid progenitors, Gossypium arboreum and Gossypium raimondii, we investigated the gain and loss of members of the miR482/2118 superfamily, which modulates the expression of nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes. We found significant expansion of MIR482/2118d in G. barbadense, G. hirsutum and G. raimondii, but not in G. arboreum. Several newly expanded MIR482/2118d loci have mutated to produce different miR482/2118 variants with altered target-gene specificity. Based on detailed analysis of sequences flanking these MIR482/2118 loci, we found that this expansion of MIR482/2118d and its derivatives resulted from an initial capture of an MIR482/2118d by a class-II DNA transposable element (TE) in G. raimondii prior to the tetraploidization event, followed by transposition to new genomic locations in G. barbadense, G. hirsutum and G. raimondii. The 'GosTE' involved in the capture and proliferation of MIR482/2118d and its derivatives belongs to the PIF/Harbinger superfamily, generating a 3-bp target site duplication upon insertion at new locations. All orthologous MIR482/2118 loci in the two diploids were retained in the two tetraploids, but mutation(s) in miR482/2118 were observed across all four species as well as in different cultivars of both G. barbadense and G. hirsutum, suggesting a dynamic co-evolution of miR482/2118 and its NBS-LRR targets. Our results provide fresh insights into the mechanisms contributing to MIRNA proliferation and enrich our knowledge on TEs.
Collapse
Affiliation(s)
- Enhui Shen
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- New Rural Development Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xintian Zhu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Danny J Llewellyn
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Iain Wilson
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qian-Hao Zhu
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Chen X, Sun S, Liu F, Shen E, Liu L, Ye C, Xiao B, Timko MP, Zhu QH, Fan L, Cao P. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum). BMC Genomics 2019; 20:856. [PMID: 31726968 PMCID: PMC6854694 DOI: 10.1186/s12864-019-6236-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), accomplish remarkable variety of biological functions. However, the composition of ncRNAs and their interactions with coding RNAs in modulating and controlling of cellular process in plants is largely unknown. Using a diverse group of high-throughput sequencing strategies, the mRNA, miRNA, lncRNA and circRNA compositions of tobacco (Nicotiana tabacum) roots determined and their alteration and potential biological functions in response to topping treatment analyzed. RESULTS A total of 688 miRNAs, 7423 non-redundant lncRNAs and 12,414 circRNAs were identified, among which, some selected differentially expressed RNAs were verified by quantitative real-time PCR. Using the differentially expressed RNAs, a co-expression network was established that included all four types of RNAs. The number of circRNAs identified were higher than that of miRNAs and lncRNAs, but only two circRNAs were present in the co-expression network. LncRNAs appear to be the most active ncRNAs based on their numbers presented in the co-expression network, but none of them seems to be an eTM (endogenous Target Mimicry) of miRNAs. Integrated with analyses of sequence interaction, several mRNA-circRNA-miRNA interaction networks with a potential role in the regulation of nicotine biosynthesis were uncovered, including a QS-circQS-miR6024 interaction network. In this network miR6024 was significantly down-regulated, while the expression levels of its two targets, circQS and its host gene QS, were sharply increased following the topping treatment. CONCLUSIONS These results illustrated the transcriptomic profiles of tobacco roots, the organ responsible for nicotine biosynthesis. mRNAs always play the most important roles, while ncRNAs are also expressed extensively for topping treatment response, especially circRNAs are the most activated in the ncRNA pool. These studies also provided insights on the coordinated regulation module of coding and non-coding RNAs in a single plant biological sample. The findings reported here indicate that ncRNAs appear to form interaction complex for the regulation of stress response forming regulation networks with transcripts involved in nicotine biosynthesis in tobacco.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| | - Shuo Sun
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Fangjie Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| | - Enhui Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Lu Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Chuyu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021 China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601 Australia
| | - Longjiang Fan
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|
19
|
Wei Y, Li F, Zhang S, Zhang S, Zhang H, Sun R. Analysis of small RNA changes in different Brassica napus synthetic allopolyploids. PeerJ 2019; 7:e7621. [PMID: 31565564 PMCID: PMC6746219 DOI: 10.7717/peerj.7621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for explaining the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective between small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.
Collapse
Affiliation(s)
- Yunxiao Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Zhang L, Zou J, Li S, Wang B, Raboanatahiry N, Li M. Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa. BMC Genomics 2019; 20:649. [PMID: 31412776 PMCID: PMC6694508 DOI: 10.1186/s12864-019-6001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy provides a means of interspecific genome transfer to incorporate preferable traits from progenitor to progeny. However, few studies on miRNA expression profiles of interspecific hybrids of B. napus (AnAnCnCn) and B. rapa (ArAr) have been reported. RESULTS Here, we apply small RNA sequencing to explore miRNA expression patterns between B. napus, B. rapa and their F1 hybrid. Bioinformatics analysis identified 376, 378, 383 conserved miRNAs and 82, 76, 82 novel miRNAs in B. napus, B. rapa and the F1 hybrid, respectively. Moreover, 213 miRNAs were found to be differentially expressed between B. napus, B. rapa and the F1 hybrid. The present study also shows 211 miRNAs, including 77 upregulated and 134 downregulated miRNAs, to be nonadditively expressed in the F1 hybrid. Furthermore, miRNA synteny analysis revealed high genomic conservation between the genomes of B. napus, B. rapa and their F1 hybrid, with some miRNA loss and gain events in the F1 hybrid. CONCLUSIONS This study not only provides useful resources for exploring global miRNA expression patterns and genome structure but also facilitates genetic research on the roles of miRNAs in genomic interactions of Brassica allopolyploids.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, 250000, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
21
|
Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, Aury JM, Barbe V, Keller J, Snowdon R, He Z, Denoeud F, Wincker P, Bancroft I, Chèvre AM, Rousseau-Gueutin M. Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:434-447. [PMID: 30604905 DOI: 10.1111/tpj.14228] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.
Collapse
Affiliation(s)
| | - Jérémy Lucas
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenaëlle Deniot
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Olivier Filangi
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Fabrice Legeai
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Maryse Lode
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Jean Keller
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Rennes, 35042, France
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | | |
Collapse
|
22
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
23
|
The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. BMC Genomics 2018; 19:806. [PMID: 30404610 PMCID: PMC6223035 DOI: 10.1186/s12864-018-5203-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Rapeseed (Brassica napus) is an important oil seed crop in the Brassicaceae family. Chemical induced male sterility (CIMS) is one of the widely used method to produce the hybrids in B. napus. Identification of the key genes and pathways that involved in CIMS were important to understand the underlying molecular mechanism. In the present report, a multi-omics integrative analysis, including of the proteomic, transcriptomic and miRNAs, combined with morphological and physiological analysis were conducted. Results Earlier degeneration of the tapetosomes and elaioplasts, aberrantly stacking in tapetal cells and incompletely deposition in tryphine of pollen wall were observed in chemical hybridization agent (CHA) of SX-1 treated B. napus through SEM and TEM analysis. It was revealed that the deficiencies in protein processing in endoplasmic reticulum (ER) and flavonoids biosynthesis were occurred at early stage in the SX-1 treated materials. Subsequently, plant hormone signal transduction, biosynthesis of amino acids, fatty acids and steroid in anther at later stages were identified down-regulated after SX-1 treatment. 144 transcript factors (TFs) were also indentified to down-regulated at early stage, which suggested the early regulation in anther and pollen wall development were disordered in CHA treated B. napus. In addition, 7 important miRNAs were identified and 2 of the predicted target genes of miRNAs were Rf-like genes. Conclusions Taken together, an interaction network of candidate genes and the putative metabolism pathways were constructed based on the multi-omics integrative analysis, it provided a new insight into the male sterility induced by CHA of SX-1 in B. napus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5203-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Role of secondary metabolites in plant defense against pathogens. Microb Pathog 2018; 124:198-202. [DOI: 10.1016/j.micpath.2018.08.034] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022]
|
25
|
Wei W, Li G, Jiang X, Wang Y, Ma Z, Niu Z, Wang Z, Geng X. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. PLoS One 2018; 13:e0204998. [PMID: 30332454 PMCID: PMC6192625 DOI: 10.1371/journal.pone.0204998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a prominent role in post-transcriptional gene expression regulation and have been involved in various biological and metabolic processes to regulate gene expression. For Brassica napus, improving seed-weight and oil-content is the main breeding goal. In order to better understand the regulation mechanism of miRNAs during seed-weight formation and oil-content accumulation in B. napus, in this study, a high-throughput sequencing technology was used to profile miRNAs expression of Brassica napus immature seeds from one to six weeks after flowering. A total of 1,276 miRNAs, including 1,248 novel and 28 known miRNAs, were obtained from both the high-seed-weight with low-oil-content RNA pool (S03) and the low-seed-weight with high-oil-content RNA pool (S04). Analysis of their expression profiles disclosed that 300 novel and two known miRNAs were differentially expressed between S03 and S04. For degradome analysis, 57 genes with 64 degradation sites were predicted to be targeted for degradation by these miRNAs. Further bioinformatics analysis indicated that these differentially expressed miRNAs might participate in regulation of myriad cellular and molecular processes, during seed development and oil synthesis. Finally, 6 target genes with potential roles in regulation of seed development and 9 other targets in seed oil synthesis, were further confirmed as candidate genes from small RNA and degradome sequencing.
Collapse
Affiliation(s)
- Wenhui Wei
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Gan Li
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yuquan Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhihui Ma
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhipeng Niu
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhiwei Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xinxin Geng
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan, China
- * E-mail:
| |
Collapse
|
26
|
Shen E, Zhu X, Hua S, Chen H, Ye C, Zhou L, Liu Q, Zhu QH, Fan L, Chen X. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics 2018; 19:745. [PMID: 30314449 PMCID: PMC6186049 DOI: 10.1186/s12864-018-5117-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are transcripts longer than 200 bp that do not encode proteins but nonetheless have been shown to play important roles in various biological processes in plants. Brassica napus is an important seed oil crop worldwide and the target of many genetic improvement activities. To understand better the function of lncRNAs in regulating plant metabolic activities, we carried out a genome-wide lncRNA identification of lncRNAs in Brassica napus with a focus on lncRNAs involved in lipid metabolism. Twenty ribosomal RNA depleted strand specific RNA-seq (ssRNA-seq) datasets were generatred using RNAs isolated from B. napus seeds at four developmental stages. For comparison we also included 30 publically available RNA-seq datasets generated from poly(A) enriched mRNAs isolated from from various Brassica napus tissues in our analysis. Results A total of 8905 lncRNA loci were identified, including 7100 long intergenic noncoding RNA (lincRNA) loci and 1805 loci generating long noncoding natural antisense transcript (lncNAT). Many lncRNAs were identified only in the ssRNA-seq and poly(A) RNA-seq dataset, suggesting that B. napus has a large lncRNA repertoire and it is necessary to use libraries prepared from different tissues and developmental stages as well as different library preparation approaches to capture the whole spectrum of lncRNAs. Analysis of coexpression networks revealed that among the regulatory modules are networks containing lncRNAs and protein-coding genes related to oil biosynthesis indicating a possible role of lncRNAs in the control of lipid metabolism. One such example is that several lncRNAs are potential regulators of BnaC08g11970D that encodes oleosin1, a protein found in oil bodies and involved in seed lipid accumulation. We also observed that the expression levels of B. napus lncRNAs is positively correlated with their conservation levels. Conclusions We demonstrated that the B. napus genome has a large number of lncRNA and that these lncRNAs are expressed broadly across many developmental times and in different tissue types. We also provide evidence indicating that specific lncRNAs appear to be important regulators of lipid biosynthesis forming regulatory networks with transcripts involved in lipid biosynthesis. We also provide evidence that these lncRNAs are conserved in other species of the Brassicaceae family. Electronic supplementary material The online version of this article (10.1186/s12864-018-5117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Shuijin Hua
- Institute of Crop and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyu Chen
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longhua Zhou
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qing Liu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Chen
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Bird KA, VanBuren R, Puzey JR, Edger PP. The causes and consequences of subgenome dominance in hybrids and recent polyploids. THE NEW PHYTOLOGIST 2018; 220:87-93. [PMID: 29882360 DOI: 10.1111/nph.15256] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/02/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 87 I. Introduction 87 II. Evolution in action: subgenome dominance within newly formed hybrids and polyploids 88 III. Summary and future directions 90 Acknowledgements 92 References 92 SUMMARY: The merger of divergent genomes, via hybridization or allopolyploidization, frequently results in a 'genomic shock' that induces a series of rapid genetic and epigenetic modifications as a result of conflicts between parental genomes. This conflict among the subgenomes routinely leads one subgenome to become dominant over the other subgenome(s), resulting in subgenome biases in gene content and expression. Recent advances in methods to analyze hybrid and polyploid genomes with comparisons to extant parental progenitors have allowed for major strides in understanding the mechanistic basis for subgenome dominance. In particular, our understanding of the role that homoeologous exchange might play in subgenome dominance and genome evolution is quickly growing. Here we describe recent discoveries uncovering the underlying mechanisms and provide a framework to predict subgenome dominance in hybrids and allopolyploids with far-reaching implications for agricultural, ecological, and evolutionary research.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Chen L, Chen L, Zhang X, Liu T, Niu S, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Identification of miRNAs that regulate silique development in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:106-117. [PMID: 29606207 DOI: 10.1016/j.plantsci.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play crucial regulatory roles in various developmental processes. Silique length indirectly influences seed yield in rapeseed (Brassica napus); however, the molecular roles of miRNAs in silique length are largely unknown. Here, backcross progenies of rapeseed with long siliques (LS) and short siliques (SS) were used to elucidate these roles. Four small RNA libraries from siliques in an early stage of development were sequenced, and a total of 814 non-redundant miRNA precursors were identified, representing 65 known and 394 novel miRNAs. Expression analyses revealed that 17 miRNAs were differentially expressed in LS and SS lines. Furthermore, through degradome sequencing, we identified 522 cleavage events. Correlation analysis of the differentially expressed miRNAs and their targets suggested that miR159 and miR319 represses cell proliferation and miR160 regulates auxin signal transduction to control silique length. Additionally, the upregulation of miR2111, miR399, miR827, and miR408 reflected restricted silique development due to inorganic phosphate/copper deficiency. More significantly, high expression of miR160 in rapeseed may repress auxin response factors and result in increased silique length, illustrating that silique length might be regulated via an auxin-response pathway.
Collapse
Affiliation(s)
- Li Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lei Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiangxiang Zhang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingting Liu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Sailun Niu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
29
|
Genome-wide identification, putative functionality and interactions between lncRNAs and miRNAs in Brassica species. Sci Rep 2018; 8:4960. [PMID: 29563515 PMCID: PMC5862966 DOI: 10.1038/s41598-018-23334-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/09/2018] [Indexed: 01/13/2023] Open
Abstract
Non-coding RNA (ncRNA) is abundant in plant genomes, but is poorly described with unknown functionality in most species. Using whole genome RNA sequencing, we identified 1885, 1910 and 1299 lncRNAs and 186, 157 and 161 miRNAs at the whole genome level in the three Brassica species B. napus, B. oleracea and B. rapa, respectively. The lncRNA sequences were divergent between the three Brassica species. One quarter of lncRNAs were located in tandem repeat (TR) region. The expression of both lncRNAs and miRNAs was strongly biased towards the A rather than the C subgenome in B. napus, unlike mRNA expression. miRNAs in genic regions had higher average expression than miRNAs in non-genic regions in B. napus and B. oleracea. We provide a comprehensive reference for the distribution, functionality and interactions of lncRNAs and miRNAs in Brassica.
Collapse
|
30
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Shen Y, Sun S, Hua S, Shen E, Ye CY, Cai D, Timko MP, Zhu QH, Fan L. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:874-893. [PMID: 28544196 DOI: 10.1111/tpj.13605] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 05/23/2023]
Abstract
Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid compared with its parents. The underlying molecular basis for heterosis, particularly for allopolyploids, remains elusive. In this study we analyzed the transcriptomes of Brassica napus parental lines and their F1 hybrids at three stages of early flower development. Phenotypically, the F1 hybrids show remarkable heterosis in silique number and grain yield. Transcriptome analysis revealed that various phytohormone (auxin and salicylic acid) response genes are significantly altered in the F1 hybrids relative to the parental lines. We also found evidence for decreased expression divergence of the homoeologous gene pairs in the allopolyploid F1 hybrids and suggest that high-parental expression-level dominance plays an important role in heterosis. Small RNA and methylation studies aimed at examining the epigenetic effect of the changes in gene expression level in the F1 hybrids showed that the majority of the small interfering RNA (siRNA) clusters had a higher expression level in the F1 hybrids than in the parents, and that there was an increase in genome-wide DNA methylation in the F1 hybrid. Transposable elements associated with siRNA clusters had a higher level of methylation and a lower expression level in the F1 hybrid, implying that the non-additively expressed siRNA clusters resulted in lower activity of the transposable elements through DNA methylation in the hybrid. Our data provide insights into the role that changes in gene expression pattern and epigenetic mechanisms contribute to heterosis during early flower development in allopolyploid B. napus.
Collapse
Affiliation(s)
- Yifei Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Hua
- Institute of Crop and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Daguang Cai
- Institute of Phytopathology, Christian Albrechts University of Kiel, Hermann Rodewald Str. 9, D-24118, Kiel, Germany
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, Wang H, Sang S, Tang M, Zhou R, Chu W, Fu L, Hu Q. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Int J Mol Sci 2017; 18:ijms18050887. [PMID: 28481299 PMCID: PMC5454811 DOI: 10.3390/ijms18050887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR)-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Shifei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Min Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rijin Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
33
|
Shi T, Wang K, Yang P. The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:442-457. [PMID: 27743419 DOI: 10.1111/tpj.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre-eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA-likes. Additionally, the MIRNAs participating in lotus pollen-pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.
Collapse
Affiliation(s)
- Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
34
|
Cheng H, Hao M, Wang W, Mei D, Tong C, Wang H, Liu J, Fu L, Hu Q. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus. BMC PLANT BIOLOGY 2016; 16:196. [PMID: 27608922 PMCID: PMC5017063 DOI: 10.1186/s12870-016-0852-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. RESULTS In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. CONCLUSIONS Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Chaobo Tong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
35
|
Fu Y, Xiao M, Yu H, Mason AS, Yin J, Li J, Zhang D, Fu D. Small RNA changes in synthetic Brassica napus. PLANTA 2016; 244:607-622. [PMID: 27107747 DOI: 10.1007/s00425-016-2529-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization. Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1-S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meili Xiao
- Engineering Research Center of South Upland Agriculture of Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jiaming Yin
- Engineering Research Center of South Upland Agriculture of Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Engineering Research Center of South Upland Agriculture of Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
36
|
Cao JY, Xu YP, Zhao L, Li SS, Cai XZ. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. PLANT MOLECULAR BIOLOGY 2016; 92:39-55. [PMID: 27325118 DOI: 10.1007/s11103-016-0494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/19/2016] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are multifunctional non-coding short nucleotide molecules. Nevertheless, the role of miRNAs in the interactions between plants and necrotrophic pathogens is largely unknown. Here, we report the identification of the miRNA repertoire of the economically important oil crop oilseed rape (Brassica napus) and those involved in interacting with its most devastating necrotrophic pathogen Sclerotinia sclerotiorum. We identified 280 B. napus miRNA candidates, including 53 novel candidates and 227 canonical members or variants of known miRNA families, by high-throughput deep sequencing of small RNAs from both normal and S. sclerotiorum-inoculated leaves. Target genes of 15 novel candidates and 222 known miRNAs were further identified by sequencing of degradomes from the two types of samples. MiRNA microarray analysis revealed that 68 miRNAs were differentially expressed between S. sclerotiorum-inoculated and uninoculated leaves. A set of these miRNAs target genes involved in plant defense to S. sclerotiorum and/or other pathogens such as nucleotide binding site-leucine-rich repeat (NBS-LRR) R genes and nitric oxygen and reactive oxygen species related genes. Additionally, three miRNAs target AGO1 and AGO2, key components of post-transcriptional gene silencing (PTGS). Expression of several viral PTGS suppressors reduced resistance to S. sclerotiorum. Arabidopsis mutants of AGO1 and AGO2 exhibited reduced resistance while transgenic lines over-expressing AGO1 displayed increased resistance to S. sclerotiorum in an AGO1 expression level-dependent manner. Moreover, transient over-expression of miRNAs targeting AGO1 and AGO2 decreased resistance to S. sclerotiorum in oilseed rape. Our results demonstrate that the interactions between B. napus and S. sclerotiorum are tightly regulated at miRNA level and probably involve PTGS.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Li Zhao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Shuang-Sheng Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Zhu M, Monroe JG, Suhail Y, Villiers F, Mullen J, Pater D, Hauser F, Jeon BW, Bader JS, Kwak JM, Schroeder JI, McKay JK, Assmann SM. Molecular and systems approaches towards drought-tolerant canola crops. THE NEW PHYTOLOGIST 2016; 210:1169-1189. [PMID: 26879345 DOI: 10.1111/nph.13866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - J Grey Monroe
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Florent Villiers
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
| | - Jack Mullen
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dianne Pater
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joel S Bader
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - June M Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
- Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - John K McKay
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
38
|
Jain A, Das S. Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage- and sub-genome-specific changes. Funct Integr Genomics 2016; 16:253-68. [PMID: 26873704 DOI: 10.1007/s10142-016-0484-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/22/2022]
Abstract
The recent availability of genome sequences together with syntenic block information for Brassicaceae offers an opportunity to study microRNA (miRNA) evolution across this family. We employed a synteny-based comparative genomics strategy to unambiguously identify miRNA homologs from the genome sequence of members of Brassicaceae. Such an analysis of miRNA across Brassicaceae allowed us to classify miRNAs as conserved, lineage-, karyotype- and sub-genome-specific. The differential loss of miRNA from sub-genomes in polyploid genomes of Brassica rapa and Brassica oleracea shows that miRNA also follows the rules of gene fractionation as observed in the case of protein-coding genes. The study of mature and miR* region of precursors revealed instances of in-dels and SNPs which reflect the evolutionary history of the genomes. High level of conservation in miR* regions in some cases points to their functional relevance which needs to be further investigated. We further show that sequence and length variability in precursor sequences can affect the free energy and foldback structure of miRNA which may ultimately affect their biogenesis and expression in the biological system.
Collapse
Affiliation(s)
- Aditi Jain
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, Delhi, 110007, India.
| |
Collapse
|