1
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. PLoS Negl Trop Dis 2024; 18:e0011862. [PMID: 38527081 PMCID: PMC10994562 DOI: 10.1371/journal.pntd.0011862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a survey of DENV susceptibility using a panel of seven field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Department of Solid Waste Management, Mosquito Control Division, Miami, Florida, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
3
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571617. [PMID: 38168387 PMCID: PMC10760182 DOI: 10.1101/2023.12.14.571617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a continent-wide survey of DENV susceptibility using a panel of field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Current address: Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
4
|
Lehmann T, Kouam C, Woo J, Diallo M, Wilkerson R, Linton YM. The African mosquito-borne diseasosome: geographical patterns, range expansion and future disease emergence. Proc Biol Sci 2023; 290:20231581. [PMID: 38018102 PMCID: PMC10685135 DOI: 10.1098/rspb.2023.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Mosquito-borne diseases (MBDs) threaten public health and food security globally. We provide the first biogeographic description of the African mosquito fauna (677 species) and the 151 mosquito-borne pathogens (MBPs) they transmit. While mosquito species richness agrees with expectations based on Africa's land surface, African arboviruses and mammalian plasmodia are more speciose than expected. Species assemblages of mosquitoes and MBPs similarly separate sub-Saharan Africa from North Africa, and those in West and Central Africa from eastern and southern Africa. Similarities between mosquitoes and MBPs in diversity and range size suggest that mosquitoes are key in delimiting the range of MBPs. With approximately 25% endemicity, approximately 50% occupying one to three countries and less than 5% occupying greater than 25 countries, the ranges of mosquitoes and MBPs are surprisingly small, suggesting that most MBPs are transmitted by a single mosquito species. Exceptionally widespread mosquito species feed on people and livestock, and most are high-altitude-windborne migrants. Likewise, widespread MBPs are transmitted among people or livestock by widespread mosquitoes, suggesting that adapting to people or livestock and to widespread mosquito species promote range expansion in MBPs. Range size may predict range expansion and emergence risk. We highlight key knowledge gaps that impede prediction and mitigation of future emergence of local and global MBDs.
Collapse
Affiliation(s)
- Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Joshua Woo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Wilkerson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| |
Collapse
|
5
|
Fola AA, Moser KA, Aydemir O, Hennelly C, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Bailey JA, Juliano JJ. Temporal and spatial analysis of Plasmodium falciparum genomics reveals patterns of parasite connectivity in a low-transmission district in Southern Province, Zambia. Malar J 2023; 22:208. [PMID: 37420265 PMCID: PMC10327325 DOI: 10.1186/s12936-023-04637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Kara A. Moser
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Chris Hennelly
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Choma, Zambia
| | | | | | - Douglas E. Norris
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Jonathan J. Juliano
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - the Southern, Central Africa International Center of Excellence for Malaria Research (ICEMR)
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Macha Research Trust, Choma District, Choma, Zambia
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
6
|
Ossè RA, Tokponnon F, Padonou GG, Glitho ME, Sidick A, Fassinou A, Koukpo CZ, Akinro B, Sovi A, Akogbéto M. Evidence of Transmission of Plasmodium vivax 210 and Plasmodium vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa. INSECTS 2023; 14:231. [PMID: 36975916 PMCID: PMC10053026 DOI: 10.3390/insects14030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Current diagnostic and surveillance systems in Benin are not designed to accurately identify or report non-Plasmodium falciparum (Pf) human malaria infections. This study aims to assess and compare the prevalence of circumsporozoite protein (CSP) antibodies of Pf and P. vivax (Pv) in Anopheles gambiae s.l. in Benin. For that, mosquito collections were performed through human landing catches (HLC) and pyrethrum spray catches (PSC). The collected mosquitoes were morphologically identified, and Pf, Pv 210, and Pv 247 CSP antibodies were sought in An. gambiae s.l. through the ELISA and polymerase chain reaction (PCR) techniques. Of the 32,773 collected mosquitoes, 20.9% were An. gambiae s.l., 3.9% An. funestus gr., and 0.6% An. nili gr. In An. gambiae s.l., the sporozoite rate was 2.6% (95% CI: 2.1-3.1) for Pf, against 0.30% (95% CI: 0.1-0.5) and 0.2% (95% CI: 0.1-0.4), respectively, for Pv 210 and Pv 247. P. falciparum sporozoite positive mosquitoes were mostly An. gambiae (64.35%), followed by An. coluzzii (34.78%) and An. arabiensis (0.86%). At the opposite, for the Pv 210 sporozoite-positive mosquitoes, An. coluzzii and An. gambiae accounted for 76.92% and 23.08%, respectively. Overall, the present study shows that P. falciparum is not the only Plasmodium species involved in malaria cases in Benin.
Collapse
Affiliation(s)
- Razaki A. Ossè
- Ecole de Gestion et d’Exploitation des Systèmes d’Elevage, Université Nationale d’Agriculture, Kétou BP 44, Benin
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Filémon Tokponnon
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Ecole Polytechnique d’Abomey Calavi, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Mariette E. Glitho
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Arsène Fassinou
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Come Z. Koukpo
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté d’Agronomie, Université de Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| |
Collapse
|
7
|
Rougeron V, Daron J, Fontaine MC, Prugnolle F. Evolutionary history of Plasmodium vivax and Plasmodium simium in the Americas. Malar J 2022; 21:141. [PMID: 35505431 PMCID: PMC9066938 DOI: 10.1186/s12936-022-04132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. Plasmodium vivax is the most prevalent human-infecting species in the Americas. However, the origins of this parasite in this continent are still debated. Similarly, it is now accepted that the existence of Plasmodium simium is explained by a P. vivax transfer from humans to monkey in America. However, many uncertainties still exist concerning the origin of the transfer and whether several transfers occurred. In this review, the most recent studies that addressed these questions using genetic and genomic approaches are presented.
Collapse
Affiliation(s)
- Virginie Rougeron
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
| | - Josquin Daron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France
| | - Michael C Fontaine
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France.,Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Franck Prugnolle
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
| |
Collapse
|
8
|
Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms 2022; 10:microorganisms10010186. [PMID: 35056635 PMCID: PMC8779127 DOI: 10.3390/microorganisms10010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993–2007) and pre-elimination phases (2008–2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima’s D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.
Collapse
|
9
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
10
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
11
|
Abdelwhab OF, Elaagip A, Albsheer MM, Ahmed A, Paganotti GM, Abdel Hamid MM. Molecular and morphological identification of suspected Plasmodium vivax vectors in Central and Eastern Sudan. Malar J 2021; 20:132. [PMID: 33663534 PMCID: PMC7934255 DOI: 10.1186/s12936-021-03671-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background In spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans. Plasmodium falciparum is the dominant malaria parasite in sub-Saharan Africa. However, Plasmodium vivax is becoming widely spread throughout Africa. The overuse of vector control methods has resulted in a remarkable change in the behaviour of mosquito that feeds on human as well as on vector composition. The aim of this study was to identify Anopheles mosquito species in vivax malaria endemic regions and to investigate their role in P. vivax circumsporozoite protein (Pvcsp) allele diversity. Methods Mosquito samples were collected from Central Sudan (Rural Khartoum and Sennar) and Eastern Sudan (New Halfa, Kassala state) using pyrethrum spray catch (PSC) and CDC light traps. Mosquitoes were identified using appropriate morphological identification keys and Anopheles gambiae complex were confirmed to species level using molecular analysis. A subset of blood-fed anopheline mosquitoes were dissected to determine the presence of natural infection of malaria parasites. In addition, the rest of the samples were investigated for the presence of Pvcsp gene using nested-PCR. Results A total of 1037 adult anopheline mosquitoes were collected from New Halfa (N = 467), Rural Khartoum (N = 132), and Sennar (N = 438). Morphological and molecular identification of the collected mosquitoes revealed the presence of Anopheles arabiensis (94.2%), Anopheles funestus (0.5%), and Anopheles pharoensis (5.4%). None of the dissected mosquitoes (N = 108) showed to be infected with malaria parasite. Overall P. vivax infectivity rate was 6.1% (63/1037) by Pvcsp nested PCR. Co-dominance of An. arabiensis and An. pharoensis is reported in Sennar state both being infected with P. vivax. Conclusion This study reported P. vivax infection among wild-caught anopheline mosquitoes in Central and Eastern Sudan. While An. arabiensis is the most abundant vector observed in all study areas, An. funestus was recorded for the first time in New Halfa, Eastern Sudan. The documented Anopheles species are implicated in Pvcsp allele diversity. Large-scale surveys are needed to identify the incriminated vectors of P. vivax malaria and determine their contribution in disease transmission dynamics.
Collapse
Affiliation(s)
- Omnia Fathelrhman Abdelwhab
- Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.,Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Musab M Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
12
|
Pereira De Oliveira R, Hutet E, Lancelot R, Paboeuf F, Duhayon M, Boinas F, Pérez de León AA, Filatov S, Le Potier MF, Vial L. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasit Vectors 2020; 13:618. [PMID: 33298119 PMCID: PMC7725119 DOI: 10.1186/s13071-020-04497-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Abstract
Background Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodorosmoubata, O. erraticus, and O. verrucosus in relation to what is known about the ability of these soft tick species to transmit ASFV to pigs. To mimic the natural situation, a more realistic model was used where soft ticks were exposed to ASFV by allowing them to engorge on viremic pigs. Methods Ornithodoros moubata ticks were infected with the ASFV strains Liv13/33 (genotype I) or Georgia2007/1 (genotype II), O. erraticus with OurT88/1 (genotype I) or Georgia2007/1 (genotype II), and O. verrucosus with Ukr12/Zapo (genotype II), resulting in five different tick–virus pairs. Quantitative PCR (qPCR) assays targeting the VP72 ASFV gene was carried out over several months on crushed ticks to study viral replication kinetics. Viral titration assays were also carried out on crushed ticks 2 months post infection to confirm virus survival in soft ticks. Ticks were dissected. and DNA was individually extracted from the following organs to study ASFV dissemination: intestine, salivary glands, and reproductive organs. DNA extracts from each organ were tested by qPCR. Lastly, larval or first nymph-stage progeny emerging from hatching eggs were tested by qPCR to assess ASFV vertical transmission. Results Comparative analyses revealed higher rates of ASFV replication and dissemination in O. moubata infected with Liv13/33, while the opposite was observed for O. erraticus infected with Georgia2007/1 and for O. verrucosus with Ukr12/Zapo. Intermediate profiles were found for O. moubata infected with Georgia2007/1 and for O. erraticus with OurT88/1. Vertical transmission occurred efficiently in O. moubata infected with Liv13/33, and at very low rates in O. erraticus infected with OurT88/1. Conclusions This study provides molecular data indicating that viral replication and dissemination in Ornithodoros ticks are major mechanisms underlying ASFV horizontal and vertical transmission. However, our results indicate that other determinants beyond viral replication also influence ASFV vector competence. Further research is required to fully understand this process in soft ticks.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.,Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Renaud Lancelot
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Frédéric Paboeuf
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Maxime Duhayon
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Fernando Boinas
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, US Department of Agriculture-Agriculture Research Service (USDA-ARS), Kerrville, TX, USA
| | - Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Marie-Frédérique Le Potier
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Laurence Vial
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France. .,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
15
|
González-Cerón L, Rodríguez MH, Ovilla-Muñoz MT, Santillán-Valenzuela F, Hernández-Ávila JE, Rodríguez MC, Martínez-Barnetche J, Villarreal-Treviño C. Ookinete-Specific Genes and 18S SSU rRNA Evidenced in Plasmodium vivax Selection and Adaptation by Sympatric Vectors. Front Genet 2020; 10:1362. [PMID: 32153625 PMCID: PMC7047961 DOI: 10.3389/fgene.2019.01362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
In the southern Pacific coast of Chiapas, Mexico (SM), the two most abundant vector species, Nyssorhynchus albimanus and Anopheles pseudopunctipennis, were susceptible to different Plasmodium vivax Pvs25/28 haplotypes. To broaden our understanding of the existing P. vivax in the area, genes encoding proteins relevant for ookinete development and the 18S rRNA were studied. P. vivax infectivity (percentage of infected mosquitoes and oocyst numbers) was evaluated by simultaneously feeding infected blood samples from patients to Ny. albimanus and An. pseudopunctipennis female mosquitoes. Three infectivity patterns were identified: one group of parasites were more infective to An. pseudopunctipennis than to Ny. albimanus, another group was more infective to Ny. albimanus, while a third group infected both vectors similarly. In 29 parasite isolates, the molecular variations of ookinete-specific genes and the 18S rRNA-type S were analyzed. Using concatenated sequences, phylogenetic trees, and Structure analysis, parasite clustering within SM isolates and between these and those from other geographical origins were investigated. A ML phylogenetic tree resolved two parasite lineages: PvSM-A and PvSM-B. They were associated to a different 18S rRNA variant. PvSM-A parasites had 18S rRNA variant rV2 and correspond to parasites causing high oocyst infection in Ny. albimanus. A new ML tree and Structure analysis, both comprising global sequences, showed PvSM-A clustered with Latin American parasites. Meanwhile, all isolates of PvSM-B had 18S rRNA variant rV1 and remained as unique genetic cluster comprising two subgroups: PvSM-Ba, producing high infection in An. pseudopunctipennis, and PvSM-Bb, causing similar oocyst infection in both vector species. PvSM-A parasites were genetically similar to parasites from South America. Meanwhile, PvSM-B were exclusive to southern Mexico and share ancestry with Asian parasites. The results suggest that these lineages evolved separately, likely by geographic and vector restriction.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Regional Center of Research in Public Health, National Institute of Public Health, Ministry of Health, Tapachula, Mexico
| | - Mario H Rodríguez
- Vector Borne Diseases, Center for Research on Infectious Diseases, National Institute of Public Health, Ministry of Health, Cuernavaca, Mexico
| | - Marbella T Ovilla-Muñoz
- Chronic Infections and Cancer, Center for Research on Infectious Diseases, National Institute of Public Health, Ministry of Health, Cuernavaca, Mexico
| | - Frida Santillán-Valenzuela
- Regional Center of Research in Public Health, National Institute of Public Health, Ministry of Health, Tapachula, Mexico
| | - Juan E Hernández-Ávila
- Center of Information for Public Health Decisions, National Institute of Public Health, Ministry of Health, Mexico City, Mexico
| | - María Carmen Rodríguez
- Vector Borne Diseases, Center for Research on Infectious Diseases, National Institute of Public Health, Ministry of Health, Cuernavaca, Mexico
| | - Jesús Martínez-Barnetche
- Chronic Infections and Cancer, Center for Research on Infectious Diseases, National Institute of Public Health, Ministry of Health, Cuernavaca, Mexico
| | - Cuauhtémoc Villarreal-Treviño
- Regional Center of Research in Public Health, National Institute of Public Health, Ministry of Health, Tapachula, Mexico
| |
Collapse
|
16
|
Sá JM, Kaslow SR, Moraes Barros RR, Brazeau NF, Parobek CM, Tao D, Salzman RE, Gibson TJ, Velmurugan S, Krause MA, Melendez-Muniz V, Kite WA, Han PK, Eastman RT, Kim A, Kessler EG, Abebe Y, James ER, Chakravarty S, Orr-Gonzalez S, Lambert LE, Engels T, Thomas ML, Fasinu PS, Serre D, Gwadz RW, Walker L, DeConti DK, Mu J, Bailey JA, Sim BKL, Hoffman SL, Fay MP, Dinglasan RR, Juliano JJ, Wellems TE. Plasmodium vivax chloroquine resistance links to pvcrt transcription in a genetic cross. Nat Commun 2019; 10:4300. [PMID: 31541097 PMCID: PMC6754410 DOI: 10.1038/s41467-019-12256-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Mainstay treatment for Plasmodium vivax malaria has long relied on chloroquine (CQ) against blood-stage parasites plus primaquine against dormant liver-stage forms (hypnozoites), however drug resistance confronts this regimen and threatens malaria control programs. Understanding the basis of P. vivax chloroquine resistance (CQR) will inform drug discovery and malaria control. Here we investigate the genetics of P. vivax CQR by a cross of parasites differing in drug response. Gametocytogenesis, mosquito infection, and progeny production are performed with mixed parasite populations in nonhuman primates, as methods for P. vivax cloning and in vitro cultivation remain unavailable. Linkage mapping of progeny surviving >15 mg/kg CQ identifies a 76 kb region in chromosome 1 including pvcrt, an ortholog of the Plasmodium falciparum CQR transporter gene. Transcriptional analysis supports upregulated pvcrt expression as a mechanism of CQR.
Collapse
Affiliation(s)
- Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah R Kaslow
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian M Parobek
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dingyin Tao
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Rebecca E Salzman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler J Gibson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Michael A Krause
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Viviana Melendez-Muniz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Whitney A Kite
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul K Han
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam Kim
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Evan G Kessler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa Engels
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pius S Fasinu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert W Gwadz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Larry Walker
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - Derrick K DeConti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey A Bailey
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | | | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rhoel R Dinglasan
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Gangoso L, Gutiérrez-López R, Martínez-de la Puente J, Figuerola J. Louse flies of Eleonora's falcons that also feed on their prey are evolutionary dead-end hosts for blood parasites. Mol Ecol 2019; 28:1812-1825. [PMID: 30710395 PMCID: PMC6850589 DOI: 10.1111/mec.15020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.
Collapse
Affiliation(s)
- Laura Gangoso
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.,Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
18
|
González-Cerón L, Rodríguez MH, Nettel-Cruz JA, Hernández-Ávila JE, Malo-García IR, Santillán-Valenzuela F, Villarreal-Treviño C. Plasmodium vivax CSP-Pvs25 variants from southern Mexico produce distinct patterns of infectivity for Anopheles albimanus versus An. pseudopunctipennis, in each case independent of geographical origin. Parasit Vectors 2019; 12:86. [PMID: 30786915 PMCID: PMC6381756 DOI: 10.1186/s13071-019-3331-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The susceptibility of Anopheles albimanus and An. pseudopunctipennis to local Plasmodium vivax has been associated in southern Mexico with two ookinete surface proteins (Pvs25/28) polymorphism. Perhaps parasite population selection (i.e. adaptation to local vectors) contributes to this phenomenon. It is also possible that certain molecular interactions exist between P. vivax and each mosquito species independently of geographical origin. This study aimed to explore the susceptibility of An. albimanus and An. pseudopunctipennis (collected from different geographical sites) to P. vivax cspVk/Pvs25-130 haplotypes from southern Mexico. RESULTS Of the 120 P. vivax-infected blood samples used to simultaneously feed An. albimanus and An. pseudopunctipennis mosquitoes originating from various geographical sites, 80 produced at least one infected mosquito species. Three parasite haplotypes were identified in infected blood: Vk210/Pvs25-A (12.5%), Vk210/Pvs25-B (20%) and Vk247/Pvs25-B (67.5%). Two parameters (the proportion of infected mosquitoes and number of oocysts/mosquito) showed a similar pattern for each mosquito species (independently of geographical origin). For An. albimanus mosquitoes (from the Pacific coast, Mexican gulf and Lacandon Forest lowlands), these two parameters were higher in specimens infected with P. vivax Vk210/Pvs25-A versus Vk210/Pvs25-B or Vk247/Pvs25-B (P < 0.001). For An. pseudopunctipennis mosquitoes (from the Pacific coast, northeast Mexico and east Guatemala foothills), the same two parameters were higher in specimens infected with Vk247/Pvs25-B or Vk210/Pvs25-B versus Vk210/Pvs25-A (P < 0.001). Higher infection rates were caused by Vk247/Pvs25-B than Vk210/Pvs25-B parasites in An. pseudopunctipennis (P = 0.011) and An. albimanus (P = 0.001). The greatest parasitaemia, gametocytaemia and microgamete formation was observed in Vk247/Pvs25-B infected blood, and each of these parameters correlated with each other and with the number of oocysts in An. pseudopunctipennis from the sympatric colony. CONCLUSIONS Plasmodium vivax Vk247/Pvs25-B infections were the most prevalent, likely due to the higher parasitaemia produced in the susceptible vector (especially An. pseudopunctipennis). The analysis of mosquito-parasite interactions indicate that An. pseudopunctipennis and An. albimanus each have a unique pattern of transmitting genetic variants of P. vivax, and this is not dependent on geographical origin. The present findings highlight the importance of parasite genotyping to understand transmission dynamics and vectorial participation.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, 30700 Chiapas México
| | - Mario H. Rodríguez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, 62100 Morelos México
| | - José A. Nettel-Cruz
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, 30700 Chiapas México
| | - Juan E. Hernández-Ávila
- Centro de Información para Decisiones en Salud Pública, Instituto Nacional de Salud Pública, Ciudad de México, 14080 México
| | - Iliana R. Malo-García
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, 30700 Chiapas México
| | - Frida Santillán-Valenzuela
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, 30700 Chiapas México
| | - Cuauhtémoc Villarreal-Treviño
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, 30700 Chiapas México
| |
Collapse
|
19
|
Carlson JS, Nelms B, Barker CM, Reisen WK, Sehgal RNM, Cornel AJ. Avian malaria co-infections confound infectivity and vector competence assays of Plasmodium homopolare. Parasitol Res 2018; 117:2385-2394. [PMID: 29845414 PMCID: PMC6061047 DOI: 10.1007/s00436-018-5924-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/11/2018] [Indexed: 12/01/2022]
Abstract
Currently, there are very few studies of avian malaria that investigate relationships among the host-vector-parasite triad concomitantly. In the current study, we experimentally measured the vector competence of several Culex mosquitoes for a newly described avian malaria parasite, Plasmodium homopolare. Song sparrow (Melospiza melodia) blood infected with a low P. homopolare parasitemia was inoculated into a naïve domestic canary (Serinus canaria forma domestica). Within 5 to 10 days post infection (dpi), the canary unexpectedly developed a simultaneous high parasitemic infection of Plasmodium cathemerium (Pcat6) and a low parasitemic infection of P. homopolare, both of which were detected in blood smears. During this infection period, PCR detected Pcat6, but not P. homopolare in the canary. Between 10 and 60 dpi, Pcat6 blood stages were no longer visible and PCR no longer amplified Pcat6 parasite DNA from canary blood. However, P. homopolare blood stages remained visible, albeit still at very low parasitemias, and PCR was able to amplify P. homopolare DNA. This pattern of mixed Pcat6 and P. homopolare infection was repeated in three secondary infected canaries that were injected with blood from the first infected canary. Mosquitoes that blood-fed on the secondary infected canaries developed infections with Pcat6 as well as another P. cathemerium lineage (Pcat8); none developed PCR detectable P. homopolare infections. These observations suggest that the original P. homopolare-infected songbird also had two un-detectable P. cathemerium lineages/strains. The vector and host infectivity trials in this study demonstrated that current molecular assays may significantly underreport the extent of mixed avian malaria infections in vectors and hosts.
Collapse
Affiliation(s)
- Jenny S Carlson
- Department of Entomology, University of California at Davis, Davis, CA, USA.
| | | | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, University of California at Davis, Davis, CA, USA
| | - William K Reisen
- Department of Pathology, Microbiology, and Immunology, University of California at Davis, Davis, CA, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Anthony J Cornel
- Department of Entomology, University of California at Davis, Davis, CA, USA.,Vector Genetics Laboratory, Dept. Pathology, Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Adjunct Appointment, School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Ventocilla JA, Nuñez J, Tapia LL, Lucas CM, Manock SR, Lescano AG, Edgel KA, Graf PCF. Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin. Am J Trop Med Hyg 2018; 99:27-32. [PMID: 29761758 DOI: 10.4269/ajtmh.17-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0-0.32) but high genetic diversity in the EAB (He = 0.43-0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.
Collapse
Affiliation(s)
| | - Jorge Nuñez
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - Carmen M Lucas
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru.,U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | | |
Collapse
|
21
|
Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, Whitehead SA, Thomas MB. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors 2018; 11:178. [PMID: 29530073 PMCID: PMC5848458 DOI: 10.1186/s13071-018-2761-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.
Collapse
Affiliation(s)
- Johanna R. Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland UK
| | - Priscille Barreaux
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Thierry Lefevre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Penelope A. Lynch
- College of Life and Environmental Sciences, Penryn Campus, University of Exeter, Cornwall, UK
| | - Eunho Suh
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Shelley A. Whitehead
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Matthew B. Thomas
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
22
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
23
|
Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JMP, Duarte AMRC, Cerutti-Junior C, Buery JC, Brito CFA, de Souza JC, Hirano ZMB, Bueno MG, Catão-Dias JL, Malafronte RS, Ladeia-Andrade S, Mita T, Santamaria AM, Calzada JE, Tantular IS, Kawamoto F, Raijmakers LRJ, Mueller I, Pacheco MA, Escalante AA, Felger I, Ferreira MU. Human migration and the spread of malaria parasites to the New World. Sci Rep 2018; 8:1993. [PMID: 29386521 PMCID: PMC5792595 DOI: 10.1038/s41598-018-19554-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023] Open
Abstract
We examined the mitogenomes of a large global collection of human malaria parasites to explore how and when Plasmodium falciparum and P. vivax entered the Americas. We found evidence of a significant contribution of African and South Asian lineages to present-day New World malaria parasites with additional P. vivax lineages appearing to originate from Melanesia that were putatively carried by the Australasian peoples who contributed genes to Native Americans. Importantly, mitochondrial lineages of the P. vivax-like species P. simium are shared by platyrrhine monkeys and humans in the Atlantic Forest ecosystem, but not across the Amazon, which most likely resulted from one or a few recent human-to-monkey transfers. While enslaved Africans were likely the main carriers of P. falciparum mitochondrial lineages into the Americas after the conquest, additional parasites carried by Australasian peoples in pre-Columbian times may have contributed to the extensive diversity of extant local populations of P. vivax.
Collapse
Affiliation(s)
- Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil.
| | - Hugo O Valdivia
- Laboratory of Immunology and Parasite Genomics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- U.S. Naval Medical Research Unit No. 6, Bellavista, Callao, Peru
| | - Thais C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil
| | | | - Julyana C Buery
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Brazil
| | - Cristiana F A Brito
- Laboratory of Malaria, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Júlio César de Souza
- Regional University of Blumenau, Blumenau, Blumenau, Brazil
- Center of Biological Research of Indaial, Indaial, Brazil
| | - Zelinda M B Hirano
- Regional University of Blumenau, Blumenau, Blumenau, Brazil
- Center of Biological Research of Indaial, Indaial, Brazil
| | - Marina G Bueno
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Luiz Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosely S Malafronte
- Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ana Maria Santamaria
- Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama
| | - José E Calzada
- Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama
| | - Indah S Tantular
- Department of Parasitology, Faculty of Medicine, and Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Fumihiko Kawamoto
- Department of Social and Environmental Medicine, Institute of Scientific Research, Oita University, Oita, Japan
| | - Leonie R J Raijmakers
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - M Andreina Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
24
|
Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol 2017; 15:e2003489. [PMID: 29036170 PMCID: PMC5658182 DOI: 10.1371/journal.pbio.2003489] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model’s simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector–parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission. Many of the mosquito and parasite life history traits that combine to influence the transmission intensity of malaria (e.g., adult mosquito longevity, biting rate, the developmental period of the parasite within the mosquito, and the proportion of mosquitoes that become infectious) are strongly temperature sensitive. Yet, in spite of decades of research, the precise relationships between individual traits and temperature remain poorly characterized. As a consequence, the majority of studies exploring the influence of local environmental conditions, or prospective impacts of climate change, draw on a combination of studies that utilize different experimental methods and a range of mosquito and parasite species. Here, we use the Indian malaria mosquito, Anopheles stephensi, and the human malaria parasite, Plasmodium falciparum, to thoroughly characterize the influence of temperature on key transmission-related traits. The results reveal a number of novel insights and challenge some longstanding assumptions regarding the nature of mosquito and parasite thermal responses. This study provides an experimental blueprint for further system-specific studies necessary to more fully understand the implications of changing temperatures on malaria transmission.
Collapse
|
25
|
Substantial population structure of Plasmodium vivax in Thailand facilitates identification of the sources of residual transmission. PLoS Negl Trop Dis 2017; 11:e0005930. [PMID: 29036178 PMCID: PMC5658191 DOI: 10.1371/journal.pntd.0005930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/26/2017] [Accepted: 09/04/2017] [Indexed: 11/23/2022] Open
Abstract
Background Plasmodium vivax transmission in Thailand has been substantially reduced over the past 10 years, yet it remains highly endemic along international borders. Understanding the genetic relationship of residual parasite populations can help track the origins of the parasites that are reintroduced into malaria-free regions within the country. Methodology/Results A total of 127 P. vivax isolates were genotyped from two western provinces (Tak and Kanchanaburi) and one eastern province (Ubon Ratchathani) of Thailand using 10 microsatellite markers. Genetic diversity was high, but recent clonal expansion was detected in all three provinces. Substantial population structure and genetic differentiation of parasites among provinces suggest limited gene flow among these sites. There was no haplotype sharing among the three sites, and a reduced panel of four microsatellite markers was sufficient to assign the parasites to their provincial origins. Conclusion/Significance Significant parasite genetic differentiation between provinces shows successful interruption of parasite spread within Thailand, but high diversity along international borders implies a substantial parasite population size in these regions. The provincial origin of P. vivax cases can be reliably determined by genotyping four microsatellite markers, which should be useful for monitoring parasite reintroduction after malaria elimination. This study presents an updated view of the P. vivax populations along the Thai-Myanmar and the Thai-Cambodian borders. Genotyping of parasite samples collected after intensified malaria control demonstrated that despite the decline in overall transmission intensity, the genetic diversity of the P. vivax parasites remained high. Parasite populations from three border provinces showed clear genetic separation. This indicates successful interruption of parasite gene flow within Thailand, but suggests frequent parasite migration across international borders. From the analysis of 10 microsatellite markers, we further refined a set of four that are sufficient for distinguishing the provincial origins of these parasites, which should allow tracking of parasite introduction among these provinces.
Collapse
|
26
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
27
|
González-Cerón L, Montoya A, Corzo-Gómez JC, Cerritos R, Santillán F, Sandoval MA. Genetic diversity and natural selection of Plasmodium vivax multi-drug resistant gene (pvmdr1) in Mesoamerica. Malar J 2017; 16:261. [PMID: 28666481 PMCID: PMC5493867 DOI: 10.1186/s12936-017-1905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
Background The Plasmodium vivax multidrug resistant 1 gene (pvmdr1) codes for a transmembrane protein of the parasite’s digestive vacuole. It is likely that the pvmdr1 gene mutations occur at different sites by convergent evolution. In here, the genetic variation of pvmdr1 at three sites of the Mesoamerican region was studied. Since 1950s, malarious patients of those areas have been treated only with chloroquine and primaquine. Methods Blood samples from patients infected with P. vivax were obtained in southern Mexico (SMX), in the Northwest (NIC-NW) and in the northeast (NIC-NE) of Nicaragua. Genomic DNA was obtained and fragments of pvmdr1 were amplified and sequenced. The nucleotide and amino acid changes as well as the haplotype frequency in pvmdr1 were determined per strain and per geographic site. The sequences of pvmdr1 obtained from the studied regions were compared with homologous sequences from the GenBank database to explore the P. vivax genetic structure. Results In 141 parasites, eight nucleotide changes (two changes were synonymous and other six were nonsynonymous) were detected in 1536 bp. The PvMDR1 amino acid changes Y976F, F1076FL were predominant in endemic parasites from NIC-NE and outbreak parasites in NIC-NW but absent in SMX. Thirteen haplotypes were resolved, and found to be closely related, but their frequency at each geographic site was different (P = 0.0001). The pvmdr1codons 925–1083 gene fragment showed higher genetic and haplotype diversity in parasites from NIC-NE than the other areas outside Latin America. The haplotype networks suggested local diversification of pvmdr1 and no significant departure from neutrality. The FST values were low to moderate regionally, but high between NIC-NE or NIC-NW and other regions inside and outside Latin America. Conclusions The pvmdr1 gene might have diversified recently at regional level. In the absence of significant natural, genetic drift might have caused differential pvmdr1 haplotype frequencies at different geographic sites in Mesoamerica. A very recent expansion of divergent pvmdr1 haplotypes in NIC-NE/NIC-NW produced high differentiation between these and parasites from other sites including SMX. These data are useful to set a baseline for epidemiological surveillance.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | - Alberto Montoya
- Departamento de Parasitología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Josselin C Corzo-Gómez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Rene Cerritos
- Division de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| |
Collapse
|
28
|
Ruan W, Zhang LL, Feng Y, Zhang X, Chen HL, Lu QY, Yao LN, Hu W. Genetic diversity of Plasmodium Vivax revealed by the merozoite surface protein-1 icb5-6 fragment. Infect Dis Poverty 2017; 6:92. [PMID: 28578709 PMCID: PMC5458480 DOI: 10.1186/s40249-017-0302-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/12/2017] [Indexed: 02/04/2023] Open
Abstract
Background Plasmodium vivax remains a potential cause of morbidity and mortality for people living in its endemic areas. Understanding the genetic diversity of P. vivax from different regions is valuable for studying population dynamics and tracing the origins of parasites. The PvMSP-1 gene is highly polymorphic and has been used as a marker in many P. vivax population studies. The aim of this study was to investigate the genetic diversity of the PvMSP-1 gene icb5-6 fragment and to provide more genetic polymorphism data for further studies on P. vivax population structure and tracking of the origin of clinical cases. Methods Nested PCR and sequencing of the PvMSP-1 icb5-6 marker were performed to obtain the nucleotide sequences of 95 P. vivax isolates collected from Zhejiang province, China. To investigate the genetic diversity of PvMSP-1, the 95 nucleotide sequences of the PvMSP-1 icb5-6 fragment were genotyped and analyzed using DnaSP v5, MEGA software. Results The 95 P. vivax isolates collected from Zhejiang province were either indigenous cases or imported cases from different regions around the world. A total of 95 sequences ranging from 390 to 460 bp were obtained. The 95 sequences were genotyped into four allele-types (Sal I, Belem, R-III and R-IV) and 17 unique haplotypes. R-III and Sal I were the predominant allele-types. The haplotype diversity (Hd) and nucleotide diversity (Pi) were estimated to be 0.729 and 0.062, indicating that the PvMSP-1 icb5-6 fragment had the highest level of polymorphism due to frequent recombination processes and single nucleotide polymorphism. The values of dN/dS and Tajima’s D both suggested neutral selection for the PvMSP-1icb5-6 fragment. In addition, a rare recombinant style of R-IV type was identified. Conclusions This study presented high genetic diversity in the PvMSP-1 marker among P. vivax strains from around the world. The genetic data is valuable for expanding the polymorphism information on P. vivax, which could be helpful for further study on population dynamics and tracking the origin of P. vivax. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0302-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Ling-Ling Zhang
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Yan Feng
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xuan Zhang
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Hua-Liang Chen
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Qiao-Yi Lu
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Li-Nong Yao
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China.
| | - Wei Hu
- School of Life Sciences, FuDan University, Shanghai, China.
| |
Collapse
|
29
|
Flores-Alanis A, González-Cerón L, Santillán F, Ximenez C, Sandoval MA, Cerritos R. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors 2017; 10:217. [PMID: 28464959 PMCID: PMC5414334 DOI: 10.1186/s13071-017-2156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993–2011) in a hypo-endemic region in southern Mexico. Results The 213 pvama1I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R2) increased. The three-dimensional haplotype network revealed that pvama1I-II haplotypes were separated by 1–11 mutational steps, and between one another by 0–3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. Conclusions The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three “pseudoclonal” subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico.
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - Cecilia Ximenez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 06729, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - René Cerritos
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
30
|
Abreha T, Hwang J, Thriemer K, Tadesse Y, Girma S, Melaku Z, Assef A, Kassa M, Chatfield MD, Landman KZ, Chenet SM, Lucchi NW, Udhayakumar V, Zhou Z, Shi YP, Kachur SP, Jima D, Kebede A, Solomon H, Mekasha A, Alemayehu BH, Malone JL, Dissanayake G, Teka H, Auburn S, von Seidlein L, Price RN. Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial. PLoS Med 2017; 14:e1002299. [PMID: 28510573 PMCID: PMC5433686 DOI: 10.1371/journal.pmed.1002299] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/03/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent efforts in malaria control have resulted in great gains in reducing the burden of Plasmodium falciparum, but P. vivax has been more refractory. Its ability to form dormant liver stages confounds control and elimination efforts. To compare the efficacy and safety of primaquine regimens for radical cure, we undertook a randomized controlled trial in Ethiopia. METHODS AND FINDINGS Patients with normal glucose-6-phosphate dehydrogenase status with symptomatic P. vivax mono-infection were enrolled and randomly assigned to receive either chloroquine (CQ) or artemether-lumefantrine (AL), alone or in combination with 14 d of semi-supervised primaquine (PQ) (3.5 mg/kg total). A total of 398 patients (n = 104 in the CQ arm, n = 100 in the AL arm, n = 102 in the CQ+PQ arm, and n = 92 in the AL+PQ arm) were followed for 1 y, and recurrent episodes were treated with the same treatment allocated at enrolment. The primary endpoints were the risk of P. vivax recurrence at day 28 and at day 42. The risk of recurrent P. vivax infection at day 28 was 4.0% (95% CI 1.5%-10.4%) after CQ treatment and 0% (95% CI 0%-4.0%) after CQ+PQ. The corresponding risks were 12.0% (95% CI 6.8%-20.6%) following AL alone and 2.3% (95% CI 0.6%-9.0%) following AL+PQ. On day 42, the risk was 18.7% (95% CI 12.2%-28.0%) after CQ, 1.2% (95% CI 0.2%-8.0%) after CQ+PQ, 29.9% (95% CI 21.6%-40.5%) after AL, and 5.9% (95% CI 2.4%-13.5%) after AL+PQ (overall p < 0.001). In those not prescribed PQ, the risk of recurrence by day 42 appeared greater following AL treatment than CQ treatment (HR = 1.8 [95% CI 1.0-3.2]; p = 0.059). At the end of follow-up, the incidence rate of P. vivax was 2.2 episodes/person-year for patients treated with CQ compared to 0.4 for patients treated with CQ+PQ (rate ratio: 5.1 [95% CI 2.9-9.1]; p < 0.001) and 2.3 episodes/person-year for AL compared to 0.5 for AL+PQ (rate ratio: 6.4 [95% CI 3.6-11.3]; p < 0.001). There was no difference in the occurrence of adverse events between treatment arms. The main limitations of the study were the early termination of the trial and the omission of haemoglobin measurement after day 42, resulting in an inability to estimate the cumulative risk of anaemia. CONCLUSIONS Despite evidence of CQ-resistant P. vivax, the risk of recurrence in this study was greater following treatment with AL unless it was combined with a supervised course of PQ. PQ combined with either CQ or AL was well tolerated and reduced recurrence of vivax malaria by 5-fold at 1 y. TRIAL REGISTRATION ClinicalTrials.gov NCT01680406.
Collapse
Affiliation(s)
- Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Jimee Hwang
- US President’s Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Global Health Group, University of California San Francisco, San Francisco, California, United States of America
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- * E-mail:
| | - Yehualashet Tadesse
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Samuel Girma
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Zenebe Melaku
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ashenafi Assef
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Moges Kassa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mark D. Chatfield
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Keren Z. Landman
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stella M. Chenet
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zhiyong Zhou
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ya Ping Shi
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - S. Patrick Kachur
- Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Daddi Jima
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amha Kebede
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Addis Mekasha
- Oromia Regional Health Bureau, Addis Ababa, Ethiopia
| | | | - Joseph L. Malone
- US President’s Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gunewardena Dissanayake
- US President’s Malaria Initiative, US Agency for International Development, Addis Ababa, Ethiopia
| | - Hiwot Teka
- US President’s Malaria Initiative, US Agency for International Development, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Stanczyk NM, Mescher MC, De Moraes CM. Effects of malaria infection on mosquito olfaction and behavior: extrapolating data to the field. CURRENT OPINION IN INSECT SCIENCE 2017; 20:7-12. [PMID: 28602239 DOI: 10.1016/j.cois.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Vector-borne pathogens have been shown to influence behavioral and other traits of their hosts and vectors across multiple systems, frequently in ways that enhance transmission. In malaria pathosystems, Plasmodium parasites have been reported to alter mosquito physiology, fitness and host-seeking behavior. Such effects on vector behavior have obvious medical relevance given their potential to influence disease transmission. However, most studies detailing these effects have faced methodological limitations, including experiments limited to laboratory settings with model vector/pathogen systems. Some recent studies indicate that similar effects may not be observed with natural field populations; furthermore, it has been suggested that previously reported effects on vectors might be explained by immune responses elicited due to the use of pathogen-vector systems that are not co-evolved. In light of these developments, further work is needed to determine the validity of extrapolation from laboratory studies to field conditions and to understand how parasite effects on vectors affect transmission dynamics in real-world settings.
Collapse
Affiliation(s)
- Nina M Stanczyk
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
32
|
Neal AT, Ross MS, Schall JJ, Vardo-Zalik AM. Genetic differentiation over a small spatial scale of the sand fly Lutzomyia vexator (Diptera: Psychodidae). Parasit Vectors 2016; 9:550. [PMID: 27756347 PMCID: PMC5070220 DOI: 10.1186/s13071-016-1826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/02/2016] [Indexed: 02/08/2023] Open
Abstract
Background The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. Methods A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Results Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79–0.92, Na = 12–24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; FST = 0.0185 (95 % bootstrapped CI: 0.0102–0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. Conclusions The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1826-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allison T Neal
- Department of Biology, Norwich University, Northfield, VT, 05663, USA
| | - Max S Ross
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA
| | - Jos J Schall
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA
| | - Anne M Vardo-Zalik
- Department of Biology, Pennsylvania State University, York, PA, 17403, USA.
| |
Collapse
|
33
|
Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria. Annu Rev Genet 2016; 50:447-465. [PMID: 27732796 DOI: 10.1146/annurev-genet-120215-035211] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| | - Martine M Zilversmit
- Richard Guilder Graduate School and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| |
Collapse
|
34
|
McKee CD, Hayman DTS, Kosoy MY, Webb CT. Phylogenetic and geographic patterns of bartonella host shifts among bat species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 44:382-394. [PMID: 27473781 PMCID: PMC5025394 DOI: 10.1016/j.meegid.2016.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
The influence of factors contributing to parasite diversity in individual hosts and communities are increasingly studied, but there has been less focus on the dominant processes leading to parasite diversification. Using bartonella infections in bats as a model system, we explored the influence of three processes that can contribute to bartonella diversification and lineage formation: (1) spatial correlation in the invasion and transmission of bartonella among bats (phylogeography); (2) divergent adaptation of bartonellae to bat hosts and arthropod vectors; and (3) evolutionary codivergence between bats and bartonellae. Using a combination of global fit techniques and ancestral state reconstruction, we found that codivergence appears to be the dominant process leading to diversification of bartonella in bats, with lineages of bartonellae corresponding to separate bat suborders, superfamilies, and families. Furthermore, we estimated the rates at which bartonellae shift bat hosts across taxonomic scales (suborders, superfamilies, and families) and found that transition rates decrease with increasing taxonomic distance, providing support for a mechanism that can contribute to the observed evolutionary congruence between bats and their associated bartonellae. While bartonella diversification is associated with host sympatry, the influence of this factor is minor compared to the influence of codivergence and there is a clear indication that some bartonella lineages span multiple regions, particularly between Africa and Southeast Asia. Divergent adaptation of bartonellae to bat hosts and arthropod vectors is apparent and can dilute the overall pattern of codivergence, however its importance in the formation of Bartonella lineages in bats is small relative to codivergence. We argue that exploring all three of these processes yields a more complete understanding of bat-bartonella relationships and the evolution of the genus Bartonella, generally. Application of these methods to other infectious bacteria and viruses could uncover common processes that lead to parasite diversification and the formation of host-parasite relationships.
Collapse
Affiliation(s)
- Clifton D McKee
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Michael Y Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
35
|
Ye YH, Chenoweth SF, Carrasco AM, Allen SL, Frentiu FD, van den Hurk AF, Beebe NW, McGraw EA. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution 2016; 70:2459-2469. [PMID: 27530960 DOI: 10.1111/evo.13039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life-history consequences for virus-infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems.
Collapse
Affiliation(s)
- Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alison M Carrasco
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Francesca D Frentiu
- Institute for Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Communicable Diseases Unit, Queensland Health and Forensic and Scientific Services, Coopers Plains, QLD, 4108, Australia
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,CSIRO Biosecurity Flagship, Ecosciences Precinct, Dutton Park, QLD, 4102, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
36
|
Shapiro LLM, Murdock CC, Jacobs GR, Thomas RJ, Thomas MB. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc Biol Sci 2016; 283:20160298. [PMID: 27412284 PMCID: PMC4947883 DOI: 10.1098/rspb.2016.0298] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260-330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics.
Collapse
Affiliation(s)
- Lillian L M Shapiro
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Courtney C Murdock
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Gregory R Jacobs
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel J Thomas
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Qidwai T, Khan MY. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases. Hum Immunol 2016; 77:961-971. [PMID: 27316325 DOI: 10.1016/j.humimm.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed.
Collapse
Affiliation(s)
- Tabish Qidwai
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226 025, India.
| | - M Y Khan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226 025, India.
| |
Collapse
|
38
|
Mosquito vectors of ape malarias: Another piece of the puzzle. Proc Natl Acad Sci U S A 2016; 113:5153-4. [PMID: 27118843 DOI: 10.1073/pnas.1604913113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Fansiri T, Pongsiri A, Klungthong C, Ponlawat A, Thaisomboonsuk B, Jarman RG, Scott TW, Lambrechts L. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand. Evol Appl 2016; 9:608-18. [PMID: 27099625 PMCID: PMC4831462 DOI: 10.1111/eva.12360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype × genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito populations. To test this hypothesis, we measured vector competence in all sympatric and allopatric combinations of 14 low-passage dengue virus isolates and two wild-type populations of Aedes aegypti mosquitoes sampled in Bangkok and Kamphaeng Phet, two sites located about 300 km apart in Thailand. Despite significant genotype × genotype interactions, we found no evidence for superior vector competence in sympatric versus allopatric vector-virus combinations. Viral phylogenetic analysis revealed no geographical clustering of the 14 isolates, suggesting that high levels of viral migration (gene flow) in Thailand may counteract spatially heterogeneous natural selection. We conclude that it is unlikely that vector-mediated selection is a major driver of dengue virus adaptive evolution at the regional scale that we examined. Dengue virus local adaptation to mosquito vector populations could happen, however, in places or times that we did not test, or at a different geographical scale.
Collapse
Affiliation(s)
- Thanyalak Fansiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Arissara Pongsiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Chonticha Klungthong
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Alongkot Ponlawat
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Richard G Jarman
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand; Present address: Viral Diseases Branch Walter Reed Army Institute of Research Silver Spring MD USA
| | - Thomas W Scott
- Department of Entomology and Nematology University of California Davis CA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - Louis Lambrechts
- Insect-Virus Interactions Group Department of Genomes and Genetics Institut Pasteur Paris France; Unité de Recherche Associée Centre National de la Recherche Scientifique Paris France
| |
Collapse
|
40
|
González-Cerón L, Cerritos R, Corzo-Mancilla J, Santillán F. Diversity and evolutionary genetics of the three major Plasmodium vivax merozoite genes participating in reticulocyte invasion in southern Mexico. Parasit Vectors 2015; 8:651. [PMID: 26691669 PMCID: PMC4687067 DOI: 10.1186/s13071-015-1266-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022] Open
Abstract
Background Reported malaria cases in the Americas had been reduced to about one-half million by 2012. To advance towards elimination of this disease, it is necessary to gain insights into how the malaria parasite is evolving, including the emergence, spread and persistence of new haplotypes in affected regions. In here, the genetic diversity of the three major P. vivax merozoite genes was analyzed. Methods From P. vivax-infected blood samples obtained in southern Mexico (SMX) during 2006–2007, nucleotide sequences were achieved for: the 42 kDa carboxyl fragment of the merozoite surface protein-1 (msp142), domains I-II of the apical membrane antigen-1 (ama1I-II), and domain II of the Duffy binding protein (dbpII). Gene polymorphism was examined and haplotype networks were developed to depict parasite relationships in SMX. Then genetic diversity, recombination and natural selection were analyzed and the degree of differentiation was determined as FST values. Results The diversity of P. vivax merozoite genes in SMX was less than that of parasites from other geographic origins, with dbpII < ama1I-II < msp142. Ama1I-II and msp142 exposed the more numerous haplotypes exclusive to SMX. While, all dbpII haplotypes from SMX were separated from one to three mutational steps, the networks of ama1I-II and msp142 were more complex; loops and numerous mutational steps were evidenced, likely due to recombination. Sings of local diversification were more evident for msp142. Sixteen combined haplotypes were determined; one of these haplotypes not detected in 2006 was highly frequent in 2007. The Rm value was higher for msp142than for ama1I-II, being insignificant for dbpII. The dN-dS value was highly significant for ama1I-II and lesser so for dbpII. The FST values were higher for dbpII than msp142, and very low for ama1I-II. Conclusions In SMX, P. vivax ama1I-II, dbpII and msp142 demonstrated limited diversity, and exhibited a differentiated parasite population. The results suggest that differential intensities of selective forces are operating on these gene fragments, and probably related to their timing, length of exposure and function during reticulocyte adhesion and invasion. Therefore, these finding are essential for mono and multivalent vaccine development and for epidemiological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1266-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Regional Centre for Research in Public Health, National Institute for Public Health, Tapachula, Chiapas, 30700, Mexico.
| | - Rene Cerritos
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF, 04510, México.
| | - Jordán Corzo-Mancilla
- Regional Centre for Research in Public Health, National Institute for Public Health, Tapachula, Chiapas, 30700, Mexico.
| | - Frida Santillán
- Regional Centre for Research in Public Health, National Institute for Public Health, Tapachula, Chiapas, 30700, Mexico.
| |
Collapse
|
41
|
Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory. Proc Natl Acad Sci U S A 2015; 112:15178-83. [PMID: 26598665 DOI: 10.1073/pnas.1520426112] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.
Collapse
|
42
|
Jenkins T, Delhaye J, Christe P. Testing Local Adaptation in a Natural Great Tit-Malaria System: An Experimental Approach. PLoS One 2015; 10:e0141391. [PMID: 26555892 PMCID: PMC4640884 DOI: 10.1371/journal.pone.0141391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 12/03/2022] Open
Abstract
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.
Collapse
Affiliation(s)
- Tania Jenkins
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jessica Delhaye
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Molina-Cruz A, Barillas-Mury C. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes. Mem Inst Oswaldo Cruz 2015; 109:662-7. [PMID: 25185006 PMCID: PMC4156459 DOI: 10.1590/0074-0276130553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum originated in Africa, dispersed around the
world as a result of human migration and had to adapt to several different indigenous
anopheline mosquitoes. Anophelines from the New World are evolutionary distant form
African ones and this probably resulted in a more stringent selection of
Plasmodium as it adapted to these vectors. It is thought that
Plasmodium has been genetically selected by some anopheline species
through unknown mechanisms. The mosquito immune system can greatly limit infection
and P. falciparum evolved a strategy to evade these responses, at
least in part mediated by Pfs47, a highly polymorphic gene. We
propose that adaptation of P. falciparum to new vectors may require
evasion of their immune system. Parasites with a Pfs47 haplotype
compatible with the indigenous mosquito vector would be able to survive and be
transmitted. The mosquito antiplasmodial response could be an important determinant
of P. falciparum population structure and could affect malaria
transmission in the Americas.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
44
|
Vantaux A, de Sales Hien DF, Yameogo B, Dabiré KR, Thomas F, Cohuet A, Lefèvre T. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species. PLoS Pathog 2015; 11:e1004888. [PMID: 26020959 PMCID: PMC4447398 DOI: 10.1371/journal.ppat.1004888] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022] Open
Abstract
Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. Extraordinary phases of pathogen evolution may occur during an emerging zoonosis, potentially involving adaptation to human hosts, with changes in patterns of virulence and transmission. In a large population genetic survey, we show that the malaria parasite Plasmodium knowlesi in humans is an admixture of two highly divergent parasite populations, each associated with different forest-dwelling macaque reservoir host species. Most of the transmission and sexual reproduction occurs separately in each of the two parasite populations. In addition to the reservoir host-associated parasite population structure, there was also significant genetic differentiation that correlated with geographical distance. Although both P. knowlesi types co-exist in the same areas, the divergence between them is similar to or greater than that seen between sub-species in other sexually reproducing eukaryotes. This may offer particular opportunities for evolution of virulence and host-specificity, not seen with other malaria parasites, so studies of ongoing adaptation and interventions to reduce transmission are urgent priorities.
Collapse
|
47
|
Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 2015; 109:142-52. [PMID: 25891915 DOI: 10.1179/2047773215y.0000000012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.
Collapse
Key Words
- Control,
- Elimination
- Genetic diversity,
- Genetics,
- Genomics,
- Linkage disequilibrium,
- Malaria,
- Microsatellites,
- Mitochondrial DNA,
- Plasmodium vivax,
- Population structure,
- Relapse,
- Single nucleotide polymorphisms,
- Transmission,
Collapse
|
48
|
Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. [PMID: 25781890 PMCID: PMC4362761 DOI: 10.1371/journal.pntd.0003539] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Collapse
Affiliation(s)
- Mary Lynn Baniecki
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Aubrey L. Faust
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kevin Galinsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel F. Daniels
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hamilton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - David Serre
- Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Lise Musset
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | - Eric Legrand
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Cornejo OE, Fisher D, Escalante AA. Genome-wide patterns of genetic polymorphism and signatures of selection in Plasmodium vivax. Genome Biol Evol 2014; 7:106-19. [PMID: 25523904 PMCID: PMC4316620 DOI: 10.1093/gbe/evu267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmodium vivax is the most prevalent human malaria parasite outside of Africa. Yet, studies aimed to identify genes with signatures consistent with natural selection are rare. Here, we present a comparative analysis of the pattern of genetic variation of five sequenced isolates of P. vivax and its divergence with two closely related species, Plasmodium cynomolgi and Plasmodium knowlesi, using a set of orthologous genes. In contrast to Plasmodium falciparum, the parasite that causes the most lethal form of human malaria, we did not find significant constraints on the evolution of synonymous sites genome wide in P. vivax. The comparative analysis of polymorphism and divergence across loci allowed us to identify 87 genes with patterns consistent with positive selection, including genes involved in the “exportome” of P. vivax, which are potentially involved in evasion of the host immune system. Nevertheless, we have found a pattern of polymorphism genome wide that is consistent with a significant amount of constraint on the replacement changes and prevalent negative selection. Our analyses also show that silent polymorphism tends to be larger toward the ends of the chromosomes, where many genes involved in antigenicity are located, suggesting that natural selection acts not only by shaping the patterns of variation within the genes but it also affects genome organization.
Collapse
Affiliation(s)
- Omar E Cornejo
- School of Biological Sciences, Washington State University
| | - David Fisher
- Center for Evolutionary Medicine and Informatics, the Biodesign Institute, Arizona State University
| | - Ananias A Escalante
- Center for Evolutionary Medicine and Informatics, the Biodesign Institute, Arizona State University School of Life Sciences, Arizona State University Present address: Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
50
|
Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors 2014; 7:593. [PMID: 25496502 PMCID: PMC4273441 DOI: 10.1186/s13071-014-0593-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/06/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Adult traits of holometabolous insects such as reproduction and survival can be shaped by conditions experienced during larval development. These "carry-over" effects influence not only individual life history and fitness, but can also impact interactions between insect hosts and parasites. Despite this, the implications of larval conditions for the transmission of human, wildlife and plant diseases that are vectored by insects remain poorly understood. METHODS We used Anopheles stephensi mosquitoes and the rodent malaria, Plasmodium yoelii yoelii, to investigate whether quality of larval habitat influenced vectorial capacity of adult mosquitoes. Larvae were reared under two dietary conditions; one group received a diet commonly used for colony maintenance (0.3 mg/individual/day of Tetrafin fish food) while the other group received a reduced food diet (0.1 mg/individual/day). Upon emergence, adults were provided an infectious blood feed. We assessed the effects of diet on a range of larval and adult traits including larval development times and survival, number of emerging adults, adult body size and survival, gonotrophic cycle length, and mating success. We also estimated the effects of larval diet on parasite infection rates and growth kinetics within the adult mosquitoes. RESULTS Larval dietary regime affected larval survival and development, as well as size, reproductive success and survival of adult mosquitoes. Larval diet also affected the intensity of initial Plasmodium infection (oocyst stage) and parasite replication, but without differences in overall infection prevalence at either the oocyst or sporozoite stage. CONCLUSIONS Together, the combined effects led to a relative reduction in vectorial capacity (a measure of the transmission potential of a mosquito population) in the low food treatment of 70%. This study highlights the need to consider environmental variation at the larval stages to better understand transmission dynamics and control of vector-borne diseases.
Collapse
Affiliation(s)
- Lillian L Moller-Jacobs
- Center for Infectious Disease Dynamics and Department of Entomology, Merkle Lab, Pennsylvania State University, Orchard Road, University Park, PA, 16802, USA.
| | - Courtney C Murdock
- Center for Infectious Disease Dynamics and Department of Entomology, Merkle Lab, Pennsylvania State University, Orchard Road, University Park, PA, 16802, USA. .,College of Veterinary Medicine, Odum School of Ecology, University of Georgia, DW Brooks Drive, Athens, GA, 30602, USA.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Merkle Lab, Pennsylvania State University, Orchard Road, University Park, PA, 16802, USA.
| |
Collapse
|