1
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Rodrigues M, Ordoñez-Trejo EJ, Rasori A, Varotto S, Ruperti B, Bonghi C. Dissecting postharvest chilling injuries in pome and stone fruit through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 14:1272986. [PMID: 38235207 PMCID: PMC10791837 DOI: 10.3389/fpls.2023.1272986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Lowering the storage temperature is an effective method to extend the postharvest and shelf life of fruits. Nevertheless, this technique often leads to physiological disorders, commonly known as chilling injuries. Apples and pears are susceptible to chilling injuries, among which superficial scald is the most economically relevant. Superficial scald is due to necrotic lesions of the first layers of hypodermis manifested through skin browning. In peaches and nectarines, chilling injuries are characterized by internal symptoms, such as mealiness. Fruits with these aesthetic or compositional/structural defects are not suitable for fresh consumption. Genetic variation is a key factor in determining fruit susceptibility to chilling injuries; however, physiological, or technical aspects such as harvest maturity and storage conditions also play a role. Multi-omics approaches have been used to provide an integrated explanation of chilling injury development. Metabolomics in pome fruits specifically targets the identification of ethylene, phenols, lipids, and oxidation products. Genomics and transcriptomics have revealed interesting connections with metabolomic datasets, pinpointing specific genes linked to cold stress, wax synthesis, farnesene metabolism, and the metabolic pathways of ascorbate and glutathione. When applied to Prunus species, these cutting-edge approaches have uncovered that the development of mealiness symptoms is linked to ethylene signaling, cell wall synthesis, lipid metabolism, cold stress genes, and increased DNA methylation levels. Emphasizing the findings from multi-omics studies, this review reports how the integration of omics datasets can provide new insights into understanding of chilling injury development. This new information is essential for successfully creating more resilient fruit varieties and developing novel postharvest strategies.
Collapse
Affiliation(s)
| | | | | | | | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
3
|
Vittani L, Populin F, Stuerz S, Buehlmann A, Khomenko I, Biasioli F, Bühlmann-Schütz S, Vrhovsek U, Masuero D, Zanella A, Busatto N, Costa F. Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, 'Granny Smith' and 'Ladina'. FRONTIERS IN PLANT SCIENCE 2023; 14:1150046. [PMID: 37152125 PMCID: PMC10157158 DOI: 10.3389/fpls.2023.1150046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in 'Granny Smith' and 'Ladina' apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in 'Granny Smith'. 'Ladina', more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in 'Granny Smith' apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.
Collapse
Affiliation(s)
- Lorenzo Vittani
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Francesca Populin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Andreas Buehlmann
- Strategic Research Division Food Microbial Systems, Agroscope, Wädenswil, Switzerland
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Urska Vrhovsek
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Domenico Masuero
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Fabrizio Costa
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
- *Correspondence: Fabrizio Costa,
| |
Collapse
|
4
|
Li G, Song P, Wang X, Ma Q, Xu J, Zhang Y, Qi B. Genome-Wide Identification of Genes Encoding for Rho-Related Proteins in ' Duli' Pear ( Pyrus betulifolia Bunge) and Their Expression Analysis in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1608. [PMID: 35736759 PMCID: PMC9230837 DOI: 10.3390/plants11121608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Twelve Rho-related proteins (ROPs), namely PbROPs, were identified from the genome of the recently sequenced 'Duli' pear (Pyrus betulifolia Bunge), a wild-type pear variety routinely used for rootstocks in grafting in China. The length and molecular weight of these proteins are between 175 and 215 amino acids and 19.46 and 23.45 kDa, respectively. The 12 PbROPs are distributed on 8 of the 17 chromosomes, where chromosome 15 has the highest number of 3 PbROPs. Analysis of the deduced protein sequences showed that they are relatively conserved and all have the G domain, insertion sequence, and HVR motif. The expression profiles were monitored by quantitative RT-PCR, which showed that these 12 PbROP genes were ubiquitously expressed, indicating their involvement in growth and development throughout the life cycle of 'Duli' pear. However, they were altered upon treatments with abscisic acid (ABA, mimicking abiotic stress), polyethylene glycol (PEG, mimicking drought), and sodium chloride (NaCl, mimicking salt) to tissue-cultured seedlings. Further, transgenic Arabidopsis expressing PbROP1, PbROP2, and PbROP9 exhibited enhanced sensitivity to ABA, demonstrating that these 3 PbROPs may play important roles in the abiotic stress of 'Duli' pear. The combined results showed that the 'Duli' genome encodes 12 typical ROPs and they appeared to play important roles in growth, development, and abiotic stress. These preliminary data may guide future research into the molecular mechanisms of these 12 PbROPs and their utility in molecular breeding for abiotic stress-resistant 'Duli' pear rootstocks.
Collapse
Affiliation(s)
- Gang Li
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Pingli Song
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Xiang Wang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Qingcui Ma
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Jianfeng Xu
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Yuxing Zhang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Baoxiu Qi
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
- School of Pharmacy and Biomolecular Science, Liverpool John Moors University, Liverpool L3 3AF, UK
| |
Collapse
|
5
|
A Small Gtp-Binding Protein GhROP3 Interacts with GhGGB Protein and Negatively Regulates Drought Tolerance in Cotton (Gossypium hirsutum L.). PLANTS 2022; 11:plants11121580. [PMID: 35736735 PMCID: PMC9227279 DOI: 10.3390/plants11121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance–related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene.
Collapse
|
6
|
Cainelli N, Forestan C, Angeli D, Villegas TR, Costa F, Botton A, Rasori A, Bonghi C, Ruperti B. Transcriptomic Insights on the Preventive Action of Apple (cv Granny Smith) Skin Wounding on Superficial Scald Development. Int J Mol Sci 2021; 22:ijms222413425. [PMID: 34948219 PMCID: PMC8705499 DOI: 10.3390/ijms222413425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Superficial scald is a post-harvest chilling storage injury leading to browning of the surface of the susceptible cv Granny Smith apples. Wounding of skins has been reported to play a preventive role on scald development however its underlying molecular factors are unknown. We have artificially wounded the epidermal and sub-epidermal layers of apple skins consistently obtaining the prevention of superficial scald in the surroundings of the wounds during two independent vintages. Time course RNA-Seq analyses of the transcriptional changes in wounded versus unwounded skins revealed that two transcriptional waves occurred. An early wave included genes up-regulated by wounding already after 6 h, highlighting a specific transcriptional rearrangement of genes connected to the biosynthesis and signalling of JA, ethylene and ABA. A later transcriptional wave, occurring after three months of cold storage, included genes up-regulated exclusively in unwounded skins and was prevented from its occurrence in wounded skins. A significant portion of these genes was related to decay of tissues and to the senescence hormones ABA, JA and ethylene. Such changes suggest a wound-inducible reversed hormonal balance during post-harvest storage which may explain the local inhibition of scald in wounded tissues, an aspect that will need further studies for its mechanistic explanation.
Collapse
Affiliation(s)
- Nadia Cainelli
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, 35122 Legnaro, PD, Italy; (N.C.); (A.B.); (A.R.); (C.B.)
| | - Cristian Forestan
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, 40127 Bologna, BO, Italy;
| | - Dario Angeli
- Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, 38010 San Michele all’Adige, TN, Italy; (D.A.); (T.R.V.)
| | - Tomas Roman Villegas
- Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, 38010 San Michele all’Adige, TN, Italy; (D.A.); (T.R.V.)
| | - Fabrizio Costa
- Centro Agricoltura Alimenti Ambiente, 38098 San Michele all’Adige, TN, Italy;
| | - Alessandro Botton
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, 35122 Legnaro, PD, Italy; (N.C.); (A.B.); (A.R.); (C.B.)
| | - Angela Rasori
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, 35122 Legnaro, PD, Italy; (N.C.); (A.B.); (A.R.); (C.B.)
| | - Claudio Bonghi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, 35122 Legnaro, PD, Italy; (N.C.); (A.B.); (A.R.); (C.B.)
| | - Benedetto Ruperti
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, 35122 Legnaro, PD, Italy; (N.C.); (A.B.); (A.R.); (C.B.)
- Correspondence:
| |
Collapse
|
7
|
Veselova SV, Nuzhnaya TV, Burkhanova GF, Rumyantsev SD, Khusnutdinova EK, Maksimov IV. Ethylene-Cytokinin Interaction Determines Early Defense Response of Wheat against Stagonospora nodorum Berk. Biomolecules 2021; 11:174. [PMID: 33525389 PMCID: PMC7911247 DOI: 10.3390/biom11020174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/08/2023] Open
Abstract
Ethylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research. We compared expression of the genes responsible for hormonal metabolism and signaling in wheat cultivars differing in resistance to Stagonospora nodorum in response to their infection with fungal isolates, whose virulence depends on the presence of the necrotrophic effector SnTox3. Furthermore, we studied the action of the exogenous cytokinins, ethephon (2-chloroethylphosphonic acid, ethylene-releasing agent) and 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) on infected plants. Wheat susceptibility was shown to develop due to suppression of reactive oxygen species production and decreased content of active cytokinins brought about by SnTox3-mediated activation of the ethylene signaling pathway. SnTox3 decreased cytokinin content most quickly by its activated glucosylation in an ethylene-dependent manner and, furthermore, by oxidative degradation and inhibition of biosynthesis in ethylene-dependent and ethylene-independent manners. Exogenous zeatin application enhanced wheat resistance against S. nodorum through inhibition of the ethylene signaling pathway and upregulation of SA-dependent genes. Thus, ethylene inhibited triggering of SA-dependent resistance mechanism, at least in part, by suppression of the cytokinin signaling pathway.
Collapse
Affiliation(s)
- Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Sergey D. Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Elza K. Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| |
Collapse
|
8
|
Ji D, Chen T, Zhang Z, Li B, Tian S. Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. Int J Mol Sci 2020; 21:E7881. [PMID: 33114219 PMCID: PMC7660594 DOI: 10.3390/ijms21217881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
As a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein kinase subfamily, FERONIA (FER) has emerged as a versatile player regulating multifaceted functions in growth and development, as well as responses to environmental factors and pathogens. With the concerted efforts of researchers, the molecular mechanism underlying FER-dependent signaling has been gradually elucidated. A number of cellular processes regulated by FER-ligand interactions have been extensively reported, implying cell type-specific mechanisms for FER. Here, we provide a review on the roles of FER in male-female gametophyte recognition, cell elongation, hormonal signaling, stress responses, responses to fungi and bacteria, and present a brief outlook for future efforts.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
9
|
Giné-Bordonaba J, Busatto N, Larrigaudière C, Lindo-García V, Echeverria G, Vrhovsek U, Farneti B, Biasioli F, De Quattro C, Rossato M, Delledonne M, Costa F. Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. "Blanquilla"). HORTICULTURE RESEARCH 2020; 7:49. [PMID: 32257235 PMCID: PMC7109095 DOI: 10.1038/s41438-020-0272-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 05/07/2023]
Abstract
To elucidate the physiology underlying the development of superficial scald in pears, susceptible "Blanquilla" fruit was treated with different compounds that either promoted (ethylene) or repressed (1-methylcyclopropene and lovastatin) the incidence of this disorder after 4 months of cold storage. Our data show that scald was negligible for the fruit treated with 1-methylcyclopropene or lovastatin, but highly manifested in untreated (78% incidence) or ethylene-treated fruit (97% incidence). The comparison between the fruit metabolomic profile and transcriptome evidenced a distinct reprogramming associated with each treatment. In all treated samples, cold storage led to an activation of a cold-acclimation-resistance mechanism, including the biosynthesis of very-long-chain fatty acids, which was especially evident in 1-methylcyclopropane-treated fruit. Among the treatments applied, only 1-methylcyclopropene inhibited ethylene production, hence supporting the involvement of this hormone in the development of scald. However, a common repression effect on the PPO gene combined with higher sorbitol content was found for both lovastatin and 1-methylcyclopropene-treated samples, suggesting also a non-ethylene-mediated process preventing the development of this disorder. The results presented in this work represent a step forward to better understand the physiological mechanisms governing the etiology of superficial scald in pears.
Collapse
Affiliation(s)
- Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Violeta Lindo-García
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Gemma Echeverria
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Brian Farneti
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
10
|
Karagiannis E, Tanou G, Scossa F, Samiotaki M, Michailidis M, Manioudaki M, Laurens F, Job D, Fernie AR, Orsel M, Molassiotis A. Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. FRONTIERS IN PLANT SCIENCE 2020; 11:8. [PMID: 32117359 PMCID: PMC7031346 DOI: 10.3389/fpls.2020.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Superficial scald is a major physiological disorder in apple fruit that is induced by cold storage and is mainly expressed as brown necrotic patches on peel tissue. However, a global view of the gene-protein-metabolite interactome underlying scald prevention/sensitivity is currently missing. Herein, we have found for the first time that cold storage in an atmosphere enriched with ozone (O3) induced scald symptoms in 'Granny Smith' apple fruits during subsequent ripening at room temperature. In contrast, treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) reversed this O3-induced scald effect. Amino acids, including branched-chain amino acids, were the most strongly induced metabolites in peel tissue of 1-MCP treated fruits. Proteins involved in oxidative stress and protein trafficking were differentially accumulated prior to and during scald development. Genes involved in photosynthesis, flavonoid biosynthesis and ethylene signaling displayed significant alterations in response to 1-MCP and O3. Analysis of regulatory module networks identified putative transcription factors (TFs) that could be involved in scald. Subsequently, a transcriptional network of the genes-proteins-metabolites and the connected TFs was constructed. This approach enabled identification of several genes coregulated by TFs, notably encoding glutathione S-transferase (GST) protein(s) with distinct signatures following 1-MCP and O3 treatments. Overall, this study is an important contribution to future functional studies and breeding programs for this fruit, aiding to the development of improved apple cultivars to superficial scald.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| | - Federico Scossa
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - François Laurens
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Université Claude Bernard Lyon 1 - Institut National des Sciences Appliquées-Bayer CropScience, Lyon, France
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathilde Orsel
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Liu C, Li LL, Li GZ, Hao L. Ethylene insensitive mutation improves Arabidopsis plant tolerance to NO 2 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110043. [PMID: 31812821 DOI: 10.1016/j.ecoenv.2019.110043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Ethylene signaling was addressed, for the first time, in plant responses to nitrogen dioxide (NO2) by comparatively analyzing the performance of Arabidopsis ethylene insensitive 2 (ein2-1) with wild-type (WT) plants. Following NO2 fumigation, severe leaf wilting and chlorosis occurred in WT plants, but much less symptoms were observed in ein2-1. The activities of superoxide dismutase (SOD), peroxidase (PRX) and catalase (CAT) were 39%, 92%, and 11% higher, respectively, in ein2-1 than in WT following NO2 exposure. Although glutathione contents and the ratio of its reduced form (GSH) to oxidized form (GSSG) were decreased by NO2, an obviously alleviated degree was detected in ein2-1 relative to WT. Correspondingly, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and electrolyte leakage were 25%, 24%, and 29% lower, respectively, in ein2-1 than in WT. The difference of oxidative stress between two tested genotypes was also revealed by the leaf staining regarding the production and distribution of H2O2, superoxide anion (O2˙-), and cell death. The genes involved in antioxidation or oxidation-reduction processes mostly presented a stronger expression in ein2-1 than in WT under NO2 stress. The photosynthesis-related parameters including chlorophyll and soluble sugar contents, net photosynthetic rate (Pn), and ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and gene expression, and chlorophyll fluorescence parameters were affected, generally, to a lesser degree in ein2-1 than in WT following NO2 fumigation. The enzymatic activities and gene expressions of invertases mostly displayed a higher level in ein2-1 relative to WT following NO2 fumigation. For example, the activities of cytoplasmic, cell wall and vacuolar invertases were 76%, 26%, and 26% higher, respectively, in ein2-1 than in WT. Together, these data suggest that ethylene signal insensitivity efficiently improves plant tolerance to NO2 exposure, and the possible mechanisms might be correlated with leaf antioxidative defense, photosynthesis-related processes, and sucrose metabolisms.
Collapse
Affiliation(s)
- Chuan Liu
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Lin-Lin Li
- College of Environment and Resource, Dalian Nationalities University, Dalian, 116605, China
| | - Guang-Zhe Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Lin Hao
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| |
Collapse
|
12
|
Sun LR, Zhao ZJ, Hao FS. NADPH oxidases, essential players of hormone signalings in plant development and response to stresses. PLANT SIGNALING & BEHAVIOR 2019; 14:1657343. [PMID: 31431139 PMCID: PMC6804714 DOI: 10.1080/15592324.2019.1657343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plasma membrane NADPH oxidases (NOXs), also named respiratory burst oxidase homologues (Rbohs), are critical generators of reactive oxygen species (ROS), which as signal molecules regulate growth and development, and adaptation to various biotic and abiotic stresses in plants. NOXs-dependent ROS production is frequently induced by diverse phytohormones. The ROS commonly function downstream of, and interplay with hormone signalings, coordinately modulating plant development and stress tolerance. In this review, we summarize recent advances on the roles and molecular mechanisms of Rbohs in mediating signalings of multiple hormones including auxin, gibberellins, abscisic acid, ethylene and brassinosteroids in plants.
Collapse
Affiliation(s)
- Li Rong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhi Jie Zhao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fu Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- CONTACT Fu Shun Hao State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
14
|
NADPH Oxidase (Rboh) Activity is Up Regulated during Sweet Pepper ( Capsicum annuum L.) Fruit Ripening. Antioxidants (Basel) 2019; 8:antiox8010009. [PMID: 30609654 PMCID: PMC6356770 DOI: 10.3390/antiox8010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 11/21/2022] Open
Abstract
In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog (Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals (O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS), which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh activity and the number of isozymes during this physiological process. Malondialdehyde (MDA) content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits, MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity. Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH), suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively. In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated with sweet pepper fruit ripening.
Collapse
|
15
|
Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z. Overexpression of a Novel ROP Gene from the Banana ( MaROP5g) Confers Increased Salt Stress Tolerance. Int J Mol Sci 2018; 19:ijms19103108. [PMID: 30314273 PMCID: PMC6213407 DOI: 10.3390/ijms19103108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Rho-like GTPases from plants (ROPs) are plant-specific molecular switches that are crucial for plant survival when subjected to abiotic stress. We identified and characterized 17 novel ROP proteins from Musa acuminata (MaROPs) using genomic techniques. The identified MaROPs fell into three of the four previously described ROP groups (Groups II⁻IV), with MaROPs in each group having similar genetic structures and conserved motifs. Our transcriptomic analysis showed that the two banana genotypes tested, Fen Jiao and BaXi Jiao, had similar responses to abiotic stress: Six genes (MaROP-3b, -5a, -5c, -5f, -5g, and -6) were highly expressed in response to cold, salt, and drought stress conditions in both genotypes. Of these, MaROP5g was most highly expressed in response to salt stress. Co-localization experiments showed that the MaROP5g protein was localized at the plasma membrane. When subjected to salt stress, transgenic Arabidopsis thaliana overexpressing MaROP5g had longer primary roots and increased survival rates compared to wild-type A. thaliana. The increased salt tolerance conferred by MaROP5g might be related to reduced membrane injury and the increased cytosolic K⁺/Na⁺ ratio and Ca2+ concentration in the transgenic plants as compared to wild-type. The increased expression of salt overly sensitive (SOS)-pathway genes and calcium-signaling pathway genes in MaROP5g-overexpressing A. thaliana reflected the enhanced tolerance to salt stress by the transgenic lines in comparison to wild-type. Collectively, our results suggested that abiotic stress tolerance in banana plants might be regulated by multiple MaROPs, and that MaROP5g might enhance salt tolerance by increasing root length, improving membrane injury and ion distribution.
Collapse
Affiliation(s)
- Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Peiguang Sun
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 570102, China.
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Jingyi Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 570102, China.
| |
Collapse
|
16
|
Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit. Sci Rep 2018; 8:11436. [PMID: 30061655 PMCID: PMC6065312 DOI: 10.1038/s41598-018-29706-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Superficial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald-symptomatic period. Specifically, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identified pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene–dependent and –independent metabolic events controlling scald resistance.
Collapse
|
17
|
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. PLANT PHYSIOLOGY 2018; 176:57-79. [PMID: 29150557 PMCID: PMC5761820 DOI: 10.1104/pp.17.01415] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Interactions between receptor like kinases and guanyl nucleotide exchange factors together with identification of effector proteins reveal putative ROP GTPases signaling cascades.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Busatto N, Farneti B, Commisso M, Bianconi M, Iadarola B, Zago E, Ruperti B, Spinelli F, Zanella A, Velasco R, Ferrarini A, Chitarrini G, Vrhovsek U, Delledonne M, Guzzo F, Costa G, Costa F. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:270-285. [PMID: 29160608 DOI: 10.1111/tpj.13774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 05/07/2023]
Abstract
Fruits stored at low temperature can exhibit different types of chilling injury. In apple, one of the most serious physiological disorders is superficial scald, which is characterized by discoloration and brown necrotic patches on the fruit exocarp. Although this phenomenon is widely ascribed to the oxidation of α-farnesene, its physiology is not yet fully understood. To elucidate the mechanism of superficial scald development and possible means of prevention, we performed an integrated metabolite screen, including an analysis of volatiles, phenols and lipids, together with a large-scale transcriptome study. We also determined that prevention of superficial scald, through the use of an ethylene action inhibitor, is associated with the triggering of cold acclimation-related processes. Specifically, the inhibition of ethylene perception stimulated the production of antioxidant compounds to scavenge reactive oxygen species, the synthesis of fatty acids to stabilize plastid and vacuole membranes against cold temperature, and the accumulation of the sorbitol, which can act as a cryoprotectant. The pattern of sorbitol accumulation was consistent with the expression profile of a sorbitol 6-phosphate dehydrogenase, MdS6PDH, the overexpression of which in transgenic Arabidopsis thaliana plants confirmed its involvement in the cold acclimation and freezing tolerance.
Collapse
Affiliation(s)
- Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - Brian Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Martino Bianconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Elisa Zago
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - Francesco Spinelli
- Department of Agricultural Science, University of Bologna, Via Fanin 46, 40127, Bologna, Italy
| | - Angelo Zanella
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040, Ora, BZ, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Giulia Chitarrini
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134, Verona, Italy
| | - Guglielmo Costa
- Department of Agricultural Science, University of Bologna, Via Fanin 46, 40127, Bologna, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| |
Collapse
|
19
|
Jia M, Du P, Ding N, Zhang Q, Xing S, Wei L, Zhao Y, Mao W, Li J, Li B, Jia W. Two FERONIA-Like Receptor Kinases Regulate Apple Fruit Ripening by Modulating Ethylene Production. FRONTIERS IN PLANT SCIENCE 2017; 8:1406. [PMID: 28848599 PMCID: PMC5554343 DOI: 10.3389/fpls.2017.01406] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/28/2017] [Indexed: 05/06/2023]
Abstract
Ethylene has long been known to be a critical signal controlling the ripening of climacteric fruits; however, the signaling mechanism underlying ethylene production during fruit development is unknown. Here, we report that two FERONIA-like receptor kinases (FERLs) regulate fruit ripening by modulating ethylene production in the climacteric fruit, apple (Malus×domestica). Bioinformatic analysis indicated that the apple genome contains 14 members of the FER family (MdFERL1-17), of these 17 FERLs, MdFERL6 was expressed at the highest level in fruit. Heterologous expression of MdFERL6 or MdFERL1, the apple homolog of Arabidopsis FER, in another climacteric fruit, tomato (Solanum lycopersicum) fruit delayed ripening and suppressed ethylene production. Overexpression and antisense expression of MdFERL6 in apple fruit calli inhibited and promoted ethylene production, respectively. Additionally, virus-induced gene silencing (VIGS) of SlFERL1, the tomato homolog of FER, promoted tomato fruit ripening and ethylene production. Both MdFERL6 and MdFERL1 physically interacted with MdSAMS (S-adenosylmethionine synthase), a key enzyme in the ethylene biosynthesis pathway. MdFERL6 was expressed at high levels during early fruit development, but dramatically declined when fruit ripening commenced, implying that MdFERL6 might limit ethylene production prior to fruit development and the ethylene production burst during fruit ripening. These results indicate that FERLs regulate apple and tomato fruit ripening, shedding light on the molecular mechanisms underlying ripening in climacteric fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bingbing Li
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
20
|
Jia M, Ding N, Zhang Q, Xing S, Wei L, Zhao Y, Du P, Mao W, Li J, Li B, Jia W. A FERONIA-Like Receptor Kinase Regulates Strawberry ( Fragaria × ananassa) Fruit Ripening and Quality Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:1099. [PMID: 28702036 PMCID: PMC5487432 DOI: 10.3389/fpls.2017.01099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/07/2017] [Indexed: 05/06/2023]
Abstract
Ripening of fleshy fruits is controlled by a series of intricate signaling processes. Here, we report a FERONIA/FER-like receptor kinase, FaMRLK47, that regulates both strawberry (Fragaria × ananassa) fruit ripening and quality formation. Overexpression and RNAi-mediated downregulation of FaMRLK47 delayed and accelerated fruit ripening, respectively. We showed that FaMRLK47 physically interacts with FaABI1, a negative regulator of abscisic acid (ABA) signaling, and demonstrated that FaMRLK47 regulates fruit ripening by modulating ABA signaling, a major pathway governing strawberry fruit ripening. In accordance with these findings, overexpression and RNAi-mediated downregulation of FaMRLK47 caused a decrease and increase, respectively, in the ABA-induced expression of a series of ripening-related genes. Additionally, overexpression and RNAi-mediated downregulation of FaMRLK47 resulted in an increase and decrease in sucrose content, respectively, as compared with control fruits, and respectively promoted and inhibited the expression of genes in the sucrose biosynthesis pathway (FaSS and FaSPS). Collectively, this study demonstrates that FaMRLK47 is an important regulator of strawberry fruit ripening and quality formation, and sheds light on the signaling mechanisms underlying strawberry fruit development and ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bingbing Li
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
21
|
Cloning and Expression Analysis of One Gamma-Glutamylcysteine Synthetase Gene (Hbγ-ECS1) in Latex Production in Hevea brasiliensis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5657491. [PMID: 27419133 PMCID: PMC4935901 DOI: 10.1155/2016/5657491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/08/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
Abstract
Rubber tree is a major commercial source of natural rubber. Latex coagulation is delayed by thiols, which belong to the important type of antioxidants in laticifer submembrane, and is composed of glutathione (GSH), cysteine, and methionine. The rate-limiting enzyme, γ-ECS, plays an important role in regulating the biosynthesis of glutathione under any environment conditions. To understand the relation between γ-ECS and thiols and to correlate latex flow with one-time tapping and continuous tapping, we cloned and derived the full length of one γ-ECS from rubber tree latex (Hbγ-ECS1). According to qPCR analysis, the expression levels of Hbγ-ECS1 were induced by tapping and Ethrel stimulation, and the expression was related to thiols content in the latex. Continuous tapping induced injury, and the expression of HbγECS1 increased with routine tapping and Ethrel-stimulation tapping (more intensive tapping). According to expression in long-term flowing latex, the gene was related to the duration of latex flow. HbγECS1 was expressed in E. coli Rosetta using pET-sumo as an expression vector and the recombinant enzyme was purified; then we achieved 0.827 U/mg specific activity and about 66 kDa molecular weight. The present study can help us understand the complex role of Hbγ-ECS in thiols biosynthesis, which is influenced by tapping.
Collapse
|