1
|
Turek C, Ölbei M, Stirling T, Fekete G, Tasnádi E, Gul L, Bohár B, Papp B, Jurkowski W, Ari E. mulea: An R package for enrichment analysis using multiple ontologies and empirical false discovery rate. BMC Bioinformatics 2024; 25:334. [PMID: 39425047 PMCID: PMC11490090 DOI: 10.1186/s12859-024-05948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. mulea is distributed as a CRAN R package downloadable from https://cran.r-project.org/web/packages/mulea/ and https://github.com/ELTEbioinformatics/mulea . It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.
Collapse
Affiliation(s)
- Cezary Turek
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Márton Ölbei
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ervin Tasnádi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Computer Science, University of Szeged, Árpád Tér 2, 6720, Szeged, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Balázs Bohár
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | | | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary.
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
3
|
Ding J, Wang X, Liu W, Ding C, Wu J, He R, Zhang X. Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400862. [PMID: 38408138 PMCID: PMC11077648 DOI: 10.1002/advs.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Hematoma, a risk factor of implant-associated infections (IAIs), creates a Fe-rich environment following implantation, which proliferates the growth of pathogenic bacteria. Fe metabolism is a major vulnerability for pathogens and is crucial for several fundamental physiological processes. Herein, a deferiprone (DFP)-loaded layered double hydroxide (LDH)-based nanomedicine (DFP@Ga-LDH) that targets the Fe-rich environments of IAIs is reported. In response to acidic changes at the infection site, DFP@Ga-LDH systematically interferes with bacterial Fe metabolism via the substitution of Ga3+ and Fe scavenging by DFP. DFP@Ga-LDH effectively reverses the Fe/Ga ratio in Pseudomonas aeruginosa, causing comprehensive interference in various Fe-associated targets, including transcription and substance metabolism. In addition to its favorable antibacterial properties, DFP@Ga-LDH functions as a nano-adjuvant capable of delaying the emergence of antibiotic resistance. Accordingly, DFP@Ga-LDH is loaded with a siderophore antibiotic (cefiderocol, Cefi) to achieve the antibacterial nanodrug DFP@Ga-LDH-Cefi. Antimicrobial and biosafety efficacies of DFP@Ga-LDH-Cefi are validated using ex vivo human skin and mouse IAI models. The pivotal role of the hematoma-created Fe-rich environment of IAIs is highlighted, and a nanoplatform that efficiently interferes with bacterial Fe metabolism is developed. The findings of the study provide promising guidance for future research on the exploration of nano-adjuvants as antibacterial agents.
Collapse
Affiliation(s)
- Jianing Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xin Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Wei Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Cheng Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
4
|
Bhattacharyya S, Bhattarai N, Pfannenstiel DM, Wilkins B, Singh A, Harshey RM. A heritable iron memory enables decision-making in Escherichia coli. Proc Natl Acad Sci U S A 2023; 120:e2309082120. [PMID: 37988472 PMCID: PMC10691332 DOI: 10.1073/pnas.2309082120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when Escherichia coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This "iron" memory preexists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, which tracks with its iron memory, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We demonstrate that cellular iron levels also track with biofilm formation and antibiotic tolerance, suggesting that iron memory may impact other physiologies.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Nabin Bhattarai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Dylan M. Pfannenstiel
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Brady Wilkins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716
| | - Rasika M. Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
5
|
Coluzzi C, Guillemet M, Mazzamurro F, Touchon M, Godfroid M, Achaz G, Glaser P, Rocha EPC. Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Mol Biol Evol 2023; 40:msad217. [PMID: 37788575 PMCID: PMC10575684 DOI: 10.1093/molbev/msad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Martin Guillemet
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Maxime Godfroid
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Achaz
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université de Paris Cité, CNRS, UMR6047, Unité EERA, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
6
|
D’Aquila P, De Rango F, Paparazzo E, Passarino G, Bellizzi D. Epigenetic-Based Regulation of Transcriptome in Escherichia coli Adaptive Antibiotic Resistance. Microbiol Spectr 2023; 11:e0458322. [PMID: 37184386 PMCID: PMC10269836 DOI: 10.1128/spectrum.04583-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Betancur C, Martínez Y. Effect of Oral Administration with Lactobacillus plantarum CAM6 on the Hematological Profile, Relative Weight of Digestive Organs, and Cecal Traits in Growing Pigs. Animals (Basel) 2023; 13:1915. [PMID: 37370425 DOI: 10.3390/ani13121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of oral administration with L. plantarum CAM6 on the hematological profile, relative weight of digestive organs, and cecal traits in growing pigs. A total of 36 castrated male pigs [(Landrace × Pietrain) × Duroc] aged 49 to 139 days old were randomly assigned to 3 experimental groups with 12 animals per treatment. The treatments included a control diet without additives (CTRL), a positive control with subtherapeutic antibiotics (TRT1), and CTRL supplemented with 5 mL Lactobacillus plantarum CAM6 preparation providing 109 CFU/pig/day (TRT2). The TRT2 group showed a higher (p ≤ 0.05) small intestine length and the cecum relative weight compared to the CTRL group. Moreover, L. plantarum CAM6 supplementation promoted (p ≤ 0.05) increased thickness of the muscular and mucosal layers, as well as enhanced depth and width of the cecal crypts. The TRT2 group also showed well-defined crypts without lesions, while the CTRL and TRT1 groups exhibited congestion, lymphocytic infiltration in the crypt, and intestinal-associated lymphoid tissue atrophy, respectively. Additionally, TRT2 stimulated (p ≤ 0.05) the growth of the autochthonous cecal microbiota compared to other experimental groups. Overall, the results indicate that oral administration of L. plantarum CAM6 improved intestinal health and enhanced the growth of autochthonous cecal lactic acid bacteria and had no impact on the complete blood count in growing pigs.
Collapse
Affiliation(s)
- Cesar Betancur
- Departamento de Ciencias Pecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería 230002, Colombia
| | - Yordan Martínez
- Agricultural Science and Production Department, Zamorano University, Valle de Yeguare, San Antonio de Oriente, Francisco Morazán, Tegucigalpa 11101, Honduras
| |
Collapse
|
8
|
Bhattacharyya S, Bhattarai N, Pfannenstiel DM, Wilkins B, Singh A, Harshey RM. Iron Memory in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541523. [PMID: 37609133 PMCID: PMC10441380 DOI: 10.1101/2023.05.19.541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when E. coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This memory pre-exists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, whether low or high, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We also demonstrate that iron memory can integrate multiple stimuli, impacting other bacterial behaviors such as biofilm formation and antibiotic tolerance.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Nabin Bhattarai
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Dylan M. Pfannenstiel
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Brady Wilkins
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE 19716
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| |
Collapse
|
9
|
Wei W, Zhao Y, Zhang C, Yu M, Wu Z, Xu L, Peng K, Wu Z, Li Y, Wang X. Whole-genome sequencing and transcriptome-characterized in vitro evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Microb Genom 2023; 9. [PMID: 37224060 DOI: 10.1099/mgen.0.001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Antibiotic resistance of Mycobacterium tuberculosis (Mtb) is a major public health concern worldwide. Therefore, it is of great significance to characterize the mutational pathways by which susceptible Mtb evolves into drug resistance. In this study, we used laboratory evolution to explore the mutational pathways of aminoglycoside resistance. The level of resistance in amikacin inducing Mtb was also associated with changes in susceptibility to other anti-tuberculosis drugs such as isoniazid, levofloxacin and capreomycin. Whole-genome sequencing (WGS) revealed that the induced resistant Mtb strains had accumulated diverse mutations. We found that rrs A1401G was the predominant mutation in aminoglycoside-resistant clinical Mtb isolates from Guangdong. In addition, this study provided global insight into the characteristics of the transcriptome in four representative induced strains and revealed that rrs mutated and unmutated aminoglycoside-resistant Mtb strains have different transcriptional profiles. WGS analysis and transcriptional profiling of Mtb strains during evolution revealed that Mtb strains harbouring rrs A1401G have an evolutionary advantage over other drug-resistant strains under the pressure of aminoglycosides because of their ultra-high resistance level and low physiological impact on the strain. The results of this study should advance our understanding of aminoglycoside resistance mechanisms.
Collapse
Affiliation(s)
- Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Liuyue Xu
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Kehao Peng
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, PR China
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Foshan 528000, PR China
| | - Yanxia Li
- Foshan Fourth People's Hospital, Foshan 528000, PR China
| | - Xuezhi Wang
- Foshan Fourth People's Hospital, Foshan 528000, PR China
| |
Collapse
|
10
|
Sazykin IS, Sazykina MA. The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene X 2023; 857:147170. [PMID: 36623672 DOI: 10.1016/j.gene.2023.147170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The review is devoted to bacterial genome destabilization by oxidative stress. The article discusses the main groups of substances causing such stress. Stress regulons involved in destabilization of genetic material and mechanisms enhancing mutagenesis, bacterial genome rearrangements, and horizontal gene transfer, induced by oxidative damage to cell components are also considered. Based on the analysis of publications, it can be claimed that rapid development of new food substrates and ecological niches by microorganisms occurs due to acceleration of genetic changes induced by oxidative stress, mediated by several stress regulons (SOS, RpoS and RpoE) and under selective pressure. The authors conclude that non-lethal oxidative stress is probably-one of the fundamental processes that guide evolution of prokaryotes and a powerful universal trigger for adaptive destabilization of bacterial genome under changing environmental conditions.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| |
Collapse
|
11
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
12
|
Mashayamombe M, Carda-Diéguez M, Mira A, Fitridge R, Zilm PS, Kidd SP. Subpopulations in Strains of Staphylococcus aureus Provide Antibiotic Tolerance. Antibiotics (Basel) 2023; 12:antibiotics12020406. [PMID: 36830316 PMCID: PMC9952555 DOI: 10.3390/antibiotics12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ability of Staphylococcus aureus to colonise different niches across the human body is linked to an adaptable metabolic capability, as well as its ability to persist within specific tissues despite adverse conditions. In many cases, as S. aureus proliferates within an anatomical niche, there is an associated pathology. The immune response, together with medical interventions such as antibiotics, often removes the S. aureus cells that are causing this disease. However, a common issue in S. aureus infections is a relapse of disease. Within infected tissue, S. aureus exists as a population of cells, and it adopts a diversity of cell types. In evolutionary biology, the concept of "bet-hedging" has established that even in positive conditions, there are members that arise within a population that would be present as non-beneficial, but if those conditions change, these traits could allow survival. For S. aureus, some of these cells within an infection have a reduced fitness, are not rapidly proliferating or are the cause of an active host response and disease, but these do remain even after the disease seems to have been cleared. This is true for persistence against immune responses but also as a continual presence in spite of antibiotic treatment. We propose that the constant arousal of suboptimal populations at any timepoint is a key strategy for S. aureus long-term infection and survival. Thus, understanding the molecular basis for this feature could be instrumental to combat persistent infections.
Collapse
Affiliation(s)
- Matipaishe Mashayamombe
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
- School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden
| | - Robert Fitridge
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Peter S. Zilm
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Stephen P. Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Centre for Antimicrobial Resistance Ecology (ACARE), The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| |
Collapse
|
13
|
Grézal G, Spohn R, Méhi O, Dunai A, Lázár V, Bálint B, Nagy I, Pál C, Papp B. Plasticity and Stereotypic Rewiring of the Transcriptome Upon Bacterial Evolution of Antibiotic Resistance. Mol Biol Evol 2023; 40:7013728. [PMID: 36718533 PMCID: PMC9927579 DOI: 10.1093/molbev/msad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
Collapse
Affiliation(s)
- Gábor Grézal
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Translational Microbiology Research Lab, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary,Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | | |
Collapse
|
14
|
Allan DS, Holbein BE. Iron Chelator DIBI Suppresses Formation of Ciprofloxacin-Induced Antibiotic Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1642. [PMID: 36421286 PMCID: PMC9687013 DOI: 10.3390/antibiotics11111642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 09/30/2023] Open
Abstract
Antibiotic resistance of bacterial pathogens results from their exposure to antibiotics and this has become a serious growing problem that limits effective use of antibiotics. Resistance can arise from mutations induced by antibiotic-mediated damage with these mutants possessing reduced target sensitivity. We have studied ciprofloxacin (CIP)-mediated killing of Staphylococcus aureus and the influence of the Reactive Oxygen Species (ROS) inactivator, thiourea and the iron chelator DIBI, on initial killing by CIP and their effects on survival and outgrowth upon prolonged exposure to CIP. CIP at 2× MIC caused a rapid initial killing which was not influenced by initial bacterial iron status and which was followed by robust recovery growth over 96 h exposure. Thiourea and DIBI did slow the initial rate of CIP killing but the overall extent of kill by 24 h exposure was like CIP alone. Thiourea permitted recovery growth whereas this was strongly suppressed by DIBI. Small Colony Variant (SCV) survivors were progressively enriched in the survivor population during CIP exposure, and these were found to have stable slow-growth phenotype and acquired resistance to CIP and moxifloxacin but not to other non-related antibiotics. DIBI totally suppressed SCV formation with all survivors remaining sensitive to CIP and to DIBI. DIBI exposure did not promote resistance to DIBI. Our evidence indicates a high potential for DIBI as an adjunct to CIP and other antibiotics to both improve antibiotic efficacy and to thwart antibiotic resistance development.
Collapse
Affiliation(s)
| | - Bruce E. Holbein
- Fe Pharmaceuticals Canada Inc. #58, The Labs at Innovacorp, 1344 Summer Street, Halifax, NS B3H O8A, Canada
| |
Collapse
|
15
|
Adi Wicaksono W, Braun M, Bernhardt J, Riedel K, Cernava T, Berg G. Trade-off for survival: Microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity. ENVIRONMENT INTERNATIONAL 2022; 168:107474. [PMID: 35988321 DOI: 10.1016/j.envint.2022.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The environmental microbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen asa bioindicatororganism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native microbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Maria Braun
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
16
|
Lin L, Wang Y, Srinivasan R, Zhang L, Song H, Song Q, Wang G, Lin X. Quantitative Proteomics Reveals That the Protein Components of Outer Membrane Vesicles (OMVs) in Aeromonas hydrophila Play Protective Roles in Antibiotic Resistance. J Proteome Res 2022; 21:1707-1717. [PMID: 35674493 DOI: 10.1021/acs.jproteome.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, the intracellular mechanisms that contribute to antibiotic resistance have received increasing attention, and outer membrane vesicles (OMVs) have been reported to be related to antibiotic resistance in several Gram-negative bacterial species. However, the intrinsic molecular mechanisms and the form of such antibiotic resistance are still largely unknown. In this study, OMVs from an oxytetracycline (OXY) sensitive aquatic pathogen, Aeromonas hydrophila (OXY-S), were found with significantly increased OXY resistance. Interestingly, the OXY-resistant strain (OXY-R) had a more protective role in OXY resistance. Therefore, a DIA-based quantitative proteomics analysis was performed to compare the differential expression of OMV proteins between OXY-R (OMVsR) and OXY-S (OMVsS). The results showed that seven proteins increased and five proteins decreased in OMVsR vs OMVsS. A subsequent antibiotics susceptibility assay showed that the deletion of icd, rpsF, and iscS significantly increased OXY sensitivity. Moreover, the exogenous addition of the crude OMV fractions of overexpressed recombinant proteins in E. coli with rRpsF, rIcd, rIscS, rOmpA, rPepA, rFrdA, and rRplQ demonstrated that these proteins promoted the OXY resistance of A. hydrophila. Overall, our results indicate the important protective role of OMVs in antibiotic resistance in A. hydrophila and provide novel insights on bacterial antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| |
Collapse
|
17
|
Zhang L, Yao Z, Tang H, Song Q, Song H, Yao J, Li Z, Xie X, Lin Y, Lin X. The lysine acetylation modification in the porin Aha1 of Aeromonas hydrophila regulates the uptake of multi-drug antibiotics. Mol Cell Proteomics 2022; 21:100248. [PMID: 35605723 PMCID: PMC9386498 DOI: 10.1016/j.mcpro.2022.100248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine acetylation (Kac) modification plays important roles in diverse physiological functions. However, there is little evidence on the role of Kac modification in bacterial antibiotic resistance. Here, we compared the differential expressions of whole-cell proteins and Kac peptides in oxytetracycline sensitive and oxytetracycline resistance (OXYR) strains of Aeromonas hydrophila using quantitative proteomics technologies. We observed a porin family protein Aha1 downregulated in the OXYR strain, which may have an important role in the OXY resistance. Interestingly, seven of eight Kac peptides of Aha1 decreased abundance in OXYR as well. Microbiologic assays showed that the K57R, K187R, and K197R Aha1 mutants significantly increased antibiotic resistance to OXY and reduced the intracellular OXY accumulation in OXY stress. Moreover, these Aha1 mutants displayed multidrug resistance features to tetracyclines and β-lactam antibiotics. The 3D model prediction showed that the Kac states of K57, K187, and K197 sites located at the extracellular pore vestibule of Aha1 may be involved in the uptake of specific types of antibiotics. Overall, our results indicate a novel antibiotic resistance mechanism mediated by Kac modification, which may provide a clue for the development of antibiotic therapy strategies. Aha1 plays important role on oxytetracycline resistance. The deletion of aha1 reduces intracellular oxytetracycline accumulation. The Kac status on Aha1 affects oxytetracycline susceptibility. The Kac status on Aha1 involve in the regulation of multidrug antibiotics uptake.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Zhangzhou Health Vocational College, Zhangzhou 363000, China
| | - Xiaofang Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Kim H, Burkinshaw BJ, Lam LG, Manera K, Dong TG. Identification of Small Molecule Inhibitors of the Pathogen Box against Vibrio cholerae. Microbiol Spectr 2021; 9:e0073921. [PMID: 34937180 PMCID: PMC8694189 DOI: 10.1128/spectrum.00739-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brianne J. Burkinshaw
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Linh G. Lam
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Manera
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Tao G. Dong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppée JY, Mazel D, Baharoglu Z. Sleeping ribosomes: Bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience 2021; 24:103128. [PMID: 34611612 PMCID: PMC8476650 DOI: 10.1016/j.isci.2021.103128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Indole is a molecule proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, although its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, confirmed by sucrose gradient analysis. We propose that, under stress conditions, RaiA-bound inactive 70S ribosomes are stored as “sleeping ribosomes”, and are rapidly reactivated upon stress relief. Our results point to an active process of persister formation through ribosome protection during translational stress (e.g., aminoglycoside treatment) and reactivation upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way. Indole is produced under sub-MIC tobramycin stress in V. cholerae and upregulates raiA RaiA is involved in indole-dependent formation of aminoglycoside specific persisters RaiA overexpression allows faster growth restart and increases 70S ribosome content RaiA-bound inactive 70S ribosomes form intact and reactivable sleeping ribosome pools
Collapse
Affiliation(s)
- Manon Lang
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Evelyne Krin
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Chloé Korlowski
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Odile Sismeiro
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Hugo Varet
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| |
Collapse
|
20
|
Tahmasebi H, Dehbashi S, Arabestani MR. Antibiotic resistance alters through iron-regulating Sigma factors during the interaction of Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2021; 11:18509. [PMID: 34531485 PMCID: PMC8445946 DOI: 10.1038/s41598-021-98017-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is a limiting factor in such a condition that usually is sequestered by the host during polymicrobial infections of Pseudomonas aeruginosa and Staphylococcus aureus. This study aimed to investigate the interaction of S. aureus and P. aeruginosa, which alters iron-related sigma factors regulation and antibiotic resistance. The antibiotic resistance of P. aeruginosa and S. aureus was investigated in a L929 cell culture model. The expression level of pvdS, hasI (P. aeruginosa sigma factors), and sigS (S. aureus sigma factor) genes was determined using Quantitative Real-Time PCR. pvdS and hasI were downregulated during co-culture with S. aureus, while the susceptibility to carbapenems increased (p-value < 0.0001). Also, there was a direct significant relationship between resistance to vancomycin with sigS. Regarding the findings of the current study, iron-related sigma factors of P. aeruginosa and S. aureus play a role in induction susceptibility to various antibiotics, including carbapenems and vancomycin.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Machine Learning of Bacterial Transcriptomes Reveals Responses Underlying Differential Antibiotic Susceptibility. mSphere 2021; 6:e0044321. [PMID: 34431696 PMCID: PMC8386450 DOI: 10.1128/msphere.00443-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro antibiotic susceptibility testing often fails to accurately predict in vivo drug efficacies, in part due to differences in the molecular composition between standardized bacteriologic media and physiological environments within the body. Here, we investigate the interrelationship between antibiotic susceptibility and medium composition in Escherichia coli K-12 MG1655 as contextualized through machine learning of transcriptomics data. Application of independent component analysis, a signal separation algorithm, shows that complex phenotypic changes induced by environmental conditions or antibiotic treatment are directly traced to the action of a few key transcriptional regulators, including RpoS, Fur, and Fnr. Integrating machine learning results with biochemical knowledge of transcription factor activation reveals medium-dependent shifts in respiration and iron availability that drive differential antibiotic susceptibility. By extension, the data generation and data analytics workflow used here can interrogate the regulatory state of a pathogen under any measured condition and can be applied to any strain or organism for which sufficient transcriptomics data are available. IMPORTANCE Antibiotic resistance is an imminent threat to global health. Patient treatment regimens are often selected based on results from standardized antibiotic susceptibility testing (AST) in the clinical microbiology lab, but these in vitro tests frequently misclassify drug effectiveness due to their poor resemblance to actual host conditions. Prior attempts to understand the combined effects of drugs and media on antibiotic efficacy have focused on physiological measurements but have not linked treatment outcomes to transcriptional responses on a systems level. Here, application of machine learning to transcriptomics data identified medium-dependent responses in key regulators of bacterial iron uptake and respiratory activity. The analytical workflow presented here is scalable to additional organisms and conditions and could be used to improve clinical AST by identifying the key regulatory factors dictating antibiotic susceptibility.
Collapse
|
22
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
23
|
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress. Antimicrob Agents Chemother 2021; 65:AAC.02004-20. [PMID: 33526493 DOI: 10.1128/aac.02004-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown. We generated Escherichia coli mutants that exhibited a suppressed ΔrecA gene in combination with inactivated ROS detoxification system genes (ΔsodA, ΔsodB, ΔkatG, ΔkatE, and ΔahpC) or inactivated oxidative stress regulator genes (ΔoxyR and ΔrpoS) to evaluate the interplay of both DNA repair and detoxification systems in drug response. Synergistic sensitization effects, ranging from 7.5- to 30-fold relative to the wild type, were observed with ciprofloxacin in double knockouts of recA and inactivated detoxification system genes. Compared to recA knockout, inactivation of an additional detoxification system gene reduced MIC values up to 8-fold. In growth curves, no growth was evident in mutants doubly deficient for recA gene and oxidative detoxification systems at subinhibitory concentrations of ciprofloxacin, in contrast to the recA-deficient strain. There was a marked reduction of viable bacteria in a short period of time when the recA gene and other detoxification system genes (katG, sodA, or ahpC) were inactivated (using absolute ciprofloxacin concentrations). At 4 h, a bactericidal effect of ciprofloxacin was observed for ΔkatG ΔrecA and ΔahpC ΔrecA double mutants compared to the single ΔrecA mutant (Δ3.4 log10 CFU/ml). Synergistic quinolone sensitization, by targeting the recA gene and oxidative detoxification stress systems, reinforces the role of both DNA repair systems and ROS in antibiotic-induced bacterial cell death, opening up a new pathway for antimicrobial sensitization.
Collapse
|
24
|
Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci Rep 2021; 11:6112. [PMID: 33731833 PMCID: PMC7969968 DOI: 10.1038/s41598-021-85509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
25
|
Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat Commun 2020; 11:3105. [PMID: 32561723 PMCID: PMC7305214 DOI: 10.1038/s41467-020-16932-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics. The antibiotic resistance crisis calls for new ways of restricting the ability of bacteria to evolve resistance. Here, Lukačišinová et al. perform highly controlled evolution experiments in E. coli strains to identify genetic perturbations that strongly limit the evolution of antibiotic resistance through epistasis.
Collapse
|
26
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
27
|
Li Z, Wang Y, Li X, Lin Z, Lin Y, Srinivasan R, Lin X. The characteristics of antibiotic resistance and phenotypes in 29 outer‐membrane protein mutant strains inAeromonas hydrophila. Environ Microbiol 2019; 21:4614-4628. [DOI: 10.1111/1462-2920.14761] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiaoyan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian ProvinceInstitute of Oceanology, Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
28
|
Nair RR, Sharan D, Ajitkumar P. A Minor Subpopulation of Mycobacteria Inherently Produces High Levels of Reactive Oxygen Species That Generate Antibiotic Resisters at High Frequency From Itself and Enhance Resister Generation From Its Major Kin Subpopulation. Front Microbiol 2019; 10:1842. [PMID: 31456773 PMCID: PMC6700507 DOI: 10.3389/fmicb.2019.01842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Antibiotic-exposed bacteria produce elevated levels of reactive oxygen species (ROS), to which either they succumb or get mutated genome-wide to generate antibiotic resisters. We recently showed that mycobacterial cultures contained two subpopulations, short-sized cells (SCs; ∼10%) and normal/long-sized cells (NCs; ∼90%). The SCs were significantly more antibiotic-susceptible than the NCs. It implied that the SCs might naturally be predisposed to generate significantly higher levels of ROS than the NCs. This in turn could make the SCs more susceptible to antibiotics or generate more resisters as compared to the NCs. Investigation into this possibility showed that the SCs in the actively growing mid-log phase culture naturally generated significantly high levels of superoxide, as compared to the equivalent NCs, due to the naturally high expression of a specific NADH oxidase in the SCs. This caused labile Fe2+ leaching from 4Fe-4S proteins and elevated H2O2 formation through superoxide dismutation. Thus, the SCs of both Mycobacterium smegmatis and Mycobacterium tuberculosis inherently contained significantly higher levels of H2O2 and labile Fe2+ than the NCs. This in turn produced significantly higher levels of hydroxyl radical through Fenton reaction, promoting enhanced antibiotic resister generation from the SCs than from the NCs. The SCs, when mixed back with the NCs, at their natural proportion in the actively growing mid-log phase culture, enhanced antibiotic resister generation from the NCs, to a level equivalent to that from the unfractionated whole culture. The enhanced antibiotic resister generation from the NCs in the reconstituted SCs-NCs natural mixture was found to be due to the high levels of H2O2 secreted by the SCs. Thus, the present work unveils and documents the metabolic designs of two mycobacterial subpopulations where one subpopulation produces high ROS levels, despite higher susceptibility, to generate significantly higher number of antibiotic resisters from itself and to enhance resister generation from its kin subpopulation. These findings show the existence of an inherent natural mechanism in both the non-pathogenic and pathogenic mycobacteria to generate antibiotic resisters. The presence of the SCs and the NCs in the pulmonary tuberculosis patients’ sputum, reported by us earlier, alludes to the clinical significance of the study.
Collapse
Affiliation(s)
- Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
29
|
Punchi Hewage AND, Yao H, Nammalwar B, Gnanasekaran KK, Lovell S, Bunce RA, Eshelman K, Phaniraj SM, Lee MM, Peterson BR, Battaile KP, Reitz AB, Rivera M. Small Molecule Inhibitors of the BfrB-Bfd Interaction Decrease Pseudomonas aeruginosa Fitness and Potentiate Fluoroquinolone Activity. J Am Chem Soc 2019; 141:8171-8184. [PMID: 31038945 PMCID: PMC6535718 DOI: 10.1021/jacs.9b00394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The iron storage
protein bacterioferritin (BfrB) is central to
bacterial iron homeostasis. The mobilization of iron from BfrB, which
requires binding by a cognate ferredoxin (Bfd), is essential to the
regulation of cytosolic iron levels in P. aeruginosa. This paper describes the structure-guided development of small
molecule inhibitors of the BfrB–Bfd protein–protein
interaction. The process was initiated by screening a fragment library
and followed by obtaining the structure of a fragment hit bound to
BfrB. The structural insights were used to develop a series of 4-(benzylamino)-
and 4-((3-phenylpropyl)amino)-isoindoline-1,3-dione analogs that selectively
bind BfrB at the Bfd binding site. Challenging P. aeruginosa cells with the 4-substituted isoindoline analogs revealed a dose-dependent
growth phenotype. Further investigation determined that the analogs
elicit a pyoverdin hyperproduction phenotype that is consistent with
blockade of the BfrB–Bfd interaction and ensuing irreversible
accumulation of iron in BfrB, with concomitant depletion of iron in
the cytosol. The irreversible accumulation of iron in BfrB prompted
by the 4-substituted isoindoline analogs was confirmed by visualization
of BfrB-iron in P. aeruginosa cell lysates separated
on native PAGE gels and stained for iron with Ferene S. Challenging P. aeruginosa cultures with a combination of commercial
fluoroquinolone and our isoindoline analogs results in significantly
lower cell survival relative to treatment with either antibiotic or
analog alone. Collectively, these findings furnish proof of concept
for the usefulness of small molecule probes designed to dysregulate
bacterial iron homeostasis by targeting a protein–protein interaction
pivotal for iron storage in the bacterial cell.
Collapse
Affiliation(s)
- Achala N D Punchi Hewage
- Department of Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Huili Yao
- Department of Chemistry , Louisiana State University , 229A Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Baskar Nammalwar
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | | | - Scott Lovell
- Protein Structure Laboratory , University of Kansas , 2034 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Richard A Bunce
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Kate Eshelman
- Department of Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Sahishna M Phaniraj
- Department of Medicinal Chemistry , University of Kansas , 2034 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Molly M Lee
- Department of Medicinal Chemistry , University of Kansas , 2034 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Blake R Peterson
- Department of Medicinal Chemistry , University of Kansas , 2034 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Kevin P Battaile
- IMCA-CAT , Hauptman Woodward Medical Research Institute , 9700 South Cass Avenue, Building 435A , Argonne , Illinois 60439 , United States
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc. , 3805 Old Easton Road , Doylestown , Pennsylvania 18902 , United States
| | - Mario Rivera
- Department of Chemistry , Louisiana State University , 229A Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
30
|
Banerjee D, Raghunathan A. Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum. PLoS One 2019; 14:e0210008. [PMID: 30608971 PMCID: PMC6319732 DOI: 10.1371/journal.pone.0210008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Anu Raghunathan
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
31
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
32
|
Argáez-Correa W, Alvarez-Sánchez ME, Arana-Argáez VE, Ramírez-Camacho MA, Novelo-Castilla JS, Coral-Martínez TI, Torres-Romero JC. The Role of Iron Status in the Early Progression of Metronidazole Resistance in Trichomonas vaginalis Under Microaerophilic Conditions. J Eukaryot Microbiol 2018; 66:309-315. [PMID: 30047563 DOI: 10.1111/jeu.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Trichomonas vaginalis is the etiological agent of human trichomoniasis. Metronidazole has high treatment success rate among trichomoniasis patients. However, metronidazole-resistant T. vaginalis has been reported, contributing in an increasing number of refractory cases. The mechanism of metronidazole resistance in this parasite is still unclear. In the vaginal environment, where the microaerophilic conditions prevail but the iron concentration is constantly fluctuating, the metronidazole resistance profile of T. vaginalis could be altered. In this study, we developed metronidazole-resistant strains of T. vaginalis and evaluate if iron availability is important to the action of the drug. The modulation of iron levels and iron chelation affected the actions of metronidazole both in susceptible and resistant strains. Interestingly, the early resistant strains exhibited minor iron content. The results of transcription analysis in the early resistant strains showed dysregulation in the expression of genes that codified proteins involved in iron transporter, iron-sulfur cluster assemblage, and oxidative stress response, which could not be observed in the late resistant and susceptible strains. Our results indicate that iron content plays an important role in the metronidazole action in T. vaginalis and likely to be related to iron-sulfur proteins involved in metronidazole activation and oxidative stress via Fenton reaction.
Collapse
Affiliation(s)
- Wendy Argáez-Correa
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - María E Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, 03100, México
| | - Victor E Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Mario A Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Jazmín S Novelo-Castilla
- Laboratorio de Espectroscopía Atómica, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Tania I Coral-Martínez
- Laboratorio de Cromatografía, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Julio C Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| |
Collapse
|
33
|
Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, Nyerges Á, Györkei Á, Kincses A, Dér A, Walter FR, Deli MA, Urbán E, Hegedűs Z, Olajos G, Méhi O, Bálint B, Nagy I, Martinek TA, Papp B, Pál C. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 2018; 3:718-731. [PMID: 29795541 DOI: 10.1038/s41564-018-0164-0] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Kincses
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Dér
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Hegedűs
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Gábor Olajos
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - István Nagy
- SeqOmics Biotechnology Ltd, Mórahalom, Hungary.,Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
34
|
Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli. G3-GENES GENOMES GENETICS 2017; 7:3955-3966. [PMID: 29046437 PMCID: PMC5714492 DOI: 10.1534/g3.117.300284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants.
Collapse
|
35
|
Yang JH, Bening SC, Collins JJ. Antibiotic efficacy-context matters. Curr Opin Microbiol 2017; 39:73-80. [PMID: 29049930 DOI: 10.1016/j.mib.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 02/01/2023]
Abstract
Antibiotic lethality is a complex physiological process, sensitive to external cues. Recent advances using systems approaches have revealed how events downstream of primary target inhibition actively participate in antibiotic death processes. In particular, altered metabolism, translational stress and DNA damage each contribute to antibiotic-induced cell death. Moreover, environmental factors such as oxygen availability, extracellular metabolites, population heterogeneity and multidrug contexts alter antibiotic efficacy by impacting bacterial metabolism and stress responses. Here we review recent studies on antibiotic efficacy and highlight insights gained on the involvement of cellular respiration, redox stress and altered metabolism in antibiotic lethality. We discuss the complexity found in natural environments and highlight knowledge gaps in antibiotic lethality that may be addressed using systems approaches.
Collapse
Affiliation(s)
- Jason H Yang
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - Sarah C Bening
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Cir, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Abstract
Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this question, we have generated E. coli mutants that exhibited a spectrum of SOS activity, ranging from a natural SOS response to a hypoinducible or constitutively suppressed response. We tested the effects of these mutations on quinolone resistance reversion under therapeutic concentrations in a set of isogenic strains carrying different combinations of chromosome- and plasmid-mediated quinolone resistance mechanisms with susceptible, low-level quinolone resistant, resistant, and highly resistant phenotypes. Our comprehensive analysis opens up a new strategy for reversing drug resistance by targeting the SOS response.
Collapse
|
37
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
38
|
Machuca J, Recacha E, Briales A, Díaz-de-Alba P, Blazquez J, Pascual Á, Rodríguez-Martínez JM. Cellular Response to Ciprofloxacin in Low-Level Quinolone-Resistant Escherichia coli. Front Microbiol 2017; 8:1370. [PMID: 28769919 PMCID: PMC5516121 DOI: 10.3389/fmicb.2017.01370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Bactericidal activity of quinolones has been related to a combination of DNA fragmentation, reactive oxygen species (ROS) production and programmed cell death (PCD) systems. The underlying molecular systems responsible for reducing bactericidal effect during antimicrobial therapy in low-level quinolone resistance (LLQR) phenotypes need to be clarified. To do this and also define possible new antimicrobial targets, the transcriptome profile of isogenic Escherichia coli harboring quinolone resistance mechanisms in the presence of a clinical relevant concentration of ciprofloxacin was evaluated. A marked differential response to ciprofloxacin of either up- or downregulation was observed in LLQR strains. Multiple genes implicated in ROS modulation (related to the TCA cycle, aerobic respiration and detoxification systems) were upregulated (sdhC up to 63.5-fold) in mutants with LLQR. SOS system components were downregulated (recA up to 30.7-fold). yihE, a protective kinase coding for PCD, was also upregulated (up to 5.2-fold). SdhC inhibition sensitized LLQR phenotypes (up to ΔLog = 2.3 after 24 h). At clinically relevant concentrations of ciprofloxacin, gene expression patterns in critical systems to bacterial survival and mutant development were significantly modified in LLQR phenotypes. Chemical inhibition of SdhC (succinate dehydrogenase) validated modulation of ROS as an interesting target for bacterial sensitization.
Collapse
Affiliation(s)
- Jesús Machuca
- Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena y Virgen del RocíoSeville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de SevillaSevilla, Spain
| | - Esther Recacha
- Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena y Virgen del RocíoSeville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de SevillaSevilla, Spain
| | - Alejandra Briales
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos IIIMadrid, Spain
- Departamento de Microbiología, Universidad de SevillaSevilla, Spain
| | - Paula Díaz-de-Alba
- Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena y Virgen del RocíoSeville, Spain
| | - Jesús Blazquez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de SevillaSevilla, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos IIIMadrid, Spain
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Álvaro Pascual
- Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena y Virgen del RocíoSeville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de SevillaSevilla, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos IIIMadrid, Spain
| | - José-Manuel Rodríguez-Martínez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de SevillaSevilla, Spain
- Red Española de Investigación en Patología Infecciosa, Instituto de Salud Carlos IIIMadrid, Spain
- Departamento de Microbiología, Universidad de SevillaSevilla, Spain
| |
Collapse
|
39
|
Lukačišinová M, Bollenbach T. Toward a quantitative understanding of antibiotic resistance evolution. Curr Opin Biotechnol 2017; 46:90-97. [PMID: 28292709 DOI: 10.1016/j.copbio.2017.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/27/2023]
Abstract
The rising prevalence of antibiotic resistant bacteria is an increasingly serious public health challenge. To address this problem, recent work ranging from clinical studies to theoretical modeling has provided valuable insights into the mechanisms of resistance, its emergence and spread, and ways to counteract it. A deeper understanding of the underlying dynamics of resistance evolution will require a combination of experimental and theoretical expertise from different disciplines and new technology for studying evolution in the laboratory. Here, we review recent advances in the quantitative understanding of the mechanisms and evolution of antibiotic resistance. We focus on key theoretical concepts and new technology that enables well-controlled experiments. We further highlight key challenges that can be met in the near future to ultimately develop effective strategies for combating resistance.
Collapse
Affiliation(s)
| | - Tobias Bollenbach
- IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria; University of Cologne, Zülpicher Str. 47a, D-50674 Cologne, Germany.
| |
Collapse
|
40
|
Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. mSphere 2017; 2:mSphere00009-17. [PMID: 28217741 PMCID: PMC5311112 DOI: 10.1128/msphere.00009-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.
Collapse
|
41
|
Nair R, Shariq M, Dhamgaye S, Mukhopadhyay CK, Shaikh S, Prasad R. Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:345-354. [PMID: 27889440 DOI: 10.1016/j.bbamcr.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Recently, we have reported that the conditional mutant of the heat shock factor-1 (HSF1) in Candida albicans displays enhanced susceptibility not only towards a plant alkaloid, berberine, but also to diverse antifungal drugs. The present study attempts to identify additional phenotypes highlighting the non-heat shock responsive roles of HSF1 that could be correlated with the enhanced drug susceptibility. We uncover an intricate relationship between cellular iron and HSF1 mediated drug susceptibility of C. albicans. Interestingly, at 30°C, the conditional deletion of HSF1 while presented no growth defect, exhibited low intracellular iron. Notably, exogenous supplementation of iron reversed growth defects of HSF1 mutant when grown at 37°C. We provide evidence that the HSF1 mutant presents interesting phenotypes at basal conditions and are implicated in enhanced drug susceptibilities, dysfunctional mitochondria, decreased resistance towards oxidative stress and compromised cell wall integrity, all of which could be fully reversed upon iron supplementation. The HSF1 mutant also displayed defective filamentation at basal conditions under various solid hypha inducing media. Further, chelation of iron of HSF1 mutant cells led to severe growth defects and apparently triggers an iron starvation signal in the cell thus, demonstrating that HSF1 is essential for C. albicans cells to tolerate the iron deprivation stress. Together, apart from the well-established roles of HSF1 in reciprocation of thermal stress, this study extends its role under basal conditions and provides molecular insights into the role of HSF1 in iron deprivation and drug defense of C. albicans.
Collapse
Affiliation(s)
- Remya Nair
- Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth University, Pune, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Shariq
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Shamim Shaikh
- Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Gurgaon, India.
| |
Collapse
|
42
|
Lin CS, Tsai YH, Chang CJ, Tseng SF, Wu TR, Lu CC, Wu TS, Lu JJ, Horng JT, Martel J, Ojcius DM, Lai HC, Young JD. An iron detection system determines bacterial swarming initiation and biofilm formation. Sci Rep 2016; 6:36747. [PMID: 27845335 PMCID: PMC5109203 DOI: 10.1038/srep36747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe3+) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe3+) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe3+, or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe3+ to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle.
Collapse
Affiliation(s)
- Chuan-Sheng Lin
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Yu-Huan Tsai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Shun-Fu Tseng
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen University, New Taipei City, Taiwan, Republic of China
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, United States of America
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, United States of America
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| |
Collapse
|
43
|
Monteiro R, Hébraud M, Chafsey I, Poeta P, Igrejas G. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal? J Proteomics 2016; 145:167-176. [PMID: 27118263 DOI: 10.1016/j.jprot.2016.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Abstract
UNLABELLED β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Escherichia coli strains 5A, 10A, 12A and 23B isolated from Seagulls feces, are cefotaxime-resistant strains that produces extended-spectrum beta-lactamases. Bacterial resistance to these antibiotics occurs predominantly through structural modification on the penicillin-binding proteins and enzymatic inactivation by extended-spectrum β-lactamases. Using classical proteomic techniques (2D-GE) coupled to mass spectrometry and bioinformatics extended analysis, in this study, we report several significant differences in cytoplasmic proteins expression when the strains were submitted to antibiotic stress and when the resistant strains were compared with a non-resistant strain. A total of 79 differentially expressed spots were collected for protein identification. Significant level of expression was found in antibiotic resistant proteins like β-lactamase CTX-M-1 and TEM and also in proteins related with oxidative stress. This approach might help us understand which pathways form barriers for antibiotics, another possible new pathways involved in antibiotic resistance to devise appropriate strategies for their control already recognized by the World Health Organization and the European Commission. BIOLOGICAL SIGNIFICANCE This study highlights the protein differences when a resistant strain is under antibiotic pressure and how different can be a sensible and resistant strain at the protein level. This survey might help us to understand the specifics barriers for antibiotics and which pathways are involved in its resistance crosswise the wildlife.
Collapse
Affiliation(s)
- R Monteiro
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - M Hébraud
- UR454 Microbiology, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France; Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France
| | - I Chafsey
- UR454 Microbiology, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France
| | - P Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - G Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal.
| |
Collapse
|
44
|
Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Rep 2015; 13:968-80. [PMID: 26565910 DOI: 10.1016/j.celrep.2015.09.059] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.
Collapse
Affiliation(s)
- Peter Belenky
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA.
| | - Jonathan D Ye
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Caroline B M Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Nadia R Cohen
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael A Lobritz
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Saloni Jain
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Eric G Schwarz
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Rodríguez-Rojas A, Makarova O, Müller U, Rolff J. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria. PLoS Genet 2015; 11:e1005546. [PMID: 26430769 PMCID: PMC4592263 DOI: 10.1371/journal.pgen.1005546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
- * E-mail: (ARR); (JR)
| | - Olga Makarova
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Uta Müller
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
- * E-mail: (ARR); (JR)
| |
Collapse
|