1
|
Huang L, Liu X, Wang Q, Chen W, Fu W, Guo Y. RALF proteins-a monitoring hub for regulating salinity tolerance in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1365133. [PMID: 39830941 PMCID: PMC11738622 DOI: 10.3389/fpls.2024.1365133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wen Chen
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yongjun Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd, Foshan, Guangdong, China
| |
Collapse
|
2
|
Liu J, Zhang M, Xu J, Yao X, Lou L, Hou Q, Zhu L, Yang X, Liu G, Xu J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int J Mol Sci 2024; 25:8288. [PMID: 39125858 PMCID: PMC11313094 DOI: 10.3390/ijms25158288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.
Collapse
Affiliation(s)
- Jinqiu Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Man Zhang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jian Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xiefeng Yao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lina Lou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Qian Hou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lingli Zhu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xingping Yang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Guang Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jinhua Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
3
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
4
|
Karumanchi AR, Sivan P, Kummari D, Rajasheker G, Kumar SA, Reddy PS, Suravajhala P, Podha S, Kishor PBK. Root and Leaf Anatomy, Ion Accumulation, and Transcriptome Pattern under Salt Stress Conditions in Contrasting Genotypes of Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2400. [PMID: 37446963 DOI: 10.3390/plants12132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Roots from salt-susceptible ICSR-56 (SS) sorghum plants display metaxylem elements with thin cell walls and large diameter. On the other hand, roots with thick, lignified cell walls in the hypodermis and endodermis were noticed in salt-tolerant CSV-15 (ST) sorghum plants. The secondary wall thickness and number of lignified cells in the hypodermis have increased with the treatment of sodium chloride stress to the plants (STN). Lignin distribution in the secondary cell wall of sclerenchymatous cells beneath the lower epidermis was higher in ST leaves compared to the SS genotype. Casparian thickenings with homogenous lignin distribution were observed in STN roots, but inhomogeneous distribution was evident in SS seedlings treated with sodium chloride (SSN). Higher accumulation of K+ and lower Na+ levels were noticed in ST compared to the SS genotype. To identify the differentially expressed genes among SS and ST genotypes, transcriptomic analysis was carried out. Both the genotypes were exposed to 200 mM sodium chloride stress for 24 h and used for analysis. We obtained 70 and 162 differentially expressed genes (DEGs) exclusive to SS and SSN and 112 and 26 DEGs exclusive to ST and STN, respectively. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis unlocked the changes in metabolic pathways in response to salt stress. qRT-PCR was performed to validate 20 DEGs in each SSN and STN sample, which confirms the transcriptomic results. These results surmise that anatomical changes and higher K+/Na+ ratios are essential for mitigating salt stress in sorghum apart from the genes that are differentially up- and downregulated in contrasting genotypes.
Collapse
Affiliation(s)
- Appa Rao Karumanchi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - Pramod Sivan
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Center, SE-10691 Stockholm, Sweden
| | - Divya Kummari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to Be University), Guntur 522 213, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | | | - Sudhakar Podha
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| |
Collapse
|
5
|
Alfatih A, Zhang J, Song Y, Jan SU, Zhang ZS, Xia JQ, Zhang ZY, Nazish T, Wu J, Zhao PX, Xiang CB. Nitrate-responsive OsMADS27 promotes salt tolerance in rice. PLANT COMMUNICATIONS 2023; 4:100458. [PMID: 36199247 PMCID: PMC10030316 DOI: 10.1016/j.xplc.2022.100458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 05/04/2023]
Abstract
Salt stress is a major constraint on plant growth and yield. Nitrogen (N) fertilizers are known to alleviate salt stress. However, the underlying molecular mechanisms remain unclear. Here, we show that nitrate-dependent salt tolerance is mediated by OsMADS27 in rice. The expression of OsMADS27 is specifically induced by nitrate. The salt-inducible expression of OsMADS27 is also nitrate dependent. OsMADS27 knockout mutants are more sensitive to salt stress than the wild type, whereas OsMADS27 overexpression lines are more tolerant. Transcriptomic analyses revealed that OsMADS27 upregulates the expression of a number of known stress-responsive genes as well as those involved in ion homeostasis and antioxidation. We demonstrate that OsMADS27 directly binds to the promoters of OsHKT1.1 and OsSPL7 to regulate their expression. Notably, OsMADS27-mediated salt tolerance is nitrate dependent and positively correlated with nitrate concentration. Our results reveal the role of nitrate-responsive OsMADS27 and its downstream target genes in salt tolerance, providing a molecular mechanism for the enhancement of salt tolerance by nitrogen fertilizers in rice. OsMADS27 overexpression increased grain yield under salt stress in the presence of sufficient nitrate, suggesting that OsMADS27 is a promising candidate for the improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Sami Ullah Jan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Ping-Xia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
6
|
Mircea DM, Estrelles E, Al Hassan M, Soriano P, Sestras RE, Boscaiu M, Sestras AF, Vicente O. Effect of Water Deficit on Germination, Growth and Biochemical Responses of Four Potentially Invasive Ornamental Grass Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1260. [PMID: 36986948 PMCID: PMC10053442 DOI: 10.3390/plants12061260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Ornamental plant species introduced into new environments can exhibit an invasive potential and adaptability to abiotic stress factors. In this study, the drought stress responses of four potentially invasive ornamental grass species (Cymbopogon citratus, Cortaderia selloana, Pennisetum alopecuroides and P. setaceum) were analysed. Several seed germination parameters were determined under increasing polyethylene glycol (PEG 6000) concentrations. Additionally, plants in the vegetative stage were subjected to intermediate and severe water stress treatments for four weeks. All species registered high germination rates in control conditions (no stress treatment), even at high PEG concentrations, except C. citratus, which did not germinate at -1 MPa osmotic potential. Upon applying the water stress treatments, P. alopecuroides plants showed the highest tolerance, and C. citratus appeared the most susceptible to drought. Stress-induced changes in several biochemical markers (photosynthetic pigments, osmolytes, antioxidant compounds, root and shoot Na+ and K+ contents), highlighted different responses depending on the species and the stress treatments. Basically, drought tolerance seems to depend to a large extent on the active transport of Na+ and K+ cations to the aerial part of the plants, contributing to osmotic adjustment in all four species and, in the case of the most tolerant P. alopecuroides, on the increasing root K+ concentration under water deficit conditions. The study shows the invasive potential of all species, except C. citratus, in dry areas such as the Mediterranean region, especially in the current climate change scenario. Particular attention should be given to P. alopecuroides, which is widely commercialised in Europe as ornamental.
Collapse
Affiliation(s)
- Diana M. Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania;
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Estrelles
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Botanical Garden, University of Valencia, Quart, 80, 46008 Valencia, Spain; (E.E.); (P.S.)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
- Department of Plant Sciences, Aeres University of Applied Sciences, 8251 JZ Dronten, The Netherlands
| | - Pilar Soriano
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Botanical Garden, University of Valencia, Quart, 80, 46008 Valencia, Spain; (E.E.); (P.S.)
| | - Radu E. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Adriana F. Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Duan Y, Lei T, Li W, Jiang M, Zhao Z, Yu X, Li Y, Yang L, Li J, Gao S. Enhanced Na + and Cl - sequestration and secretion selectivity contribute to high salt tolerance in the tetraploid recretohalophyte Plumbago auriculata Lam. PLANTA 2023; 257:52. [PMID: 36757459 DOI: 10.1007/s00425-023-04082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Enhanced secretion of Na+ and Cl- in leaf glands and leaf vacuolar sequestration of Na+ or root retention of Cl-, combined with K+ retention, contribute to the improved salt tolerance of tetraploid recretohalophyte P. auriculata. Salt stress is one of the major abiotic factors threatening plant growth and development, and polyploids generally exhibit higher salt stress resistance than diploids. In recretohalophytes, which secrete ions from the salt gland in leaf epidermal cells, the effects of polyploidization on ion homeostasis and secretion remain unknown. In this study, we compared the morphology, physiology, and ion homeostasis regulation of diploid and autotetraploid accessions of the recretohalophyte Plumbago auriculata Lam. after treatment with 300 mM NaCl for 0, 2, 4, 6, and 8 days. The results showed that salt stress altered the morphology, photosynthetic efficiency, and chloroplast structure of diploid P. auriculata to a greater extent than those of its tetraploid counterpart. Moreover, the contents of organic osmoregulatory substances (proline and soluble sugars) were significantly higher in the tetraploid than in the diploid, while those of H2O2 and malondialdehyde (MDA) were significantly lower. Analysis of ion homeostasis revealed that the tetraploid cytotype accumulated more Na+ in stems and leaves and more Cl- in roots but less K+ loss in roots compared with diploid P. auriculata. Additionally, the rate of Na+ and Cl- secretion from the leaf surface was higher, while that of K+, Mg2+, and Ca2+ secretion was lower in tetraploid plants. X-ray microanalysis of mesophyll cells revealed that Na+ mainly accumulated in different cellular compartments in the tetraploid (vacuole) and diploid (cytoplasm) plants. Our results suggest that polyploid recretohalophytes require the ability to sequester Na+ and Cl-(via accumulation in leaf cell vacuoles or unloading by roots) and selectively secrete these ions (through salt glands) together with the ability to prevent K+ loss (by roots). This mechanism required to maintain K+/Na+ homeostasis in polyploid recretohalophytes under high salinity provides new insights in the improved maintenance of ion homeostasis in polyploids under salt stress.
Collapse
Affiliation(s)
- Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenji Li
- Chongqing Industry Polytechnic College, Chongqing, 401120, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zi'an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Atzori G, Guidi Nissim W, Mancuso S, Palm E. Intercropping Salt-Sensitive Lactuca sativa L. and Salt-Tolerant Salsola soda L. in a Saline Hydroponic Medium: An Agronomic and Physiological Assessment. PLANTS (BASEL, SWITZERLAND) 2022; 11:2924. [PMID: 36365377 PMCID: PMC9658283 DOI: 10.3390/plants11212924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Competition for freshwater is increasing, with a growing population and the effects of climate change limiting its availability. In this experiment, Lactuca sativa plants were grown hydroponically with or without a 15% share of seawater (12 dS m-1) alone or intercropped with Salsola soda to demonstrate if L. sativa benefits from sodium removal by its halophyte companion. Contrary to the hypothesis, saline-grown L. sativa plants demonstrated reduced growth compared to the control plants regardless of the presence or absence of S. soda. Both limitations in CO2 supply and photosystem efficiency may have decreased CO2 assimilation rates and growth in L. sativa plants grown in the seawater-amended solutions. Surprisingly, leaf pigment concentrations increased in salt-treated L. sativa plants, and most notably among those intercropped with S. soda, suggesting that intercropping may have led to shade-induced increases in chlorophyll pigments. Furthermore, increased levels of proline indicate that salt-treated L. sativa plants were experiencing stress. In contrast, S. soda produced greater biomass in saline conditions than in control conditions. The mineral element, carbohydrate, protein, polyphenol and nitrate profiles of both species differed in their response to salinity. In particular, salt-sensitive L. sativa plants had greater accumulations of Fe, Ca, P, total phenolic compounds and nitrates under saline conditions than salt-tolerant S. soda. The obtained results suggest that intercropping salt-sensitive L. sativa with S. soda in a hydroponic system did not ameliorate the growing conditions of the salt-sensitive species as was hypothesized and may have exacerbated the abiotic stress by increasing competition for limited resources such as light. In contrast, the saline medium induced an improvement in the nutritional profile of S. soda. These results demonstrate an upper limit of the seawater share and planting density that can be used in saline agriculture when intercropping S. soda plants with other salt-sensitive crops.
Collapse
Affiliation(s)
- Giulia Atzori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Stefano Mancuso
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
- Fondazione Futuro delle Città—FFC, 50125 Firenze, Italy
| | - Emily Palm
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| |
Collapse
|
9
|
Shahzad B, Shabala L, Zhou M, Venkataraman G, Solis CA, Page D, Chen ZH, Shabala S. Comparing Essentiality of SOS1-Mediated Na + Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. Int J Mol Sci 2022; 23:9900. [PMID: 36077294 PMCID: PMC9456175 DOI: 10.3390/ijms23179900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023] Open
Abstract
Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4-6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2-3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5-6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Celymar Angela Solis
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - David Page
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Iron-Doped Biochar Regulated Soil Nickel Adsorption, Wheat Growth, Its Physiology and Elemental Concentration under Contrasting Abiotic Stresses. SUSTAINABILITY 2022. [DOI: 10.3390/su14137852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prevalence of abiotic stresses hampers soil health and plant growth in most ecosystems. In this study, rice husk iron-enriched biochar (BC) was prepared and its superiority in terms of nutrients enrichment, porosity and different acidic functional group (O-H, C=O) relative to simple biochar was confirmed through scanning electron microscopic, X-ray fluorescence and Fourier transform infrared analysis. To further evaluate its nickel (Ni), salt (NaCl) and carbonate (CaCO3) stress mitigating impact on wheat physiology and biochemical attributes, a pot experiment was conducted using; BC (1%), Ni (0.5 mM NiNO3), Na (100 mM NaCl) and CO3 (100 mM CaCO3) and with twelve treatments; T1; Control, T2; NiNO3, T3; CaCO3, T4; NaCl, T5; BC, T6; Ni + BC, T7; CaCO3 + BC, T8; NaCl + BC, T9; Ni + CaCO3 + BC, T10; Ni + NaCl + BC, T11; CaCO3 + NaCl + BC, T12; Ni + NaCl + CaCO3 + BC. The Langmuir isotherm model revealed the maximum Ni adsorption capacity (2433 mg g−1) in treatments where Ni was applied with BC soil. Maximum soil DTPA-extractable Ni was found in the T9 treatment; however, Ni concentration was not reported in wheat roots while only trace amounts of Ni were found in wheat shoots with the T9 treatment. It was suggested that BC has the capacity to induce the immunization effect in plant roots by providing additional Fe so their ionic homeostasis and redox metabolism worked properly. This argument was further paved by the enhanced adsorption of these toxic ions in the presence of BC-favored wheat growth as indicated by maximum increases in shoot iron and potassium concentrations under Ni + CaCO3 + BC, relative to control. Furthermore, the decrease in shoot hydrogen peroxide (H2O2) (20%) and malondialdehyde (32%) concentrations and increase in shoot ascorbate peroxidase (81%) and catalase (three-fold) activities under Ni + BC relative to Ni + NaCl + CaCO3 + BC controlled the cell membrane damage. In conclusion, BC proved to be an excellent amendment to reduce the toxic effects of Ni, NaCl and CaCO3 stresses and enhance wheat growth and nutrition.
Collapse
|
11
|
Gritli T, Boubakri H, Essahibi A, Hsouna J, Ilahi H, Didier R, Mnasri B. Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1191-1206. [PMID: 35910445 PMCID: PMC9334493 DOI: 10.1007/s12298-022-01205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Arid and semi-arid areas are considered vulnerable to various environmental constraints which are further fortified by climate change. Salinity is one of the most serious abiotic factors affecting crop yield and soil fertility. Till now, no information is available on the effect of salinity on development and symbiotic nitrogen (N2) fixation in the legume species Lathyrus cicera. Here, we evaluated the effect of different microbial inocula including nitrogen-fixing Rhizobium laguerreae, arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, a complex mixed inoculum of AMF isolated from rhizospheric soil in "Al Aitha", and various plant growth-promoting bacteria (PGPB) including Bacillus subtilus, Bacillus simplex and Bacillus megaterium combined with Rhizobium, the AMF consortium, or R. irregularis on alleviating salt stress in this legume. A pot trial was conducted to evaluate the ability of different microbial inocula to mitigate adverse effects of salinity on L. cicera plants. The results showed that salinity (100 mM NaCl) significantly reduced L. cicera plant growth. However, inoculation with different inocula enhanced plant growth and markedly promoted various biochemical traits. Moreover, the combined use of PGPB and AMF was found to be the most effective treatment in mitigating deleterious effects of salinity stress on L. cicera. In addition, this co-inoculation upregulated the expression of two marker genes (LcHKT1 and LcNHX7) related to salinity tolerance. Our findings suggest that the AMF/PGPB formulation has a great potential to be used as a biofertilizer to improve L. cicera plant growth and productivity under saline conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01205-4.
Collapse
Affiliation(s)
- Takwa Gritli
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | | | - Jihed Hsouna
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Reinhardt Didier
- Department of Biology, Rte. Albert-Gockel 3, CH- 1700 Fribourg, Switzerland
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
12
|
Shahzad B, Yun P, Shabala L, Zhou M, Sellamuthu G, Venkataraman G, Chen ZH, Shabala S. Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:351-364. [PMID: 35189073 DOI: 10.1071/fp21336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P <0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India; and Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
13
|
Wang LM, Zhao LN, Shah IH, Ramirez DC, Boeglin M, Véry AA, Sentenac H, Zhang YD. Na+ Sensitivity of the KAT2-Like Channel Is a Common Feature of Cucurbits and Depends on the S5-P-S6 Segment. PLANT & CELL PHYSIOLOGY 2022; 63:279-289. [PMID: 34865157 DOI: 10.1093/pcp/pcab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Inhibition of Shaker K+ channel activity by external Na+ was previously reported in the melon (Cucumis melo L.) inwardly rectifying K+ channel MIRK and was hypothesized to contribute to salt tolerance. In this study, two inward Shaker K+ channels, CsKAT2 from cucumber (Cucumis sativus) and ClKAT2 from watermelon (Citrullus lanatus), were identified and characterized in Xenopus oocytes. Both channels were inwardly rectifying K+ channels with higher permeability to potassium than other monovalent cations and more active when external pH was acidic. Similarly to MIRK, their activity displayed an inhibition by external Na+, thus suggesting a common feature in Cucurbitaceae (Cucumis spp., Citrullus spp.). CsKAT2 and ClKAT2 are highly expressed in guard cells. After 24 h of plant treatment with 100 mM NaCl, the three KAT2-like genes were significantly downregulated in leaves and guard cells. Reciprocal chimeras were obtained between MIRK and Na+-insensitive AtKAT2 cDNAs. The chimera where the MIRK S5-P-S6 segment was replaced by that from AtKAT2 no longer showed Na+ sensitivity, while the inverse chimera gained Na+ sensitivity. These results provide evidence that the molecular basis of the channel blockage by Na+ is located in the S5-P-S6 region. Comparison of the electrostatic property in the S5-P-S6 region in AtKAT2 and MIRK revealed four key amino acid residues potentially governing Na+ sensitivity.
Collapse
Affiliation(s)
| | - Li-Na Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Martin Boeglin
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| |
Collapse
|
14
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
15
|
Liu C, Liao W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:110-121. [PMID: 35123248 DOI: 10.1016/j.plaphy.2022.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion (K+) has been regarded as an essential signaling in plant growth and development. K+ transporters and channels at transcription and protein levels have been made great progress. K+ can enhance plant abiotic stress resistance. Meanwhile, it is now clear that calcium (Ca2+), reactive oxygen species (ROS), and reactive nitrogen species (RNS) act as signaling molecules in plants. They regulate plant growth and development and mediate K+ transport. However, the interaction of K+ with these signaling molecules remains unclear. K+ may crosstalk with Ca2+ and ROS/RNS in abiotic stress responses in plants. Also, there are interactions among K+, Ca2+, and ROS/RNS signaling pathways in plant growth, development, and abiotic stress responses. They regulate ion homeostasis, antioxidant system, and stress resistance-related gene expression in plants. Future work needs to focus on the deeper understanding of molecular mechanism of crosstalk among K+, Ca2+, and ROS/RNS under abiotic stress.
Collapse
Affiliation(s)
- Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
16
|
Liu M, Zhao Y, Liu X, Korpelainen H, Li C. Ammonium and nitrate affect sexually different responses to salt stress in Populus cathayana. PHYSIOLOGIA PLANTARUM 2022; 174:e13626. [PMID: 35023578 DOI: 10.1111/ppl.13626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) fertilization is a promising approach to improve salt tolerance. However, it is poorly known how plant sex and inorganic N alter salt stress-induced Na+ uptake, distribution and tolerance. This study employed Populus cathayana Rehder females and males to examine sex-related mechanisms of salt tolerance under nitrate (NO3 - ) and ammonium (NH4 + ) nutrition. Males had a higher root Na+ efflux, lower root-to-shoot translocation of Na+ , and higher K+ /Na+ , which enhanced salt tolerance under both N forms compared to females. On the other hand, decreased root Na+ efflux and K+ retention, and an increased ratio of Na+ in leaves relative to shoots in females caused greater salt sensitivity. Females receiving NH4 + rather than NO3 - had greater net root Na+ uptake, K+ efflux, and translocation to the shoots, especially in leaves. In contrast, males receiving NO3 - rather than NH4 + had increased Na+ translocation to the shoots, especially in the bark, which may narrow the difference in leaf damage by salt stress between N forms despite a higher shoot Na+ accumulation and lower root Na+ efflux. Genes related to cell wall synthesis, K+ and Na+ transporters, and denaturized protein scavenging in the barks showed differential expression between females and males in response to salt stress under both N forms. These results suggested that the regulation of N forms in salt stress tolerance was sex-dependent, which was related to the maintenance of the K+ /Na+ ratio in tissues, the ability of Na+ translocation to the shoots, and the transcriptional regulation of bark cell wall and proteolysis profiles.
Collapse
Affiliation(s)
- Miao Liu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yang Zhao
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiucheng Liu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Wang W, Zhang F, Sun L, Yang L, Yang Y, Wang Y, Siddique KHM, Pang J. Alkaline Salt Inhibits Seed Germination and Seedling Growth of Canola More Than Neutral Salt. FRONTIERS IN PLANT SCIENCE 2022; 13:814755. [PMID: 35154227 PMCID: PMC8828734 DOI: 10.3389/fpls.2022.814755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/05/2023]
Abstract
Salinity is a major constraint to crop growth and productivity, limiting sustainable agriculture production. Planting canola (Brassica napus L.) variety with salinity-alkalinity tolerance as a green manure on the large area of salinity-affected land in Xinjiang could alleviate feed shortage. To investigate the differential effects of neutral and alkaline salt stress on seed germination and seedling growth of canola, we used two salts at varying concentrations, i.e., NaCl (neutral salt at 100, 150, and 200 mM) and Na2CO3 (alkaline salt at 20, 30, and 40 mM). To further explore the effects of Na+ and pH on seed germination, we included combined of NaCl (0, 100, 150, and 200 mM) and pH (7.1, 8.0, 9.0, 10.0, and 11.0). Shoot growth was promoted by low concentrations of NaCl and Na2CO3 but inhibited at high salt concentrations. Given the same Na+ concentration, Na2CO3 inhibited seed germination and seedling growth more than NaCl. The results showed that the main factor affecting seed germination and seedling growth is not pH alone, but the interaction between pH and salt ions. Under NaCl stress, canola increased the absorption of K+, Ca2+, and Mg2+ in roots and K+ in leaves. However, under Na2CO3 stress, canola maintained a high K+ concentration and K+/Na+ ratio in leaves and increased Ca2+ and Mg2+ in roots. Our study showed that alkaline salts inhibit canola seed germination and seedling growth more significantly than neutral salts and salt species, salt concentration, and pH significantly affected on seed germination and seedling growth. However, pH affected seed germination and seedling growth mainly through an interaction with salt ions.
Collapse
Affiliation(s)
- Weichao Wang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Fenghua Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
- *Correspondence: Fenghua Zhang,
| | - Lupeng Sun
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Lei Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Yang Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Yajuan Wang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
19
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
20
|
Goad DM, Kellogg EA, Baxter I, Olsen KM. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum. G3 GENES|GENOMES|GENETICS 2021; 11:6337975. [PMID: 34568927 PMCID: PMC8473978 DOI: 10.1093/g3journal/jkab275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Most plant species, including most crops, perform poorly in salt-affected soils because high sodium levels are cytotoxic and can disrupt the uptake of water and important nutrients. Halophytes are species that have evolved adaptations to overcome these challenges and may be a useful source of knowledge for salt tolerance mechanisms and genes that may be transferable to crop species. The salt content of saline habitats can vary dramatically by location, providing ample opportunity for different populations of halophytic species to adapt to their local salt concentrations; however, the extent of this variation, and the physiology and polymorphisms that drive it, remain poorly understood. Differential accumulation of inorganic elements between genotypes or populations may play an important role in local salinity adaptation. To test this, we investigated the relationships between population structure, tissue ion concentrations, and salt tolerance in 17 “fine-textured” genotypes of the halophytic turfgrass seashore paspalum (Paspalum vaginatum Swartz). A high-throughput ionomics pipeline was used to quantify the shoot concentration of 18 inorganic elements across three salinity treatments. We found a significant relationship between population structure and ion accumulation, with strong correlations between principal components derived from genetic and ionomic data. Additionally, genotypes with higher salt tolerance accumulated more K and Fe and less Ca than less tolerant genotypes. Together these results indicate that differences in ion accumulation between P. vaginatum populations may reflect locally adapted salt stress responses.
Collapse
Affiliation(s)
- David M Goad
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
21
|
Réthoré E, Jing L, Ali N, Yvin JC, Pluchon S, Hosseini SA. K Deprivation Modulates the Primary Metabolites and Increases Putrescine Concentration in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:681895. [PMID: 34484256 PMCID: PMC8409508 DOI: 10.3389/fpls.2021.681895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.
Collapse
Affiliation(s)
- Elise Réthoré
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Nusrat Ali
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Seyed Abdollah Hosseini
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| |
Collapse
|
22
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. Int J Genomics 2021; 2021:5578727. [PMID: 33954166 PMCID: PMC8057909 DOI: 10.1155/2021/5578727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.
Collapse
|
24
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
25
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
26
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
27
|
Uçgun K, Ferreira JFS, Liu X, da Silva Filho JB, Suarez DL, de Lacerda CF, Sandhu D. Germination and Growth of Spinach under Potassium Deficiency and Irrigation with High-Salinity Water. PLANTS 2020; 9:plants9121739. [PMID: 33317110 PMCID: PMC7763614 DOI: 10.3390/plants9121739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 11/16/2022]
Abstract
Information is scarce on the interaction of mineral deficiency and salinity. We evaluated two salt-tolerant spinach cultivars under potassium (K) doses (0.07, 0.15, 0.3, and 3.0 mmolc L-1) and saline irrigation (5, 30, 60, 120, and 160 mmolc L-1 NaCl) during germination and growth. There was no interaction between salinity and K. Salinity decreased germination percent (GP), not always significantly, and drastically reduced seedling biomass. 'Raccoon' significantly increased GP at 60 mmolc L-1 while 'Gazelle' maintained GP up to 60 or 120 mmolc L-1. After 50 days under saline irrigation, shoot biomass increased significantly at 30 and 60 mmolc L-1 at the lowest K dose but, in general, neither salinity nor K dose affected shoot biomass, suggesting that salinity supported plant growth at the most K-deficient dose. Salinity did not affect shoot N, P, or K but significantly reduced Ca, Mg, and S, although plants had no symptoms of salt toxicity or mineral deficiency. Although spinach seedlings are more sensitive to salt stress, plants adjusted to salinity with time. Potassium requirement for spinach growth was less than the current crop recommendation, allowing its cultivation with waters of moderate to high salinity without considerable reduction in yield, appearance, or mineral composition.
Collapse
Affiliation(s)
- Kadir Uçgun
- Department of Plant and Animal Production, Technical Sciences Vocational School, Karamanoğlu Mehmetbey University, Karaman 70200, Turkey;
| | - Jorge F. S. Ferreira
- US Salinity Laboratory (USDA-ARS), 450 W. Big Springs Rd., Riverside, CA 92507, USA; (X.L.); (D.L.S.); (D.S.)
- Correspondence:
| | - Xuan Liu
- US Salinity Laboratory (USDA-ARS), 450 W. Big Springs Rd., Riverside, CA 92507, USA; (X.L.); (D.L.S.); (D.S.)
| | - Jaime Barros da Silva Filho
- Departments of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA;
| | - Donald L. Suarez
- US Salinity Laboratory (USDA-ARS), 450 W. Big Springs Rd., Riverside, CA 92507, USA; (X.L.); (D.L.S.); (D.S.)
| | - Claudivan F. de Lacerda
- Department of Agricultural Engineering, Federal University of Ceará, Fortaleza-CE 60450-760, Brazil;
| | - Devinder Sandhu
- US Salinity Laboratory (USDA-ARS), 450 W. Big Springs Rd., Riverside, CA 92507, USA; (X.L.); (D.L.S.); (D.S.)
| |
Collapse
|
28
|
Liu J, Shabala S, Zhang J, Ma G, Chen D, Shabala L, Zeng F, Chen ZH, Zhou M, Venkataraman G, Zhao Q. Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K + transporters and K + homeostasis. PLANT, CELL & ENVIRONMENT 2020; 43:2591-2605. [PMID: 32196121 DOI: 10.1111/pce.13759] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
This study aimed to reveal the mechanistic basis of the melatonin-mediated amelioration of salinity stress in plants. Electrophysiological experiments revealed that melatonin decreased salt-induced K+ efflux (a critical determinant of plant salt tolerance) in a dose- and time-dependent manner and reduced sensitivity of the plasma membrane K+ -permeable channels to hydroxyl radicals. These beneficial effects of melatonin were abolished by NADPH oxidase blocker DPI. Transcriptome analyses revealed that melatonin induced 585 (448 up- and 137 down-regulated) and 59 (54 up- and 5 down-regulated) differentially expressed genes (DEGs) in the root tip and mature zone, respectively. The most noticeable changes in the root tip were melatonin-induced increase in the expression of several DEGs encoding respiratory burst NADPH oxidases (OsRBOHA and OsRBOHF), calcineurin B-like/calcineurin B-like-interacting protein kinase (OsCBL/OsCIPK), and calcium-dependent protein kinase (OsCDPK) under salt stress. Melatonin also enhanced the expression of potassium transporter genes (OsAKT1, OsHAK1, and OsHAK5). Taken together, these results indicate that melatonin improves salt tolerance in rice by enabling K+ retention in roots, and that the latter process is conferred by melatonin scavenging of hydroxyl radicals and a concurrent OsRBOHF-dependent ROS signalling required to activate stress-responsive genes and increase the expression of K+ uptake transporters in the root tip.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Centre of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Jing Zhang
- Collaborative Innovation Centre of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Guohui Ma
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Dandan Chen
- Collaborative Innovation Centre of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, India
| | - Quanzhi Zhao
- Collaborative Innovation Centre of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P. Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114876. [PMID: 32512425 DOI: 10.1016/j.envpol.2020.114876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity is a global threat to the environmental sustainability, in particular to the developing countries due to their limited resources for soil reclamation. In a greenhouse pot experiment, Pennisetum giganteum, was investigated for its tolerance to salt stress and simultaneous phytoremediation capability. 4 weeks post-germination, NaCl (10, 50, 150, 250, 350, 450 and 550 mM) and tap water (control) was applied after every 2 consecutive days for two weeks in a completely randomized design and their effects were established in the growth and physico-chemical aspects of these plants. Our results indicated that P. giganteum withstood high salt stress (with 550 mM NaCl tolerance threshold level). Interestingly, the plants grown under saline conditions had higher biomass yield when compared to the control. Furthermore, the antioxidant activity and proline content of plants under saline conditions were significantly (p < 0.05) higher than those of control plants, indicating their adaptability to high salt stress. Biochemical analysis such as chlorophyll contents, total soluble sugar, total phenol and protein contents revealed considerable differences between plants grown under higher NaCl stress compared to the control conditions. Additionally, significantly different ionic flux along with high K+/Na+ ratio was observed in plants grown under a range of saline conditions. The results obtained are therefore of value to indicate P. giganteum an eco-friendly alternate source for the phytoremediation of saline soils and may be used as base for future research on this plant. Effective strategies need to be adopted with this plant to reclaim saline-degraded as well as marginal soils.
Collapse
Affiliation(s)
- Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development & Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Sikandar Hayat
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa, IR, Pakistan
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
30
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
31
|
Zhang K, Tang J, Wang Y, Kang H, Zeng J. The tolerance to saline-alkaline stress was dependent on the roots in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:947-954. [PMID: 32377044 PMCID: PMC7196563 DOI: 10.1007/s12298-020-00799-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 05/31/2023]
Abstract
Saline-alkaline stress is one of the most serious global problems affecting agriculture, causing enormous economic and yield losses in agricultural production. Wheat, one of the most important crops worldwide, is often subjected to saline-alkaline stress. In this study, two wheat cultivars with different saline-alkaline tolerance, XC-12 (non-tolerance) and XC-45 (tolerance), were used to investigate the influence of saline-alkaline stress on photosynthesis and nitrogen (N) metabolism through hydroponic experiment with aim of elucidating the mechanism of resistance to salt-alkali. These results showed that saline-alkaline stress significantly reduced biomass accumulation, chlorophyll content, photosynthetic ability and N absorption but increased N utilization efficiency. There was no significant difference in photosynthesis between XC-12 and XC-45 under saline-alkaline stress. In addition, XC-45 had lower ratio of Na+/K+ in leaves and Na+-K+ selection rate and higher N absorption ability than XC-12, thereby improving physiological metabolism. Moreover, the roots exhibited greater growth performance in response to saline-alkaline stress as a result of increasing glutamine synthetase activity in roots, thus promoting N metabolism in roots. By coordinating the synergistic effect of increasing soluble protein in root, XC-45 exhibited greater tolerance to saline-alkaline stress. All data pinpoint that the root physiological function was more responsible for resistance to saline-alkaline stress in wheat.
Collapse
Affiliation(s)
- Kehao Zhang
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jingru Tang
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jian Zeng
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
32
|
|
33
|
Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:265. [PMID: 32269578 PMCID: PMC7109317 DOI: 10.3389/fpls.2020.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.
Collapse
|
34
|
Understanding Mechanisms of Salinity Tolerance in Barley by Proteomic and Biochemical Analysis of Near-Isogenic Lines. Int J Mol Sci 2020; 21:ijms21041516. [PMID: 32098451 PMCID: PMC7073193 DOI: 10.3390/ijms21041516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Salt stress is one of the major environmental factors impairing crop production. In our previous study, we identified a major QTL for salinity tolerance on chromosome 2H on barley (Hordeum vulgare L.). For further investigation of the mechanisms responsible for this QTL, two pairs of near-isogenic lines (NILs) differing in this QTL were developed. Sensitive NILs (N33 and N53) showed more severe damage after exposure to 300 mM NaCl than tolerant ones (T46 and T66). Both tolerant NILs maintained significantly lower Na+ content in leaves and much higher K+ content in the roots than sensitive lines under salt conditions, thus indicating the presence of a more optimal Na+/K+ ratio in plant tissues. Salinity stress caused significant accumulation of H2O2, MDA, and proline in salinity-sensitive NILs, and a greater enhancement in antioxidant enzymatic activities at one specific time or tissues in tolerant lines. One pair of NILs (N33 and T46) were used for proteomic studies using two-dimensional gel electrophoresis. A total of 53 and 51 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves and roots, respectively. Proteins which are associated with photosynthesis, reactive oxygen species (ROS) scavenging, and ATP synthase were found to be specifically upregulated in the tolerant NIL. Proteins identified in this study can serve as a useful resource with which to explore novel candidate genes for salinity tolerance in barley.
Collapse
|
35
|
Rubio F, Nieves-Cordones M, Horie T, Shabala S. Doing 'business as usual' comes with a cost: evaluating energy cost of maintaining plant intracellular K + homeostasis under saline conditions. THE NEW PHYTOLOGIST 2020; 225:1097-1104. [PMID: 30993727 DOI: 10.1111/nph.15852] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/31/2019] [Indexed: 05/27/2023]
Abstract
Salinization of agricultural lands is a major threat to agriculture. Many different factors affect and determine plant salt tolerance. Nonetheless, there is a consensus on the relevance of maintaining an optimal cytosolic potassium : sodium ion (K+ : Na+ ) ratio for salinity tolerance in plants. This ratio depends on the operation of plasma membrane and tonoplast transporters. In the present review we focus on some aspects related to the energetic cost of maintaining that K+ : Na+ ratio. One of the factors that affect the cost of the first step of K+ acquisition - root K+ uptake through High Affinity K+ transporter and Arabidopsis K+ transport system 1 transport systems - is the value of the plasma membrane potential of root cells, a parameter that may differ amongst plant species. In addition to its role in nutrition, cytosolic K+ also is important for signalling, and K+ efflux through gated outward-rectifying K+ and nonselective cation channels can be regarded as a switch to redirect energy towards defence reactions. In maintaining cytosolic K+ , the great buffer capacity of the vacuole should be considered. The possible role of high-affinity K+ transporters (HKT)2s in mediating K+ uptake under saline conditions and the importance of cycling of K+ throughout the plant also are discussed.
Collapse
Affiliation(s)
- Francisco Rubio
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | | | - Tomoaki Horie
- Division of Applied Biology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| |
Collapse
|
36
|
Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells 2019; 8:cells8121657. [PMID: 31861232 PMCID: PMC6952985 DOI: 10.3390/cells8121657] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
High salinity is a challenging environmental stress for organisms to overcome. Unicellular photosynthetic microalgae are especially vulnerable as they have to grapple not only with ionic imbalance and osmotic stress but also with the generated reactive oxygen species (ROS) interfering with photosynthesis. This review attempts to compare and contrast mechanisms that algae, particularly the eukaryotic Chlamydomonas microalgae, exhibit in order to immediately respond to harsh conditions caused by high salinity. The review also collates adaptation mechanisms of freshwater algae strains under persistent high salt conditions. Understanding both short-term and long-term algal responses to high salinity is integral to further fundamental research in algal biology and biotechnology.
Collapse
|
37
|
Chakraborty K, Chattaopadhyay K, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na + and K + in flag leaves render differential salt tolerance in rice at the reproductive stage. PLANTA 2019; 250:1637-1653. [PMID: 31399792 DOI: 10.1007/s00425-019-03253-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Collapse
Affiliation(s)
| | | | - Lopamudra Nayak
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lucina Yeasmin
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Priyanka Jena
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sunanda Gupta
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangram K Mohanty
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Padmini Swain
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ramani K Sarkar
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
38
|
Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110687] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salinity is one of the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigor, and crop yield. This salinity may be natural or induced by agricultural activities such as irrigation or the use of certain types of fertilizer. The most detrimental effect of salinity stress is the accumulation of Na+ and Cl− ions in tissues of plants exposed to soils with high NaCl concentrations. The entry of both Na+ and Cl− into the cells causes severe ion imbalance, and excess uptake might cause significant physiological disorder(s). High Na+ concentration inhibits the uptake of K+, which is an element for plant growth and development that results in lower productivity and may even lead to death. The genetic analyses revealed K+ and Na+ transport systems such as SOS1, which belong to the CBL gene family and play a key role in the transport of Na+ from the roots to the aerial parts in the Arabidopsis plant. In this review, we mainly discuss the roles of alkaline cations K+ and Na+, Ion homeostasis-transport determinants, and their regulation. Moreover, we tried to give a synthetic overview of soil salinity, its effects on plants, and tolerance mechanisms to withstand stress.
Collapse
|
39
|
Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5879-5893. [PMID: 31290978 PMCID: PMC6812723 DOI: 10.1093/jxb/erz328] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 05/02/2023]
Abstract
Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.
Collapse
Affiliation(s)
- Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Li Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Mu Xiong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Juan Liu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lijian Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhaowen Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, PR China
| |
Collapse
|
40
|
Yu Y, Kou M, Gao Z, Liu Y, Xuan Y, Liu Y, Tang Z, Cao Q, Li Z, Sun J. Involvement of Phosphatidylserine and Triacylglycerol in the Response of Sweet Potato Leaves to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1086. [PMID: 31552077 PMCID: PMC6746921 DOI: 10.3389/fpls.2019.01086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Lipid remodeling plays an important role in the adaptation of plants to environmental factors, but the mechanism by which lipid remodeling mediates salt stress response remains unclear. In this study, we compared the root and leaf lipidome profiles of salt-tolerant and salt-sensitive sweet potato cultivars (Xu 22 and Xu 32, respectively) under salinity stress. After salt treatment, the leaf lipidome showed more significant remodeling than the root lipidome in both cultivars. Compared with Xu 32 leaves, Xu 22 leaves generally maintained higher abundance of phospholipids, glycolipids, sphingolipids, sterol derivatives, and diacylglycerol under salinity conditions. Interestingly, salinity stress significantly increased phosphatidylserine (PS) abundance in Xu 22 leaves by predominantly triggering the increase of PS (20:5/22:6). Furthermore, Xu 32 leaves accumulated higher triacylglycerol (TG) level than Xu 22 leaves under salinity conditions. The exogenous application of PS delayed salt-induced leaf senescence in Xu 32 by reducing salt-induced K+ efflux and upregulating plasma membrane H+-ATPase activity. However, the inhibition of TG mobilization in salinized-Xu 22 leaves disturbed energy and K+/Na+ homeostasis, as well as plasma membrane H+-ATPase activity. These results demonstrate alterations in the leaf lipidome of sweet potato under salinity condition, underscoring the importance of PS and TG in mediating salt-defensive responses in sweet potato leaves.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhonghui Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ying Xuan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yaju Liu
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zhonghou Tang
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Qinghe Cao
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
41
|
Bhise KK, Dandge PB. Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 2019. [DOI: 10.1007/s13199-019-00638-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Liu Y, Yu Y, Sun J, Cao Q, Tang Z, Liu M, Xu T, Ma D, Li Z, Sun J. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1389-1405. [PMID: 30689932 PMCID: PMC6382330 DOI: 10.1093/jxb/ery461] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 05/13/2023]
Abstract
Polyploids generally possess superior K+/Na+ homeostasis under saline conditions compared with their diploid progenitors. In this study, we identified the physiological mechanisms involved in the ploidy-related mediation of K+/Na+ homeostasis in the roots of diploid (2x) and hexaploid (6x; autohexaploid) Ipomoea trifida, which is the closest relative of cultivated sweet potato. Results showed that 6x I. trifida retained more K+ and accumulated less Na+ in the root and leaf tissues under salt stress than 2x I. trifida. Compared with its 2x ancestor, 6x I. trifida efficiently prevents K+ efflux from the meristem root zone under salt stress through its plasma membrane (PM) K+-permeable channels, which have low sensitivity to H2O2. Moreover, 6x I. trifida efficiently excludes Na+ from the elongation and mature root zones under salt stress because of the high sensitivity of PM Ca2+-permeable channels to H2O2. Our results suggest the root-zone-specific sensitivity to H2O2 of PM K+- and Ca2+-permeable channels in the co-ordinated control of K+/Na+ homeostasis in salinized 2x and 6x I. trifida. This work provides new insights into the improved maintenance of K+/Na+ homeostasis of polyploids under salt stress.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jianying Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qinghe Cao
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zhonghou Tang
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Meiyan Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Daifu Ma
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| |
Collapse
|
43
|
Liu J, Shabala S, Shabala L, Zhou M, Meinke H, Venkataraman G, Chen Z, Zeng F, Zhao Q. Tissue-Specific Regulation of Na + and K + Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1361. [PMID: 31737000 PMCID: PMC6838216 DOI: 10.3389/fpls.2019.01361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) is a staple food that feeds more than half the world population. As rice is highly sensitive to soil salinity, current trends in soil salinization threaten global food security. To better understand the mechanistic basis of salinity tolerance in rice, three contrasting rice cultivars-Reiziq (tolerant), Doongara (moderately tolerant), and Koshihikari (sensitive)-were examined and the differences in operation of key ion transporters mediating ionic homeostasis in these genotypes were evaluated. Tolerant varieties had reduced Na+ translocation from roots to shoots. Electrophysiological and quantitative reverse transcription PCR experiments showed that tolerant genotypes possessed 2-fold higher net Na+ efflux capacity in the root elongation zone. Interestingly, this efflux was only partially mediated by the plasma membrane Na+/H+ antiporter (OsSOS1), suggesting involvement of some other exclusion mechanisms. No significant difference in Na+ exclusion from the mature root zones was found between cultivars, and the transcriptional changes in the salt overly sensitive signaling pathway genes in the elongation zone were not correlated with the genetic variability in salinity tolerance amongst genotypes. The most important hallmark of differential salinity tolerance was in the ability of the plant to retain K+ in both root zones. This trait was conferred by at least three complementary mechanisms: (1) its superior ability to activate H+-ATPase pump operation, both at transcriptional and functional levels; (2) reduced sensitivity of K+ efflux channels to reactive oxygen species; and (3) smaller upregulation in OsGORK and higher upregulation of OsAKT1 in tolerant cultivars in response to salt stress. These traits should be targeted in breeding programs aimed to improve salinity tolerance in commercial rice cultivars.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Holger Meinke
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Zhonghua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| |
Collapse
|
44
|
Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. PHYSIOLOGIA PLANTARUM 2018; 164:163-175. [PMID: 29314007 DOI: 10.1111/ppl.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/02/2018] [Indexed: 05/28/2023]
Abstract
Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.
Collapse
Affiliation(s)
- Aina E Prinzenberg
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
| | - Sjaak van Heusden
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Plant Breeding, Wageningen University and Research, P.O. Box 386, Wageningen 6700 AJ, The Netherlands
| |
Collapse
|
45
|
Niu M, Xie J, Chen C, Cao H, Sun J, Kong Q, Shabala S, Shabala L, Huang Y, Bie Z. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4945-4960. [PMID: 29992291 PMCID: PMC6137988 DOI: 10.1093/jxb/ery251] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 05/20/2023]
Abstract
Tissue tolerance to salinity stress is a complex physiological trait composed of multiple 'sub-traits' such as Na+ compartmentalization, K+ retention, and osmotic tolerance. Previous studies have shown that some Cucurbita species employ tissue tolerance to combat salinity and we aimed to identify the physiological and molecular mechanisms involved. Five C. maxima (salt-tolerant) and five C. moschata (salt-sensitive) genotypes were comprehensively assessed for their salt tolerance mechanisms and the results showed that tissue-specific transport characteristics enabled the more tolerant lines to deal with the salt load. This mechanism was associated with the ability of the tolerant species to accumulate more Na+ in the leaf vein and to retain more K+ in the leaf mesophyll. In addition, C. maxima more efficiently retained K+ in the roots when exposed to transient NaCl stress and it was also able to store more Na+ in the xylem parenchyma and cortex in the leaf vein. Compared with C. moschata, C. maxima was also able to rapidly close stomata at early stages of salt stress, thus avoiding water loss; this difference was attributed to higher accumulation of ABA in the leaf. Transcriptome and qRT-PCR analyses revealed critical roles of high-affinity potassium (HKT1) and intracellular Na+/H+ (NHX4/6) transporters as components of the mechanism enabling Na+ exclusion from the leaf mesophyll and Na+ sequestration in the leaf vein. Also essential was a higher expression of NCED3s (encoding 9-cis-epoxycarotenoid dioxygenase, a key rate-limiting enzyme in ABA biosynthesis), which resulted in greater ABA accumulation in the mesophyll and earlier stomata closure in C. maxima.
Collapse
Affiliation(s)
- Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Junjun Xie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Jingyu Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Qiusheng Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, P. R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| |
Collapse
|
46
|
Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S. Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. PROTOPLASMA 2018; 255:1349-1362. [PMID: 29527645 DOI: 10.1007/s00709-018-1235-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/28/2018] [Indexed: 05/25/2023]
Abstract
Pistachio, one of the important tree nuts, is cultivated in arid and semi-arid regions where salinity is the most common abiotic stress encountered by this tree. However, the mechanisms underlying salinity tolerance in this plant are not well understood. In the present study, five 1-year-old pistachio rootstocks (namely Akbari, Badami, Ghazvini, Kale-Ghouchi, and UCB-1) were treated with four saline water regimes (control, 8, 12, and 16 dS m-1) for 100 days. At high salinity level, all rootstocks showed decreased relative water content (RWC), total chlorophyll content (TCHC), and carotenoids in the leaf, while ascorbic acid (AsA) and total soluble proteins (TSP) were reduced in both leaf and root organs. In addition, the total phenolic compounds (TPC), proline, glycine betaine, total soluble carbohydrate (TSC), and H2O2 content increased under salinity stress in all studied rootstocks. Three different ion exclusion strategies were observed in the studied rootstocks: (i) Na+ exclusion in UCB-1, because most of its Na+ is retained in the roots; (ii) Cl- exclusion in Badami, in which most of its Cl- remained in the roots; and (iii) similar concentrations of Na+ and Cl- were observed in the leaves and roots of Ghazvini, Akbari, and Kale-Ghouchi. Transport capacity (ST value) of K+ over Na+ from the roots to the leaves was more observable in UCB-1 and Ghazvini. Overall, the root system cooperated more effectively in UCB-1 and Badami for retaining and detoxifying an excessive amount of Na+ and Cl-. The results presented here provide important inputs to better understand the salt tolerance mechanism in a tree species for developing more salt-tolerant genotypes. Based on the results obtained here, the studied rootstocks from tolerant to susceptible are arranged as follows: UCB-1 > Badami > Ghazvini > Kale-Ghouchi > Akbari.
Collapse
Affiliation(s)
- Mohammad Akbari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, FL, 32307, USA.
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Katam Ramesh
- Department of Biological Sciences, College of Science and Technology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| |
Collapse
|
47
|
Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 2018; 45:1111-1124. [DOI: 10.1007/s11033-018-4262-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
48
|
Niu M, Huang Y, Sun S, Sun J, Cao H, Shabala S, Bie Z. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3465-3476. [PMID: 29145593 PMCID: PMC6009698 DOI: 10.1093/jxb/erx386] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant's hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory burst oxidase homologue-dependent H2O2 production, which enhances Na+ exclusion from the root and promotes an early stomatal closure.
Collapse
Affiliation(s)
- Mengliang Niu
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Yuan Huang
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Shitao Sun
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Jingyu Sun
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Haishun Cao
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| |
Collapse
|
49
|
Wang H, Shabala L, Zhou M, Shabala S. Hydrogen Peroxide-Induced Root Ca 2+ and K⁺ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. Int J Mol Sci 2018; 19:E702. [PMID: 29494514 PMCID: PMC5877563 DOI: 10.3390/ijms19030702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops-barley (Hordeum vulgare) and wheat (Triticum aestivum)-was investigated by measuring the magnitude of ROS-induced net K⁺ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H₂O₂ treatment, a significant positive correlation was found for the magnitude of ROS-induced K⁺ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H₂O₂-induced net K⁺ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
50
|
Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H +-ATPase Activity and K +/Na + Homeostasis in Sweet Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:256. [PMID: 29535758 PMCID: PMC5835075 DOI: 10.3389/fpls.2018.00256] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Melatonin (MT) is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [Ipomoea batatas (L.) Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K+/Na+ homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K+/Na+ homeostasis in sweet potato seedlings as indicated by the low reduced K+ content in tissues and low accumulation of Na+ content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K+ efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM) H+-ATPase activity and intracellular adenosine triphosphate (ATP) level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG) accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA) β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H+-ATPase activity, and K+/Na+ homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H+-ATPase activity and K+/Na+ homeostasis in sweet potato.
Collapse
Affiliation(s)
- Yicheng Yu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Aimin Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Wenjun Wang
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Xianyang Chen
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Tao Xu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|