1
|
Xu L, Chen L, Jiang L, Zhang J, Wu P, Wang W. Chlorella's transport inhibition: A powerful defense against high ammonium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117460. [PMID: 39675076 DOI: 10.1016/j.ecoenv.2024.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Ammonium (NH₄⁺) is a primary nitrogen source for many species, yet NH₄⁺-rich wastewater presents a substantial risk to environment. Chlorella sorokiniana is widely recognized for wastewater treatment. The development of high NH₄⁺ tolerant strains has the potential to significantly enhance wastewater treatment efficiency and reduce treatment costs. This study reports the identification of a C. sorokiniana strain designated hact (high ammonium concentration tolerance). This strain demonstrates a remarkable tolerance to NH₄⁺ (1000 mg/L). Integrative analyses of physiology, metabolomics, and transcriptomics demonstrated that transport inhibition is the principal resistance mechanism against high NH₄⁺ stress in C. sorokiniana. Notably, under elevated NH₄⁺ conditions, the hact strain maintained robust intracellular homeostasis. In contrast, the wild-type (WT) strain exhibited suppressed metabolic activity, reactive oxygen species (ROS), and an excess of detrimental metabolites such as amines. This research enriches our understanding of microalgal molecular responses to high NH₄⁺ stress, paving the way for the development of engineered optimization strategies for microalgal bioremediation systems treating NH₄⁺-rich wastewater.
Collapse
Affiliation(s)
- Lihe Xu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Li Chen
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Longxing Jiang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
2
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
4
|
Zhang Z, Diao R, Sun J, Liu Y, Zhao M, Wang Q, Xu Z, Zhong B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. THE NEW PHYTOLOGIST 2024; 241:2108-2123. [PMID: 38155438 DOI: 10.1111/nph.19508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zilong Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Fang L, Wang M, Chen X, Zhao J, Wang J, Liu J. Analysis of the AMT gene family in chili pepper and the effects of arbuscular mycorrhizal colonization on the expression patterns of CaAMT2 genes. BMC Genomics 2023; 24:158. [PMID: 36991328 DOI: 10.1186/s12864-023-09226-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Ammonium (NH4+) is a key nitrogen source supporting plant growth and development. Proteins in the ammonium transporter (AMT) family mediate the movement of NH4+ across the cell membrane. Although several studies have examined AMT genes in various plant species, few studies of the AMT gene family have been conducted in chili pepper. RESULTS Here, a total of eight AMT genes were identified in chili pepper, and their exon/intron structures, phylogenetic relationships, and expression patterns in response to arbuscular mycorrhizal (AM) colonization were explored. Synteny analyses among chili pepper, tomato, eggplant, soybean, and Medicago revealed that the CaAMT2;1, CaAMT2.4, and CaAMT3;1 have undergone an expansion prior to the divergence of Solanaceae and Leguminosae. The expression of six AMT2 genes was either up-regulated or down-regulated in response to AM colonization. The expression of CaAMT2;1/2;2/2;3 and SlAMT2;1/2;2/2;3 was significantly up-regulated in AM fungi-inoculated roots. A 1,112-bp CaAMT2;1 promoter fragment and a 1,400-bp CaAMT2;2 promoter fragment drove the expression of the β-glucuronidase gene in the cortex of AM roots. Evaluation of AM colonization under different NH4+ concentrations revealed that a sufficient, but not excessive, supply of NH4+ promotes the growth of chili pepper and the colonization of AM. Furthermore, we demonstrated that CaAMT2;2 overexpression could mediate NH4+ uptake in tomato plants. CONCLUSION In sum, our results provide new insights into the evolutionary relationships and functional divergence of chili pepper AMT genes. We also identified putative AMT genes expressed in AM symbiotic roots.
Collapse
Affiliation(s)
- Lei Fang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Miaomiao Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Xiao Chen
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Helliwell KE. Emerging trends in nitrogen and phosphorus signalling in photosynthetic eukaryotes. TRENDS IN PLANT SCIENCE 2023; 28:344-358. [PMID: 36372648 DOI: 10.1016/j.tplants.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) and nitrogen (N) are the major nutrients that constrain plant and algal growth in nature. Recent advances in understanding nutrient signalling mechanisms of these organisms have revealed molecular attributes to optimise N and P acquisition. This has illuminated the importance of interplay between N and P regulatory networks, highlighting a need to study synergistic interactions rather than single-nutrient effects. Emerging insights of nutrient signalling in polyphyletic model plants and algae hint that, although core P-starvation signalling components are conserved, distinct mechanisms for P (and N) sensing have arisen. Here, the N and P signalling mechanisms of diverse photosynthetic eukaryotes are examined, drawing parallels and differences between taxa. Future directions to understand their molecular basis, evolution, and ecology are proposed.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
7
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
9
|
Jamy M, Biwer C, Vaulot D, Obiol A, Jing H, Peura S, Massana R, Burki F. Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat Ecol Evol 2022; 6:1458-1470. [PMID: 35927316 PMCID: PMC9525238 DOI: 10.1038/s41559-022-01838-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/23/2022] [Indexed: 12/30/2022]
Abstract
The successful colonization of new habitats has played a fundamental role during the evolution of life. Salinity is one of the strongest barriers for organisms to cross, which has resulted in the evolution of distinct marine and non-marine (including both freshwater and soil) communities. Although microbes represent by far the vast majority of eukaryote diversity, the role of the salt barrier in shaping the diversity across the eukaryotic tree is poorly known. Traditional views suggest rare and ancient marine/non-marine transitions but this view is being challenged by the discovery of several recently transitioned lineages. Here, we investigate habitat evolution across the tree of eukaryotes using a unique set of taxon-rich phylogenies inferred from a combination of long-read and short-read environmental metabarcoding data spanning the ribosomal DNA operon. Our results show that, overall, marine and non-marine microbial communities are phylogenetically distinct but transitions have occurred in both directions in almost all major eukaryotic lineages, with hundreds of transition events detected. Some groups have experienced relatively high rates of transitions, most notably fungi for which crossing the salt barrier has probably been an important aspect of their successful diversification. At the deepest phylogenetic levels, ancestral habitat reconstruction analyses suggest that eukaryotes may have first evolved in non-marine habitats and that the two largest known eukaryotic assemblages (TSAR and Amorphea) arose in different habitats. Overall, our findings indicate that the salt barrier has played an important role during eukaryote evolution and provide a global perspective on habitat transitions in this domain of life.
Collapse
Affiliation(s)
- Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
| | - Charlie Biwer
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
| | - Daniel Vaulot
- CNRS, UMR7144, Team ECOMAP, Station Biologique, Sorbonne Université, Roscoff, France
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Sari Peura
- Department of Ecology and Genetics (Limnology), Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:585-616. [PMID: 35259927 DOI: 10.1146/annurev-arplant-071921-100530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.
Collapse
Affiliation(s)
- Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Muschiol
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Hamilton
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université (AMU), Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratories, Woods Hole, Massachusetts, USA
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
11
|
Ofaim S, Sulheim S, Almaas E, Sher D, Segrè D. Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Front Genet 2021; 12:586293. [PMID: 33633777 PMCID: PMC7900632 DOI: 10.3389/fgene.2021.586293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/14/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial life in the oceans impacts the entire marine ecosystem, global biogeochemistry and climate. The marine cyanobacterium Prochlorococcus, an abundant component of this ecosystem, releases a significant fraction of the carbon fixed through photosynthesis, but the amount, timing and molecular composition of released carbon are still poorly understood. These depend on several factors, including nutrient availability, light intensity and glycogen storage. Here we combine multiple computational approaches to provide insight into carbon storage and exudation in Prochlorococcus. First, with the aid of a new algorithm for recursive filling of metabolic gaps (ReFill), and through substantial manual curation, we extended an existing genome-scale metabolic model of Prochlorococcus MED4. In this revised model (iSO595), we decoupled glycogen biosynthesis/degradation from growth, thus enabling dynamic allocation of carbon storage. In contrast to standard implementations of flux balance modeling, we made use of forced influx of carbon and light into the cell, to recapitulate overflow metabolism due to the decoupling of photosynthesis and carbon fixation from growth during nutrient limitation. By using random sampling in the ensuing flux space, we found that storage of glycogen or exudation of organic acids are favored when the growth is nitrogen limited, while exudation of amino acids becomes more likely when phosphate is the limiting resource. We next used COMETS to simulate day-night cycles and found that the model displays dynamic glycogen allocation and exudation of organic acids. The switch from photosynthesis and glycogen storage to glycogen depletion is associated with a redistribution of fluxes from the Entner–Doudoroff to the Pentose Phosphate pathway. Finally, we show that specific gene knockouts in iSO595 exhibit dynamic anomalies compatible with experimental observations, further demonstrating the value of this model as a tool to probe the metabolic dynamic of Prochlorococcus.
Collapse
Affiliation(s)
- Shany Ofaim
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Snorre Sulheim
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Physics, Boston University, Boston, MA, United States.,Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
12
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
13
|
Wilken S, Choi CJ, Worden AZ. Contrasting Mixotrophic Lifestyles Reveal Different Ecological Niches in Two Closely Related Marine Protists. JOURNAL OF PHYCOLOGY 2020; 56:52-67. [PMID: 31529498 PMCID: PMC7065223 DOI: 10.1111/jpy.12920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Many marine microbial eukaryotes combine photosynthetic with phagotrophic nutrition, but incomplete understanding of such mixotrophic protists, their functional diversity, and underlying physiological mechanisms limits the assessment and modeling of their roles in present and future ocean ecosystems. We developed an experimental system to study responses of mixotrophic protists to availability of living prey and light, and used it to characterize contrasting physiological strategies in two stramenopiles in the genus Ochromonas. We show that oceanic isolate CCMP1393 is an obligate mixotroph, requiring both light and prey as complementary resources. Interdependence of photosynthesis and heterotrophy in CCMP1393 comprises a significant role of mitochondrial respiration in photosynthetic electron transport. In contrast, coastal isolate CCMP2951 is a facultative mixotroph that can substitute photosynthesis by phagotrophy and hence grow purely heterotrophically in darkness. In contrast to CCMP1393, CCMP2951 also exhibits a marked photoprotection response that integrates non-photochemical quenching and mitochondrial respiration as electron sink for photosynthetically produced reducing equivalents. Facultative mixotrophs similar to CCMP2951 might be well adapted to variable environments, while obligate mixotrophs similar to CCMP1393 appear capable of resource efficient growth in oligotrophic ocean environments. Thus, the responses of these phylogenetically close protists to the availability of different resources reveals niche differentiation that influences impacts in food webs and leads to opposing carbon cycle roles.
Collapse
Affiliation(s)
- Susanne Wilken
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Chang Jae Choi
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Ocean EcoSystems Biology UnitGEOMAR Helmholtz Centre for Ocean ResearchDüsternbrooker Weg 20Kiel24105Germany
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute7700 Sandholdt RoadMoss LandingCalifornia95039USA
- Ocean EcoSystems Biology UnitGEOMAR Helmholtz Centre for Ocean ResearchDüsternbrooker Weg 20Kiel24105Germany
| |
Collapse
|
14
|
Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE, Santoro AE, Worden AZ. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190086. [PMID: 31587639 PMCID: PMC6792449 DOI: 10.1098/rstb.2019.0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David M. Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Elisabeth Hehenberger
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Valeria Jiménez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jarred E. Swalwell
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| |
Collapse
|
15
|
Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, Füssy Z, Cihlář J, Kleessen S, Zheng H, McCrow JP, Hixson KK, Araújo WL, Nunes-Nesi A, Fernie A, Nikoloski Z, Palsson BO, Allen AE. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun 2019; 10:4552. [PMID: 31591397 PMCID: PMC6779911 DOI: 10.1038/s41467-019-12407-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
Collapse
Affiliation(s)
- Sarah R Smith
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Chris L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - James K McCarthy
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Jared T Broddrick
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jaromír Cihlář
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Sabrina Kleessen
- Targenomix, GmbH, Wissenschaftspark Potsdam-Golm, 14476, Potsdam, Germany
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Kim K Hixson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair Fernie
- Max Planck Institut of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Kang LK, Rynearson TA. Identification and Expression Analyses of the Nitrate Transporter Gene (NRT2) Family Among Skeletonema species (Bacillariophyceae). JOURNAL OF PHYCOLOGY 2019; 55:1115-1125. [PMID: 31233616 DOI: 10.1111/jpy.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
High-affinity nitrate transporters are considered to be the major transporter system for nitrate uptake in diatoms. In the diatom genus Skeletonema, three forms of genes encoding high-affinity nitrate transporters (NRT2) were newly identified from transcriptomes generated as part of the marine microbial eukaryote transcriptome sequencing project. To examine the expression of each form of NRT2 under different nitrogen environments, laboratory experiments were conducted under nitrate-sufficient, ammonium-sufficient, and nitrate-limited conditions using three ecologically important Skeletonema species: S. dohrnii, S. menzelii, and S. marinoi. Primers were developed for each NRT2 form and species and Q-RT-PCR was performed. For each NRT2 form, the three Skeletonema species had similar transcriptional patterns. The transcript levels of NRT2:1 were significantly elevated under nitrogen-limited conditions, but strongly repressed in the presence of ammonium. The transcript levels of NRT2:2 were also repressed by ammonium, but increased 5- to 10-fold under nitrate-sufficient and nitrogen-limited conditions. Finally, the transcript levels of NRT2:3 did not vary significantly under various nitrogen conditions, and behaved more like a constitutively expressed gene. Based on the observed transcript variation among NRT2 forms, we propose a revised model describing nitrate uptake kinetics regulated by multiple forms of nitrate transporter genes in response to various nitrogen conditions in Skeletonema. The differential NRT2 transcriptional responses among species suggest that species-specific adaptive strategies exist within this genus to cope with environmental changes.
Collapse
Affiliation(s)
- Lee-Kuo Kang
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 02882, USA
| |
Collapse
|
17
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
18
|
Busseni G, Vieira FRJ, Amato A, Pelletier E, Pierella Karlusich JJ, Ferrante MI, Wincker P, Rogato A, Bowler C, Sanges R, Maiorano L, Chiurazzi M, d'Alcalà MR, Caputi L, Iudicone D. Meta-omics reveals genetic flexibility of diatom nitrogen transporters in response to environmental changes. Mol Biol Evol 2019; 36:2522-2535. [PMID: 31259367 PMCID: PMC6805229 DOI: 10.1093/molbev/msz157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/05/2019] [Accepted: 06/22/2019] [Indexed: 01/27/2023] Open
Abstract
Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment.
Collapse
Affiliation(s)
- Greta Busseni
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CEA, INRA, CNRS. BIG, 17 rue des Martyrs Grenoble cedex 9, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,FR2022/Tara Oceans-GOSEE, 3 rue Michel-Ange, Paris, France
| | - Juan J Pierella Karlusich
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,FR2022/Tara Oceans-GOSEE, 3 rue Michel-Ange, Paris, France
| | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, Italy
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste, Italy
| | - Luigi Maiorano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza", Viale dell'Università 32, Roma, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, Italy
| | | | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | |
Collapse
|
19
|
Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc Natl Acad Sci U S A 2019; 116:5613-5622. [PMID: 30842288 PMCID: PMC6431176 DOI: 10.1073/pnas.1815994116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic information between genomes by a route other than from parent to offspring. Of particular interest here are the transfers of transporter-encoding genes, which can allow an organism to utilize a new metabolite, often via the acquisition of a single foreign gene. Here we have identified a range of HGT events of transporter-encoding genes, characterized the substrate preferences for each HGT encoded protein, and demonstrated that the gain of one of these HGTs can provide yeast with a distinct competitive advantage in a given environment. This has wide implications for understanding how acquisition of single genes by HGT can drastically influence the environments fungi can colonize. Many microbes acquire metabolites in a “feeding” process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein–protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae. Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae. We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a “transporter-gene acquisition ratchet,” where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome.
Collapse
|
20
|
Lauritano C, De Luca D, Amoroso M, Benfatto S, Maestri S, Racioppi C, Esposito F, Ianora A. New molecular insights on the response of the green alga Tetraselmis suecica to nitrogen starvation. Sci Rep 2019; 9:3336. [PMID: 30833632 PMCID: PMC6399242 DOI: 10.1038/s41598-019-39860-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
Microalgae are currently considered one of the most promising resources for biofuel production, aquaculture feedstock and new pharmaceuticals. Among them, green algae of the genus Tetraselmis are extensively studied for their lipid accumulation in nutrient-starvation conditions. In this paper, we present the full-transcriptome of Tetraselmis suecica and differential expression analysis between nitrogen-starved and -repleted conditions (at stationary phase) focusing not only on lipid metabolism but giving new insights on nutrient starvation responses. Transcripts involved in signal transduction pathways, stress and antioxidant responses and solute transport were strongly up-regulated when T. suecica was cultured under nitrogen starvation. On the contrary, transcripts involved in amino acid synthesis, degradation of sugars, secondary metabolite synthesis, as well as photosynthetic activity were down-regulated under the same conditions. Among differentially expressed transcripts, a polyketide synthase and three lipoxygenases (involved in the synthesis of secondary metabolites with antipredator, anticancer and anti-infective activities) were identified, suggesting the potential synthesis of bioactive compounds by this microalga. In addition, the transcript for a putative nitrilase, enzyme used in nitrile bioremediation, is here reported for the first time for T. suecica. These findings give new insights on T. suecica responses to nutrient starvation and on possible biotechnological applications for green algae.
Collapse
Affiliation(s)
- Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Daniele De Luca
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Mariano Amoroso
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Salvatore Benfatto
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simone Maestri
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Claudia Racioppi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.,Center for Developmental Genetics, Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Francesco Esposito
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
21
|
Sabu S, Singh ISB, Joseph V. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26763-26777. [PMID: 28963632 DOI: 10.1007/s11356-017-0274-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg-1. Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 24 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L-1) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L-1) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.
Collapse
Affiliation(s)
- Sanyo Sabu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 682016, India
| | - Isaac Sarojini Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 682016, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 682016, India.
| |
Collapse
|
22
|
Jing X, Lin S, Zhang H, Koerting C, Yu Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS One 2017; 12:e0187837. [PMID: 29117255 PMCID: PMC5678928 DOI: 10.1371/journal.pone.0187837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/23/2023] Open
Abstract
Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.
Collapse
Affiliation(s)
- Xiaoli Jing
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
23
|
Caló G, Scheidegger D, Martínez-Noël GMA, Salerno GL. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:377-384. [PMID: 28710945 DOI: 10.1016/j.plaphy.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.
Collapse
Affiliation(s)
- Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Dana Scheidegger
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina.
| |
Collapse
|
24
|
Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc Natl Acad Sci U S A 2017; 114:E7489-E7498. [PMID: 28827361 DOI: 10.1073/pnas.1708097114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton community structure is shaped by both bottom-up factors, such as nutrient availability, and top-down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.
Collapse
|
25
|
McCarthy JK, Smith SR, McCrow JP, Tan M, Zheng H, Beeri K, Roth R, Lichtle C, Goodenough U, Bowler CP, Dupont CL, Allen AE. Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom. THE PLANT CELL 2017; 29:2047-2070. [PMID: 28765511 PMCID: PMC5590495 DOI: 10.1105/tpc.16.00910] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/06/2017] [Accepted: 07/29/2017] [Indexed: 05/03/2023]
Abstract
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.
Collapse
Affiliation(s)
- James K McCarthy
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Sarah R Smith
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Maxine Tan
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Karen Beeri
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Robyn Roth
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Christian Lichtle
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Chris P Bowler
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| |
Collapse
|
26
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|
27
|
Kakinuma M, Nakamoto C, Kishi K, Coury DA, Amano H. Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). MARINE ENVIRONMENTAL RESEARCH 2017; 128:76-87. [PMID: 27581686 DOI: 10.1016/j.marenvres.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/25/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Ammonium and nitrate are the primary nitrogen sources in natural environments, and are essential for growth and development in photosynthetic eukaryotes. In this study, we report on the isolation and characterization of an ammonium transporter gene (PyAMT1) which performs a key function in nitrogen (N) metabolism of Pyropia yezoensis thalli. The predicted length of PyAMT1 was 483 amino acids (AAs). The AA sequence included 11 putative transmembrane domains and showed approximately 33-44% identity to algal and plant AMT1 AA sequences. Functional complementation in an AMT-defective yeast mutant indicated that PyAMT1 mediated ammonium transport across the plasma membrane. Expression analysis showed that the PyAMT1 mRNA level was strongly induced by N-deficiency, and was more highly suppressed by resupply of inorganic-N than organic-N. These results suggest that PyAMT1 plays important roles in the ammonium transport system, and is highly regulated in response to external/internal N-status.
Collapse
Affiliation(s)
- Makoto Kakinuma
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan.
| | - Chika Nakamoto
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Kazuki Kishi
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Daniel A Coury
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Hideomi Amano
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
28
|
Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS One 2017; 12:e0172135. [PMID: 28278262 PMCID: PMC5344333 DOI: 10.1371/journal.pone.0172135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU’s domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.
Collapse
|
29
|
Matassi G. Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes. BMC Evol Biol 2017; 17:2. [PMID: 28049420 PMCID: PMC5209957 DOI: 10.1186/s12862-016-0850-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Background Rh50 proteins belong to the family of ammonia permeases together with their Amt/MEP homologs. Ammonia permeases increase the permeability of NH3/NH4+ across cell membranes and are believed to be involved in excretion of toxic ammonia and in the maintenance of pH homeostasis. RH50 genes are widespread in eukaryotes but absent in land plants and fungi, and remarkably rare in prokaryotes. The evolutionary history of RH50 genes in prokaryotes is just beginning to be unveiled. Results Here, a molecular phylogenetic approach suggests horizontal gene transfer (HGT) as a primary force driving the evolution and spread of RH50 among prokaryotes. In addition, the taxonomic distribution of the RH50 gene among prokaryotes turned out to be very narrow; a single-copy RH50 is present in the genome of only a small proportion of Bacteria, and, first evidence to date, in only three methanogens among Euryarchaea. The coexistence of RH50 and AMT in prokaryotes seems also a rare event. Finally, phylogenetic analyses were used to reconstruct the HGT network along which prokaryotic RH50 evolution has taken place. Conclusions The eukaryotic or bacterial “origin” of the RH50 gene remains unsolved. The RH50 prokaryotic HGT network suggests a preferential directionality of transfer from aerobic to anaerobic organisms. The observed HGT events between archaeal methanogens, anaerobic and aerobic ammonia-oxidizing bacteria suggest that syntrophic relationships play a major role in the structuring of the network, and point to oxygen minimum zones as an ecological niche that might be of crucial importance for HGT-driven evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0850-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giorgio Matassi
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali (DI4A), Università di Udine, Via delle Scienze, 206-33100, Udine, Italy.
| |
Collapse
|
30
|
Whitney LP, Lomas MW. Growth on ATP Elicits a P-Stress Response in the Picoeukaryote Micromonas pusilla. PLoS One 2016; 11:e0155158. [PMID: 27167623 PMCID: PMC4864187 DOI: 10.1371/journal.pone.0155158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/25/2016] [Indexed: 11/18/2022] Open
Abstract
The surface waters of oligotrophic oceans have chronically low phosphate (Pi) concentrations, which renders dissolved organic phosphorus (DOP) an important nutrient source. In the subtropical North Atlantic, cyanobacteria are often numerically dominant, but picoeukaryotes can dominate autotrophic biomass and productivity making them important contributors to the ocean carbon cycle. Despite their importance, little is known regarding the metabolic response of picoeukaryotes to changes in phosphorus (P) source and availability. To understand the molecular mechanisms that regulate P utilization in oligotrophic environments, we evaluated transcriptomes of the picoeukaryote Micromonas pusilla grown under Pi-replete and -deficient conditions, with an additional investigation of growth on DOP in replete conditions. Genes that function in sulfolipid substitution and Pi uptake increased in expression with Pi-deficiency, suggesting cells were reallocating cellular P and increasing P acquisition capabilities. Pi-deficient M. pusilla cells also increased alkaline phosphatase activity and reduced their cellular P content. Cells grown with DOP were able to maintain relatively high growth rates, however the transcriptomic response was more similar to the Pi-deficient response than that seen in cells grown under Pi-replete conditions. The results demonstrate that not all P sources are the same for growth; while M. pusilla, a model picoeukaryote, may grow well on DOP, the metabolic demand is greater than growth on Pi. These findings provide insight into the cellular strategies which may be used to support growth in a stratified future ocean predicted to favor picoeukaryotes.
Collapse
Affiliation(s)
- LeAnn P. Whitney
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- * E-mail:
| | - Michael W. Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| |
Collapse
|
31
|
Abundance and Biogeography of Picoprasinophyte Ecotypes and Other Phytoplankton in the Eastern North Pacific Ocean. Appl Environ Microbiol 2016; 82:1693-1705. [PMID: 26729718 DOI: 10.1128/aem.02730-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic algae within the picoplankton size class (≤2 μm in diameter) are important marine primary producers, but their spatial and ecological distributions are not well characterized. Here, we studied three picoeukaryotic prasinophyte genera and their cyanobacterial counterparts, Prochlorococcus and Synechococcus, during two cruises along a North Pacific transect characterized by different ecological regimes. Picoeukaryotes and Synechococcus reached maximum abundances of 1.44 × 10(5) and 3.37 × 10(5) cells · ml(-1), respectively, in mesotrophic waters, while Prochlorococcus reached 1.95 × 10(5) cells · ml(-1) in the oligotrophic ocean. Of the picoeukaryotes, Bathycoccus was present at all stations in both cruises, reaching 21,368 ± 327 18S rRNA gene copies · ml(-1). Micromonas and Ostreococcus clade OI were detected only in mesotrophic and coastal waters and Ostreococcus clade OII only in the oligotrophic ocean. To resolve proposed Bathycoccus ecotypes, we established genetic distances for 1,104 marker genes using targeted metagenomes and the Bathycoccus prasinos genome. The analysis was anchored in comparative genome analysis of three Ostreococcus species for which physiological and environmental data are available to facilitate data interpretation. We established that two Bathycoccus ecotypes exist, named here BI (represented by coastal isolate Bathycoccus prasinos) and BII. These share 82% ± 6% nucleotide identity across homologs, while the Ostreococcus spp. share 75% ± 8%. We developed and applied an analysis of ecomarkers to metatranscriptomes sequenced here and published -omics data from the same region. The results indicated that the Bathycoccus ecotypes cooccur more often than Ostreococcus clades OI and OII do. Exploratory analyses of relative transcript abundances suggest that Bathycoccus NRT2.1 and AMT2.2 are high-affinity NO3 (-) and low-affinity NH4 (+) transporters, respectively, with close homologs in multiple picoprasinophytes. Additionally, in the open ocean, where dissolved iron concentrations were low (0.08 nM), there appeared to be a shift to the use of nickel superoxide dismutases (SODs) from Mn/Fe/Cu SODs closer inshore. Our study documents the distribution of picophytoplankton along a North Pacific ecological gradient and offers new concepts and techniques for investigating their biogeography.
Collapse
|
32
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
33
|
Rogato A, Amato A, Iudicone D, Chiurazzi M, Ferrante MI, d'Alcalà MR. The diatom molecular toolkit to handle nitrogen uptake. Mar Genomics 2015; 24 Pt 1:95-108. [PMID: 26055207 DOI: 10.1016/j.margen.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
Abstract
Nutrient concentrations in the oceans display significant temporal and spatial variability, which strongly affects growth, distribution and survival of phytoplankton. Nitrogen (N) in particular is often considered a limiting resource for prominent marine microalgae, such as diatoms. Diatoms possess a suite of N-related transporters and enzymes and utilize a variety of inorganic (e.g., nitrate, NO3(-); ammonium, NH4(+)) and organic (e.g., urea; amino acids) N sources for growth. However, the molecular mechanisms allowing diatoms to cope efficiently with N oscillations by controlling uptake capacities and signaling pathways involved in the perception of external and internal clues remain largely unknown. Data reported in the literature suggest that the regulation and the characteristic of the genes, and their products, involved in N metabolism are often diatom-specific, which correlates with the peculiar physiology of these organisms for what N utilization concerns. Our study reveals that diatoms host a larger suite of N transporters than one would expected for a unicellular organism, which may warrant flexible responses to variable conditions, possibly also correlated to the phases of life cycle of the cells. All this makes N transporters a crucial key to reveal the balance between proximate and ultimate factors in diatom life.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Alberto Amato
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy.
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| |
Collapse
|
34
|
Terrado R, Monier A, Edgar R, Lovejoy C. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. JOURNAL OF PHYCOLOGY 2015; 51:490-506. [PMID: 26986665 DOI: 10.1111/jpy.12292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/15/2015] [Indexed: 06/05/2023]
Abstract
In an effort to better understand the diversity of genes coding for nitrogen (N) uptake and assimilation pathways among microalgae, we analyzed the transcriptomes of five phylogenetically diverse single celled algae originally isolated from the same high arctic marine region. The five photosynthetic flagellates (a pelagophyte, dictyochophyte, chrysoph-yte, cryptophyte and haptophyte) were grown on standard media and media with only urea or nitrate as a nitrogen source; cells were harvested during late exponential growth. Based on homolog protein sequences, transcriptomes of each alga were interrogated to retrieve genes potentially associated with nitrogen uptake and utilization pathways. We further investigated the phylogeny of poorly characterized genes and gene families that were identified. While the phylogeny of the active urea transporter (DUR3) was taxonomically coherent, those for the urea transporter superfamily, putative nitrilases and amidases indicated complex evolutionary histories, and preliminary evidence for horizontal gene transfers. All five algae expressed genes for ammonium assimilation and all but the chrysophyte expressed genes involved in nitrate utilization and the urea cycle. Among the four algae with nitrate transporter transcripts, we detected lower expression levels in three of these (the dictyochophyte, pelagophyte, and cryptophyte) grown in the urea only medium compared with cultures from the nitrate only media. The diversity of N pathway genes in the five algae, and their ability to grow using urea as a nitrogen source, suggest that these flagellates are able to use a variety of organic nitrogen sources, which would be an advantage in an inorganic nitrogen - limited environment, such as the Arctic Ocean.
Collapse
Affiliation(s)
- Ramon Terrado
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Adam Monier
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Robyn Edgar
- Département de Biologie, Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Québec Océan, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Connie Lovejoy
- Département de Biologie, Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Québec Océan, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
35
|
Kang LK, Gong GC, Wu YH, Chang J. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea. Mol Ecol 2015; 24:1374-86. [DOI: 10.1111/mec.13109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Lee-Kuo Kang
- Institute of Marine Environmental Chemistry and Ecology; National Taiwan Ocean University; Keelung 20224 Taiwan
- Center of Excellence for the Oceans; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environmental Chemistry and Ecology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Yi-Hsuan Wu
- Institute of Marine Environmental Chemistry and Ecology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Jeng Chang
- Institute of Marine Environmental Chemistry and Ecology; National Taiwan Ocean University; Keelung 20224 Taiwan
- Center of Excellence for the Oceans; National Taiwan Ocean University; Keelung 20224 Taiwan
- Institute of Marine Biology; National Taiwan Ocean University; Keelung 20224 Taiwan
| |
Collapse
|
36
|
Wu G, Hufnagel DE, Denton AK, Shiu SH. Retained duplicate genes in green alga Chlamydomonas reinhardtii tend to be stress responsive and experience frequent response gains. BMC Genomics 2015; 16:149. [PMID: 25880851 PMCID: PMC4364661 DOI: 10.1186/s12864-015-1335-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Green algae belong to a group of photosynthetic organisms that occupy diverse habitats, are closely related to land plants, and have been studied as sources of food and biofuel. Although multiple green algal genomes are available, a global comparative study of algal gene families has not been carried out. To investigate how gene families and gene expression have evolved, particularly in the context of stress response that have been shown to correlate with gene family expansion in multiple eukaryotes, we characterized the expansion patterns of gene families in nine green algal species, and examined evolution of stress response among gene duplicates in Chlamydomonas reinhardtii. Results Substantial variation in domain family sizes exists among green algal species. Lineage-specific expansion of families occurred throughout the green algal lineage but inferred gene losses occurred more often than gene gains, suggesting a continuous reduction of algal gene repertoire. Retained duplicates tend to be involved in stress response, similar to land plant species. However, stress responsive genes tend to be pseudogenized as well. When comparing ancestral and extant gene stress response state, we found that response gains occur in 13% of duplicate gene branches, much higher than 6% in Arabidopsis thaliana. Conclusion The frequent gains of stress response among green algal duplicates potentially reflect a high rate of innovation, resulting in a species-specific gene repertoire that contributed to adaptive response to stress. This could be further explored towards deciphering the mechanism of stress response, and identifying suitable green algal species for oil production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1335-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxi Wu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA.
| | - David E Hufnagel
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| | - Alisandra K Denton
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Shin-Han Shiu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
37
|
Wu X, Yang H, Qu C, Xu Z, Li W, Hao B, Yang C, Sun G, Liu G. Sequence and expression analysis of the AMT gene family in poplar. FRONTIERS IN PLANT SCIENCE 2015; 6:337. [PMID: 26052331 PMCID: PMC4440354 DOI: 10.3389/fpls.2015.00337] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/29/2015] [Indexed: 05/12/2023]
Abstract
Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. These proteins are encoded by an ancient gene family with many members. The molecular characteristics and evolutionary history of AMTs in woody plants are still poorly understood. We comprehensively evaluated the AMT gene family in the latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2 (2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that the Populus AMT gene family has expanded via whole-genome duplication events. Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus. Expression analyses showed that 14 AMT genes were vegetative organs expressed; AMT1;1/1;3/1;6/3;2 and AMT1;1/1;2/2;2/3;1 had high transcript accumulation level in the leaves and roots, respectively and strongly changes under the nitrogen-dependent experiments. The results imply the functional roles of AMT genes in ammonium absorption in poplar.
Collapse
Affiliation(s)
- Xiangyu Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Han Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- School of Life Science, Northeast Forestry UniversityHarbin, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Guangyu Sun
- School of Life Science, Northeast Forestry UniversityHarbin, China
- *Correspondence: Guangyu Sun, School of Life Science, Northeast Forestry University, 26 Hexing Road, HarBin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Guanjun Liu, State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, HarBin 150040, China
| |
Collapse
|
38
|
Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes. J Mol Evol 2014; 80:65-80. [PMID: 25504421 DOI: 10.1007/s00239-014-9659-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/22/2014] [Indexed: 01/11/2023]
Abstract
Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
Collapse
|
39
|
von Wittgenstein NJJB, Le CH, Hawkins BJ, Ehlting J. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 2014; 14:11. [PMID: 24438197 PMCID: PMC3922906 DOI: 10.1186/1471-2148-14-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/30/2013] [Indexed: 01/15/2023] Open
Abstract
Background Nitrogen uptake, reallocation within the plant, and between subcellular compartments involves ammonium, nitrate and peptide transporters. Ammonium transporters are separated into two distinct families (AMT1 and AMT2), each comprised of five members on average in angiosperms. Nitrate transporters also form two discrete families (NRT1 and NRT2), with angiosperms having four NRT2s, on average. NRT1s share an evolutionary history with peptide transporters (PTRs). The NRT1/PTR family in land plants usually has more than 50 members and contains also members with distinct activities, such as glucosinolate and abscisic acid transport. Results Phylogenetic reconstructions of each family across 20 land plant species with available genome sequences were supplemented with subcellular localization and transmembrane topology predictions. This revealed that both AMT families diverged prior to the separation of bryophytes and vascular plants forming two distinct clans, designated as supergroups, each. Ten supergroups were identified for the NRT1/PTR family. It is apparent that nitrate and peptide transport within the NRT1/PTR family is polyphyletic, that is, nitrate and/or peptide transport likely evolved multiple times within land plants. The NRT2 family separated into two distinct clans early in vascular plant evolution. Subsequent duplications occurring prior to the eudicot/monocot separation led to the existence of two AMT1, six AMT2, 31 NRT1/PTR, and two NRT2 clans, designated as groups. Conclusion Phylogenetic separation of groups suggests functional divergence within the angiosperms for each family. Distinct groups within the NRT1/PTR family appear to separate peptide and nitrate transport activities as well as other activities contained within the family, for example nitrite transport. Conversely, distinct activities, such as abscisic acid and glucosinolate transport, appear to have recently evolved from nitrate transporters.
Collapse
Affiliation(s)
| | | | | | - Jürgen Ehlting
- Centre for Forest Biology & Department of Biology, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
40
|
Abstract
The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by (13)C nuclear magnetic resonance ((13)C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria.
Collapse
|
41
|
Alexander H, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Dyhrman ST. Identifying reference genes with stable expression from high throughput sequence data. Front Microbiol 2012; 3:385. [PMID: 23162540 PMCID: PMC3494082 DOI: 10.3389/fmicb.2012.00385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022] Open
Abstract
Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays. However, the identification of these potential reference genes in non-model organisms is challenging and is often guided by expression patterns in distantly related organisms. Here, transcriptome datasets from the diatom Thalassiosira pseudonana grown under replete, phosphorus-limited, iron-limited, and phosphorus and iron co-limited nutrient regimes were analyzed through literature-based searches for homologous reference genes, k-means clustering, and analysis of sequence counts (ASC) to identify putative reference genes. A total of 9759 genes were identified and screened for stable expression. Literature-based searches surveyed 18 generally accepted reference genes, revealing 101 homologs in T. pseudonana with variable expression and a wide range of mean tags per million. k-means analysis parsed the whole transcriptome into 15 clusters. The two most stable clusters contained 709 genes, but still had distinct patterns in expression. ASC analyses identified 179 genes that were stably expressed (posterior probability < 0.1 for 1.25 fold change). Genes known to have a stable expression pattern across the test treatments, like actin, were identified in this pool of 179 candidate genes. ASC can be employed on data without biological replicates and was more robust than the k-means approach in isolating genes with stable expression. The intersection of the genes identified through ASC with commonly used reference genes from the literature suggests that actin and ubiquitin ligase may be useful reference genes for T. pseudonana and potentially other diatoms. With the wealth of transcriptome sequence data becoming available, ASC can be easily applied to transcriptome datasets from other phytoplankton to identify reference genes.
Collapse
Affiliation(s)
- Harriet Alexander
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering Cambridge, MA, USA ; Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vaulot D, Lepère C, Toulza E, De la Iglesia R, Poulain J, Gaboyer F, Moreau H, Vandepoele K, Ulloa O, Gavory F, Piganeau G. Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling. PLoS One 2012; 7:e39648. [PMID: 22745802 PMCID: PMC3382182 DOI: 10.1371/journal.pone.0039648] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/24/2012] [Indexed: 12/24/2022] Open
Abstract
Among small photosynthetic eukaryotes that play a key role in oceanic food webs, picoplanktonic Mamiellophyceae such as Bathycoccus, Micromonas, and Ostreococcus are particularly important in coastal regions. By using a combination of cell sorting by flow cytometry, whole genome amplification (WGA), and 454 pyrosequencing, we obtained metagenomic data for two natural picophytoplankton populations from the coastal upwelling waters off central Chile. About 60% of the reads of each sample could be mapped to the genome of Bathycoccus strain from the Mediterranean Sea (RCC1105), representing a total of 9 Mbp (sample T142) and 13 Mbp (sample T149) of non-redundant Bathycoccus genome sequences. WGA did not amplify all regions uniformly, resulting in unequal coverage along a given chromosome and between chromosomes. The identity at the DNA level between the metagenomes and the cultured genome was very high (96.3% identical bases for the three larger chromosomes over a 360 kbp alignment). At least two to three different genotypes seemed to be present in each natural sample based on read mapping to Bathycoccus RCC1105 genome.
Collapse
Affiliation(s)
- Daniel Vaulot
- UPMC (Paris-06) and CNRS, UMR 7144, Station Biologique, Place G. Tessier, Roscoff, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monier A, Welsh RM, Gentemann C, Weinstock G, Sodergren E, Armbrust EV, Eisen JA, Worden AZ. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol 2012; 14:162-76. [PMID: 21914098 PMCID: PMC3429862 DOI: 10.1111/j.1462-2920.2011.02576.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/27/2011] [Indexed: 11/28/2022]
Abstract
Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton.
Collapse
Affiliation(s)
- Adam Monier
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Rory M Welsh
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Chelle Gentemann
- Remote Sensing Systems444 Tenth Street, Suite 200, Santa Rosa, CA, 95401, USA
| | - George Weinstock
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Erica Sodergren
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | | | - Jonathan A Eisen
- University of California DavisDavis, CA 95616DOE Joint Genome Institute Walnut CreekCA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
44
|
McDonald TR, Dietrich FS, Lutzoni F. Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 2012; 29:51-60. [PMID: 21680869 PMCID: PMC3383101 DOI: 10.1093/molbev/msr123] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proteins of the ammonium transporter/methylammonium permease/Rhesus factor family (AMT/MEP/Rh family) are responsible for the movement of ammonia or ammonium ions across the cell membrane. Although it has been established that the Rh proteins are distantly related to the other members of the family, the evolutionary history of the AMT/MEP/Rh family remains unclear. Here, we use phylogenetic analysis to infer the evolutionary history of this family of proteins across 191 genomes representing all main lineages of life and to provide a new classification of the proteins in this family. Our phylogenetic analysis suggests that what has heretofore been conceived of as a protein family with two clades (AMT/MEP and Rh) is instead a protein family with three clades (AMT, MEP, and Rh). We show that the AMT/MEP/Rh family illustrates two contrasting modes of gene transmission: The AMT family as defined here exhibits vertical gene transfer (i.e., standard parent-to-offspring inheritance), whereas the MEP family as defined here is characterized by several ancient independent horizontal gene transfers (HGTs). These ancient HGT events include a gene replacement during the early evolution of the fungi, which could be a defining trait for the kingdom Fungi, a gene gain from hyperthermophilic chemoautolithotrophic prokaryotes during the early evolution of land plants (Embryophyta), and an independent gain of this same gene in the filamentous ascomycetes (Pezizomycotina) that was subsequently lost in most lineages but retained in even distantly related lichenized fungi. This recircumscription of the ammonium transporters/ammonia permeases family into MEP and AMT families informs the debate on the mechanism of transport in these proteins and on the nature of the transported molecule because published crystal structures of proteins from the MEP and Rh clades may not be representative of the AMT clade. The clades as depicted in this phylogenetic study appear to correspond to functionally different groups, with AMTs and ammonia permeases forming two distinct and possibly monophyletic groups.
Collapse
|
45
|
Lai LB, Bernal-Bayard P, Mohannath G, Lai SM, Gopalan V, Vioque A. A functional RNase P protein subunit of bacterial origin in some eukaryotes. Mol Genet Genomics 2011; 286:359-69. [PMID: 21987179 DOI: 10.1007/s00438-011-0651-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/23/2011] [Indexed: 11/27/2022]
Abstract
RNase P catalyzes 5'-maturation of tRNAs. While bacterial RNase P comprises an RNA catalyst and a protein cofactor, the eukaryotic (nuclear) variant contains an RNA and up to ten proteins, all unrelated to the bacterial protein. Unexpectedly, a nuclear-encoded bacterial RNase P protein (RPP) homolog is found in several prasinophyte algae including Ostreococcus tauri. We demonstrate that recombinant O. tauri RPP can functionally reconstitute with bacterial RNase P RNAs (RPRs) but not with O. tauri organellar RPRs, despite the latter's presumed bacterial origins. We also show that O. tauri PRORP, a homolog of Arabidopsis PRORP-1, displays tRNA 5'-processing activity in vitro. We discuss the implications of the striking diversity of RNase P in O. tauri, the smallest known free-living eukaryote.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bhadury P, Song B, Ward BB. Intron features of key functional genes mediating nitrogen metabolism in marine phytoplankton. Mar Genomics 2011; 4:207-13. [DOI: 10.1016/j.margen.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 05/31/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
|
47
|
Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. EUKARYOTIC CELL 2011; 10:856-68. [PMID: 21622904 PMCID: PMC3147421 DOI: 10.1128/ec.00326-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
48
|
Genome diversity in the smallest marine photosynthetic eukaryotes. Res Microbiol 2011; 162:570-7. [PMID: 21540104 DOI: 10.1016/j.resmic.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 02/04/2023]
Abstract
Unicellular algae of the class Mamiellophyceae are widespread in our oceans and their apparent uniformity conceals an impressive array of biologically distinct species. Each of the five complete genomes analysed so far reveals densely packed coding sequences, with strong evolutionary divergence from its nearest phylogenetically defined neighbours. These species lie at the base of the green lineage, but various metabolic processes reflect their marine life-styles and distinguish them from land plants, including a high proportion of selenoprotein enzymes and C4 photosynthesis. They all possess two unusual chromosomes, with lower GC content and atypical gene content, whose function so far remains enigmatic.
Collapse
|
49
|
Anderberg HI, Danielson JÅH, Johanson U. Algal MIPs, high diversity and conserved motifs. BMC Evol Biol 2011; 11:110. [PMID: 21510875 PMCID: PMC3111385 DOI: 10.1186/1471-2148-11-110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/21/2011] [Indexed: 01/10/2023] Open
Abstract
Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
Collapse
Affiliation(s)
- Hanna I Anderberg
- Department of Biochemistry, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | | | |
Collapse
|
50
|
Worden AZ, Allen AE. The voyage of the microbial eukaryote. Curr Opin Microbiol 2010; 13:652-60. [PMID: 20832353 DOI: 10.1016/j.mib.2010.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 08/03/2010] [Indexed: 01/01/2023]
Abstract
Although genome data from unicellular marine eukaryotes is sparse, sequences from several supergroups have initiated an era of genome-enabled research aimed at understanding gene function, evolution, and adaptation in non-traditional model protists. Trends in genomic content within and between different lineages are emerging, including phylogenetically anomalous patterns, sometimes resulting from horizontal gene transfer. Some such genes have nutrient uptake and metabolism roles suggesting that bacterial and eukaryotic microbes have similar cellular-mineral-environmental constraints. Many 'accessory genome' components are of unknown function, but low gene copy numbers combined with small genomes make protists ideal for systems biology. Cultured and uncultured protists are providing insights to ecology, ancestral features and the role of cooption in development of complex traits. Various protists harbor features important in sexuality and multicellularity once believed to have originated in metazoans or other multicellular taxa.
Collapse
Affiliation(s)
- Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, CA 95039, USA.
| | | |
Collapse
|