1
|
Qin Y, Wang X, Dong H, Ye T, Du N, Zhang T, Piao F, Dong X, Shen S, Guo Z. Plant Growth-Promoting Rhizobacteria Paenibacillus polymyxa HL14-3 Inoculation Enhances Drought Tolerance in Cucumber by Triggering Abscisic Acid-Mediated Stomatal Closure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:260-272. [PMID: 39731552 DOI: 10.1021/acs.jafc.4c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive. Here, we screened a novel drought-tolerant PGPR strain Paenibacillus polymyxa HL14-3 with high drought-tolerance potential and efficient colonization ability. P. polymyxa HL14-3 inoculation effectively alleviated drought-induced growth inhibition and oxidative stress and improved the root system architecture in cucumber. Furthermore, P. polymyxa HL14-3 improved stomatal closure and leaf relative water content, reducing water loss in cucumber under drought stress. Importantly, P. polymyxa HL14-3 inoculation enhanced drought tolerance in cucumber by inducing abscisic acid synthesis, which was counteracted by root irrigation with the ABA synthesis inhibitor fluridone. Together, our results demonstrate that P. polymyxa HL14-3 inoculation enhances drought tolerance in cucumber by triggering ABA-mediated stomatal closure, providing an effective drought-tolerant PGPR for promoting agricultural production in arid areas.
Collapse
Affiliation(s)
- Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| |
Collapse
|
2
|
Wang R, Zhong Y, Han J, Huang L, Wang Y, Shi X, Li M, Zhuang Y, Ren W, Liu X, Cao H, Xin B, Lai J, Chen L, Chen F, Yuan L, Wang Y, Li X. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. THE PLANT CELL 2024; 36:4388-4403. [PMID: 38917216 PMCID: PMC11448906 DOI: 10.1093/plcell/koae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.
Collapse
Affiliation(s)
- Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liangliang Huang
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengfei Li
- State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Ren
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Baldauf JA, Hochholdinger F. Molecular dissection of heterosis in cereal roots and their rhizosphere. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:173. [PMID: 37474870 PMCID: PMC10359381 DOI: 10.1007/s00122-023-04419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Heterosis is already manifested early in root development. Consistent with the dominance model of heterosis, gene expression complementation is a general mechanism that contributes to phenotypic heterosis in maize hybrids. Highly heterozygous F1-hybrids outperform their parental inbred lines, a phenomenon known as heterosis. Utilization of heterosis is of paramount agricultural importance and has been widely applied to increase yield in many crop cultivars. Plant roots display heterosis for many traits and are an important target for further crop improvement. To explain the molecular basis of heterosis, several genetic hypotheses have been proposed. In recent years, high-throughput gene expression profiling techniques have been applied to investigate hybrid vigor. Consistent with the classical genetic dominance model, gene expression complementation has been demonstrated to be a general mechanism to contribute to phenotypic heterosis in diverse maize hybrids. Functional classification of these genes supported the notion that gene expression complementation can dynamically promote hybrid vigor under fluctuating environmental conditions. Hybrids tend to respond differently to available nutrients in the soil. It was hypothesized that hybrid vigor is promoted through a higher nutrient use efficiency which is linked to an improved root system performance of hybrids in comparison to their inbred parents. Recently, the interaction between soil microbes and their plant host was added as further dimension to disentangle heterosis in the belowground part of plants. Soil microbes influenced the performance of maize hybrids as illustrated in comparisons of sterile soil and soil inhabited by beneficial microorganisms.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
4
|
de Souza Rodrigues T, Arge LWP, de Freitas Guedes FA, Travassos-Lins J, de Souza AP, Cocuron JC, Buckeridge MS, Grossi-de-Sá MF, Alves-Ferreira M. Elevated CO 2 increases biomass of Sorghum bicolor green prop roots under drought conditions via soluble sugar accumulation and photosynthetic activity. PHYSIOLOGIA PLANTARUM 2023; 175:e13984. [PMID: 37616001 DOI: 10.1111/ppl.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Elevated [CO2 ] (E[CO2 ]) mitigates agricultural losses of C4 plants under drought. Although several studies have described the molecular responses of the C4 plant species Sorghum bicolor during drought exposure, few have reported the combined effects of drought and E[CO2 ] (E[CO2 ]/D) on the roots. A previous study showed that, among plant organs, green prop roots (GPRs) under E[CO2 ]/D presented the second highest increase in biomass after leaves compared with ambient [CO2 ]/D. GPRs are photosynthetically active and sensitive to drought. To understand which mechanisms are involved in the increase in biomass of GPRs, we performed transcriptome analyses of GPRs under E[CO2 ]/D. Whole-transcriptome analysis revealed several pathways altered under E[CO2 ]/D, among which photosynthesis was strongly affected. We also used previous metabolome data to support our transcriptome data. Activities associated with photosynthesis and central metabolism increased, as seen by the upregulation of photosynthesis-related genes, a rise in glucose and polyol contents, and increased contents of chlorophyll a and carotenoids. Protein-protein interaction networks revealed that proliferation, biogenesis, and homeostasis categories were enriched and contained mainly upregulated genes. The findings suggest that the previously reported increase in GPR biomass of plants grown under E[CO2 ]/D is mainly attributed to glucose and polyol accumulation, as well as photosynthesis activity and carbon provided by respiratory CO2 refixation. Our findings reveal that an intriguing and complex metabolic process occurs in GPRs under E[CO2 ]/D, showing the crucial role of these organs in plant drought /tolerance.
Collapse
Affiliation(s)
- Tamires de Souza Rodrigues
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Willian Pacheco Arge
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Alves de Freitas Guedes
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Travassos-Lins
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Pereira de Souza
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Catholic University of Brasília, Brasília-DF, Brazil
| | - Márcio Alves-Ferreira
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Ltaief S, Krouma A. Functional Dissection of the Physiological Traits Promoting Durum Wheat ( Triticum durum Desf.) Tolerance to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1420. [PMID: 37050046 PMCID: PMC10096688 DOI: 10.3390/plants12071420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
In Tunisia's arid and semi-arid lands, drought stress remains the most critical factor limiting agricultural production due to low and irregular precipitation. The situation is even more difficult because of the scarcity of underground water for irrigation and the climate change that has intensified and expanded the aridity. One of the most efficient and sustainable approaches to mitigating drought stress is exploring genotypic variability to screen tolerant genotypes and identify useful tolerance traits. To this end, six Tunisian wheat genotypes (Triticum durum Desf.) were cultivated in the field, under a greenhouse and natural light, to be studied for their differential tolerance to drought stress. Many morpho-physiological and biochemical traits were analyzed, and interrelationships were established. Depending on the genotypes, drought stress significantly decreased plant growth, chlorophyll biosynthesis, and photosynthesis; stimulated osmolyte accumulation and disturbed water relations. The most tolerant genotypes (salim and karim) accumulated more potassium (K) and proline in their shoots, allowing them to maintain better tissue hydration and physiological functioning. The osmotic adjustment (OA), in which potassium and proline play a key role, determines wheat tolerance to drought stress. The calculated drought index (DI), drought susceptible index (DSI), drought tolerance index (DTI), K use efficiency (KUE), and water use efficiency (WUE) discriminated the studied genotypes and confirmed the relative tolerance of salim and karim.
Collapse
Affiliation(s)
- Salim Ltaief
- Faculty of Sciences of Gafsa, Sidi Ahmed Zarroug, Gafsa 2112, Tunisia
- Faculty of Sciences and Techniques, Sidi Bouzid 9100, Tunisia
| | - Abdelmajid Krouma
- Faculty of Sciences and Techniques, Sidi Bouzid 9100, Tunisia
- Faculty of Sciences of Sfax, Road la Soukra km 4-BP, Sfax 1171-3000, Tunisia
| |
Collapse
|
6
|
Singh Z, Singh H, Garg T, Mushahary KKK, Yadav SR. Genetic and Hormonal Blueprint of Shoot-Borne Adventitious Root Development in Rice and Maize. PLANT & CELL PHYSIOLOGY 2023; 63:1806-1813. [PMID: 35713294 DOI: 10.1093/pcp/pcac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The evolution of root architecture in plants was a prerequisite for the absorption of water and minerals from the soil, and thus a major determinant of terrestrial plant colonization. Cereals have a remarkably complex root system consisting of embryonic primary roots and post-embryonic lateral roots and shoot-borne adventitious roots. Among grass species, rice adventitious roots (also called crown roots) are developed from compressed nodes at the stem base, whereas in maize, besides crown roots, several aboveground brace roots are also formed, thus adventitious root types display species-specific diversity. Despite being the backbone for the adult root system in monocots, adventitious roots are the least studied of all the plant organs. In recent times, molecular genetics, genomics and proteomics-based approaches have been utilized to dissect the mechanism of post-embryonic meristem formation and tissue patterning. Adventitious root development is a cumulative effect of the actions and interactions of crucial genetic and hormonal regulators. In this review, we provide a comprehensive view of the key regulators involved during the different stages of adventitious root development in two important crop plants, rice and maize. We have reviewed the roles of major phytohormones, microRNAs and transcription factors and their crosstalk during adventitious root development in these cereal crops.
Collapse
Affiliation(s)
- Zeenu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. Genome-wide dissection of changes in maize root system architecture during modern breeding. NATURE PLANTS 2022; 8:1408-1422. [PMID: 36396706 DOI: 10.1038/s41477-022-01274-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/12/2022] [Indexed: 05/12/2023]
Abstract
Appropriate root system architecture (RSA) can improve maize yields in densely planted fields, but little is known about its genetic basis in maize. Here we performed root phenotyping of 14,301 field-grown plants from an association mapping panel to study the genetic architecture of maize RSA. A genome-wide association study identified 81 high-confidence RSA-associated candidate genes and revealed that 28 (24.3%) of known root-related genes were selected during maize domestication and improvement. We found that modern maize breeding has selected for a steeply angled root system. Favourable alleles related to steep root system angle have continuously accumulated over the course of modern breeding, and our data pinpoint the root-related genes that have been selected in different breeding eras. We confirm that two auxin-related genes, ZmRSA3.1 and ZmRSA3.2, contribute to the regulation of root angle and depth in maize. Our genome-wide identification of RSA-associated genes provides new strategies and genetic resources for breeding maize suitable for high-density planting.
Collapse
Affiliation(s)
- Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Longfei Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiaxing Liang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Lifeng Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojie Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhihai Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jieping Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
8
|
Rangarajan H, Hadka D, Reed P, Lynch JP. Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:38-53. [PMID: 35426959 PMCID: PMC9544003 DOI: 10.1111/tpj.15774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 05/11/2023]
Abstract
Root phenotypes are avenues to the development of crop cultivars with improved nutrient capture, which is an important goal for global agriculture. The fitness landscape of root phenotypes is highly complex and multidimensional. It is difficult to predict which combinations of traits (phene states) will create the best performing integrated phenotypes in various environments. Brute force methods to map the fitness landscape by simulating millions of phenotypes in multiple environments are computationally challenging. Evolutionary optimization algorithms may provide more efficient avenues to explore high dimensional domains such as the root phenotypic space. We coupled the three-dimensional functional-structural plant model, SimRoot, to the Borg Multi-Objective Evolutionary Algorithm (MOEA) and the evolutionary search over several generations facilitated the identification of optimal root phenotypes balancing trade-offs across nutrient uptake, biomass accumulation, and root carbon costs in environments varying in nutrient availability. Our results show that several combinations of root phenes generate optimal integrated phenotypes where performance in one objective comes at the cost of reduced performance in one or more of the remaining objectives, and such combinations differed for mobile and non-mobile nutrients and for maize (a monocot) and bean (a dicot). Functional-structural plant models can be used with multi-objective optimization to identify optimal root phenotypes under various environments, including future climate scenarios, which will be useful in developing the more resilient, efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Patrick Reed
- Civil and Environmental EngineeringCornell UniversityIthacaNew YorkUSA
| | - Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
9
|
Non-Invasive Monitoring of the Thermal and Morphometric Characteristics of Lettuce Grown in an Aeroponic System through Multispectral Image System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aeroponics is a soilless cultivation technology integrating plant nutrition, physiology, ecological environment, agricultural automation and horticulture. One of the soilless advantages is that a non-invasive observation of the root system growth development is possible. This paper presents a vegetative growth evaluation of lettuce plants in an aeroponic chamber, where root and leaf development parameters were measured in three lettuce crops through plant images captured in the visible (VIS), near infrared (NIR) and far infrared (IR) spectra. A total of ninety lettuce plants was transplanted for this research, thirty for each experimental crop. The three lettuce crops were grown for thirty days in an aeroponic growth plant chamber inside a greenhouse under favorable conditions. The morphometric and thermal parameters of the lettuce roots (perimeter, area, length and average temperature) and leaves (perimeter, area and average temperature) were evaluated for each crop along ten image-capturing sessions through an implemented multispectral vision system. The average values of the root and leaf morphometric parameters obtained with the implemented imaging system along the lettuce growing period were statistically analyzed with Tukey testing. The obtained analysis results show no significant difference for a value of p ≤ 0.05 in 86.67%. Hence, the morphometric parameters can be used to characterize the vegetative lettuce growth in aeroponic crops. On the other hand, a correlation analysis was conducted between the thermal parameters computed with the root and leaf thermal image processing and the measured ambient temperature. The results were: R = 0.945 for correlation between ambient and leaf temperature, R = 0.963 for correlation between ambient and root temperature and R = 0.977 for leaf and root temperature. According to these results, the plant temperature is highly correlated with the ambient temperature in an aeroponic crop. The obtained study results suggest that multispectral image processing is a useful non-invasive tool to estimate the vegetative root and leaf growth parameters of aeroponic lettuce plants in a greenhouse.
Collapse
|
10
|
Xu Z, York LM, Seethepalli A, Bucciarelli B, Cheng H, Samac DA. Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.). PLANT PHENOMICS (WASHINGTON, D.C.) 2022; 2022:9879610. [PMID: 35479182 PMCID: PMC9012978 DOI: 10.34133/2022/9879610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Active breeding programs specifically for root system architecture (RSA) phenotypes remain rare; however, breeding for branch and taproot types in the perennial crop alfalfa is ongoing. Phenotyping in this and other crops for active RSA breeding has mostly used visual scoring of specific traits or subjective classification into different root types. While image-based methods have been developed, translation to applied breeding is limited. This research is aimed at developing and comparing image-based RSA phenotyping methods using machine and deep learning algorithms for objective classification of 617 root images from mature alfalfa plants collected from the field to support the ongoing breeding efforts. Our results show that unsupervised machine learning tends to incorrectly classify roots into a normal distribution with most lines predicted as the intermediate root type. Encouragingly, random forest and TensorFlow-based neural networks can classify the root types into branch-type, taproot-type, and an intermediate taproot-branch type with 86% accuracy. With image augmentation, the prediction accuracy was improved to 97%. Coupling the predicted root type with its prediction probability will give breeders a confidence level for better decisions to advance the best and exclude the worst lines from their breeding program. This machine and deep learning approach enables accurate classification of the RSA phenotypes for genomic breeding of climate-resilient alfalfa.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | - Bruna Bucciarelli
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Hao Cheng
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave., Davis, CA 95616, USA
| | - Deborah A. Samac
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. RhizoVision Explorer: open-source software for root image analysis and measurement standardization. AOB PLANTS 2021; 13:plab056. [PMID: 34804466 PMCID: PMC8598384 DOI: 10.1093/aobpla/plab056] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/23/2021] [Indexed: 05/10/2023]
Abstract
Roots are central to the function of natural and agricultural ecosystems by driving plant acquisition of soil resources and influencing the carbon cycle. Root characteristics like length, diameter and volume are critical to measure to understand plant and soil functions. RhizoVision Explorer is an open-source software designed to enable researchers interested in roots by providing an easy-to-use interface, fast image processing and reliable measurements. The default broken roots mode is intended for roots sampled from pots and soil cores, washed and typically scanned on a flatbed scanner, and provides measurements like length, diameter and volume. The optional whole root mode for complete root systems or root crowns provides additional measurements such as angles, root depth and convex hull. Both modes support providing measurements grouped by defined diameter ranges, the inclusion of multiple regions of interest and batch analysis. RhizoVision Explorer was successfully validated against ground truth data using a new copper wire image set. In comparison, the current reference software, the commercial WinRhizo™, drastically underestimated volume when wires of different diameters were in the same image. Additionally, measurements were compared with WinRhizo™ and IJ_Rhizo using a simulated root image set, showing general agreement in software measurements, except for root volume. Finally, scanned root image sets acquired in different labs for the crop, herbaceous and tree species were used to compare results from RhizoVision Explorer with WinRhizo™. The two software showed general agreement, except that WinRhizo™ substantially underestimated root volume relative to RhizoVision Explorer. In the current context of rapidly growing interest in root science, RhizoVision Explorer intends to become a reference software, improve the overall accuracy and replicability of root trait measurements and provide a foundation for collaborative improvement and reliable access to all.
Collapse
Affiliation(s)
| | - Kundan Dhakal
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | | | - Haichao Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | | | - Larry M York
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
12
|
Ramireddy E, Nelissen H, Leuendorf JE, Van Lijsebettens M, Inzé D, Schmülling T. Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment. PLANT MOLECULAR BIOLOGY 2021; 106:555-567. [PMID: 34275101 PMCID: PMC8338857 DOI: 10.1007/s11103-021-01173-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 05/12/2023]
Abstract
Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India.
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
| |
Collapse
|
13
|
Wang H, Tang X, Yang X, Fan Y, Xu Y, Li P, Xu C, Yang Z. Exploiting natural variation in crown root traits via genome-wide association studies in maize. BMC PLANT BIOLOGY 2021; 21:346. [PMID: 34301195 PMCID: PMC8299645 DOI: 10.1186/s12870-021-03127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/12/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root system architecture (RSA), which is determined by the crown root angle (CRA), crown root diameter (CRD), and crown root number (CRN), is an important factor affecting the ability of plants to obtain nutrients and water from the soil. However, the genetic mechanisms regulating crown root traits in the field remain unclear. METHODS In this study, the CRA, CRD, and CRN of 316 diverse maize inbred lines were analysed in three field trials. Substantial phenotypic variations were observed for the three crown root traits in all environments. A genome-wide association study was conducted using two single-locus methods (GLM and MLM) and three multi-locus methods (FarmCPU, FASTmrMLM, and FASTmrEMMA) with 140,421 SNP. RESULTS A total of 38 QTL including 126 SNPs were detected for CRA, CRD, and CRN. Additionally, 113 candidate genes within 50 kb of the significant SNPs were identified. Combining the gene annotation information and the expression profiles, 3 genes including GRMZM2G141205 (IAA), GRMZM2G138511 (HSP) and GRMZM2G175910 (cytokinin-O-glucosyltransferase) were selected as potentially candidate genes related to crown root development. Moreover, GRMZM2G141205, encoding an AUX/IAA transcriptional regulator, was resequenced in all tested lines. Five variants were identified as significantly associated with CRN in different environments. Four haplotypes were detected based on these significant variants, and Hap1 has more CRN. CONCLUSIONS These findings may be useful for clarifying the genetic basis of maize root system architecture. Furthermore, the identified candidate genes and variants may be relevant for breeding new maize varieties with root traits suitable for diverse environmental conditions.
Collapse
Affiliation(s)
- Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China
| | - Xiao Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China
| | - Xiaoyi Yang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Fan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengcheng Li
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Mhimdi M, Pérez-Pérez JM. Understanding of Adventitious Root Formation: What Can We Learn From Comparative Genetics? FRONTIERS IN PLANT SCIENCE 2020; 11:582020. [PMID: 33123185 PMCID: PMC7573222 DOI: 10.3389/fpls.2020.582020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 05/23/2023]
Abstract
Adventitious root (AR) formation is a complex developmental process controlled by a plethora of endogenous and environmental factors. Based on fossil evidence and genomic phylogeny, AR formation might be considered the default state of plant roots, which likely evolved independently several times. The application of next-generation sequencing techniques and bioinformatics analyses to non-model plants provide novel approaches to identify genes putatively involved in AR formation in multiple species. Recent results uncovered that the regulation of shoot-borne AR formation in monocots is an adaptive response to nutrient and water deficiency that enhances topsoil foraging and improves plant performance. A hierarchy of transcription factors required for AR initiation has been identified from genetic studies, and recent results highlighted the key involvement of additional regulation through microRNAs. Here, we discuss our current understanding of AR formation in response to specific environmental stresses, such as nutrient deficiency, drought or waterlogging, aimed at providing evidence for the integration of the hormone crosstalk required for the activation of root competent cells within adult tissues from which the ARs develop.
Collapse
|
15
|
MTA, an RNA m 6A Methyltransferase, Enhances Drought Tolerance by Regulating the Development of Trichomes and Roots in Poplar. Int J Mol Sci 2020; 21:ijms21072462. [PMID: 32252292 PMCID: PMC7177244 DOI: 10.3390/ijms21072462] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes, where it is present within both coding and noncoding regions. In mammals, methylation requires the catalysis of a multicomponent m6A methyltransferase complex. Proposed biological functions for m6A modification include pre-mRNA splicing, RNA stability, cell fate regulation, and embryonic development. However, few studies have been conducted on m6A modification in trees. In particular, the regulation mechanism of RNA m6A in Populus development remains to be further elucidated. Here, we show that PtrMTA (Populus trichocarpa methyltransferase) was colocalized with PtrFIP37 in the nucleus. Importantly, the PtrMTA-overexpressing plants significantly increased the density of trichomes and exhibited a more developed root system than that of wild-type controls. Moreover, we found that PtrMTA-overexpressing plants had better tolerance to drought stress. We also found PtrMTA was a component of the m6A methyltransferase complex, which participated in the formation of m6A methylation in poplar. Taken together, these results demonstrate that PtrMTA is involved in drought resistance by affecting the development of trichomes and roots, which will provide new clues for the study of RNA m6A modification and expand our understanding of the epigenetic molecular mechanism in woody plants.
Collapse
|
16
|
Zhang G, Kou X, Zhang X, Bai W, Liang W. Effect of row spacings on soil nematode communities and ecosystem multifunctionality at an aggregate scale. Sci Rep 2020; 10:4779. [PMID: 32179832 PMCID: PMC7076006 DOI: 10.1038/s41598-020-61498-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
Effect of crop row spacing on the belowground ecosystem, especially at an aggregate scale, remains unexplored. To explore how row spacing influenced nematode community and ecosystem function at the aggregate scale, four row spacings i.e. equidistant-row (ER, 50 cm-inter-row distance, 33 cm-intra-row between plants in each row) and non-equidistant-row including NR1 (100 cm + 50 cm row distance and 22 cm intra-row), NR2 (100 cm + 50 cm inter-row and 25 cm intra-row), and NR3 (60 cm + 40 cm inter-row and 33 cm intra-row) were compared, and four soil aggregate fractions i.e. >2 mm, 1–2 mm, 0.25–1 mm and <0.25 mm were separated. Row spacing did not impact C and N, but significantly influenced P. The regulation effect of acid phosphatase on soil available P was aggregate-scale dependent. Nematode faunal analysis indicated that NR3 within 0.25–1 mm was less disturbed or relatively undisturbed environments. Structural equation model showed row spacing pattern directly affected multifunctionality, while aggregate fractions indirectly contributed to multifunctionality mainly by regulating the richness of total nematodes and trophic groups. It was concluded that NR3 had potential to construct more stable food web, and therefore was possibly the suitable planting pattern.
Collapse
Affiliation(s)
- Guizong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchang Kou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xiaoke Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wei Bai
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Wenju Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
17
|
Chen L, Zhao J, Song J, Jameson PE. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:614-630. [PMID: 31782596 PMCID: PMC7004901 DOI: 10.1111/pbi.13305] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/19/2019] [Indexed: 05/04/2023]
Abstract
The plant hormone group, the cytokinins, is implicated in both qualitative and quantitative components of yield. Cytokinins have opposing actions in shoot and root growth-actions shown to involve cytokinin dehydrogenase (CKX), the enzyme that inactivates cytokinin. We revise and provide unambiguous names for the CKX gene family members in wheat, based on the most recently released wheat genome database, IWGSC RefSeq v1.0 & v2.0. We review expression data of CKX gene family members in wheat, revealing tissue-specific gene family member expression as well as sub-genome-specific expression. Manipulation of CKX in cereals shows clear impacts on yield, root growth and orientation, and Zn nutrition, but this also emphasizes the necessity to unlink promotive effects on grain yield from negative effects of cytokinin on root growth and uptake of mineral nutrients, particularly Zn and Fe. Wheat is the most widely grown cereal crop globally, yet is under-research compared with rice and maize. We highlight gaps in our knowledge of the involvement of CKX for wheat. We also highlight the necessity for accurate analysis of endogenous cytokinins, acknowledging why this is challenging, and provide examples where inadequate analyses of endogenous cytokinins have led to unjustified conclusions. We acknowledge that the allohexaploid nature of bread wheat poses challenges in terms of uncovering useful mutations. However, we predict TILLING followed by whole-exome sequencing will uncover informative mutations and we indicate the potential for stacking mutations within the three genomes to modify yield components. We model a wheat ideotype based on CKX manipulation.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiqiang Zhao
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
18
|
Grzesiak MT, Hordyńska N, Maksymowicz A, Grzesiak S, Szechyńska-Hebda M. Variation Among Spring Wheat ( Triticum aestivum L.) Genotypes in Response to the Drought Stress. II-Root System Structure. PLANTS (BASEL, SWITZERLAND) 2019; 8:E584. [PMID: 31817986 PMCID: PMC6963452 DOI: 10.3390/plants8120584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023]
Abstract
(1) Background: The study analyzed wheat morphological traits to assess the role of roots structure in the tolerance of drought and to recognize the mechanisms of root structure adjustment to dry soil environment. (2) Methods: Root-box and root-basket methods were applied to maintain an intact root system for analysis. (3) Results: Phenotypic differences among six genotypes with variable drought susceptibility index were found. Under drought, the resistant genotypes lowered their shoot-to-root ratio. Dry matter, number, length, and diameter of nodal and lateral roots were higher in drought-tolerant genotypes than in sensitive ones. The differences in the surface area of the roots were greater in the upper parts of the root system (in the soil layer between 0 and 15 cm) and resulted from the growth of roots of the tolerant plant at an angle of 0-30° and 30-60°. (4) Conclusions: Regulation of root bending in a more downward direction can be important but is not a priority in avoiding drought effects by tolerant plants. If this trait is reduced and accompanied by restricted root development in the upper part of the soil, it becomes a critical factor promoting plant sensitivity to water-limiting conditions.
Collapse
Affiliation(s)
- Maciej T. Grzesiak
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland; (N.H.); (A.M.); (S.G.)
| | - Natalia Hordyńska
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland; (N.H.); (A.M.); (S.G.)
| | - Anna Maksymowicz
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland; (N.H.); (A.M.); (S.G.)
| | - Stanisław Grzesiak
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland; (N.H.); (A.M.); (S.G.)
| | - Magdalena Szechyńska-Hebda
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland; (N.H.); (A.M.); (S.G.)
- Plant Breeding and Acclimation Institute-National Research Institute, 05-870 Błonie, Radzików, Poland
| |
Collapse
|
19
|
Grzesiak MT, Hordyńska N, Maksymowicz A, Grzesiak S, Szechyńska-Hebda M. Variation Among Spring Wheat ( Triticum aestivum L.) Genotypes in Response to the Drought Stress. II-Root System Structure. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8120584. [PMID: 31817986 DOI: 10.1080/17429145.2018.1550817] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
(1) Background: The study analyzed wheat morphological traits to assess the role of roots structure in the tolerance of drought and to recognize the mechanisms of root structure adjustment to dry soil environment. (2) Methods: Root-box and root-basket methods were applied to maintain an intact root system for analysis. (3) Results: Phenotypic differences among six genotypes with variable drought susceptibility index were found. Under drought, the resistant genotypes lowered their shoot-to-root ratio. Dry matter, number, length, and diameter of nodal and lateral roots were higher in drought-tolerant genotypes than in sensitive ones. The differences in the surface area of the roots were greater in the upper parts of the root system (in the soil layer between 0 and 15 cm) and resulted from the growth of roots of the tolerant plant at an angle of 0-30° and 30-60°. (4) Conclusions: Regulation of root bending in a more downward direction can be important but is not a priority in avoiding drought effects by tolerant plants. If this trait is reduced and accompanied by restricted root development in the upper part of the soil, it becomes a critical factor promoting plant sensitivity to water-limiting conditions.
Collapse
Affiliation(s)
- Maciej T Grzesiak
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland
| | - Natalia Hordyńska
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland
| | - Anna Maksymowicz
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland
| | - Stanisław Grzesiak
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland
| | - Magdalena Szechyńska-Hebda
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezpominajek 21, 30-239, Kraków, Poland
- Plant Breeding and Acclimation Institute-National Research Institute, 05-870 Błonie, Radzików, Poland
| |
Collapse
|
20
|
Li L, Xu Y, Ren Y, Guo Z, Li J, Tong Y, Lin T, Cui D. Comparative Proteomic Analysis Provides Insights into the Regulatory Mechanisms of Wheat Primary Root Growth. Sci Rep 2019; 9:11741. [PMID: 31409818 PMCID: PMC6692329 DOI: 10.1038/s41598-019-47926-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Plant roots are vital for acquiring nutrients and water from soil. However, the mechanisms regulating root growth in hexaploid wheat remain to be elucidated. Here, an integrated comparative proteome study on the roots of two varieties and their descendants with contrasting root phenotypes was performed. A total of 80 differentially expressed proteins (DEPs) associated with the regulation of primary root growth were identified, including two plant steroid biosynthesis related proteins and nine class III peroxidases. Real-time PCR analysis showed that brassinosteroid (BR) biosynthesis pathway was significantly elevated in long-root plants compared with those short-root plants. Moreover, O2.- and H2O2 were distributed abundantly in both the root meristematic and elongation zones of long root plants, but only in the meristematic zone of short-root plants. The differential distribution of reactive oxygen species (ROS) in the root tips of different genotypes may be caused by the differential expression of peroxidases. Taken together, our results suggest that the regulation of wheat primary root growth is closely related to BR biosynthesis pathway and BR-mediated ROS distribution.
Collapse
Affiliation(s)
- Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Xu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Shangqiu Normal University, Shangqiu, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China.
| | - Zhanyong Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China.
| | - Dangqun Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
21
|
Del Bianco M, Kepinski S. Building a future with root architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5319-5323. [PMID: 30445468 PMCID: PMC6255693 DOI: 10.1093/jxb/ery390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Marta Del Bianco
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Bodner G, Nakhforoosh A, Arnold T, Leitner D. Hyperspectral imaging: a novel approach for plant root phenotyping. PLANT METHODS 2018; 14:84. [PMID: 30305838 PMCID: PMC6169016 DOI: 10.1186/s13007-018-0352-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Root phenotyping aims to characterize root system architecture because of its functional role in resource acquisition. RGB imaging and analysis procedures measure root system traits via colour contrasts between roots and growth media or artificial backgrounds. In the case of plants grown in soil-filled rhizoboxes, where the colour contrast can be poor, it is hypothesized that root imaging based on spectral signatures improves segmentation and provides additional knowledge on physico-chemical root properties. RESULTS Root systems of Triticum durum grown in soil-filled rhizoboxes were scanned in a spectral range of 1000-1700 nm with 222 narrow bands and a spatial resolution of 0.1 mm. A data processing pipeline was developed for automatic root segmentation and analysis of spectral root signatures. Spectral- and RGB-based root segmentation did not significantly differ in accuracy even for a bright soil background. Best spectral segmentation was obtained from log-linearized and asymptotic least squares corrected images via fuzzy clustering and multilevel thresholding. Root axes revealed major spectral distinction between center and border regions. Root decay was captured by an exponential function of the difference spectra between water and structural carbon absorption regions. CONCLUSIONS Fundamentals for root phenotyping using hyperspectral imaging have been established by means of an image processing pipeline for automated segmentation of soil-grown plant roots at a high spatial resolution and for the exploration of spectral signatures encoding physico-chemical root zone properties.
Collapse
Affiliation(s)
- Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Alireza Nakhforoosh
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3 Canada
| | - Thomas Arnold
- Carinthian Tech Research AG, Europastraße 12, High Tech Campus Villach, 9524 Villach/St. Magdalen, Austria
| | - Daniel Leitner
- Computational Science Center, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Simulationswerkstatt, Ortmayrstrasse 20, 4060 Leonding, Austria
| |
Collapse
|
23
|
Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, von Wirén N, Schmülling T. Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. PLANT PHYSIOLOGY 2018; 177:1078-1095. [PMID: 29871980 PMCID: PMC6052998 DOI: 10.1104/pp.18.00199] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Root size and architecture are important crop plant traits, as they determine access to water and soil nutrients. The plant hormone cytokinin is a negative regulator of root growth and branching. Here, we generated transgenic barley (Hordeum vulgare) plants with an enlarged root system by enhancing cytokinin degradation in roots to explore the potential of cytokinin modulations in improving root functions. This was achieved through root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE gene. Enhanced biomass allocation to roots did not penalize shoot growth or seed yield, indicating that these plants were not source limited. In leaves of transgenic lines, the concentrations of several macroelements and microelements were increased, particularly those with low soil mobility (phosphorus, manganese, and zinc). Importantly, seeds contained up to 44% more zinc, which is beneficial for human nutrition. Transgenic lines also demonstrated dampened stress responses to long-term drought conditions, indicating lower drought sensitivity. Taken together, this work demonstrates that root engineering of cereals is a promising strategy to improve nutrient efficiency, biofortification, and drought tolerance.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Indian Institute of Science Education and Research Tirupati, Biology Division, Tirupati-517507, Andhra Pradesh, India
| | - Seyed A Hosseini
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Kai Eggert
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Sabine Gillandt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Heike Gnad
- Saaten-Union Biotec, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
25
|
Tardieu F, Varshney RK, Tuberosa R. Improving crop performance under drought - cross-fertilization of disciplines. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1393-1398. [PMID: 28338855 PMCID: PMC5444440 DOI: 10.1093/jxb/erx042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
| | - Rajeev K Varshney
- Research Programme - Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru-502 324, India
| | - Roberto Tuberosa
- Department of Agricultural Sciences, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
26
|
Salvi S. An evo-devo perspective on root genetic variation in cereals. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:351-354. [PMID: 28204583 PMCID: PMC5444473 DOI: 10.1093/jxb/erw505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Silvio Salvi
- Department of Agricultural Sciences, University of Bologna, Italy
| |
Collapse
|