1
|
Garmay AV, Oskolok KV, Monogarova OV, Demidov MI. Determination of ammonium and nitrate in soils by digital colorimetry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:948. [PMID: 39292405 DOI: 10.1007/s10661-024-13068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
A method of digital colorimetric determination of ammonium and nitrate in soils is proposed. The method is based on corresponding photometric procedures of ammonium and nitrate determination after potassium chloride extraction from soil samples. Ammonium is determined as an indophenol dye, and nitrate is determined as an azo dye. The original procedures were modified to overcome the lower sensitivity of the digital colorimetric method. For ammonium determination, the time required for the reaction to proceed completely was studied. Along with the use of a 96-well microplate protected from ambient light by a special frame, mathematical correction of scattered radiation using black ink and taking the images by a scanner in transmission mode without any post-processing, the resulting colorimetric methods proved to provide accuracy and sensitivity close to those of the spectrophotometric method, and the overall analysis speed for tens of samples was even higher. Limits of detection and quantitation for NO3- were 0.42 and 1.4 mg/kg, and for NH4+, they were 1.1 and 3.7 mg/kg, which is lower than for standard methods. The methods' validity was proven by the analysis of standard samples and by the analysis of soil samples collected in several districts of the Moscow region.
Collapse
Affiliation(s)
- Andrey V Garmay
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1 Build. 3, Moscow, Russian Federation, 119991.
| | - Kirill V Oskolok
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1 Build. 3, Moscow, Russian Federation, 119991
| | - Oksana V Monogarova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1 Build. 3, Moscow, Russian Federation, 119991
| | - Mikhail I Demidov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1 Build. 3, Moscow, Russian Federation, 119991
| |
Collapse
|
2
|
Pélissier PM, Parizot B, Jia L, De Knijf A, Goossens V, Gantet P, Champion A, Audenaert D, Xuan W, Beeckman T, Motte H. Nitrate and ammonium, the yin and yang of nitrogen uptake: a time-course transcriptomic study in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1343073. [PMID: 39246813 PMCID: PMC11377263 DOI: 10.3389/fpls.2024.1343073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Nitrogen is an essential nutrient for plants and a major determinant of plant growth and crop yield. Plants acquire nitrogen mainly in the form of nitrate and ammonium. Both nitrogen sources affect plant responses and signaling pathways in a different way, but these signaling pathways interact, complicating the study of nitrogen responses. Extensive transcriptome analyses and the construction of gene regulatory networks, mainly in response to nitrate, have significantly advanced our understanding of nitrogen signaling and responses in model plants and crops. In this study, we aimed to generate a more comprehensive gene regulatory network for the major crop, rice, by incorporating the interactions between ammonium and nitrate. To achieve this, we assessed transcriptome changes in rice roots and shoots over an extensive time course under single or combined applications of the two nitrogen sources. This dataset enabled us to construct a holistic co-expression network and identify potential key regulators of nitrogen responses. Next to known transcription factors, we identified multiple new candidates, including the transcription factors OsRLI and OsEIL1, which we demonstrated to induce the primary nitrate-responsive genes OsNRT1.1b and OsNIR1. Our network thus serves as a valuable resource to obtain novel insights in nitrogen signaling.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vera Goossens
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Antony Champion
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Dominique Audenaert
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Altimira F, Godoy S, Arias-Aravena M, Vargas N, González E, Dardón E, Montenegro E, Viteri I, Tapia E. Reduced fertilization supplemented with Bacillus safensis RGM 2450 and Bacillus siamensis RGM 2529 promotes tomato production in a sustainable way. FRONTIERS IN PLANT SCIENCE 2024; 15:1451887. [PMID: 39239205 PMCID: PMC11374767 DOI: 10.3389/fpls.2024.1451887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
The rising demand for vegetables has driven the adoption of greenhouse cultivation to guarantee high yields and quality of fresh produce year-round. Consequently, this elevates the demand for fertilizers, whose costs are progressively escalating. Bacillus safensis RGM 2450 and Bacillus siamensis RGM 2529 are plant growth-promoting rhizobacteria (PGPR). The combination of these strains exhibited synergistic activity in stimulating the growth and seedling hydration of tomatoes. In this study, the effects of inoculation with a RGM 2450 plus RGM 2529 formulation were evaluated under 66% and 100% fertilization programs in tomato crops under greenhouse conditions. Fertilization programs (66% and 100%) with or without commercial biostimulants were used as control treatments. In this assay, the NPK percentage in the plant tissue, tomato average weight, tomato average weight per harvest, tomato diameter, and changes in the colonization, structure, and diversity of the bacterial rhizosphere were measured. The 100% and 66% fertilization programs supplemented with the RGM 2529 plus RGM 2450 formulation increased the average weight of tomatoes per harvest without statistical difference between them, but with the other treatments. The 66% fertilization with RGM 2450 plus RGM 2529 increased between 1.5 and 2.0 times the average weight of tomatoes per harvest compared to the 66% and 100% fertilizations with and without commercial biostimulant treatments, respectively. This study represents the first report demonstrating that the application of a formulation based on a mixture of B. siamensis and B. safensis in a fertilization program reduced by 33% is equivalent in productivity to a conventional fertilization program for tomato cultivation, achieving an increase in potential plant growth-promoting rizobacteria of the genus Flavobacterium. Therefore, the adoption of a combination of these bacterial strains within the framework of a 66% inorganic fertilization program is a sustainable approach to achieving greater tomato production and reducing the environmental risks associated with the use of inorganic fertilization.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Sebastián Godoy
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Matías Arias-Aravena
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Nataly Vargas
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Erick González
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Elena Dardón
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Edgar Montenegro
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Ignacio Viteri
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Eduardo Tapia
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| |
Collapse
|
4
|
Chi Z, Li Y, Zhang J, Hu M, Wu Y, Fan X, Li Z, Miao Q, Li W. Effects of nitrogen application on ammonium assimilation and microenvironment in the rhizosphere of drip-irrigated sunflower under plastic mulch. Front Microbiol 2024; 15:1390331. [PMID: 38841064 PMCID: PMC11150556 DOI: 10.3389/fmicb.2024.1390331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
This study investigated the effect of nitrogen application on the rhizosphere soil microenvironment of sunflower and clarified the relationship between ammonium assimilation and the microenvironment. In a field experiment high (HN, 190 kg/hm2), medium (MN, 120 kg/hm2) and low nitrogen (CK, 50 kg/hm2) treatments were made to replicate plots of sunflowers using drip irrigation. Metagenomic sequencing was used to analyze the community structure and functional genes involved in the ammonium assimilation pathway in rhizosphere soil. The findings indicated that glnA and gltB played a crucial role in the ammonium assimilation pathway in sunflower rhizosphere soil, with Actinobacteria and Proteobacteria being the primary contributors. Compared with CK treatment, the relative abundance of Actinobacteria increased by 15.57% under MN treatment, while the relative abundance decreased at flowering and maturation stages. Conversely, the relative abundance of Proteobacteria was 28.57 and 61.26% higher in the MN treatment during anthesis and maturation period, respectively, compared with the CK. Furthermore, during the bud stage and anthesis, the abundance of Actinobacteria, Proteobacteria, and their dominant species were influenced mainly by rhizosphere soil EC, ammonium nitrogen (NH 4 + -N), and nitrate nitrogen (NO 3 - -N), whereas, at maturity, soil pH and NO 3 - -N played a more significant role in shaping the community of ammonium-assimilating microorganisms. The MN treatment increased the root length density, surface area density, and root volume density of sunflower at the bud, flowering, and maturity stages compared to the CK. Moreover, root exudates such as oxalate and malate were positively correlated with the dominant species of Actinobacteria and Proteobacteria during anthesis and the maturation period. Under drip irrigation, applying 120 kg/hm2 of nitrogen to sunflowers effectively promoted the community structure of ammonium-assimilating microorganisms in rhizosphere soil and had a positive influence on the rhizosphere soil microenvironment and sunflower root growth.
Collapse
Affiliation(s)
- Zhaonan Chi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuxin Li
- Inner Mongolia Key Lab of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
| | - Jiapeng Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Min Hu
- Vocational and Technical College of Inner Mongolia Agricultural University, Baotou, China
| | - Yixuan Wu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xueqin Fan
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhen Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qingfeng Miao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiping Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
García Méndez MDC, Encarnación-Guevara S, Martínez Batallar ÁG, Gómez-Caudillo L, Bru-Martínez R, Martínez Márquez A, Selles Marchart S, Tovar-Sánchez E, Álvarez-Berber L, Marquina Bahena S, Perea-Arango I, Arellano-García JDJ. High variability of perezone content in rhizomes of Acourtia cordata wild plants, environmental factors related, and proteomic analysis. PeerJ 2023; 11:e16136. [PMID: 38025722 PMCID: PMC10656900 DOI: 10.7717/peerj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Collapse
Affiliation(s)
- Ma del Carmen García Méndez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Leopoldo Gómez-Caudillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roque Bru-Martínez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Ascensión Martínez Márquez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Susana Selles Marchart
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Silvia Marquina Bahena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | |
Collapse
|
6
|
Feng J, Zhu C, Cao J, Liu C, Zhang J, Cao F, Zhou X. Genome-wide identification and expression analysis of the NRT genes in Ginkgo biloba under nitrate treatment reveal the potential roles during calluses browning. BMC Genomics 2023; 24:633. [PMID: 37872493 PMCID: PMC10594704 DOI: 10.1186/s12864-023-09732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Can Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Fuliang Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
López-Bucio J, Ortiz-Castro R, Magaña-Dueñas V, García-Cárdenas E, Jiménez-Vázquez KR, Raya-González J, Pelagio-Flores R, Ibarra-Laclette E, Herrera-Estrella L. Pseudomonas aeruginosa LasI-dependent plant growth promotion requires the host nitrate transceptor AtNRT1.1/CHL1 and the nitrate reductases NIA1 and NIA2. PLANTA 2023; 258:80. [PMID: 37715847 DOI: 10.1007/s00425-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
MAIN CONCLUSION In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Viridiana Magaña-Dueñas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Kirán Rubí Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Enrique Ibarra-Laclette
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Luis Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Campus Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
8
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Jerez MP, Ortiz J, Castro C, Escobar E, Sanhueza C, Del-Saz NF, Ribas-Carbo M, Coba de la Peña T, Ostria-Gallardo E, Fischer S, Castro PA, Bascunan-Godoy L. Nitrogen sources differentially affect respiration, growth, and carbon allocation in Andean and Lowland ecotypes of Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2023; 14:1070472. [PMID: 37409289 PMCID: PMC10319013 DOI: 10.3389/fpls.2023.1070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 07/07/2023]
Abstract
Chenopodium quinoa Willd. is a native species that originated in the High Andes plateau (Altiplano) and its cultivation spread out to the south of Chile. Because of the different edaphoclimatic characteristics of both regions, soils from Altiplano accumulated higher levels of nitrate (NO3-) than in the south of Chile, where soils favor ammonium (NH4 +) accumulation. To elucidate whether C. quinoa ecotypes differ in several physiological and biochemical parameters related to their capacity to assimilate NO3- and NH4 +, juvenile plants of Socaire (from Altiplano) and Faro (from Lowland/South of Chile) were grown under different sources of N (NO3- or NH4 +). Measurements of photosynthesis and foliar oxygen-isotope fractionation were carried out, together with biochemical analyses, as proxies for the analysis of plant performance or sensitivity to NH4 +. Overall, while NH4 + reduced the growth of Socaire, it induced higher biomass productivity and increased protein synthesis, oxygen consumption, and cytochrome oxidase activity in Faro. We discussed that ATP yield from respiration in Faro could promote protein production from assimilated NH4 + to benefit its growth. The characterization of this differential sensitivity of both quinoa ecotypes for NH4 + contributes to a better understanding of nutritional aspects driving plant primary productivity.
Collapse
Affiliation(s)
- María Paz Jerez
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Ortiz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Catalina Castro
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Elizabeth Escobar
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Néstor Fernández Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Teodoro Coba de la Peña
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Susana Fischer
- Laboratorio de Fisiología Vegetal, Departamento de Producción vegetal Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Patricio Alejandro Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luisa Bascunan-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
10
|
Xie P, Huang K, Deng A, Mo P, Xiao F, Wu F, Xiao D, Wang Y. The diversity and abundance of bacterial and fungal communities in the rhizosphere of Cathaya argyrophylla are affected by soil physicochemical properties. Front Microbiol 2023; 14:1111087. [PMID: 37378294 PMCID: PMC10292655 DOI: 10.3389/fmicb.2023.1111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cathaya argyrophylla is an ancient Pinaceae species endemic to China that is listed on the IUCN Red List. Although C. argyrophylla is an ectomycorrhizal plant, the relationship between its rhizospheric soil microbial community and soil properties related to the natural habitat remains unknown. High-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences was used to survey the C. argyrophylla soil community at four natural spatially distributed points in Hunan Province, China, and functional profiles were predicted using PICRUSt2 and FUNGuild. The dominant bacterial phyla included Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, and the dominant genus was Acidothermus. The dominant fungal phyla were Basidiomycota and Ascomycota, while Russula was the dominant genus. Soil properties were the main factors leading to changes in rhizosphere soil bacterial and fungal communities, with nitrogen being the main driver of changes in soil microbial communities. The metabolic capacities of the microbial communities were predicted to identify differences in their functional profiles, including amino acid transport and metabolism, energy production and conversion, and the presence of fungi, including saprotrophs and symbiotrophs. These findings illuminate the soil microbial ecology of C. argyrophylla, and provide a scientific basis for screening rhizosphere microorganisms that are suitable for vegetation restoration and reconstruction for this important threatened species.
Collapse
Affiliation(s)
- Peng Xie
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- College of Agriculture, Forestry and Technology, Hunan Applied Technology University, Changde, Hunan, China
| | - Kerui Huang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Ping Mo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Fen Xiao
- Central South University of Forestry and Technology Changsha, Hunan, China
| | - Fei Wu
- Qingjie Mountain State Forest Farm, Chengbu, Hunan, China
| | - Dewei Xiao
- Chukou State-Owned Forest Farm, Zixing, Hunan, China
| | - Yun Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
11
|
Wang G, Zhang L, Guo Z, Shi D, Zhai H, Yao Y, Yang T, Xin S, Cui H, Li J, Ma J, Sun W. Benefits of biological nitrification inhibition of Leymus chinensis under alkaline stress: the regulatory function of ammonium-N exceeds its nutritional function. FRONTIERS IN PLANT SCIENCE 2023; 14:1145830. [PMID: 37255563 PMCID: PMC10225694 DOI: 10.3389/fpls.2023.1145830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Introduction The production of root exudates with biological nitrification inhibition (BNI) effects is a strategy adopted by ammonium-N (NH4+-N) tolerant plant species that occur in N-limited environments. Most knowledge on BNI comes from plant species that occur in acidic soils. Methods Here, combining field sampling and laboratory culture, we assessed the BNI-capacity of Leymus chinensis, a dominant grass species in alkaline grasslands in eastern Asia, and explored why L. chinensis has BNI ability. Results and discussion The results showed that L. chinensis has strong BNI-capacity. At a concentration of 1 mg mL-1, L. chinensis' root exudates inhibited nitrification in soils influenced by Puccinellia tenuiflora by 72.44%, while DCD only inhibited it by 68.29%. The nitrification potential of the soil of L. chinensis community was only 53% of the P. tenuiflora or 41% of the Suaeda salsa community. We also showed that the supply of NH4+-N driven by L. chinensis' BNI can meet its requirements . In addition, NH4+-N can enhance plant adaptation to alkaline stress by regulating pH, and in turn, the uptake of nitrate-N (NO3--N). We further demonstrated that the regulatory function of NH4+-N is greater than its nutritional function in alkaline environment. The results offer novel insights into how L. chinensis adapts to high pH and nutrient deficiency stress by secreting BNIs, and reveal, for the first time, differences in the functional roles of NH4+-N and NO3--N in growth and adaptation under alkaline conditions in a grass species.
Collapse
Affiliation(s)
- Gui Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Zihan Guo
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Dongfang Shi
- Analysis and Testing Center, Changchun Normal University, Changchun, Jilin, China
| | - Huiliang Zhai
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Haiying Cui
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
12
|
Kinoshita SN, Suzuki T, Kiba T, Sakakibara H, Kinoshita T. Photosynthetic-Product-Dependent Activation of Plasma Membrane H+-ATPase and Nitrate Uptake in Arabidopsis Leaves. PLANT & CELL PHYSIOLOGY 2023; 64:191-203. [PMID: 36705265 PMCID: PMC9977229 DOI: 10.1093/pcp/pcac157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/18/2023]
Abstract
Plasma membrane (PM) proton-translocating adenosine triphosphatase (H+-ATPase) is a pivotal enzyme for plant growth and development that acts as a primary transporter and is activated by phosphorylation of the penultimate residue, threonine, at the C-terminus. Small Auxin-Up RNA family proteins maintain the phosphorylation level via inhibiting dephosphorylation of the residue by protein phosphatase 2C-D clade. Photosynthetically active radiation activates PM H+-ATPase via phosphorylation in mesophyll cells of Arabidopsis thaliana, and phosphorylation of PM H+-ATPase depends on photosynthesis and photosynthesis-related sugar supplementation, such as sucrose, fructose and glucose. However, the molecular mechanism and physiological role of photosynthesis-dependent PM H+-ATPase activation are still unknown. Analysis using sugar analogs, such as palatinose, turanose and 2-deoxy glucose, revealed that sucrose metabolites and products of glycolysis such as pyruvate induce phosphorylation of PM H+-ATPase. Transcriptome analysis showed that the novel isoform of the Small Auxin-Up RNA genes, SAUR30, is upregulated in a light- and sucrose-dependent manner. Time-course analyses of sucrose supplementation showed that the phosphorylation level of PM H+-ATPase increased within 10 min, but the expression level of SAUR30 increased later than 10 min. The results suggest that two temporal regulations may participate in the regulation of PM H+-ATPase. Interestingly, a 15NO3- uptake assay in leaves showed that light increases 15NO3- uptake and that increment of 15NO3- uptake depends on PM H+-ATPase activity. The results opened the possibility of the physiological role of photosynthesis-dependent PM H+-ATPase activation in the uptake of NO3-. We speculate that PM H+-ATPase may connect photosynthesis and nitrogen metabolism in leaves.
Collapse
Affiliation(s)
- Satoru N Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602 Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602 Japan
| | | |
Collapse
|
13
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
14
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
15
|
Shanks CM, Huang J, Cheng CY, Shih HJS, Brooks MD, Alvarez JM, Araus V, Swift J, Henry A, Coruzzi GM. Validation of a high-confidence regulatory network for gene-to-NUE phenotype in field-grown rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1006044. [PMID: 36507422 PMCID: PMC9732682 DOI: 10.3389/fpls.2022.1006044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and Water (W) - two resources critical for crop productivity - are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils.
Collapse
Affiliation(s)
- Carly M. Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Ji Huang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Chia-Yi Cheng
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hung-Jui S. Shih
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Matthew D. Brooks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Urbana, IL, United States
| | - José M. Alvarez
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Viviana Araus
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joseph Swift
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amelia Henry
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| |
Collapse
|
16
|
Guo L, Meng H, Teng K, Fan X, Zhang H, Teng W, Yue Y, Wu J. Effects of Nitrogen Forms on the Growth and Nitrogen Accumulation in Buchloe dactyloides Seedlings. PLANTS 2022; 11:plants11162086. [PMID: 36015389 PMCID: PMC9416445 DOI: 10.3390/plants11162086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has become the most widely cultivated warm-season turfgrass in northern China because of its low-maintenance requirements. Nitrogen (N) can be applied to plants in a range of formulations. However, preference of nitrogen uptake and the effects of N form on plant growth and nitrogen accumulation has not been established in buffalograss. In this study, we evaluated the effects of different inorganic nitrogen forms (NO3−-N, NH4+-N, and NO3−-N: NH4+-N = 1:1) on growth and nitrogen accumulation in buffalograss seedlings. Results showed that supply of three N forms significantly increased buffalograss seedlings growth, biomass, and N contents of all plant organs compared with the seedlings receiving free nitrogen. Plants achieved better growth performance when they received nitrate as the sole N source, which stimulated stolon growth and increased the biomass of ramets, spacers, and aboveground and total plant biomass, and also allocated more biomass to ramets and more N to spacers. Meanwhile, those plants supplied with the treatment +NH4NO3 displayed a significantly greater N content in the ramet, 15N abundance, and 15N accumulation amount in all organs. These data suggest NO3−-N supplied either singly or in mixture increased vegetative propagation and thus facilitates buffalograss establishment. However, applications of ammonium caused detrimental effects on buffalograss seedlings growth, but +NO3− could alleviate NH4+-induced morphological disorders. Thus, recommendations to increase vegetative propagation and biomass accumulation in buffalograss seedlings should consider increasing NO3−-N in a fertility program and avoiding applications of nitrogen as NH4+-N.
Collapse
Affiliation(s)
- Lizhu Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huizhen Meng
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ke Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenjun Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuesen Yue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence:
| |
Collapse
|
17
|
Song L, Wang X, Zou L, Prodhan Z, Yang J, Yang J, Ji L, Li G, Zhang R, Wang C, Li S, Zhang Y, Ji X, Zheng X, Li W, Zhang Z. Cassava ( Manihot esculenta) Slow Anion Channel ( MeSLAH4) Gene Overexpression Enhances Nitrogen Assimilation, Growth, and Yield in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:932947. [PMID: 35832225 PMCID: PMC9271942 DOI: 10.3389/fpls.2022.932947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen is one of the most important nutrient elements required for plant growth and development, which is also immensely related to the efficient use of nitrogen by crop plants. Therefore, plants evolved sophisticated mechanisms and anion channels to extract inorganic nitrogen (nitrate) from the soil or nutrient solutions, assimilate, and recycle the organic nitrogen. Hence, developing crop plants with a greater capability of using nitrogen efficiently is the fundamental research objective for attaining better agricultural productivity and environmental sustainability. In this context, an in-depth investigation has been conducted into the cassava slow type anion channels (SLAHs) gene family, including genome-wide expression analysis, phylogenetic relationships with other related organisms, chromosome localization, and functional analysis. A potential and nitrogen-responsive gene of cassava (MeSLAH4) was identified and selected for overexpression (OE) analysis in rice, which increased the grain yield and root growth related performance. The morpho-physiological response of OE lines was better under low nitrogen (0.01 mm NH4NO3) conditions compared to the wild type (WT) and OE lines under normal nitrogen (0.5 mm NH4NO3) conditions. The relative expression of the MeSLAH4 gene was higher (about 80-fold) in the OE line than in the wild type. The accumulation and flux assay showed higher accumulation of NO 3 - and more expansion of root cells and grain dimension of OE lines compared to the wild type plants. The results of this experiment demonstrated that the MeSLAH4 gene may play a vital role in enhancing the efficient use of nitrogen in rice, which could be utilized for high-yielding crop production.
Collapse
Affiliation(s)
- Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Xingmei Wang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zakaria Prodhan
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Jiaheng Yang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Ji
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guanhui Li
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Runcong Zhang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shi Li
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| |
Collapse
|
18
|
López-Bucio J, Esparza-Reynoso S, Pelagio-Flores R. Nitrogen availability determines plant growth promotion and the induction of root branching by the probiotic fungus Trichoderma atroviride in Arabidopsis seedlings. Arch Microbiol 2022; 204:380. [PMID: 35680712 DOI: 10.1007/s00203-022-03004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Plant growth-promoting fungi are integral components of the root microbiome that help the host resist biotic and abiotic stress while improving nutrient acquisition. Trichoderma atroviride is a common inhabitant of the rhizosphere, which establishes a perdurable symbiosis with plants through the emission of volatiles, diffusible compounds, and robust colonization. Currently, little is known on how the environment influences the Trichoderma-plant interaction. In this report, we assessed plant growth and root architectural reconfiguration of Arabidopsis seedlings grown in physical contact with T. atroviride under contrasting nitrate and ammonium availability. The shoot and root biomass accumulation and lateral root formation triggered by the fungus required high nitrogen supplements and involved nitrate reduction via AtNIA1 and NIA2. Ammonium supplementation did not restore biomass production boosted by T. atroviride in nia1nia2 double mutant, but instead fungal inoculation increased nitric oxide accumulation in Arabidopsis primary root tips depending upon nitrate supplements. N deprived seedlings were largely resistant to the effects of nitric oxide donor SNP triggering lateral root formation. T. atroviride enhanced expression of CHL1:GUS in root tips, particularly under high N supplements and required an intact CHL1 nitrate transporter to promote lateral root formation in Arabidopsis seedlings. These data imply that the developmental programs strengthened by Trichoderma and the underlying growth promotion in plants are dependent upon adequate nitrate nutrition and may involve nitric oxide as a second messenger.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México.
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Matamoros, C. P., 58240, Morelia, Michoacán, México
| |
Collapse
|
19
|
Xian L, Ochieng WA, Muthui SW, Otieno DO, Yu S, Li W, Yan X, Yu Q, Liu F. The Above-Ground Part of Submerged Macrophytes Plays an Important Role in Ammonium Utilization. FRONTIERS IN PLANT SCIENCE 2022; 13:865578. [PMID: 35734251 PMCID: PMC9207443 DOI: 10.3389/fpls.2022.865578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
As a paradoxical nutrient in water ecosystems, ammonium can promote plants growth under moderate concentration, but excess of it causes phytotoxic effects. Previous research has revealed that glutamate dehydrogenase in the above-ground part of submerged macrophytes plays an important role in ammonium detoxification. However, the strategies of ammonium utilization at the whole plant level of submerged macrophytes are still unclear and the role of the above-ground part in nutrient utilization has not been clearly elucidated in previous studies, hence, directly influencing the application of previous theory to practice. In the present research, we combined the methods of isotopic labeling and enzyme estimation to investigate strategies of ammonium utilization by the submerged macrophytes. The results showed that when [NH4 +-N] was 50 mg L-1, 15N taken up through the above-ground parts was 13.24 and 17.52 mg g-1 DW, while that of the below-ground parts was 4.24 and 8.54 mg g-1 DW in Potamogeton lucens and Myriophyllum spicatum, respectively. The ratios of 15N acropetal translocation to uptake were 25.75 and 35.69%, while those of basipetal translocation to uptake were 1.93 and 4.09% in P. lucens and M. spicatum, respectively. Our results indicated that the above-ground part was not only the main part for ammonium uptake, but also the major pool of exogenous ammonium. Besides, the dose-response curve of GDH (increased by 20.9 and 50.2% under 15 and 50 mg L-1 [NH4 +-N], respectively) exhibited by the above-ground parts of M. spicatum indicates that it is the main site for ammonium assimilation of the tolerant species. This study identifies the ammonium utilization strategy of submerged macrophytes and reveals the important role of the above-ground part in nutrient utilization providing new insight into the researches of nutrient utilization by plants and theoretical supports for water restoration by phytoremediation.
Collapse
Affiliation(s)
- Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Duncan Ochieng Otieno
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Siwei Yu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Xue Yan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Quan Yu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Fan Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Li R, Zhang X, Wang G, Kong L, Guan Q, Yang R, Jin Y, Liu X, Qu J. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128345. [PMID: 35149508 DOI: 10.1016/j.jhazmat.2022.128345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) contamination in soil poses a serious threat to ecological environment and crop quality, especially under high nitrogen level. Here, the efficiency of composite organic amendment (spent mushroom substrate and its biochar) on remediation of Cd contaminated soil under high nitrogen level has been studied through a 42 days' soil incubation experiment. The results showed: (i) the application of composite organic amendment minimized the repercussions of high nitrogen and significantly reduced the exchangeable Cd proportion by 28.3%-29.5%, especially for Ca(NO3)2 treatment; (ii) the application of composite organic amendment improved the physicochemical properties of soil, such as pH, CEC and organic matter content increased by 0.63-0.99 unit, 39.69%-45.00% and 7.77%-11.47%, and EC decreased by 16.21%-44.47% compared with non-amendment Cd-contaminated soil, respectively; (iii) the application of composite organic amendment significantly increased the soil enzyme activities and microbial biomass, among which urease activity was increased most by 12.06-16.42 mg·g-1·d-1, and the copy number of AOA was decreased by 30.6%- 92.0%, and the copy number of AOB was increased most by about 45 times. In brief, the composite organic amendment can alleviate the adverse effects of Cd and nitrogen on the soil, but its long-term efficacy needs to be verified in further field study.
Collapse
Affiliation(s)
- Rui Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guoliang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Kivi MS, Blakely B, Masters M, Bernacchi CJ, Miguez FE, Dokoohaki H. Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153192. [PMID: 35063525 DOI: 10.1016/j.scitotenv.2022.153192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
As we face today's large-scale agricultural issues, the need for robust methods of agricultural forecasting has never been clearer. Yet, the accuracy and precision of our forecasts remains limited by current tools and methods. To overcome the limitations of process-based models and observed data, we iteratively designed and tested a generalizable and robust data-assimilation system that systematically constrains state variables in the APSIM model to improve forecast accuracy and precision. Our final novel system utilizes the Ensemble Kalman Filter to constrain model states and update model parameters at observed time steps and incorporates an algorithm that improves system performance through the joint estimation of system error matrices. We tested this system at the Energy Farm, a well-monitored research site in central Illinois, where we assimilated observed in situ soil moisture at daily time steps for two years and evaluated how assimilation impacted model forecasts of soil moisture, yield, leaf area index, tile flow, and nitrate leaching by comparing estimates with in situ observations. The system improved the accuracy and precision of soil moisture estimates for the assimilation layers by an average of 42% and 48%, respectively, when compared to the free model. Such improvements led to changes in the model's soil water and nitrogen processes and, on average, increased accuracy in forecasts of annual tile flow by 43% and annual nitrate loads by 10%. Forecasts of aboveground measures did not dramatically change with assimilation, a fact which highlights the limited potential of soil moisture as a constraint for a site with no water stress. Extending the scope of previous work, our results demonstrate the power of data assimilation to constrain important model estimates beyond the assimilated state variable, such as nitrate leaching. Replication of this study is necessary to further define the limitations and opportunities of the developed system.
Collapse
Affiliation(s)
- Marissa S Kivi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Turner Hall AW-101, 1102 S Goodwin Ave, Urbana, IL 61801, USA.
| | - Bethany Blakely
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Morrill Hall, 505 S. Goodwin Ave, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA.
| | - Michael Masters
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Morrill Hall, 505 S. Goodwin Ave, Urbana, IL 61801, USA; Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody, Suite 350, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA.
| | - Carl J Bernacchi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Turner Hall AW-101, 1102 S Goodwin Ave, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Morrill Hall, 505 S. Goodwin Ave, Urbana, IL 61801, USA; Global Change and Photosynthesis Research, USDA-ARS, Urbana, IL 61801, USA.
| | - Fernando E Miguez
- Department of Agronomy, Iowa State University, Agronomy Hall 1206, 716 Farm House Ln, Ames, IA 50011, USA.
| | - Hamze Dokoohaki
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Turner Hall AW-101, 1102 S Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Sathee L, Jain V. Interaction of elevated CO 2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. PROTOPLASMA 2022; 259:703-716. [PMID: 34374877 DOI: 10.1007/s00709-021-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant's stomatal physiology and anatomical features are highly plastic and are influenced by diverse environmental signals including the concentration of atmospheric CO2 and nutrient availability. Recent reports suggest that the form of nitrogen (N) is a determinant of plant growth and nutrient nitrogen use efficiency (NUE) under elevated CO2 (EC). Previously, we found that high nitrate availability resulted in early senescence, enhanced reactive oxygen species (ROS), and reactive nitrogen species (RNS) production and also that mixed nutrition of nitrate and ammonium ions were beneficial than sole nitrate nutrition in wheat. In this study, the interactive effects of different N forms (nitrate, ammonium, mixed nutrition of nitrate, and ammonium) and EC on epidermal and stomatal morphology were analyzed. Wheat seedlings were grown at two different CO2 levels and supplied with media devoid of N (N0) or with nitrate-N (NN), mixed nutrition of ammonium and nitrate (MN), or only ammonium-N (AN). The stoma length increased significantly in nitrate nutrition with a consistent reduction in stoma width. Guard cell length was higher in EC treatment as compared to AC. The guard cell width was maximum in AN-grown plants at EC. Epidermal cell density and stomatal density were lower at EC. Nitrate nutrition increased the stomatal area at EC while the reverse was true for MN and AN. Wheat plants fertilized with AN showed a higher accumulation of superoxide radical (SOR) at EC, while in NN treatment, the accumulation of hydrogen peroxide (H2O2) was higher at EC. Reactive oxygen species, particularly H2O2, can trigger mitogen-activated protein kinase (MAPK) mediated signaling and its crosstalk with abscisic acid (ABA) signaling to regulate stomatal anatomy in nitrate-fed plants. The SOR accumulation in ammonium- and ammonium nitrate-fed plants and H2O2 in NN-fed plants might finely regulate the sensitivity of stomata to alter water/nutrient use efficiency and productivity under EC. The data reveals that the variation in anatomical attributes viz. cell length, number of cells, etc. affected the leaf growth responses to EC and forms of N nutrition. These attributes are fine targets for effective manipulation of growth responses to EC.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Vanita Jain
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- Agricultural Education Division, ICAR, KAB-II, New Delhi, India.
| |
Collapse
|
23
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Impact of Nitrate and Ammonium Concentrations on Co-Culturing of Tetradesmus obliquus IS2 with Variovorax paradoxus IS1 as Revealed by Phenotypic Responses. MICROBIAL ECOLOGY 2022; 83:951-959. [PMID: 34363515 DOI: 10.1007/s00248-021-01832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Mutual interactions in co-cultures of microalgae and bacteria are well known for establishing consortia and nutrient uptake in aquatic habitats, but the phenotypic changes in terms of morphological, physiological, and biochemical attributes that drive these interactions have not been clearly understood. In this novel study, we demonstrated the phenotypic response in a co-culture involving a microalga, Tetradesmus obliquus IS2, and a bacterium, Variovorax paradoxus IS1, grown with varying concentrations of two inorganic nitrogen sources. Modified Bold's basal medium was supplemented with five ratios (%) of NO3-N:NH4-N (100:0, 75:25, 50:50, 25:75, and 0:100), and by maintaining N:P Redfield ratio of 16:1. The observed morphological changes in microalga included an increase in granularity and a broad range of cell sizes under the influence of increased ammonium levels. Co-culturing in presence of NO3-N alone or combination with NH4-N up to equimolar concentrations resulted in complete nitrogen uptake, increased growth in both the microbial strains, and enhanced accumulation of carbohydrates, proteins, and lipids. Total chlorophyll content in microalga was also significantly higher when it was grown as a co-culture with NO3-N and NH4-N up to a ratio of 50:50. Significant upregulation in the synthesis of amino acids and sugars and downregulation of organic acids were evident with higher ammonium uptake in the co-culture, indicating the regulation of carbon and nitrogen assimilation pathways and energy synthesis. Our data suggest that the co-culture of strains IS1 and IS2 could be exploited for effluent treatment by considering the concentrations of inorganic sources, particularly ammonium, in the wastewaters.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Sudharsanam Abinandan
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
24
|
Hafiz FB, von Tucher S, Rozhon W. Plant Nutrition: Physiological and Metabolic Responses, Molecular Mechanisms and Chromatin Modifications. Int J Mol Sci 2022; 23:ijms23084084. [PMID: 35456909 PMCID: PMC9032115 DOI: 10.3390/ijms23084084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany;
| | - Sabine von Tucher
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany;
- Correspondence: ; Tel.: +49-3471-355-1126
| |
Collapse
|
25
|
Ayiti OE, Babalola OO. Factors Influencing Soil Nitrification Process and the Effect on Environment and Health. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.821994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To meet the global demand for food, several factors have been deployed by agriculturists to supply plants with nitrogen. These factors have been observed to influence the soil nitrification process. Understanding the aftermath effect on the environment and health would provoke efficient management. We review literature on these factors, their aftermath effect on the environment and suggest strategies for better management. Synthetic fertilizers and chemical nitrification inhibitors are the most emphasized factors that influence the nitrification process. The process ceases when pH is <5.0. The range of temperature suitable for the proliferation of ammonia oxidizing archaea is within 30 to 37oC while that of ammonia oxidizing bacteria is within 16 to 23oC. Some of the influencing factors excessively speed up the rate of the nitrification process. This leads to excess production of nitrate, accumulation of nitrite as a result of decoupling between nitritation process and nitratation process. The inhibition mechanism of chemical nitrification inhibitors either causes a reduction in the nitrifying micro-organisms or impedes the amoA gene's function. The effects on the environment are soil acidification, global warming, and eutrophication. Some of the health effects attributed to the influence are methemoglobinemia, neurotoxicity, phytotoxicity and cancer. Biomagnification of the chemicals along the food chain is also a major concern. The use of well-researched and scientifically formulated organic fertilizers consisting of microbial inoculum, well-treated organic manure and good soil conditioner are eco-friendly. They are encouraged to be used to efficiently manage the process. Urban agriculture could promote food production, but environmental sustainability should be ensured.
Collapse
|
26
|
Ayiti OE, Babalola OO. Sustainable Intensification of Maize in the Industrial Revolution: Potential of Nitrifying Bacteria and Archaea. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.827477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sustainable intensification is a means that proffer a solution to the increasing demand for food without degrading agricultural land. Maize is one of the most important crops in the industrial revolution era, there is a need for its sustainable intensification. This review discusses the role of maize in the industrial revolution, progress toward sustainable production, and the potential of nitrifying bacteria and archaea to achieve sustainable intensification. The era of the industrial revolution (IR) uses biotechnology which has proven to be the most environmentally friendly choice to improve crop yield and nutrients. Scientific research and the global economy have benefited from maize and maize products which are vast. Research on plant growth-promoting microorganisms is on the increase. One of the ways they carry out their function is by assisting in the cycling of geochemical, thus making nutrients available for plant growth. Nitrifying bacteria and archaea are the engineers of the nitrification process that produce nitrogen in forms accessible to plants. They have been identified in the rhizosphere of many crops, including maize, and have been used as biofertilizers. This study's findings could help in the development of microbial inoculum, which could be used to replace synthetic fertilizer and achieve sustainable intensification of maize production during the industrial revolution.
Collapse
|
27
|
Effects of Enrofloxacin on Nutrient Removal by a Floating Treatment Wetland Planted with Iris pseudacorus: Response and Resilience of Rhizosphere Microbial Communities. SUSTAINABILITY 2022. [DOI: 10.3390/su14063358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs), including floating treatment wetlands (FTWs), possess great potential for treating excessive nutrients in surface waters, where, however, the ubiquitous presence of antibiotics, e.g., enrofloxacin (ENR), is threatening the performance of CWs. In developing a more efficient and resilient system, we explored the responses of the FTW to ENR, using tank 1, repeatedly exposed to ENR, and tank 2 as control. Plant growth and nutrient uptake were remarkably enhanced in tank 1, and similar phosphorus removal rates (86~89% of the total added P) were obtained for both tanks over the experimental period. Contrarily, ENR apparently inhibited N removal by tank 1 (35.1%), compared to 40.4% for tank 2. As ENR rapidly decreased by an average of 71.6% within a week after each addition, tank 1 took only 4 weeks to adapt and return to a similar state compared to that of tank 2. This might be because of the recovery of microbial communities, particularly denitrifying and antibiotic-resistance genes containing bacteria, such as Actinobacteria, Patescibacteria, Acidovorax and Pseudomonas. After three ENR exposures over six weeks, no significant differences in the nutrient removal and microbial communities were found between both tanks, suggesting the great resilience of the FTW to ENR.
Collapse
|
28
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Gogoi R, Borgohain A, Baruah M, Karak T, Saikia J. Boosting nitrogen fertilization by a slow releasing nitrate-intercalated biocompatible layered double hydroxide-hydrogel composite loaded with Azospirillum brasilense. RSC Adv 2022; 12:6704-6714. [PMID: 35424620 PMCID: PMC8981761 DOI: 10.1039/d1ra08759b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Indiscriminate use of chemical fertilizers leads to soil environmental disbalance and therefore, preparation and application of environment-friendly slow-release multifunctional fertilizers are of paramount importance for sustainable crop production in the present scenario. In this study, we propose a slow-release multifunctional composite nitrogen (N) fertilizer, which possesses the ability to supply plant accessible N in the form of ammonium (NH4 +) and nitrate (NO3 -) to improve nitrate assimilation coupled with zinc (Zn, a major micronutrient for plants in the soil) after its degradation. For this purpose, NO3 --intercalated zinc-aluminum (Zn-Al) layered double hydroxide (LDH) was synthesized using a co-precipitation protocol. The prepared LDH was added as 25.45% of total polymer weight to a sodium carboxymethyl cellulose/hydroxyethyl cellulose citric acid (NaCMC/HEC-CA) biodegradable hydrogel. A. brasilense, commonly used nitrogen-fixing bacteria in soils, was added to the LDH-hydrogel composite along with LDH alone to augment the availability of NH4 + and NO3 -. Adjusting the pH under acidic (pH 5.25) and neutral (pH 7) conditions, the release pattern of NO3 - from LDH and the composite was monitored for 30 days at normal temperature. The pH was selected based on the soil analysis data of North East India. The LDH-composite released 90% (w/w) and 85.45% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively in 30 days. However, 100% (w/w) and 87% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively were released in 30 days when only LDH was applied, which indicated the lower performance of LDH alone in comparison to the LDH-composite for the nitrate holding pattern. The pH of the bacteria-loaded system was observed to be acidic (pH = 5-6) during the study of nitrate assimilation and Zn2+ release. A. brasilense improved nitrate assimilation and increased the NH4 + ion concentration in the studied system. A significant increase in Zn2+ release was observed from day 5 in the presence of A. brasilense in the LDH-composite compared with that in the absence of A. brasilense. In conclusion, the prepared LDH-hydrogel-A. brasilense composite fertilizer system increases the availability of plant accessible N form (both NO3 - and NH4 +) and can potentially improve soil fertility with the addition of Zn and bacteria to the soil in the extended course.
Collapse
Affiliation(s)
- Rimjim Gogoi
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| | - Arup Borgohain
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India
| | - Madhusmita Baruah
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| |
Collapse
|
30
|
Nitrogen Absorption Pattern Detection and Expression Analysis of Nitrate Transporters in Flowering Chinese Cabbage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nitrate transporters (NRTs) play an important role in nitrate absorption and internal distribution in plant roots and other parts. Experiments were carried out to explore the sequences and expression characteristics of NRT genes, and their correlation with the N uptake in flowering Chinese cabbage. We have isolated three important BcNRTs (BcNRT1.1, BcNRT1.2, and BcNRT2.1) from flowering Chinese cabbage. Spatio-temporal expression analysis found that BcNRT1.1 and BcNRT2.1 were mainly expressed in roots, while BcNRT1.2 was more expressed in roots than in leaves during vegetative growth and was mainly expressed in leaves during reproductive growth. The NO3− uptake rate of the entire growth period was significantly correlated with BcNRT1.1 and BcNRT1.2 expression in roots. In addition, the total N content was increased with the increase in NO3− concentration in flowering Chinese cabbage. The NH4+ uptake was slightly induced by NH4+, but the total N content had no significant difference under the NH4+ concentration of 1–8 mmol/L. We also found that lower concentrations of NH4+ promoted the expression of BcNRT1.1 and BcNRT1.2 while inhibiting the expression of BcNRT2.1 in the roots of flowering Chinese cabbage. The amount of total N uptake in the treatment with 25/75 of NH4+/NO3− was significantly higher than that of the other two treatments (0/100 and 50/50). In the mixture of NH4+ and NO3−, total N uptake was significantly correlated with the BcNRT1.2 expression. We concluded that mixed nutrition with an NH4+/NO3− of 25/75 could significantly increase total nitrogen uptake in flowering Chinese cabbage, in which two members of the NRT1 subfamily (BcNRT1.1 and BcNRT1.2) might play a major regulatory role in it. This study is a beneficial attempt to dig deeper into the NRT genes resources and lays the foundation for the ultimate use of genetic improvement methods to increase the NUE with less nitrogen fertilizer in flowering Chinese cabbage.
Collapse
|
31
|
Xu J, Zhu X, Yan F, Zhu H, Zhou X, Yu F. Identification of Quantitative Trait Loci Associated With Iron Deficiency Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:805247. [PMID: 35498718 PMCID: PMC9048261 DOI: 10.3389/fpls.2022.805247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a limiting factor in crop growth and nutritional quality because of its low solubility. However, the current understanding of how major crops respond to Fe deficiency and the genetic basis remains limited. In the present study, Fe-efficient inbred line Ye478 and Fe-inefficient inbred line Wu312 and their recombinant inbred line (RIL) population were utilized to reveal the physiological and genetic responses of maize to low Fe stress. Compared with the Fe-sufficient conditions (+Fe: 200 μM), Fe-deficient supply (-Fe: 30 μM) significantly reduced shoot and root dry weights, leaf SPAD of Fe-efficient inbred line Ye478 by 31.4, 31.8, and 46.0%, respectively; decreased Fe-inefficient inbred line Wu312 by 72.0, 45.1, and 84.1%, respectively. Under Fe deficiency, compared with the supply of calcium nitrate (N1), supplying ammonium nitrate (N2) significantly increased the shoot and root dry weights of Wu312 by 37.5 and 51.6%, respectively; and enhanced Ye478 by 23.9 and 45.1%, respectively. Compared with N1, N2 resulted in a 70.0% decrease of the root Fe concentration for Wu312 in the -Fe treatment, N2 treatment reduced the root Fe concentration of Ye478 by 55.8% in the -Fe treatment. These findings indicated that, compared with only supplying nitrate nitrogen, combined supply of ammonium nitrogen and nitrate nitrogen not only contributed to better growth in maize but also significantly reduced Fe concentration in roots. In linkage analysis, ten quantitative trait loci (QTLs) associated with Fe deficiency tolerance were detected, explaining 6.2-12.0% of phenotypic variation. Candidate genes considered to be associated with the mechanisms underlying Fe deficiency tolerance were identified within a single locus or QTL co-localization, including ZmYS3, ZmPYE, ZmEIL3, ZmMYB153, ZmILR3 and ZmNAS4, which may form a sophisticated network to regulate the uptake, transport and redistribution of Fe. Furthermore, ZmYS3 was highly induced by Fe deficiency in the roots; ZmPYE and ZmEIL3, which may be involved in Fe homeostasis in strategy I plants, were significantly upregulated in the shoots and roots under low Fe stress; ZmMYB153 was Fe-deficiency inducible in the shoots. Our findings will provide a comprehensive insight into the physiological and genetic basis of Fe deficiency tolerance.
Collapse
Affiliation(s)
- Jianqin Xu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fang Yan
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Huaqing Zhu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiuyu Zhou
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Futong Yu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- *Correspondence: Futong Yu,
| |
Collapse
|
32
|
León J. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:859374. [PMID: 35360296 PMCID: PMC8963475 DOI: 10.3389/fpls.2022.859374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO), which is ubiquitously present in living organisms, regulates many developmental and stress-activated processes in plants. Regulatory effects exerted by NO lies mostly in its chemical reactivity as a free radical. Proteins are main targets of NO action as several amino acids can undergo NO-related post-translational modifications (PTMs) that include mainly S-nitrosylation of cysteine, and nitration of tyrosine and tryptophan. This review is focused on the role of protein tyrosine nitration on NO signaling, making emphasis on the production of NO and peroxynitrite, which is the main physiological nitrating agent; the main metabolic and signaling pathways targeted by protein nitration; and the past, present, and future of methodological and strategic approaches to study this PTM. Available information on identification of nitrated plant proteins, the corresponding nitration sites, and the functional effects on the modified proteins will be summarized. However, due to the low proportion of in vivo nitrated peptides and their inherent instability, the identification of nitration sites by proteomic analyses is a difficult task. Artificial nitration procedures are likely not the best strategy for nitration site identification due to the lack of specificity. An alternative to get artificial site-specific nitration comes from the application of genetic code expansion technologies based on the use of orthogonal aminoacyl-tRNA synthetase/tRNA pairs engineered for specific noncanonical amino acids. This strategy permits the programmable site-specific installation of genetically encoded 3-nitrotyrosine sites in proteins expressed in Escherichia coli, thus allowing the study of the effects of specific site nitration on protein structure and function.
Collapse
|
33
|
High NH4+/NO3− Ratio Inhibits the Growth and Nitrogen Uptake of Chinese Kale at the Late Growth Stage by Ammonia Toxicity. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine the effects of various NH4+/NO3− ratios in a nutrient solution on the growth and nitrogen uptake of Chinese kale under hydroponic conditions. The four NH4+/NO3− ratios in the nutrient solution were CK (0/100), T1 (10/90), T2 (25/75), and T3 (50/50). An appropriate NH4+/NO3− ratio (10/90, 25/75) promoted the growth of Chinese kale. T2 produced the highest fresh and dry weight among treatments, and all indices of seedling root growth were the highest under T2. A high NH4+/NO3− ratio (50/50) promoted the growth of Chinese kale seedlings at the early stage but inhibited growth at the late growth stage. At harvest, the nutrient solution showed acidity. The pH value was the lowest in T3, whereas NH4+ and NH4+/NO3− ratios were the highest, which caused ammonium toxicity. Total N accumulation and N use efficiency were the highest in T2, and total N accumulation was the lowest in T3. Principal component analysis showed that T2 considerably promoted growth and N absorption of Chinese kale, whereas T3 had a remarkable effect on the pH value. These findings suggest that an appropriate increase in NH4+ promotes the growth and nutrient uptake of Chinese kale by maintaining the pH value and NH4+/NO3− ratios of the nutrient solution, whereas excessive addition of NH4+ may induce rhizosphere acidification and ammonia toxicity, inhibiting plant growth.
Collapse
|
34
|
Abstract
Aquatic nitrogen pollution is one of the most urgent environmental issues requiring prevention and mitigation. Large quantities of high-ammonium wastewaters are generated by several industrial sectors, such as fertilizer and anaerobic-digestion plants. Nitrification of these wastewaters is commonly carried out, either to remove nitrogen or produce liquid fertilizers. Standard control methodologies for the efficient nitrification of high-ammonium wastewaters to produce liquid fertilizers have not yet been established and are still within their early stages of development. In this paper, novel pH-based control algorithms are presented that maintain operation at the microbial maximum reaction rate (υmax) in batch and continuous reactors. Complete conversion of ammonium to nitrate was achieved in a batch setup, and a conversion of 93% (±1%) was achieved in a continuously-stirred-tank-reactor. The unparalleled performance and affordability of the control schemes proposed offer a steppingstone to the future of sustainable fertilizer production.
Collapse
|
35
|
Xue Y, Yan W, Gao Y, Zhang H, Jiang L, Qian X, Cui Z, Zhang C, Liu S, Wang H, Li Z, Liu K. Interaction Effects of Nitrogen Rates and Forms Combined With and Without Zinc Supply on Plant Growth and Nutrient Uptake in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:722752. [PMID: 34956250 PMCID: PMC8695760 DOI: 10.3389/fpls.2021.722752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Previous studies have shown that zinc (Zn) accumulation in shoot and grain increased as applied nitrogen (N) rate increased only when Zn supply was not limiting, suggesting a synergistic effect of N on plant Zn accumulation. However, little information is available about the effects of different mineral N sources combined with the presence or absence of Zn on the growth of both shoot and root and nutrient uptake. Maize plants were grown under sand-cultured conditions at three N forms as follows: NO3 - nutrition alone, mixture of NO3 -/NH4 + with molar ratio of 1:1 (recorded as mixed-N), and NH4 + nutrition alone including zero N supply as the control. These treatments were applied together without or with Zn supply. Results showed that N forms, Zn supply, and their interactions exerted a significant effect on the growth of maize seedlings. Under Zn-sufficient conditions, the dry weight (DW) of shoot, root, and whole plant tended to increase in the order of NH4 + < NO3 - < mixed-N nutrition. Compared with NH4 + nutrition alone, mixed-N supply resulted in a 27.4 and 28.1% increase in leaf photosynthetic rate and stomatal conductance, which further resulted in 35.7 and 33.5% of increase in shoot carbon (C) accumulation and shoot DW, respectively. Furthermore, mixed-N supply resulted in a 19.7% of higher shoot C/N ratio vs. NH4 + nutrition alone, which means a higher shoot biomass accumulation, because of a significant positive correlation between shoot C/N ratio and shoot DW (R 2 = 0.682***). Additionally, mixed-N supply promoted the greatest root DW, total root length, and total root surface area and synchronously improved the root absorption capacity of N, iron, copper, manganese, magnesium, and calcium. However, the above nutrient uptake and the growth of maize seedlings supplied with NH4 + were superior to either NO3 - or mixed-N nutrition under Zn-deficient conditions. These results suggested that combined applications of mixed-N nutrition and Zn fertilizer can maximize plant growth. This information may be useful for enabling integrated N management of Zn-deficient and Zn-sufficient soils and increasing plant and grain production in the future.
Collapse
Affiliation(s)
- Yanfang Xue
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Yan
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yingbo Gao
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hui Zhang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Jiang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xin Qian
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhenling Cui
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environment, China Agricultural University, Beijing, China
| | - Chunyan Zhang
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Shutang Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Huimin Wang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zongxin Li
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaichang Liu
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
36
|
Noncoding-RNA-Mediated Regulation in Response to Macronutrient Stress in Plants. Int J Mol Sci 2021; 22:ijms222011205. [PMID: 34681864 PMCID: PMC8539900 DOI: 10.3390/ijms222011205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023] Open
Abstract
Macronutrient elements including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) are required in relatively large and steady amounts for plant growth and development. Deficient or excessive supply of macronutrients from external environments may trigger a series of plant responses at phenotypic and molecular levels during the entire life cycle. Among the intertwined molecular networks underlying plant responses to macronutrient stress, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs) and long ncRNAs (lncRNAs), may serve as pivotal regulators for the coordination between nutrient supply and plant demand, while the responsive ncRNA-target module and the interactive mechanism vary among elements and species. Towards a comprehensive identification and functional characterization of nutrient-responsive ncRNAs and their downstream molecules, high-throughput sequencing has produced massive omics data for comparative expression profiling as a first step. In this review, we highlight the recent findings of ncRNA-mediated regulation in response to macronutrient stress, with special emphasis on the large-scale sequencing efforts for screening out candidate nutrient-responsive ncRNAs in plants, and discuss potential improvements in theoretical study to provide better guidance for crop breeding practices.
Collapse
|
37
|
Otim FN, Chen IR, Otim O. Indirect assessment of biomass accumulation in a wastewater-based Chlorella vulgaris photobioreactor by pH variation. Sci Rep 2021; 11:19445. [PMID: 34593845 PMCID: PMC8484453 DOI: 10.1038/s41598-021-98634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Algae bloom in coastal waters is partly supported by residual nutrients in treated wastewater (WW) released from coastally located treatment plants. In response, a Chlorella vulgaris-based photobioreactor was recently proposed for lowering nutrient levels in WW prior to release. However, the solution requires maintaining biomass accumulation to within a photobioreactor capacity for optimum operation. For high density Chlorella vulgaris suspensions, this is easily done by monitoring turbidity increase, a property directly related to biomass accumulation. For low density suspensions however, direct turbidity measurement would require a cumbersome process of concentrating large volumes of Chlorella vulgaris suspensions. Here, we demonstrate that by measuring pH of the suspensions, turbidity (T) can be estimated indirectly by the following wastewater-dependent expression: pH = aT + pH0, hence avoiding the need to concentrate large volumes. The term pH0 is the initial pH of the suspensions and a, a wastewater-dependent constant, can be computed independently from a = - 0.0061*pH0 + 0.052. In the event %WW is unknown, the following wastewater-independent Gaussian expression can be used to estimate T: pH = 8.71*exp(- [(T - 250)2]/[2*1.26E05]). These three equations should offer an avenue for monitoring the turbidity of dilute Chlorella vulgaris suspensions in large, stagnant municipal Chlorella vulgaris-based wastewater treatment system via pH measurements.
Collapse
Affiliation(s)
- Francesca Nyega Otim
- Department of Anthropology, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - I-Ru Chen
- Department of Humanities and Sciences, University of California, Los Angeles, 10960 Wilshire Boulevard, Los Angeles, CA, 90024, USA
| | - Ochan Otim
- Department of Humanities and Sciences, University of California, Los Angeles, 10960 Wilshire Boulevard, Los Angeles, CA, 90024, USA. .,Environmental Monitoring Division, City of Los Angeles, 12000 Vista Del Mar, Playa Del Rey, CA, 90293, USA.
| |
Collapse
|
38
|
Fang G, Yang J, Sun T, Wang X, Li Y. Evidence that synergism between potassium and nitrate enhances the alleviation of ammonium toxicity in rice seedling roots. PLoS One 2021; 16:e0248796. [PMID: 34499661 PMCID: PMC8428561 DOI: 10.1371/journal.pone.0248796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Ammonium toxicity in plants is considered a global phenomenon, but the primary mechanisms remain poorly characterized. Here, we show that although the addition of potassium or nitrate partially alleviated the inhibition of rice seedling root growth caused by ammonium toxicity, the combination of potassium and nitrate clearly improved the alleviation, probably via some synergistic mechanisms. The combined treatment with potassium and nitrate led to significantly improved alleviation effects on root biomass, root length, and embryonic crown root number. The aberrant cell morphology and the rhizosphere acidification level caused by ammonium toxicity, recovered only by the combined treatment. RNA sequencing analysis and weighted gene correlation network analysis (WGCNA) revealed that the transcriptional response generated from the combined treatment involved cellulose synthesis, auxin, and gibberellin metabolism. Our results point out that potassium and nitrate combined treatment effectively promotes cell wall formation in rice, and thus, effectively alleviates ammonium toxicity.
Collapse
Affiliation(s)
- Gen Fang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
39
|
Arenberg MR, Arai Y. Nitrogen species specific phosphorus mineralization in temperate floodplain soils. Sci Rep 2021; 11:17430. [PMID: 34465812 PMCID: PMC8408222 DOI: 10.1038/s41598-021-96885-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
As an essential component of enzymes, higher N availability from agricultural runoff to forest soils may boost the activity of phosphatase, increasing the bioavailability of phosphate. The objective of this study was to evaluate P mineralization rates in temperate floodplain soils as a function of inorganic N species (i.e., ammonium and nitrate) and amendment rate (1.5-3.5 g N kg-1). Accordingly, the soil was amended with nitrate and ammonium, and P dynamics were monitored during a 40-day incubation. The addition of ammonium significantly boosted acid and alkaline phosphatase activity by 1.39 and 1.44 µmol p-nitrophenol P (pNP) g-1 h-1, respectively. The degree of increase was positively correlated with the amendment rate. Likewise, the P mineralization rate increased by 0.27 mg P kg-1 in the 3.5 g N kg-1 ammonium treatment. 31P nuclear magnetic resonance spectroscopic analysis further supported the reduction in organic orthophosphate diesters on day 30. Meanwhile, the addition of nitrate promoted P mineralization to a lesser degree but did not increase phosphatase activity. While floodplain soils have great potential to sequester anthropogenic P, high availability of inorganic N, especially ammonium, could promote P mineralization, potentially increasing P fertility and/or reducing P the sequestration capacity of floodplain soils.
Collapse
Affiliation(s)
- Mary R. Arenberg
- grid.35403.310000 0004 1936 9991Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yuji Arai
- grid.35403.310000 0004 1936 9991Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
40
|
Attri P, Koga K, Okumura T, Takeuchi N, Shiratani M. Green route for ammonium nitrate synthesis: fertilizer for plant growth enhancement. RSC Adv 2021; 11:28521-28529. [PMID: 35478561 PMCID: PMC9037994 DOI: 10.1039/d1ra04441a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Soil fertility management is of great importance for farmers. The use of synthetic nitrogen (N)-fertilizer increased by 20 fold in the last 50 years to feed the increasingly hungry population. This study aims to enrich the plant soil with nitrogen content (NH4NO3 fertilizer in soil) using the low-temperature and low-pressure plasma [without H2 and catalyst]. Subsequently, we used plasma N-enriched soil for plant (radish and tomato) growth. We investigated the germination percentage, seedling growth, seedling weight, phytohormones and antioxidant activity of radish and tomato plants after treatment with plasma N-enriched soil and compared with control soil and soil + commercial N-fertilizer. The plasma N-enriched soil treatment results in significant growth enhancement for both radish and tomato plants. Further, substantial changes in phytohormone and antioxidant levels were observed for the plants grown in plasma N-enriched soil compared to control soil and soil + commercial N-fertilizer. The energy consumption (EC) for total N-fixation was 12 MJ mol-1. EC for ammonia and nitrate fixation was 17 and 41 MJ mol-1, respectively, without H2 gas. Further to understand the plasma chemistry, we performed 1D simulation using COMSOL Multiphysics® software. This study showed that direct N-fixation in the soil by plasma could be used as fertilizer for the plants and open a new window for future decentralized N-fertilizer production at the farm site.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-interface Engineering, Kyushu University Fukuoka 819-0395 Japan
- Graduate School of Information Science and Electrical Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University Fukuoka 819-0395 Japan
- Center for Novel Science Initiatives, National Institute of Natural Science Tokyo 105-0001 Japan
| | - Takamasa Okumura
- Faculty of Information Science and Electrical Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Nozomi Takeuchi
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University Fukuoka 819-0395 Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
41
|
Hachiya T, Inaba J, Wakazaki M, Sato M, Toyooka K, Miyagi A, Kawai-Yamada M, Sugiura D, Nakagawa T, Kiba T, Gojon A, Sakakibara H. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nat Commun 2021; 12:4944. [PMID: 34400629 PMCID: PMC8367978 DOI: 10.1038/s41467-021-25238-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO2 environment predicted for the near future will reduce nitrate utilization by C3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.
Collapse
Affiliation(s)
- Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan. .,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan.
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro-M/Montpellier University, Montpellier, France
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
Kaya C, Ugurlar F, Ashraf M, Noureldeen A, Darwish H, Ahmad P. Methyl Jasmonate and Sodium Nitroprusside Jointly Alleviate Cadmium Toxicity in Wheat ( Triticum aestivum L.) Plants by Modifying Nitrogen Metabolism, Cadmium Detoxification, and AsA-GSH Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:654780. [PMID: 34421936 PMCID: PMC8374870 DOI: 10.3389/fpls.2021.654780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/21/2021] [Indexed: 05/18/2023]
Abstract
The principal intent of the investigation was to examine the influence of joint application of methyl jasmonate (MeJA, 10 μM) and a nitric oxide-donor sodium nitroprusside (SNP, 100 μM) to wheat plants grown under cadmium (Cd as CdCl2, 100 μM) stress. Cd stress suppressed plant growth, chlorophylls (Chl), and PSII maximum efficiency (F v /F m ), but it elevated leaf and root Cd, and contents of leaf proline, phytochelatins, malondialdehyde, and hydrogen peroxide, as well as the activity of lipoxygenase. MeJA and SNP applied jointly or singly improved the concentrations of key antioxidant biomolecules, e.g., reduced glutathione and ascorbic acid and the activities of the key oxidative defense system enzymes such as catalase, superoxide dismutase, dehydroascorbate reductase, glutathione S-transferase, and glutathione reductase. Exogenously applied MeJA and SNP jointly or singly also improved nitrogen metabolism by activating the activities of glutamine synthetase, glutamate synthase, and nitrate and nitrite reductases. Compared with individual application of MeJA or SNP, the combined application of both showed better effect in terms of improving plant growth and key metabolic processes and reducing tissue Cd content, suggesting a putative interactive role of both compounds in alleviating Cd toxicity in wheat plants. MAIN FINDINGS The main findings are that exogenous application of methyl jasmonate and nitric oxide-donor sodium nitroprusside alleviated the cadmium (Cd)-induced adverse effects on growth of wheat plants grown under Cd by modulating key physiological processes and up-regulating enzymatic antioxidants and the ascorbic acid-glutathione cycle-related enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
43
|
Chen Z, Cao X, Niu J. Effects of Melatonin on Morphological Characteristics, Mineral Nutrition, Nitrogen Metabolism, and Energy Status in Alfalfa Under High-Nitrate Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:694179. [PMID: 34267772 PMCID: PMC8276172 DOI: 10.3389/fpls.2021.694179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Melatonin is an indoleamine small molecular substance that has been shown to play an important role in the growth, development, and stress response of plants. The effects of melatonin on the morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa (Medicago sativa L.) under high-nitrate stress were studied. The alfalfa plants were treated with water (CK), 200 mmol L-1 nitrates (HN), or 200 mmol L-1 nitrates + 0.1 mmol L-1 melatonin (HN+MT), and then were sampled for measurements on days 0 and 10, respectively. The results showed that the HN treatment resulted in a decrease in the morphological characteristics (such as shoot height, leaf length, leaf width, leaf area, and biomass), phosphorus, soluble protein (SP), nitrogen-related enzymes activities and gene relative expression, adenosine triphosphate (ATP), and energy charge (EC). It also caused an increase in nitrogen, sodium, potassium, calcium, nitrate-nitrogen ( NO 3 - -N), ammonium-nitrogen ( NH 4 + -N), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). However, these parameters were conversely changed in the HN+MT treatment. Besides, these parameters were closely related to each other, and were divided into two principal components. It reveals that melatonin plays an important role in modulating the morphology, mineral nutrition, nitrogen metabolism and energy status, thereby alleviating the adverse effects of high-nitrate stress and improving the growth of alfalfa.
Collapse
|
44
|
Lamichhane P, Veerana M, Lim JS, Mumtaz S, Shrestha B, Kaushik NK, Park G, Choi EH. Low-Temperature Plasma-Assisted Nitrogen Fixation for Corn Plant Growth and Development. Int J Mol Sci 2021; 22:5360. [PMID: 34069725 PMCID: PMC8161386 DOI: 10.3390/ijms22105360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen fixation is crucial for plants as it is utilized for the biosynthesis of almost all biomolecules. Most of our atmosphere consists of nitrogen, but plants cannot straightforwardly assimilate this from the air, and natural nitrogen fixation is inadequate to meet the extreme necessities of global nutrition. In this study, nitrogen fixation in water was achieved by an AC-driven non-thermal atmospheric pressure nitrogen plasma jet. In addition, Mg, Al, or Zn was immersed in the water, which neutralized the plasma-treated water and increased the rate of nitrogen reduction to ammonia due to the additional hydrogen generated by the reaction between the plasma-generated acid and metal. The effect of the plasma-activated water, with and without metal ions, on germination and growth in corn plants (Zea Mays) was investigated. The germination rate was found to be higher with plasma-treated water and more efficient in the presence of metal ions. Stem lengths and germination rates were significantly increased with respect to those produced by DI water irrigation. The plants responded to the abundance of nitrogen by producing intensely green leaves because of their increased chlorophyll and protein contents. Based on this report, non-thermal plasma reactors could be used to substantially enhance seed germination and seedling growth.
Collapse
Affiliation(s)
- Pradeep Lamichhane
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Mayura Veerana
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Jun Sup Lim
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Sohail Mumtaz
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Bhanu Shrestha
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Gyungsoon Park
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| | - Eun Ha Choi
- Plasma Bio-Science Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.L.); (M.V.); (J.S.L.); (S.M.); (N.K.K.); (G.P.)
| |
Collapse
|
45
|
Goñi O, Łangowski Ł, Feeney E, Quille P, O’Connell S. Reducing Nitrogen Input in Barley Crops While Maintaining Yields Using an Engineered Biostimulant Derived From Ascophyllum nodosum to Enhance Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 12:664682. [PMID: 34025702 PMCID: PMC8132967 DOI: 10.3389/fpls.2021.664682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Intensive agricultural production utilizes large amounts of nitrogen (N) mineral fertilizers that are applied to the soil to secure high crop yields. Unfortunately, up to 65% of this N fertilizer is not taken up by crops and is lost to the environment. To compensate these issues, growers usually apply more fertilizer than crops actually need, contributing significantly to N pollution and to GHG emissions. In order to combat the need for such large N inputs, a better understanding of nitrogen use efficiency (NUE) and agronomic solutions that increase NUE within crops is required. The application of biostimulants derived from extracts of the brown seaweed Ascophyllum nodosum has long been accepted by growers as a sustainable crop production input. However, little is known on how Ascophyllum nodosum extracts (ANEs) can influence mechanisms of N uptake and assimilation in crops to allow reduced N application. In this work, a significant increase in nitrate accumulation in Arabidopsis thaliana 6 days after applying the novel proprietary biostimulant PSI-362 was observed. Follow-up studies in barley crops revealed that PSI-362 increases NUE by 29.85-60.26% under 75% N input in multi-year field trials. When PSI-362 was incorporated as a coating to the granular N fertilizer calcium ammonium nitrate and applied to barley crop, a coordinated stimulation of N uptake and assimilation markers was observed. A key indicator of biostimulant performance was increased nitrate content in barley shoot tissue 22 days after N fertilizer application (+17.9-72.2%), that was associated with gene upregulation of root nitrate transporters (NRT1.1, NRT2.1, and NRT1.5). Simultaneously, PSI-362 coated fertilizer enhanced nitrate reductase and glutamine synthase activities, while higher content of free amino acids, soluble protein and photosynthetic pigments was measured. These biological changes at stem elongation stage were later translated into enhanced NUE traits in harvested grain. Overall, our results support the agronomic use of this engineered ANE that allowed a reduction in N fertilizer usage while maintaining or increasing crop yield. The data suggests that it can be part of the solution for the successful implementation of mitigation policies for water quality and GHG emissions from N fertilizer usage.
Collapse
Affiliation(s)
- Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee, Tralee, Ireland
- Brandon Bioscience, Tralee, Ireland
| | | | | | - Patrick Quille
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee, Tralee, Ireland
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee, Tralee, Ireland
- Brandon Bioscience, Tralee, Ireland
| |
Collapse
|
46
|
Yaacob NS, Ahmad MF, Kawasaki N, Maniyam MN, Abdullah H, Hashim EF, Sjahrir F, Wan Mohd Zamri WMI, Komatsu K, Kuwahara VS. Kinetics Growth and Recovery of Valuable Nutrients from Selangor Peat Swamp and Pristine Forest Soils Using Different Extraction Methods as Potential Microalgae Growth Enhancers. Molecules 2021; 26:molecules26030653. [PMID: 33513787 PMCID: PMC7866033 DOI: 10.3390/molecules26030653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.
Collapse
Affiliation(s)
- Nor Suhaila Yaacob
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia
- Correspondence: ; Tel.: +60-355223428
| | - Mohd Fadzli Ahmad
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Nobuyuki Kawasaki
- Dainippon Ink and Chemicals DIC Corporation, Central Research Laboratories, 631 Sakado, Sakura, Chiba 285-8668, Japan;
| | - Maegala Nallapan Maniyam
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia
| | - Hasdianty Abdullah
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Emi Fazlina Hashim
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
- Faculty of Education & Graduate School of Engineering, Soka University, 1-236 Tangi-Machi, Hachioji-Shi 192-8577, Japan;
| | - Fridelina Sjahrir
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Wan Muhammad Ikram Wan Mohd Zamri
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Kazuhiro Komatsu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan;
| | - Victor S. Kuwahara
- Faculty of Education & Graduate School of Engineering, Soka University, 1-236 Tangi-Machi, Hachioji-Shi 192-8577, Japan;
| |
Collapse
|
47
|
Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. SUSTAINABILITY 2021. [DOI: 10.3390/su13020956] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In plant cells, ammonium is considered the most convenient nitrogen source for cell metabolism. However, despite ammonium being the preferred N form for microalgae, at higher concentrations, it can be toxic, and can cause growth inhibition. Microalgae’s tolerance to ammonium depends on the species, with various taxa showing different thresholds of tolerability and symptoms of toxicity. In the environment, ammonium at high concentrations represents a dangerous pollutant. It can affect water quality, causing numerous environmental problems, including eutrophication of downstream waters. For this reason, it is important to treat wastewater and remove nutrients before discharging it into rivers, lakes, or seas. A valid and sustainable alternative to conventional treatments could be provided by microalgae, coupling the nutrient removal from wastewater with the production of valuable biomass. This review is focused on ammonium and its importance in algal nutrition, but also on its problematic presence in aquatic systems such as wastewaters. The aim of this work is to provide recent information on the exploitation of microalgae in ammonium removal and the role of ammonium in microalgae metabolism.
Collapse
|
48
|
Gloser V, Dvorackova M, Mota DH, Petrovic B, Gonzalez P, Geilfus CM. Early Changes in Nitrate Uptake and Assimilation Under Drought in Relation to Transpiration. FRONTIERS IN PLANT SCIENCE 2020; 11:602065. [PMID: 33424901 PMCID: PMC7793686 DOI: 10.3389/fpls.2020.602065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 05/20/2023]
Abstract
Soil drying combined with nitrogen (N) deficiency poses a grave threat to agricultural crop production. The rate at which nitrate (NO3 -) is taken up depends partly on the uptake and transpiration of water. Rapid changes in nitrate assimilation, in contrast to other N forms, may serve as a component of the plant stress response to drought because nitrate assimilation may lead to changes in xylem pH. The modulation of xylem sap pH may be relevant for stomata regulation via the delivery of abscisic acid (ABA) to guard cells. In several factorial experiments, we investigated the interactions between nitrate and water availability on nitrate fate in the plant, as well as their possible implications for the early drought-stress response. We monitored the short-term response (2-6 days) of nitrate in biomass, transport to shoot and reduction in Pisum sativum, Hordeum vulgare, Vicia faba, and Nicotiana tabacum and correlated this with sap pH and transpiration rates (TRs). Cultivation on inorganic substrate ensured control over nutrient and water supply and prevented nodulation in legume species. NO3 - content in biomass decreased in most of the species under drought indicating significant decline in NO3 - uptake. Hordeum vulgare had the highest NO3 - concentrations in all organs even under drought and low NO3 - treatment. This species can likely respond much better to the combined adverse effects of low NO3 - and water scarcity. Nitrate reductase activity (NRA) was reduced in both roots and leaves of water deficient (WD) plants in all species except H. vulgare, presumably due to its high NO3 - contents. Further, transient reduction in NO3 - availability had no effect on sap pH. Therefore, it seems unlikely that NRA shifts from shoot root leading to the supposed alkalization of sap. We also did not observe any interactive effects of NO3 - and water deficiency on transpiration. Hence, as long as leaf NO3 - content remains stable, NO3 - availability in soil is not linked to short-term modulation of transpiration.
Collapse
Affiliation(s)
- Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michaela Dvorackova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Hernandez Mota
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Bojana Petrovic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Patricia Gonzalez
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Christoph Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| |
Collapse
|
49
|
Combined Transcriptome and Proteome Analysis of Masson Pine ( Pinus massoniana Lamb.) Seedling Root in Response to Nitrate and Ammonium Supplementations. Int J Mol Sci 2020; 21:ijms21207548. [PMID: 33066140 PMCID: PMC7593940 DOI: 10.3390/ijms21207548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development. Plant species respond to N fluctuations and N sources, i.e., ammonium or nitrate, differently. Masson pine (Pinus massoniana Lamb.) is one of the pioneer plants in the southern forests of China. It shows better growth when grown in medium containing ammonium as compared to nitrate. In this study, we had grown masson pine seedlings in medium containing ammonium, nitrate, and a mixture of both, and performed comparative transcriptome and proteome analyses to observe the differential signatures. Our transcriptome and proteome resulted in the identification of 1593 and 71 differentially expressed genes and proteins, respectively. Overall, the masson pine roots had better performance when fed with a mixture of ammonium and nitrate. The transcriptomic and proteomics results combined with the root morphological responses suggest that when ammonium is supplied as a sole N-source to masson pine seedlings, the expression of ammonium transporters and other non-specific NH4+-channels increased, resulting in higher NH4+ concentrations. This stimulates lateral roots branching as evidenced from increased number of root tips. We discussed the root performance in association with ethylene responsive transcription factors, WRKYs, and MADS-box transcription factors. The differential analysis data suggest that the adaptability of roots to ammonium is possibly through the promotion of TCA cycle, owing to the higher expression of malate synthase and malate dehydrogenase. Masson pine seedlings managed the increased NH4+ influx by rerouting N resources to asparagine production. Additionally, flavonoid biosynthesis and flavone and flavonol biosynthesis pathways were differentially regulated in response to increased ammonium influx. Finally, changes in the glutathione s-transferase genes suggested the role of glutathione cycle in scavenging the possible stress induced by excess NH4+. These results demonstrate that masson pine shows increased growth when grown under ammonium by increased N assimilation. Furthermore, it can tolerate high NH4+ content by involving asparagine biosynthesis and glutathione cycle.
Collapse
|
50
|
Pakwan C, Jampeetong A, Brix H. Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass ( Pennisetum purpureum × Pennisetum americanum). PLANTS 2020; 9:plants9081003. [PMID: 32784553 PMCID: PMC7465140 DOI: 10.3390/plants9081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
This study aimed to assess effect of nitrogen (N) form and phosphorus (P) level on the growth and mineral composition of hybrid Napier grass. Experimental plants were grown with different N forms (NO3-, NH4NO3, and NH4+; 500 µM) and P concentrations (100 and 500 µM) under greenhouse conditions for 42 days. Growth rate, morphology, pigments, and mineral nutrients in the plant tissue were analysed. At the low P concentration, the better growth was found in the plants supplied with NH4+ (relative growth rate (RGR) = 0.05 g·g-1·d-1), but at the high P concentration, the NH4+-fed plants had 37% lower growth rates and shorter roots and stems. At the high P level, the NH4NO3--fed plants had the highest RGR (0.04 g·g-1·d-1). The mineral nutrient concentrations in the plant tissues were only slightly affected by N form and P concentration, although the P concentrations in the plant tissue of the NO3--fed plants supplied with the high P concentration was 26% higher compared to the low P concentration plants. The N concentrations in the plant tissues did not vary between treatments. The results showed that the optimum N form for the plant growth and biomass productivity of hybrid Napier grass depends on P level. Hybrid Napier grass may be irrigated by treated wastewater containing high concentrations of N and P, but future studies are needed to evaluate biomass production and composition when irrigating with real wastewater from animal farms.
Collapse
Affiliation(s)
- Chonthicha Pakwan
- Department of Biology, Faculty of Science, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand;
| | - Arunothai Jampeetong
- Department of Biology, Faculty of Science, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-943346-51; Fax: +66-53-892259
| | - Hans Brix
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark;
| |
Collapse
|