1
|
Huang R, Zhang X, Luo K, Tembrock LR, Li S, Wu Z. The Identification of Auxin Response Factors and Expression Analyses of Different Floral Development Stages in Roses. Genes (Basel) 2025; 16:41. [PMID: 39858591 PMCID: PMC11764539 DOI: 10.3390/genes16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:Auxin response factors (ARFs) are important in plant growth and development, especially flower development. However, there is limited research on the comprehensive identification and characterization of ARF genes in roses. Methods: We employed bioinformatics tools to identify the ARF genes of roses. These genes were characterized for their phylogenetic relationships, chromosomal positions, conserved motifs, gene structures, and expression patterns. Results: In this study, a total of 17 ARF genes were identified in the genomes of Rosa chinensis 'OB', R. chinensis 'CH', R. rugosa, and R. wichurana. Based on RNA-seq analyses, we found that the ARF genes had diverse transcript patterns in various tissues and cultivars. In 'CH', the expression levels of RcCH_ARFs during different flower-development stages were classified into four clusters. In cluster 3 and cluster 4, RcCH_ARFs were specifically high and low in different stages of floral evocation. Gene expression and phylogenetic analyses showed that RcCH_ARF3, RcCH_ARF4, and RcCH_ARF18 were likely to be the key genes for rose flower development. Conclusions: The identification and characterization of ARF genes in Rosa were investigated. The results presented here provide a theoretical basis for the molecular mechanisms of ARF genes in plant development and flowering for roses, with a broader application for other species in the rose family and for the development of novel cultivars.
Collapse
Affiliation(s)
- Rui Huang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
2
|
Woudenberg S, Alvarez MD, Rienstra J, Levitsky V, Mironova V, Scarpella E, Kuhn A, Weijers D. Analysis of auxin responses in the fern Ceratopteris richardii identifies the developmental phase as a major determinant for response properties. Development 2024; 151:dev203026. [PMID: 39324436 PMCID: PMC11449451 DOI: 10.1242/dev.203026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.
Collapse
Affiliation(s)
- Sjoerd Woudenberg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Melissa Dipp Alvarez
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Victor Levitsky
- Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk 630090, Russian Federation
| | - Victoria Mironova
- Department of Plant Systems Physiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
3
|
Cheng Y, Tian DY, Chen CL, Bao N, Wu ZQ. Determination of indole-3-acetic acid using disposable molecularly imprinted electrochemical sensors based on bifunctional monomers. Mikrochim Acta 2024; 191:628. [PMID: 39327334 DOI: 10.1007/s00604-024-06717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Stainless steel sheets were coated with carbon ink to obtain disposable carbon electrodes, which were used as supports for moleculary imprinted polymer (MIP) electrochemical sensors by electropolymerizing o-phenylenediamine and o-aminophenol along with indole-3-acetic acid (IAA) as the template. After optimization, the MIP biosensors could be used for sensitive and selective detection of IAA with the limit of quantification of 0.1 µM. Our experimental results showed that stable and reproducible electrochemical responses could be achieved for the disposable MIP biosensors. This approach was successfully used for detection of IAA in different tissues of pea sprouts. This study reveals the potential of MIP electrochemical sensors in practical applications and shrinks the trench between the research and the real world.
Collapse
Affiliation(s)
- Ye Cheng
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Dong-Yang Tian
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Cui-Li Chen
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
4
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B Hildreth
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R Bryant
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Liang W, Xu Y, Cui X, Li C, Lu S. Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta. Int J Mol Sci 2024; 25:6043. [PMID: 38892231 PMCID: PMC11172604 DOI: 10.3390/ijms25116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
Collapse
Affiliation(s)
- Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Tang H, Lu KJ, Zhang Y, Cheng YL, Tu SL, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. PLANT COMMUNICATIONS 2024; 5:100669. [PMID: 37528584 PMCID: PMC10811345 DOI: 10.1016/j.xplc.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023]
Abstract
The phytohormone auxin, and its directional transport through tissues, plays a fundamental role in the development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using a radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In the Arabidopsis root epidermis, bryophytic PINs have no defined polarity. Pharmacological interference revealed a strong cytoskeletal dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal the divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and the co-evolution of PIN sequence-based and cell-based polarity mechanisms.
Collapse
Affiliation(s)
- Han Tang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Kuan-Ju Lu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 40227, Taiwan, R.O.C
| | - YuZhou Zhang
- College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, China
| | - You-Liang Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Arpita K, Sharma S, Srivastava H, Kumar K, Mushtaq M, Gupta P, Jain R, Gaikwad K. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp.). Int J Biol Macromol 2023; 253:126833. [PMID: 37709218 DOI: 10.1016/j.ijbiomac.2023.126833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Auxin Response Factors (ARF) are a family of transcription factors that mediate auxin signalling and regulate multiple biological processes. Their crucial role in increasing plant biomass/yield influenced this study, where a systematic analysis of ARF gene family was carried out to identify the key proteins controlling embryo/seed developmental pathways in pigeonpea. A genome-wide scan revealed the presence of 12 ARF genes in pigeonpea, distributed across the chromosomes 1, 3, 4, 8 and 11. Domain analysis of ARF proteins showed the presence of B3 DNA binding, AUX response, and IAA domains. Majority of them are of nuclear origin, and do not exhibit the level of genomic expansion as observed in Glycine max (51 members). The duplication events seem to range from 31.6 to 42.3 million years ago (mya). Promoter analysis revealed the presence of multiple cis-acting elements related to stress responses, hormone signalling and other development processes. The expression atlas data highlighted the expression of CcARF8 in hypocotyl, bud and flower whereas, CcARF7 expression was significantly high in pod. The real-time expression of CcARF2, CcARF3 and CcARF18 was highest in genotypes with high seed number indicating their key role in regulating embryo development and determining seed set in pigeonpea.
Collapse
Affiliation(s)
- Kumari Arpita
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India
| | - Muntazir Mushtaq
- Shoolini Univeristy of Biotechnology and Management Sciences, Himachal Pradesh 173229, India
| | - Palak Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Rishu Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
8
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Rienstra J, Hernández-García J, Weijers D. To bind or not to bind: how AUXIN RESPONSE FACTORs select their target genes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6922-6932. [PMID: 37431145 PMCID: PMC10690724 DOI: 10.1093/jxb/erad259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Most plant growth and development processes are regulated in one way or another by auxin. The best-studied mechanism by which auxin exerts its regulatory effects is through the nuclear auxin pathway (NAP). In this pathway, Auxin Response Factors (ARFs) are the transcription factors that ultimately determine which genes become auxin regulated by binding to specific DNA sequences. ARFs have primarily been studied in Arabidopsis thaliana, but recent studies in other species have revealed family-wide DNA binding specificities for different ARFs and the minimal functional system of the NAP system, consisting of a duo of competing ARFs of the A and B classes. In this review, we provide an overview of key aspects of ARF DNA binding such as auxin response elements (TGTCNN) and tandem repeat motifs, and consider how structural biology and in vitro studies help us understand ARF DNA preferences. We also highlight some recent aspects related to the regulation of ARF levels inside a cell, which may alter the DNA binding profile of ARFs in different tissues. We finally emphasize the need to study minimal NAP systems to understand fundamental aspects of ARF function, the need to characterize algal ARFs to understand how ARFs evolved, how cutting-edge techniques can increase our understanding of ARFs, and which remaining questions can only be answered by structural biology.
Collapse
Affiliation(s)
- Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Jorge Hernández-García
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
10
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
12
|
Jiang M, Jian J, Zhou C, Li L, Wang Y, Zhang W, Song Z, Yang J. Does integument arise de novo or from pre-existing structures? ── Insights from the key regulatory genes controlling integument development. FRONTIERS IN PLANT SCIENCE 2023; 13:1078248. [PMID: 36714739 PMCID: PMC9880897 DOI: 10.3389/fpls.2022.1078248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The origin of seeds is one of the key innovations in land plant evolution. Ovules are the developmental precursors of seeds. The integument is the envelope structure surrounding the nucellus within the ovule and developing into the seed coat when ovules mature upon fertilization. The question of whether the integument arise de novo or evolve from elaboration of pre-existing structures has caused much debate. By exploring the origin and evolution of the key regulatory genes controlling integument development and their functions during both individual and historical developmental processes, we showed the widespread presence of the homologs of ANT, CUC, BEL1, SPL, C3HDZ, INO, ATS, and ETT in seedless plant genomes. All of these genes have undergone duplication-divergence events in their evolutionary history, with most of the descendant paralogous suffering motif gain and/or loss in the coding regions. Expression and functional characterization have shown that these genes are key components of the genetic program that patterns leaf-like lateral organs. Serial homology can thus be postulated between integuments and other lateral organs in terms of the shared master regulatory genes. Given that the genetic program patterning leaf-like lateral organs formed in seedless plants, and was reused during seed origin, the integument is unlikely to arise de novo but evolved from the stem segment-specific modification of pre-existing serially homologous structures. The master 'switches' trigging the modification to specify the integument identity remain unclear. We propose a successive transformation model of integument origin.
Collapse
Affiliation(s)
- Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Institute of Tree Genetics Breeding and Cultivation, Jiangxi Academy of Forestry, Nanchang, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
13
|
Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, Ingole KD, Stirnberg A, Rybecky A, Darino M, Navarrete F, Doehlemann G, Djamei A. Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. THE NEW PHYTOLOGIST 2022; 236:1455-1470. [PMID: 35944559 DOI: 10.1111/nph.18315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/17/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.
Collapse
Affiliation(s)
- Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Laura Baggely
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Daniel Reumann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Alexandra Stirnberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Anna Rybecky
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Martin Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Gunther Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
14
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
15
|
Elbl PM, de Souza DT, Rosado D, de Oliveira LF, Navarro BV, Matioli SR, Floh EIS. Building an embryo: An auxin gene toolkit for zygotic and somatic embryogenesis in Brazilian pine. Gene 2022; 817:146168. [PMID: 34995731 DOI: 10.1016/j.gene.2021.146168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
Many studies in the model species Arabidopsis thaliana characterized genes involved in embryo formation. However, much remains to be learned about the portfolio of genes that are involved in signal transduction and transcriptional regulation during plant embryo development in other species, particularly in an evolutionary context, especially considering that some genes involved in embryo patterning are not exclusive of land plants. This study, used a combination of domain architecture phylostratigraphy and phylogenetic reconstruction to investigate the evolutionary history of embryo patterning and auxin metabolism (EPAM) genes in Viridiplantae. This approach shed light on the co-optation of auxin metabolism and other molecular mechanisms that contributed to the radiation of land plants, and specifically to embryo formation. These results have potential to assist conservation programs, by directing the development of tools for obtaining somatic embryos. In this context, we employed this methodology with critically endangered and non-model species Araucaria angustifolia, the Brazilian pine, which is current focus of conservation efforts using somatic embryogenesis. So far, this approach had little success since somatic embryos fail to completely develop. By profiling the expression of genes that we identified as necessary for the emergence of land-plant embryos, we found striking differences between zygotic and somatic embryos that might explain the developmental arrest and be used to improve A. angustifolia somatic culture.
Collapse
Affiliation(s)
- Paula M Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil.
| | - Diego T de Souza
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, Brazil
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Leandro F de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil
| | - Bruno V Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil; Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sergio R Matioli
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Eny I S Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Bogaert KA, Blomme J, Beeckman T, De Clerck O. Auxin's origin: do PILS hold the key? TRENDS IN PLANT SCIENCE 2022; 27:227-236. [PMID: 34716098 DOI: 10.1016/j.tplants.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/10/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 05/12/2023]
Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Collapse
Affiliation(s)
- Kenny Arthur Bogaert
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Jonas Blomme
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Chinese Cherry (Cerasus pseudocerasus Lindl.) ARF7 Participates in Root Development and Responds to Drought and Low Phosphorus. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
In this paper, an auxin-responsive transcription factor, CpARF7, was isolated from the roots of Chinese cherry (Cerasus pseudocerasus Lindl. Cv. “Manao Hong”). CpARF7 is highly homologous to AtARF7 or AtARF19 in Arabidopsis, and PavARF1 or PavARF14 in sweet cherry. However, in the phenotype of transgenic tomatoes, the root morphology changed, the main root elongated, and the lateral root increased. Both drought treatment and low-phosphorus conditions can elongate the roots of transgenic tomatoes. In addition, the drought resistance and low-phosphorus tolerance of the transgenic lines are improved, and the POD, SOD, and CAT activities under drought and low-phosphorus environments are increased. There is an effect on the tomato somatotropin suppressor gene, SlIAAs, in which SlIAA1/14/19/29 are up-regulated and SlIAA2/11/12/16 are down-regulated. These results indicate that CpARF7 plays an essential regulatory role in root formation and abiotic stress response, and deepens the understanding of auxin-responsive genes in root growth and abiotic stress.
Collapse
|
18
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
19
|
Åstrand J, Knight C, Robson J, Talle B, Wilson ZA. Evolution and diversity of the angiosperm anther: trends in function and development. PLANT REPRODUCTION 2021; 34:307-319. [PMID: 34173886 PMCID: PMC8566645 DOI: 10.1007/s00497-021-00416-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 05/21/2023]
Abstract
Anther development and dehiscence is considered from an evolutionary perspective to identify drivers for differentiation, functional conservation and to identify key questions for future male reproduction research. Development of viable pollen and its timely release from the anther are essential for fertilisation of angiosperm flowers. The formation and subsequent dehiscence of the anther are under tight regulatory control, and these processes are remarkably conserved throughout the diverse families of the angiosperm clade. Anther development is a complex process, which requires timely formation and communication between the multiple somatic anther cell layers (the epidermis, endothecium, middle layer and tapetum) and the developing pollen. These layers go through regulated development and selective degeneration to facilitate the formation and ultimate release of the pollen grains. Insight into the evolution and divergence of anther development and dehiscence, especially between monocots and dicots, is driving greater understanding of the male reproductive process and increased, resilient crop yields. This review focuses on anther structure from an evolutionary perspective by highlighting their diversity across plant species. We summarise new findings that illustrate the complexities of anther development and evaluate how they challenge established models of anther form and function, and how they may help to deliver future sustainable crop yields.
Collapse
Affiliation(s)
- Johanna Åstrand
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Christopher Knight
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Jordan Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
20
|
Hou Q, Qiu Z, Wen Z, Zhang H, Li Z, Hong Y, Qiao G, Wen X. Genome-Wide Identification of ARF Gene Family Suggests a Functional Expression Pattern during Fruitlet Abscission in Prunus avium L. Int J Mol Sci 2021; 22:11968. [PMID: 34769398 PMCID: PMC8584427 DOI: 10.3390/ijms222111968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin response factors (ARFs) play a vital role in plant growth and development. In the current study, 16 ARF members have been identified in the sweet cherry (Prunus avium L.) genome. These genes are all located in the nucleus. Sequence analysis showed that genes in the same subgroup have similar exon-intron structures. A phylogenetic tree has been divided into five groups. The promoter sequence includes six kinds of plant hormone-related elements, as well as abiotic stress response elements such as low temperature or drought. The expression patterns of PavARF in different tissues, fruitlet abscission, cold and drought treatment were comprehensively analyzed. PavARF10/13 was up-regulated and PavARF4/7/11/12/15 was down-regulated in fruitlet abscising. These genes may be involved in the regulation of fruit drop in sweet cherry fruits. This study comprehensively analyzed the bioinformatics and expression pattern of PavARF, which can lay the foundation for further understanding the PavARF family in plant growth development and fruit abscission.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| | - Zhilang Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| | - Huimin Zhang
- College of Forestry, Guizhou University/Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.Z.); (Z.L.)
| | - Zhengchun Li
- College of Forestry, Guizhou University/Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.Z.); (Z.L.)
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Q.H.); (Z.Q.); (Z.W.); (Y.H.); (G.Q.)
| |
Collapse
|
21
|
Lin W, Wang Y, Coudert Y, Kierzkowski D. Leaf Morphogenesis: Insights From the Moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2021; 12:736212. [PMID: 34630486 PMCID: PMC8494982 DOI: 10.3389/fpls.2021.736212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/04/2021] [Accepted: 09/02/2021] [Indexed: 05/17/2023]
Abstract
Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.
Collapse
Affiliation(s)
- Wenye Lin
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, Lyon, France
| | - Daniel Kierzkowski
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
23
|
Abstract
The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.
Collapse
Affiliation(s)
- Román Ramos Báez
- University of Washington, Department of Biology, Seattle, WA 98105-1800, USA
| | | |
Collapse
|
24
|
Physcomitrium patens: A Single Model to Study Oriented Cell Divisions in 1D to 3D Patterning. Int J Mol Sci 2021; 22:ijms22052626. [PMID: 33807788 PMCID: PMC7961494 DOI: 10.3390/ijms22052626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Development in multicellular organisms relies on cell proliferation and specialization. In plants, both these processes critically depend on the spatial organization of cells within a tissue. Owing to an absence of significant cellular migration, the relative position of plant cells is virtually made permanent at the moment of division. Therefore, in numerous plant developmental contexts, the (divergent) developmental trajectories of daughter cells are dependent on division plane positioning in the parental cell. Prior to and throughout division, specific cellular processes inform, establish and execute division plane control. For studying these facets of division plane control, the moss Physcomitrium (Physcomitrella) patens has emerged as a suitable model system. Developmental progression in this organism starts out simple and transitions towards a body plan with a three-dimensional structure. The transition is accompanied by a series of divisions where cell fate transitions and division plane positioning go hand in hand. These divisions are experimentally highly tractable and accessible. In this review, we will highlight recently uncovered mechanisms, including polarity protein complexes and cytoskeletal structures, and transcriptional regulators, that are required for 1D to 3D body plan formation.
Collapse
|
25
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Guo F, Huang Y, Qi P, Lian G, Hu X, Han N, Wang J, Zhu M, Qian Q, Bian H. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. THE NEW PHYTOLOGIST 2021; 229:2676-2692. [PMID: 33135782 DOI: 10.1111/nph.17061] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Accepted: 10/23/2020] [Indexed: 05/28/2023]
Abstract
Auxin regulates almost every aspect of plant growth and development and is perceived by the TIR1/AFB auxin co-receptor proteins differentially acting in concert with specific Aux/IAA transcriptional repressors. Little is known about the diverse functions of TIR1/AFB family members in species other than Arabidopsis. We created targeted OsTIR1 and OsAFB2-5 mutations in rice using CRISPR/Cas9 genome editing, and functionally characterized the roles of these five members in plant growth and development and auxinic herbicide resistance. Our results demonstrated that functions of OsTIR1/AFB family members are partially redundant in grain yield, tillering, plant height, root system and germination. Ostir1, Osafb2 and Osafb4 mutants exhibited more severe phenotypes than Osafb3 and Osafb5. The Ostir1Osafb2 double mutant displays extremely severe defects in plant development. All five OsTIR1/AFB members interacted with OsIAA1 and OsIAA11 proteins in vivo. Root elongation assay showed that each Ostir1/afb2-5 mutant was resistant to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. Notably, only the Osafb4 mutants were strongly resistant to the herbicide picloram, suggesting that OsAFB4 is a unique auxin receptor in rice. Our findings demonstrate similarities and specificities of auxin receptor TIR1/AFB proteins in rice, and could offer the opportunity to modify effective herbicide-resistant alleles in agronomically important crops.
Collapse
Affiliation(s)
- Fu Guo
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yizi Huang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peipei Qi
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guiwei Lian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muyuan Zhu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
28
|
Landberg K, Šimura J, Ljung K, Sundberg E, Thelander M. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. THE NEW PHYTOLOGIST 2021; 229:845-860. [PMID: 32901452 PMCID: PMC7821132 DOI: 10.1111/nph.16914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 05/28/2023]
Abstract
The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway in Physcomitrium (Physcomitrella) patens and established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters. Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process. Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth.
Collapse
Affiliation(s)
- Katarina Landberg
- Department of Plant BiologyThe Linnean Centre for Plant Biology in UppsalaSwedish University of Agricultural SciencesUppsalaSE‐750 07Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)UmeåSE‐901 83Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)UmeåSE‐901 83Sweden
| | - Eva Sundberg
- Department of Plant BiologyThe Linnean Centre for Plant Biology in UppsalaSwedish University of Agricultural SciencesUppsalaSE‐750 07Sweden
| | - Mattias Thelander
- Department of Plant BiologyThe Linnean Centre for Plant Biology in UppsalaSwedish University of Agricultural SciencesUppsalaSE‐750 07Sweden
| |
Collapse
|
29
|
Li K, Wang S, Wu H, Wang H. Protein Levels of Several Arabidopsis Auxin Response Factors Are Regulated by Multiple Factors and ABA Promotes ARF6 Protein Ubiquitination. Int J Mol Sci 2020; 21:ijms21249437. [PMID: 33322385 PMCID: PMC7763875 DOI: 10.3390/ijms21249437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
The auxin response factor (ARF) transcription factors are a key component in auxin signaling and play diverse functions in plant growth, development, and stress response. ARFs are regulated at the transcript level and posttranslationally by protein modifications. However, relatively little is known regarding the control of ARF protein levels. We expressed five different ARFs with an HA (hemagglutinin) tag and observed that their protein levels under the same promoter varied considerably. Interestingly, their protein levels were affected by several hormonal and environmental conditions, but not by the auxin treatment. ABA (abscisic acid) as well as 4 °C and salt treatments decreased the levels of HA-ARF5, HA-ARF6, and HA-ARF10, but not that of HA-ARF19, while 37 °C treatment increased the levels of the four HA-ARFs, suggesting that the ARF protein levels are regulated by multiple factors. Furthermore, MG132 inhibited the reduction of HA-ARF6 level by ABA and 4 °C treatments, suggesting that these treatments decrease HA-ARF6 level through 26S proteasome-mediated protein degradation. It was also found that ABA treatment drastically increased HA-ARF6 ubiquitination, without strongly affecting the ubiquitination profile of the total proteins. Together, these results reveal another layer of control on ARFs, which could serve to integrate multiple hormonal and environmental signals into the ARF-regulated gene expression.
Collapse
Affiliation(s)
- Keke Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (H.W.); (H.W.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Correspondence: (H.W.); (H.W.)
| |
Collapse
|
30
|
Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:24557-24566. [PMID: 32929017 PMCID: PMC7533888 DOI: 10.1073/pnas.2009554117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.
Collapse
|
31
|
Israeli A, Reed JW, Ori N. Genetic dissection of the auxin response network. NATURE PLANTS 2020; 6:1082-1090. [PMID: 32807951 DOI: 10.1038/s41477-020-0739-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 05/24/2023]
Abstract
The expansion of gene families during evolution, which can generate functional overlap or specialization among their members, is a characteristic feature of signalling pathways in complex organisms. For example, families of transcriptional activators and repressors mediate responses to the plant hormone auxin. Although these regulators were identified more than 20 years ago, their overlapping functions and compensating negative feedbacks have hampered their functional analyses. Studies using loss-of-function approaches in basal land plants and gain-of-function approaches in angiosperms have in part overcome these issues but have still left an incomplete understanding. Here, we propose that renewed emphasis on genetic analysis of multiple mutants and species will shed light on the role of gene families in auxin response. Combining loss-of-function mutations in auxin-response activators and repressors can unravel complex outputs enabled by expanded gene families, such as fine-tuned developmental outcomes and robustness. Similar approaches and concepts may help to analyse other regulatory pathways whose components are also encoded by large gene families.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel.
| |
Collapse
|
32
|
Huang C, Yang M, Shao D, Wang Y, Wan S, He J, Meng Z, Guan R. Fine mapping of the BnUC2 locus related to leaf up-curling and plant semi-dwarfing in Brassica napus. BMC Genomics 2020; 21:530. [PMID: 32736518 PMCID: PMC7430850 DOI: 10.1186/s12864-020-06947-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Studies of leaf shape development and plant stature have made important contributions to the fields of plant breeding and developmental biology. The optimization of leaf morphology and plant height to improve lodging resistance and photosynthetic efficiency, increase planting density and yield, and facilitate mechanized harvesting is a desirable goal in Brassica napus. Results Here, we investigated a B. napus germplasm resource exhibiting up-curled leaves and a semi-dwarf stature. In progeny populations derived from NJAU5737 and Zhongshuang 11 (ZS11), we found that the up-curled leaf trait was controlled by a dominant locus, BnUC2. We then fine mapped the BnUC2 locus onto an 83.19-kb interval on chromosome A05 using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. We further determined that BnUC2 was a major plant height QTL that explained approximately 70% of the phenotypic variation in two BC5F3 family populations derived from NJAU5737 and ZS11. This result implies that BnUC2 was also responsible for the observed semi-dwarf stature. The fine mapping interval of BnUC2 contained five genes, two of which, BnaA05g16700D (BnaA05.IAA2) and BnaA05g16720D, were revealed by comparative sequencing to be mutated in NJAU5737. This result suggests that the candidate gene mutation (BnaA05g16700D, encoding Aux/IAA2 proteins) in the conserved Degron motif GWPPV (P63S) was responsible for the BnUC2 locus. In addition, investigation of agronomic traits in a segregated population indicated that plant height, main inflorescence length, and branching height were significantly reduced by BnUC2, whereas yield was not significantly altered. The determination of the photosynthetic efficiency showed that the BnUC2 locus was beneficial to improve the photosynthetic efficiency. Our findings may provide an effective foundation for plant type breeding in B. napus. Conclusions Using SNP and SSR markers, a dominant locus (BnUC2) related to up-curled leaves and semi-dwarf stature in B. napus has been fine mapped onto an 83.19-kb interval of chromosome A05 containing five genes. The BnaA05.IAA2 is inferred to be the candidate gene responsible for the BnUC2 locus.
Collapse
Affiliation(s)
- Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danlei Shao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zuqing Meng
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, Tibet Autonomous Region, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
34
|
Morffy N, Strader LC. Old Town Roads: routes of auxin biosynthesis across kingdoms. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:21-27. [PMID: 32199307 PMCID: PMC7540728 DOI: 10.1016/j.pbi.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Auxin is an important signaling molecule synthesized in organisms from multiple kingdoms of life, including land plants, green algae, and bacteria. In this review, we highlight the similarities and differences in auxin biosynthesis among these organisms. Tryptophan-dependent routes to IAA are found in land plants, green algae and bacteria. Recent sequencing efforts show that the indole-3-pyruvic acid pathway, one of the primary biosynthetic pathways in land plants, is also found in the green algae. These similarities raise questions about the origin of auxin biosynthesis. Future studies comparing auxin biosynthesis across kingdoms will shed light on its origin and role outside of the plant lineage.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
35
|
Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, Sinz A, Calderón Villalobos LIA. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat Commun 2020; 11:2277. [PMID: 32385295 PMCID: PMC7210949 DOI: 10.1038/s41467-020-16147-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states. Auxin-mediated recruitment of AUX/IAAs by the F-box protein TIR1 prompts rapid AUX/IAA ubiquitylation and degradation. By resolving auxin receptor topology, the authors show that intrinsically disordered regions near the degrons of two Aux/IAA proteins reinforce complex assembly and position Aux/IAAs for ubiquitylation.
Collapse
Affiliation(s)
- Michael Niemeyer
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Elena Moreno Castillo
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Verona Wilde
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Antje Hellmuth
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Sophia L Samodelov
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Panagiotis L Kastritis
- ZIK HALOMEM & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
36
|
A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat Commun 2020; 11:679. [PMID: 32015349 PMCID: PMC6997161 DOI: 10.1038/s41467-020-14395-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
Auxin determines the developmental fate of plant tissues, and local auxin concentration is precisely controlled. The role of auxin transport in modulating local auxin concentration has been widely studied but the regulation of local auxin biosynthesis is less well understood. Here, we show that TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1), a key enzyme in the auxin biosynthesis pathway in Arabidopsis thaliana is phosphorylated at Threonine 101 (T101). T101 phosphorylation status can act as an on/off switch to control TAA1-dependent auxin biosynthesis and is required for proper regulation of root meristem size and root hair development. This phosphosite is evolutionarily conserved suggesting post-translational regulation of auxin biosynthesis may be a general phenomenon. In addition, we show that auxin itself, in part via TRANS-MEMBRANE KINASE 4 (TMK4), can induce T101 phosphorylation of TAA1 suggesting a self-regulatory loop whereby local auxin signalling can suppress biosynthesis. We conclude that phosphorylation-dependent control of TAA1 enzymatic activity may contribute to regulation of auxin concentration in response to endogenous and/or external cues. Precise regulation of auxin concentration via transport and metabolism determines the developmental fate of plant tissues. Here the authors show that local auxin biosynthesis is regulated by TMK4-dependent phosphorylation of the TAA1 enzyme and that this is required for proper root development.
Collapse
|
37
|
Becker A. A molecular update on the origin of the carpel. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:15-22. [PMID: 31622798 DOI: 10.1016/j.pbi.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 05/29/2023]
Abstract
Carpels, the female reproductive organs of flowering plants, are of major economic importance since much of our food is ultimately derived from carpel tissue and they are a defining innovation for flowering plants. Amazingly, little is known about the origin and conservation of the developmental program of the carpel besides the knowledge generated by utilizing Arabidopsis thaliana. However, in the past few years advances in ancestral state reconstruction, developmental genetics, and phylogenetic analyses led to advances in the field of flower evodevo. Here, I summarize recent work on ancestral state reconstructions of carpels, and the functions of the major components of the genetic networks governing carpel development described for Arabidopsis. Then, I point out how the stepwise addition of genes during land plant evolution has generated the A. thaliana carpel's developmental toolkit. By merging these observations, I propose a basic version of the ancestral angiosperm carpel developmental network.
Collapse
Affiliation(s)
- Annette Becker
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Heinrich-Buff-Ring 38, 35392 Gießen, Germany.
| |
Collapse
|
38
|
Thelander M, Landberg K, Sundberg E. Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter. THE NEW PHYTOLOGIST 2019; 224:775-788. [PMID: 31318450 DOI: 10.1111/nph.16068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 05/18/2023]
Abstract
Efforts to reveal ancestral functions of auxin, a key regulator of plant growth and development, and its importance for evolution have been hampered by a fragmented picture of auxin response domains in early-diverging land plants. We report the mapping of auxin sensing and responses during vegetative moss development using novel reporters. We established a moss-specific ratiometric reporter (PpR2D2) for Auxin Response Element- and AUXIN RESPONSE FACTOR-independent auxin sensing in Physcomitrella patens, and its readout during vegetative development was compared with new promoter-based GmGH3::GFPGUS and DR5revV2::GFPGUS auxin response reporters. The ratiometric reporter responds rapidly to auxin in a time-, dose- and TRANSPORT INHIBITOR RESISTANT1/AUXIN F-BOX-dependent manner and marks known, anticipated and novel auxin sensing domains. It reveals proximal auxin sensing maxima in filamentous tissues and sensing minima in all five vegetative gametophytic stem cell types as well as dividing cells. PpR2D2 readout is compliant with an ancestral function of auxin as a positive regulator of differentiation vs proliferation in stem cell regions. The PpR2D2 reporter is a sensitive tool for high-resolution mapping of auxin sensing, which can increase our knowledge of auxin function in early-diverging land plants substantially, thereby advancing our understanding of its importance for plant evolution.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, SE-750 07, Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, SE-750 07, Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, SE-750 07, Uppsala, Sweden
| |
Collapse
|
39
|
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. MOLECULAR PLANT 2019; 12:298-320. [PMID: 30590136 DOI: 10.1016/j.molp.2018.12.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin has been shown to be of pivotal importance in growth and development of land plants. The underlying molecular players involved in auxin biosynthesis, transport, and signaling are quite well understood in Arabidopsis. However, functional characterizations of auxin-related genes in economically important crops, specifically maize and rice, are still limited. In this article, we comprehensively review recent functional studies on auxin-related genes in both maize and rice, compared with what is known in Arabidopsis, and highlight conservation and diversification of their functions. Our analysis is illustrated by phylogenetic analysis and publicly available gene expression data for each gene family, which will aid in the identification of auxin-related genes for future research. Current challenges and future directions for auxin research in maize and rice are discussed. Developments in gene editing techniques provide powerful tools for overcoming the issue of redundancy in these gene families and will undoubtedly advance auxin research in crops.
Collapse
Affiliation(s)
- Michaela Sylvia Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Norman Bradley Best
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Fang T, Motte H, Parizot B, Beeckman T. Root Branching Is Not Induced by Auxins in Selaginella moellendorffii. FRONTIERS IN PLANT SCIENCE 2019; 10:154. [PMID: 30842783 PMCID: PMC6391681 DOI: 10.3389/fpls.2019.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Angiosperms develop intensively branched root systems that are accommodated with the high capacity to produce plenty of new lateral roots throughout their life-span. Root branching can be dynamically regulated in response to edaphic conditions and provides the plants with a soil-mining potential. This highly specialized branching capacity has most likely been key in the colonization success of the present flowering plants on our planet. The initiation, formation and outgrowth of branching roots in Angiosperms are dominated by the plant hormone auxin. Upon auxin treatment root branching through the formation of lateral roots can easily be induced. In this study, we questioned whether this strong branching-inducing action of auxin is part of a conserved mechanism that was already active in the earliest diverging lineage of vascular plants with roots. In Selaginella, an extant representative species of this early clade of root forming plants, components of the canonical auxin signaling pathway are retrieved in its genome. Although we observed a clear physiological response and an indirect effect on root branching, we were not able to directly induce root branching in this species by application of different auxins. We conclude that the structural and developmental difference of the Selaginella root, which branches via bifurcation of the root meristem, or the absence of an auxin-mediated root development program, is most likely causative for the absence of an auxin-induced branching mechanism.
Collapse
Affiliation(s)
- Tao Fang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
41
|
Motte H, Beeckman T. The evolution of root branching: increasing the level of plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:785-793. [PMID: 30481325 DOI: 10.1093/jxb/ery409] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/26/2023]
Abstract
Plant roots and root systems are indispensable for water and nutrient foraging, and are a major evolutionary achievement for plants to cope with dry land conditions. The ability of roots to branch contributes substantially to their capacity to explore the soil for water and nutrients, and led ~400 million years ago to the successful colonization of land by plants, eventually even in arid regions. During this colonization, different forms of root branching evolved, reinforcing step by step the phenotypic plasticity of the root system. Whereas the lycophytes, the most ancient land plants with roots, only branch at the root tip, ferns are able to form roots laterally in a fixed pattern along the main root. Finally, roots of seed plants show the highest phenotypic plasticity, because lateral roots can possibly, dependent on internal and/or external signals, be produced at almost any position along the main root. The competence to form lateral roots in seed plants is based on the presence of internal cell files with stem cell-like features. Despite the dissimilarities between the different clades, a number of genetic modules seem to be co-opted in order to acquire root branching capacity. In this review, starting from the lateral root pathways in seed plants, we review root branching in the different land plant lineages and discuss the hitherto described genetic modules that contribute to their root branching capacity. We try to obtain insight into how land plants have acquired an increasing root branching plasticity during evolution that contributed to the successful colonization of our planet by seed plants.
Collapse
Affiliation(s)
- Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
42
|
Komatsu A, Nishihama R, Kohchi T. Observation of Phototropic Responses in the Liverwort Marchantia polymorpha. Methods Mol Biol 2019; 1924:53-61. [PMID: 30694467 DOI: 10.1007/978-1-4939-9015-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
The liverwort species, Marchantia polymorpha, shows environment-dependent morphological plasticity throughout its life cycle. Thalli, representing the predominant body form throughout most of this bryophyte's life cycle, grow with repeated dichotomous branching at the apex and develop horizontally under sufficient light intensity. Spores, after germination, produce a mass of cells, called sporelings, which then grow into thalli. Both thalli and sporelings, if grown under weak light conditions, form narrow shapes, and their apices grow toward the light source. These phototropic responses are specific to blue light and dependent on the blue-light receptor phototropin. This chapter provides several basic procedures, along with some tips, for designing and performing experiments with M. polymorpha to observe their phototropic responses, as well as methods for observing the localization of the phototropin "Mpphot" with a fluorescent protein tag.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Ilina EL, Kiryushkin AS, Semenova VA, Demchenko NP, Pawlowski K, Demchenko KN. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player? ANNALS OF BOTANY 2018; 122:873-888. [PMID: 29684107 PMCID: PMC6215038 DOI: 10.1093/aob/mcy052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 05/24/2023]
Abstract
Background and Aims In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Methods Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. Key Results The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Conclusions Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.
Collapse
Affiliation(s)
- Elena L Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexey S Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Victoria A Semenova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nikolay P Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee, Saint-Petersburg, Russia
| |
Collapse
|
44
|
Benítez M, Hernández-Hernández V, Newman SA, Niklas KJ. Dynamical Patterning Modules, Biogeneric Materials, and the Evolution of Multicellular Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:871. [PMID: 30061903 PMCID: PMC6055014 DOI: 10.3389/fpls.2018.00871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/13/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Comparative analyses of developmental processes across a broad spectrum of organisms are required to fully understand the mechanisms responsible for the major evolutionary transitions among eukaryotic photosynthetic lineages (defined here as the polyphyletic algae and the monophyletic land plants). The concepts of dynamical patterning modules (DPMs) and biogeneric materials provide a framework for studying developmental processes in the context of such comparative analyses. In the context of multicellularity, DPMs are defined as sets of conserved gene products and molecular networks, in conjunction with the physical morphogenetic and patterning processes they mobilize. A biogeneric material is defined as mesoscale matter with predictable morphogenetic capabilities that arise from complex cellular conglomerates. Using these concepts, we outline some of the main events and transitions in plant evolution, and describe the DPMs and biogeneric properties associated with and responsible for these transitions. We identify four primary DPMs that played critical roles in the evolution of multicellularity (i.e., the DPMs responsible for cell-to-cell adhesion, identifying the future cell wall, cell differentiation, and cell polarity). Three important conclusions emerge from a broad phyletic comparison: (1) DPMs have been achieved in different ways, even within the same clade (e.g., phycoplastic cell division in the Chlorophyta and phragmoplastic cell division in the Streptophyta), (2) DPMs had their origins in the co-option of molecular species present in the unicellular ancestors of multicellular plants, and (3) symplastic transport mediated by intercellular connections, particularly plasmodesmata, was critical for the evolution of complex multicellularity in plants.
Collapse
Affiliation(s)
- Mariana Benítez
- Centro de Ciencias de la Complejidad – Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Hernández-Hernández
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
45
|
Jamsheer K M, Shukla BN, Jindal S, Gopan N, Mannully CT, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem 2018; 293:13134-13150. [PMID: 29945970 DOI: 10.1074/jbc.ra118.002073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Indexed: 11/06/2022] Open
Abstract
The SNF1-related protein kinase 1 (SnRK1) is a heterotrimeric eukaryotic kinase that interacts with diverse proteins and regulates their activity in response to starvation and stress signals. Recently, the FCS-like zinc finger (FLZ) proteins were identified as a potential scaffold for SnRK1 in plants. However, the evolutionary and mechanistic aspect of this complex formation is currently unknown. Here, in silico analyses predicted that FLZ proteins possess conserved intrinsically disordered regions (IDRs) with a propensity for protein binding in the N and C termini across the plant lineage. We observed that the Arabidopsis FLZ proteins promiscuously interact with SnRK1 subunits, which formed different isoenzyme complexes. The FLZ domain was essential for mediating the interaction with SnRK1α subunits, whereas the IDRs in the N termini facilitated interactions with the β and βγ subunits of SnRK1. Furthermore, the IDRs in the N termini were important for mediating dimerization of different FLZ proteins. Of note, the interaction of FLZ with SnRK1 was confined to cytoplasmic foci, which colocalized with the endoplasmic reticulum. An evolutionary analysis revealed that in general, the IDR-rich regions are under more relaxed selection than the FLZ domain. In summary, the findings in our study reveal the structural details, origin, and evolution of a land plant-specific scaffold of SnRK1 formed by the coordinated actions of IDRs and structured regions in the FLZ proteins. We propose that the FLZ protein complex might be involved in providing flexibility, thus enhancing the binding repertoire of the SnRK1 hub in land plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Brihaspati N Shukla
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Sunita Jindal
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Nandu Gopan
- the Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru-560064, India
| | | | - Ashverya Laxmi
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| |
Collapse
|
46
|
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GKS, Weijers D. Origin and evolution of the nuclear auxin response system. eLife 2018; 7:33399. [PMID: 29580381 PMCID: PMC5873896 DOI: 10.7554/elife.33399] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
The small signaling molecule auxin controls numerous developmental processes in land plants, acting mostly by regulating gene expression. Auxin response proteins are represented by large families of diverse functions, but neither their origin nor their evolution is understood. Here, we use a deep phylogenomics approach to reconstruct both the origin and the evolutionary trajectory of all nuclear auxin response protein families. We found that, while all subdomains are ancient, a complete auxin response mechanism is limited to land plants. Functional phylogenomics predicts defined steps in the evolution of response system properties, and comparative transcriptomics across six ancient lineages revealed how these innovations shaped a sophisticated response mechanism. Genetic analysis in a basal land plant revealed unexpected contributions of ancient non-canonical proteins in auxin response as well as auxin-unrelated function of core transcription factors. Our study provides a functional evolutionary framework for understanding diverse functions of the auxin signal. Across all kingdoms of life, signaling molecules like hormones, for example, control many aspects of the lives of organisms, including how they grow and develop. Cells have dedicated proteins that can recognize the signaling molecules, relay the information, and respond to the signal, for example by switching genes on or off. Such response systems usually consist of multiple components, and, throughout evolution, these response components have regularly been copied such that many species have multiple different versions of each one. Auxin is a plant hormone that controls virtually all growth and developmental processes in plants, including many yield traits in crops. However, no one knows why it is involved in so many processes. This is partly because it is not clear how the response system for this central signaling molecule was first born, or how it has increased in its complexity. To address this, Mutte, Kato et al. explored the genetic information of more than a thousand plant species, including algae, which span more than 700 million years of evolution. Their analysis showed that all auxin response components were assembled from pieces of much older genes, but that they first came together when plants conquered land. Indeed, the auxin response appears to have developed on top of a pre-existing genetic regulator that is still present in modern-day algae. Mutte, Kato et al. then used experiments to show how stepwise increases in the number and types of auxin response components have shaped sophisticated, complex responses in land plants, and to demonstrate how ancient components control auxin response. Together these findings provide a framework for understanding the many functions of auxin in plants, and how this came to be. They also show how complexity can be accomplished in a signal response pathway, and how diversity evolves in gene families. Similar studies on other response systems in plants and beyond are likely to help reveal common principles of hormone response evolution and diversification of gene regulation systems.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Carl Rothfels
- Department of Integrative Biology, University of California, Berkeley, United States
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medicine, University of Alberta, Edmonton, Canada.,BGI-Shenzhen, Shenzhen, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
47
|
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GKS, Weijers D. Origin and evolution of the nuclear auxin response system. eLife 2018; 7:33399. [PMID: 29580381 DOI: 10.7554/elife.33399.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2017] [Accepted: 03/06/2018] [Indexed: 05/26/2023] Open
Abstract
The small signaling molecule auxin controls numerous developmental processes in land plants, acting mostly by regulating gene expression. Auxin response proteins are represented by large families of diverse functions, but neither their origin nor their evolution is understood. Here, we use a deep phylogenomics approach to reconstruct both the origin and the evolutionary trajectory of all nuclear auxin response protein families. We found that, while all subdomains are ancient, a complete auxin response mechanism is limited to land plants. Functional phylogenomics predicts defined steps in the evolution of response system properties, and comparative transcriptomics across six ancient lineages revealed how these innovations shaped a sophisticated response mechanism. Genetic analysis in a basal land plant revealed unexpected contributions of ancient non-canonical proteins in auxin response as well as auxin-unrelated function of core transcription factors. Our study provides a functional evolutionary framework for understanding diverse functions of the auxin signal.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Carl Rothfels
- Department of Integrative Biology, University of California, Berkeley, United States
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- BGI-Shenzhen, Shenzhen, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|