1
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
2
|
Reza Sepand M, Bigdelou B, Salek Maghsoudi A, Sanadgol N, Ho JQ, Chauhan P, Raoufi M, Kermanian A, Esfandyarpour R, Javad Hajipour M, Zanganeh S. Ferroptosis: Environmental causes, biological redox signaling responses, cancer and other health consequences. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Alipour S, Wojciechowska N, Bujarska-Borkowska B, Kalemba EM. Distinct redox state regulation in the seedling performance of Norway maple and sycamore. JOURNAL OF PLANT RESEARCH 2023; 136:83-96. [PMID: 36385674 PMCID: PMC9831958 DOI: 10.1007/s10265-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | | | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland.
| |
Collapse
|
4
|
Vitale L, Vitale E, Bianchi AR, De Maio A, Arena C. Role of Poly(ADP-Ribose) Polymerase (PARP) Enzyme in the Systemic Acquired Acclimation Induced by Light Stress in Phaseolus vulgaris L. Plants. PLANTS 2022; 11:plants11141870. [PMID: 35890503 PMCID: PMC9316121 DOI: 10.3390/plants11141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Plants are able to acclimate to environmental constraints through functional modifications that may also occur in tissues that are not directly exposed to stress. This process is termed “systemic acquired acclimation.” The present study aims to evaluate the involvement of PolyADP-ribose) polymerase (PARP) protein in the acclimation process to high light (HL) stress in Phaseolus vulgaris plants. For this purpose, some leaves located at the top of the plant, in the apical position, were directly exposed to HL (“inducing” leaves), while others on the same plant, distal from the top, continued to be exposed to growth light (“receiving” leaves) to verify the hypothesis that an “alert” message may be transferred from injured tissues to distal ones. Biochemical and eco-physiological analyses, namely PARP activity, H2O2 and water- and fat-soluble antioxidants (i.e., ascorbic acid, tocopherol, glutathione (GSH), phenols, carotenoids, etc.) content, and chlorophyll fluorescence measurements were performed on both “inducing” and “receiving” leaves. Even if no change in PARP expression was found, its activity increased in “receiving” unstressed leaves in response to the light stress duration experimented by “inducing” leaves, while antioxidant capacity declined. When the “receiving” leaves were exposed to HL, the PARP activity returned to the control value, while antioxidant capacity photosynthetic electron transport rate (Jf) decreased and increased, respectively, compared to Control. Our results seem to show an acclimation pathway triggered in remote tissues not yet subjected to stress, likely involving a reactive oxygen species wave activating the PARP enzyme in a mechanism still to be clarified. In addition, the increased tolerance of plants directly exposed to HL could implicate a boosted synthesis of soluble antioxidants accompanied by a reduction of PARP activity to reduce excessive consumption of NAD(P).
Collapse
Affiliation(s)
- Luca Vitale
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), National Research Council of Italy (CNR), P. le Enrico Fermi 1, Loc. Porto del Granatello, 80055 Portici, Italy;
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (E.V.); (A.R.B.)
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (E.V.); (A.R.B.)
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (E.V.); (A.R.B.)
- Correspondence: (A.D.M.); (C.A.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (E.V.); (A.R.B.)
- Correspondence: (A.D.M.); (C.A.)
| |
Collapse
|
5
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
6
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
7
|
Alipour S, Bilska K, Stolarska E, Wojciechowska N, Kalemba EM. Nicotinamide adenine dinucleotides are associated with distinct redox control of germination in Acer seeds with contrasting physiology. PLoS One 2021; 16:e0245635. [PMID: 33503034 PMCID: PMC7840005 DOI: 10.1371/journal.pone.0245635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Seed germination is a complex process enabling plant reproduction. Germination was found to be regulated at the proteome, metabolome and hormonal levels as well as via discrete post-translational modification of proteins including phosphorylation and carbonylation. Redox balance is also involved but less studied. Acer seeds displaying orthodox and recalcitrant characteristics were investigated to determine the levels of redox couples of nicotinamide adenine dinucleotide (NAD) phosphate (NADP) and integrated with the levels of ascorbate and glutathione. NAD and NADP concentrations were higher in Norway maple seeds and exceptionally high at the germinated stage, being the most contrasting parameter between germinating Acer seeds. In contrast, NAD(P)H/NAD(P)+ ratios were higher in sycamore seeds, thus exhibiting higher reducing power. Despite distinct concentrations of ascorbate and glutathione, both seed types attained in embryonic axes and cotyledons had similar ratios of reduced/oxidized forms of ascorbate and half-cell reduction potential of glutathione at the germinated stage. Both species accomplished germination displaying different strategies to modulate redox status. Sycamore produced higher amounts of ascorbate and maintained pyridine nucleotides in reduced forms. Interestingly, lower NAD(P) concentrations limited the regeneration of ascorbate and glutathione but dynamically drove metabolic reactions, particularly in this species, and contributed to faster germination. We suggest that NAD(P) is an important player in regulating redox status during germination in a distinct manner in Norway maple and sycamore seeds.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | | | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | | |
Collapse
|
8
|
Luo J, Havé M, Clément G, Tellier F, Balliau T, Launay-Avon A, Guérard F, Zivy M, Masclaux-Daubresse C. Integrating multiple omics to identify common and specific molecular changes occurring in Arabidopsis under chronic nitrate and sulfate limitations. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6471-6490. [PMID: 32687580 DOI: 10.1093/jxb/eraa337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.
Collapse
Affiliation(s)
- Jie Luo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Florence Guérard
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
9
|
Hendrix S, Jozefczak M, Wójcik M, Deckers J, Vangronsveld J, Cuypers A. Glutathione: A key player in metal chelation, nutrient homeostasis, cell cycle regulation and the DNA damage response in cadmium-exposed Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:498-507. [PMID: 32673998 DOI: 10.1016/j.plaphy.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Glutathione (GSH) is an important player in plant responses to cadmium (Cd) through its dual function as an antioxidant and precursor for metal-chelating phytochelatins (PCs). In addition, it was shown to be involved in cell cycle regulation in Arabidopsis thaliana roots, but its involvement in this process in leaves is largely unknown and has never been evaluated in Cd-exposed plants. This study aimed to elucidate the role of GSH in leaf growth and development, metal chelation, nutrient homeostasis and cell cycle regulation in A. thaliana plants upon prolonged Cd exposure. Responses were compared between wild-type (WT) plants and three GSH-deficient mutants. Our results indicate that PC production remains important in plants exposed to Cd for an extended duration. Furthermore, an important role for GSH in regulating nutrient homeostasis in Cd-exposed plants was revealed. Cell cycle analysis demonstrated that negative effects of Cd exposure on cell division and endoreplication were more pronounced in leaves of the GSH-deficient cadmium-sensitive 2-1 (cad2-1) mutant in comparison to the WT, indicating the involvement of GSH in cell cycle regulation. Finally, a crucial role for GSH in transcriptional activation of the Cd-induced DNA damage response (DDR) was revealed, as the Cd-induced upregulation of DDR-related genes was either less pronounced or completely abolished in leaves of the GSH-deficient mutants.
Collapse
Affiliation(s)
- Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Marijke Jozefczak
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Małgorzata Wójcik
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jana Deckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
10
|
Sharma L, Priya M, Kaushal N, Bhandhari K, Chaudhary S, Dhankher OP, Prasad PVV, Siddique KHM, Nayyar H. Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:569-594. [PMID: 31328236 DOI: 10.1093/jxb/erz333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 05/18/2023]
Abstract
Among various abiotic stresses, heat stress is one of the most damaging, threatening plant productivity and survival all over the world. Warmer temperatures due to climatic anomalies above optimum growing temperatures have detrimental impacts on crop yield potential as well as plant distribution patterns. Heat stress affects overall plant metabolism in terms of physiology, biochemistry, and gene expression. Membrane damage, protein degradation, enzyme inactivation, and the accumulation of reactive oxygen species are some of the harmful effects of heat stress that cause injury to various cellular compartments. Although plants are equipped with various defense strategies to counteract these adversities, their defensive means are not sufficient to defend against the ever-rising temperatures. Hence, substantial yield losses have been observed in all crop species under heat stress. Here, we describe the involvement of various plant growth-regulators (PGRs) (hormones, polyamines, osmoprotectants, antioxidants, and other signaling molecules) in thermotolerance, through diverse cellular mechanisms that protect cells under heat stress. Several studies involving the exogenous application of PGRs to heat-stressed plants have demonstrated their role in imparting tolerance, suggesting the strong potential of these molecules in improving the performance of food crops grown under high temperature.
Collapse
Affiliation(s)
| | - Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Neeru Kaushal
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
García-Giménez JL, Romá-Mateo C, Pallardó FV. Oxidative post-translational modifications in histones. Biofactors 2019; 45:641-650. [PMID: 31185139 DOI: 10.1002/biof.1532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 01/12/2023]
Abstract
Epigenetic regulation is attracting much attention because it explains many of the effects that the external environment induces in organisms. Changes in the cellular redox status and even more specifically in its nuclear redox compartment is one of these examples. Redox changes can induce modulation of the epigenetic regulation in cells. Here we present a few cases where reactive oxygen or nitrogen species induces epigenetic marks in histones. Posttranslational modification of these proteins like histone nitrosylation, carbonylation, or glutathionylation together with other mechanisms not reviewed here are the cornerstones of redox-related epigenetic regulation. We currently face a new field of research with potential important consequences for the treatment of many pathologies.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| |
Collapse
|
12
|
Rissel D, Peiter E. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Int J Mol Sci 2019; 20:E1638. [PMID: 30986964 PMCID: PMC6479469 DOI: 10.3390/ijms20071638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient post-translational protein modification that was described first in mammalian cells. Activated by the sensing of DNA strand breaks, poly(ADP-ribose)polymerase1 (PARP1) transfers ADP-ribose units onto itself and other target proteins using NAD⁺ as a substrate. Subsequently, DNA damage responses and other cellular responses are initiated. In plants, poly(ADP-ribose) polymerases (PARPs) have also been implicated in responses to DNA damage. The Arabidopsis genome contains three canonical PARP genes, the nomenclature of which has been uncoordinated in the past. Albeit assumptions concerning the function and roles of PARP proteins in planta have often been inferred from homology and structural conservation between plant PARPs and their mammalian counterparts, plant-specific roles have become apparent. In particular, PARPs have been linked to stress responses of plants. A negative role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants; in response to pathogen-associated molecular patterns, a positive role has been suggested. However, reports have been inconsistent, and the effects of PARP inhibitors appear to be more robust than the genetic abolition of PARP gene expression, indicating the presence of alternative targets of those drugs. Collectively, recent evidence suggests a conditionality of stress-related phenotypes of parp mutants and calls for a reconsideration of PARP inhibitor studies on plants. This review critically summarizes our current understanding of poly(ADP-ribosylation) and PARP proteins in plants, highlighting similarities and differences to human PARPs, areas of controversy, and requirements for future studies.
Collapse
Affiliation(s)
- Dagmar Rissel
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut (JKI), 38104 Braunschweig, Germany.
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
| |
Collapse
|
13
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
14
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
15
|
Foyer CH, Pellny TK, Locato V, Hull J, De Gara L. Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. Methods Mol Biol 2019; 1990:165-181. [PMID: 31148071 DOI: 10.1007/978-1-4939-9463-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signalling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced ROS accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly(ADP-ribose)polymerase (PARP) during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.
Collapse
Affiliation(s)
| | - Till K Pellny
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vittoria Locato
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathon Hull
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura De Gara
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Bernal-Vicente A, Cantabella D, Petri C, Hernández JA, Diaz-Vivancos P. The Salt-Stress Response of the Transgenic Plum Line J8-1 and Its Interaction with the Salicylic Acid Biosynthetic Pathway from Mandelonitrile. Int J Mol Sci 2018; 19:ijms19113519. [PMID: 30413110 PMCID: PMC6274726 DOI: 10.3390/ijms19113519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022] Open
Abstract
Salinity is considered as one of the most important abiotic challenges that affect crop productivity. Plant hormones, including salicylic acid (SA), are key factors in the defence signalling output triggered during plant responses against environmental stresses. We have previously reported in peach a new SA biosynthetic pathway from mandelonitrile (MD), the molecule at the hub of the cyanogenic glucoside turnover in Prunus sp. In this work, we have studied whether this new SA biosynthetic pathway is also present in plum and the possible role this pathway plays in plant plasticity under salinity, focusing on the transgenic plum line J8-1, which displays stress tolerance via an enhanced antioxidant capacity. The SA biosynthesis from MD in non-transgenic and J8-1 micropropagated plum shoots was studied by metabolomics. Then the response of J8-1 to salt stress in presence of MD or Phe (MD precursor) was assayed by measuring: chlorophyll content and fluorescence parameters, stress related hormones, levels of non-enzymatic antioxidants, the expression of two genes coding redox-related proteins, and the content of soluble nutrients. The results from in vitro assays suggest that the SA synthesis from the MD pathway demonstrated in peach is not clearly present in plum, at least under the tested conditions. Nevertheless, in J8-1 NaCl-stressed seedlings, an increase in SA was recorded as a result of the MD treatment, suggesting that MD could be involved in the SA biosynthesis under NaCl stress conditions in plum plants. We have also shown that the plum line J8-1 was tolerant to NaCl under greenhouse conditions, and this response was quite similar in MD-treated plants. Nevertheless, the MD treatment produced an increase in SA, jasmonic acid (JA) and reduced ascorbate (ASC) contents, as well as in the coefficient of non-photochemical quenching (qN) and the gene expression of Non-Expressor of Pathogenesis-Related 1 (NPR1) and thioredoxin H (TrxH) under salinity conditions. This response suggested a crosstalk between different signalling pathways (NPR1/Trx and SA/JA) leading to salinity tolerance in the transgenic plum line J8-1.
Collapse
Affiliation(s)
- Agustina Bernal-Vicente
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
| | - Daniel Cantabella
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain.
| | - Cesar Petri
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
| | - José Antonio Hernández
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
| | - Pedro Diaz-Vivancos
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
17
|
Vidal A, Cantabella D, Bernal-Vicente A, Díaz-Vivancos P, Hernández JA. Nitrate- and nitric oxide-induced plant growth in pea seedlings is linked to antioxidative metabolism and the ABA/GA balance. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:13-20. [PMID: 30138843 DOI: 10.1016/j.jplph.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 05/07/2023]
Abstract
This study looks at the effects of potassium nitrate (KNO3) and sodium nitroprusside (SNP), a nitric oxide (NO)-donor, on the development, antioxidant defences and on the abscisic acid (ABA) and gibberellin (GA) levels in pea seedlings. Results show that 10 mM KNO3 and 50 μM SNP stimulate seedling fresh weight (FW), although this effect is not reverted by the action of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO-scavenger. The KNO3 treatment increased peroxidase (POX) and ascorbate oxidase (AOX) activities. SNP, on the other hand, reduced monodehydroascorbate reductase (MDHAR) activity and produced a significant increase in superoxide dismutase (SOD), POX and AOX activities. The "KNO3 plus cPTIO" treatment increased ascorbate peroxidase (APX), MDHAR, glutathione reductase (GR) and SOD activities, but POX activity decreased in relation to the KNO3 treatment. The "SNP plus cPTIO" treatment increased APX and MDHAR activities, whereas a huge decrease in POX activity occurred. Both the KNO3 and the SNP treatments increased reduced ascorbate (ASC) concentrations, which reached control values in the presence of cPTIO. All treatments increased the dehydroascorbate (DHA) level in pea seedlings, leading to a decrease in the redox state of ascorbate. In the "KNO3 plus cPTIO" treatment, an increase in the redox state of ascorbate was observed. Glutathione contents, however, were higher in the presence of SNP than in the presence of KNO3. In addition, KNO3 produced an accumulation of oxidised glutathione (GSSG), especially in the presence of cPTIO, leading to a decrease in the redox state of glutathione. The effect of SNP on reduced glutathione (GSH) levels was reverted by cPTIO, suggesting that NO has a direct effect on GSH biosynthesis or turnover. Both the KNO3 and SNP treatments produced an increase in GA4 and a decrease in ABA concentrations, and this effect was reverted in the presence of the NO-scavenger. Globally, the results suggest a relationship between antioxidant metabolism and the ABA/GA balance during early seedling growth in pea. The results also suggest a role for KNO3 and NO in the modulation of GA4 and ABA levels and antioxidant metabolism in pea seedlings. Furthermore, this effect correlated with an increase in the biomass of the pea seedlings.
Collapse
Affiliation(s)
- Antonia Vidal
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Daniel Cantabella
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain; IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Agustina Bernal-Vicente
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Pedro Díaz-Vivancos
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain; Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Jose A Hernández
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain.
| |
Collapse
|
18
|
Abstract
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
19
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
20
|
Kumar D, Chattopadhyay S. Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3729-3743. [PMID: 29722824 PMCID: PMC6022672 DOI: 10.1093/jxb/ery166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/24/2018] [Indexed: 05/05/2023]
Abstract
The contribution of glutathione (GSH) in combating environmental stress in plants has long been known. Previous reports have pointed to the involvement of GSH in inducing various heat shock proteins (HSPs), but the molecular mechanism is yet to be explored. Here, we investigate how GSH induces the expression of important HSP genes in Arabidopsis. Expression of HSP genes BiP3, HSP70B, and HSP90.1 was positively regulated by GSH, and a promoter activation assay suggested a role for GSH in their induction. Lower expression of BiP3 and HSP70B in the GSH-fed Atmyb21 mutant and of HSP90.1 in the GSH-fed Atbzip10 mutant, in comparison with GSH-fed Col-0, revealed a role for GSH in activating their promoters through the transcription factors MYB21 and BZIP10. Co-transfection of transcription factor mutant protoplasts with transcription factor constructs and HSP promoters confirmed the results. Comparative proteomics also revealed proteins whose expression was controlled by MYB21 and BZIP10 in response to GSH feeding. A co-immunoprecipitation assay demonstrated a role for GSH in modulating the level of interaction of glutathione-S-transferase with HSP70. Collectively, our results demonstrate a role for GSH in activating the promoters of BiP3 and HSP70B via MYB21 and of HSP90.1 via BZIP10.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Biology Laboratory, CSIR – Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
21
|
Karpinska B, Alomrani SO, Foyer CH. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0392. [PMID: 28808105 PMCID: PMC5566886 DOI: 10.1098/rstb.2016.0392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 11/14/2022] Open
Abstract
Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Owdah Alomrani
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Formentin E, Sudiro C, Ronci MB, Locato V, Barizza E, Stevanato P, Ijaz B, Zottini M, De Gara L, Lo Schiavo F. H 2O 2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1549. [PMID: 30405678 PMCID: PMC6206305 DOI: 10.3389/fpls.2018.01549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 05/07/2023]
Abstract
Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance.
Collapse
Affiliation(s)
| | | | - Maria Beatrice Ronci
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Bushra Ijaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Laura De Gara,
| | | |
Collapse
|
23
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
24
|
Diaz-Vivancos P, Bernal-Vicente A, Cantabella D, Petri C, Hernández JA. Metabolomics and Biochemical Approaches Link Salicylic Acid Biosynthesis to Cyanogenesis in Peach Plants. PLANT & CELL PHYSIOLOGY 2017; 58:2057-2066. [PMID: 29036663 DOI: 10.1093/pcp/pcx135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/05/2017] [Indexed: 05/10/2023]
Abstract
Despite the long-established importance of salicylic acid (SA) in plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed synthesis of SA originates from chorismate by two distinct pathways: the isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. To date, however, no relationship has been suggested between the two pathways. In this work, by metabolomics and biochemical approaches (including the use of [13C]-labeled compounds), we provide strong evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from phenylalanine, controlling their turnover. In peach plants MD is the intermediary molecule of the suggested new SA biosynthetic pathway and CNglcs turnover, regulating the biosynthesis of both amygdalin and SA. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). MD also provided partial protection against Plum pox virus infection in peach seedlings. Thus, we propose a third pathway, an alternative to the PAL pathway, for SA synthesis in peach plants.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Agustina Bernal-Vicente
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Daniel Cantabella
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Cesar Petri
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | - José Antonio Hernández
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| |
Collapse
|
25
|
Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine. Pediatr Res 2017; 82:362-369. [PMID: 28288146 PMCID: PMC5552438 DOI: 10.1038/pr.2017.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022]
Abstract
BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.
Collapse
|
26
|
Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F, Jiménez A. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 2017; 11:688-700. [PMID: 28183062 PMCID: PMC5299145 DOI: 10.1016/j.redox.2017.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Raquel Iglesias-Fernández
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Pilar Carbonero
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Federico Vicente Pallardó
- Department of Physiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 15, E-46010 Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
27
|
Zhang C, Zhang NN, Li ZY, Tian YT, Zhang LT, Zheng BD. Antioxidant Efficacy of Protein Hydrolysates from Large Yellow Croaker (Pseudosciaena crocea) in D-galactose-Induced Aging Mice. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1082525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Ning Ning Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Zhi Yu Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yu Ting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Long Tao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Bao Dong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
28
|
Ogawa T, Muramoto K, Takada R, Nakagawa S, Shigeoka S, Yoshimura K. Modulation of NADH Levels by Arabidopsis Nudix Hydrolases, AtNUDX6 and 7, and the Respective Proteins Themselves Play Distinct Roles in the Regulation of Various Cellular Responses Involved in Biotic/Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2016; 57:1295-308. [PMID: 27095738 DOI: 10.1093/pcp/pcw078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/08/2016] [Indexed: 05/21/2023]
Abstract
Arabidopsis Nudix hydrolases, AtNUDX6 and 7, exhibit pyrophosphohydrolase activities toward NADH and contribute to the modulation of various defense responses, such as the poly(ADP-ribosyl)ation (PAR) reaction and salicylic acid (SA)-induced Nonexpresser of Pathogenesis-Related genes 1 (NPR1)-dependent defense pathway, against biotic and abiotic stresses. However, the mechanisms by which these enzymes regulate such cellular responses remain unclear. To clarify the functional role(s) of AtNUDX6 and 7 and NADH metabolism, we examined the effects of the transient expression of the active and inactive forms of AtNUDX6 and 7 under the control of an estrogen (ES)-inducible system on various stress responses. The transient expression of active AtNUDX6 and 7 proteins suppressed NADH levels and induced PAR activity, whereas that of their inactive forms did not, indicating the involvement of NADH metabolism in the regulation of the PAR reaction. A transcriptome analysis using KO-nudx6, KO-nudx7 and double KO-nudx6/7 plants, in which intracellular NADH levels increased, identified genes (NADH-responsive genes, NRGs) whose expression levels positively and negatively correlated with NADH levels. Many NRGs did not overlap with the genes whose expression was reported to be responsive to various types of oxidants and reductants, suggesting a novel role for intracellular NADH levels as a redox signaling cue. The active and inactive AtNUDX6 proteins induced the expression of thioredoxin-h5, the activator of NPR1 and SA-induced NPR1-dependent defense genes, while the active and inactive AtNUDX7 proteins suppressed the accumulation of SA and subsequent gene expression, indicating that AtNUDX6 and 7 proteins themselves play distinct roles in stress responses.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kohei Muramoto
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Risa Takada
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shouya Nakagawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| |
Collapse
|
29
|
Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. PLANT, CELL & ENVIRONMENT 2016; 39:1140-60. [PMID: 26864619 DOI: 10.1111/pce.12726] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field.
Collapse
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Department of Plant Systems Biology, Technologie Park 927, B-9052, Ghent, Belgium
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology and Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
30
|
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH. Glutathione--linking cell proliferation to oxidative stress. Free Radic Biol Med 2015; 89:1154-64. [PMID: 26546102 DOI: 10.1016/j.freeradbiomed.2015.09.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. RECENT ADVANCES The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. CRITICAL ISSUES The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. FUTURE DIRECTIONS The nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will focus on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- CEBAS-CSIC, Department of Plant Breeding, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain
| | - Ambra de Simone
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Guy Kiddle
- Lumora Ltd, Bartholomews Walk, Cambridge Business Park, Cambridge CB7 4EA, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
31
|
Pham PA, Wahl V, Tohge T, de Souza LR, Zhang Y, Do PT, Olas JJ, Stitt M, Araújo WL, Fernie AR. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 89:319-38. [PMID: 26428915 PMCID: PMC4631723 DOI: 10.1007/s11103-015-0363-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/18/2015] [Indexed: 05/19/2023]
Abstract
The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.
Collapse
Affiliation(s)
- Phuong Anh Pham
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Vanessa Wahl
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Laise Rosado de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Phuc Thi Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Hanoi, Vietnam
| | - Justyna J Olas
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
32
|
Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. PLANTA 2015; 242:829-46. [PMID: 25976265 DOI: 10.1007/s00425-015-2315-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 05/07/2023]
Abstract
We studied the response of Eugenia myrtifolia L. plants, an ornamental shrub native to tropical and subtropical areas, to salt stress in order to facilitate the use of these plants in Mediterranean areas for landscaping. E. myrtifolia plants implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. Furthermore, the post-recovery period seems to be detected by Eugenia plants as a new stress situation. Different physiological and biochemical changes in Eugenia myrtifolia L. plants after being subjected to NaCl stress for up to 30 days (Phase I) and after recovery from salinity (Phase II) were studied. Eugenia plants proved to be tolerant to NaCl concentrations between 44 and 88 mM, displaying a series of adaptative mechanisms to cope with salt-stress, including the accumulation of toxic ions in roots. Plants increased their root/shoot ratio and decreased their leaf area, leaf water potential and stomatal conductance in order to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including the limited accumulation of toxic ions in leaves, increase in chlorophyll content, changes in chlorophyll fluorescence parameters, leaf anatomy and antioxidant defence mechanisms. Anatomical modifications in leaves, including an increase in palisade parenchyma and intercellular spaces and decrease in spongy parenchyma, served to facilitate CO2 diffusion in a situation of reduced stomatal aperture. Salinity produced oxidative stress in Eugenia plants as evidenced by oxidative stress parameters values and a reduction in APX and ASC levels. Nevertheless, SOD and GSH contents increased. The post-recovery period is detected as a new stress situation, as observed through effects on plant growth and alterations in chlorophyll fluorescence and oxidative stress parameters.
Collapse
Affiliation(s)
- José-Ramón Acosta-Motos
- Irrigation Department, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2015; 79:1562-83. [PMID: 25749165 DOI: 10.1134/s0006297914130082] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | | | | |
Collapse
|
34
|
Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:926-939. [PMID: 26213235 DOI: 10.1111/tpj.12940] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/19/2015] [Accepted: 07/09/2015] [Indexed: 05/18/2023]
Abstract
Although glutathione is well known for its reactive oxygen species (ROS) scavenging function and plays a protective role in biotic stress, its regulatory function in abiotic stress still remains to be elucidated. Our previous study showed that exogenously applied reduced glutathione (GSH) could improve abiotic stress tolerance in Arabidopsis. Here, we report that endogenously increased GSH also conferred tolerance to drought and salt stress in Arabidopsis. Moreover, both exogenous and endogenous GSH delayed senescence and flowering time. Polysomal profiling results showed that global translation was enhanced after GSH treatment and by the induced increase of GSH level by salt stress. By performing transcriptomic analyses of steady-state and polysome-bound mRNAs in GSH-treated plants, we reveal that GSH has a substantial impact on translation. Translational changes induced by GSH treatment target numerous hormones and stress signaling molecules, which might contribute to the enhanced stress tolerance in GSH-treated plants. Our translatome analysis also revealed that abscisic acid (ABA), auxin and jasmonic acid (JA) biosynthesis, as well as signaling genes, were activated during GSH treatment, which has not been reported in previously published transcriptomic data. Together, our data suggest that the increased glutathione level results in stress tolerance and global translational changes.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Ko Ko
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Wan-Ling Chang
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Wen-Chieh Kuo
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Guan-Hong Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsan-Piao Lin
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| |
Collapse
|
35
|
Roach T, Miller R, Aigner S, Kranner I. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. ANNALS OF BOTANY 2015; 116:519-27. [PMID: 25878139 PMCID: PMC4577991 DOI: 10.1093/aob/mcv034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. METHODS A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. KEY RESULTS NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. CONCLUSIONS The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations. Alternative NPQ mechanisms in algae involving proteins of the light-harvesting complex type and antioxidant protection of the thylakoid membrane by de-epoxidized carotenoids are discussed.
Collapse
Affiliation(s)
- Thomas Roach
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ramona Miller
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Siegfried Aigner
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Marquez-Garcia B, Shaw D, Cooper JW, Karpinska B, Quain MD, Makgopa EM, Kunert K, Foyer CH. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max). ANNALS OF BOTANY 2015; 116:497-510. [PMID: 25851140 PMCID: PMC4577989 DOI: 10.1093/aob/mcv030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/22/2014] [Accepted: 02/04/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. METHODS Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. KEY RESULTS Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. CONCLUSIONS While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest leaf ranks. At this stage, a number of drought-induced changes in nodule metabolites were observed but no metabolite or transcript markers of senescence could be detected. It is concluded that stress-induced senescence in the lowest leaf ranks precedes nodule senescence, suggesting that leaves of low photosynthetic capacity are sacrificed in favour of nodule nitrogen metabolism.
Collapse
Affiliation(s)
- Belén Marquez-Garcia
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| | - Daniel Shaw
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| | - James William Cooper
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| | - Barbara Karpinska
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| | - Marian Dorcas Quain
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| | - Eugene Matome Makgopa
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - Karl Kunert
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - Christine Helen Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK and
| |
Collapse
|
37
|
Locato V, Uzal EN, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L. Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2991-3000. [PMID: 25890975 DOI: 10.1093/jxb/erv110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ophiobolin A, a tetracyclic sesterpenoid produced by phytopathogenic fungi, is responsible for catastrophic losses in crop yield but its mechanism of action is not understood. The effects of ophiobolin A were therefore investigated on the growth and redox metabolism of Tobacco Bright Yellow-2 (TBY-2) cell cultures by applying concentrations of the toxin that did not promote cell death. At concentrations between 2 and 5 μM, ophiobolin A inhibited growth and proliferation of the TBY-2 cells, which remained viable. Microscopic and cytofluorimetric analyses showed that ophiobolin A treatment caused a rapid decrease in mitotic index, with a lower percentage of the cells at G1 and increased numbers of cells at the S/G2 phases. Cell size was not changed following treatment suggesting that the arrest of cell cycle progression was not the result of a block on cell growth. The characteristic glutathione redox state and the localization of glutathione in the nucleus during cell proliferation were not changed by ophiobolin A. However, subsequent decreases in glutathione and the re-distribution of glutathione between the cytoplasm and nuclei after mitosis occurring in control cells, as well as the profile of glutathionylated proteins, were changed in the presence of the toxin. The profile of poly ADP-ribosylated proteins were also modified by ophiobolin A. Taken together, these data provide evidence of the mechanism of ophiobolin A action as a cell cycle inhibitor and further demonstrate the link between nuclear glutathione and the cell cycle regulation, suggesting that glutathione-dependent redox controls in the nuclei prior to cell division are of pivotal importance.
Collapse
Affiliation(s)
- Vittoria Locato
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Esther Novo Uzal
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy Departamento de Biología Vegetal, Universidad de Murcia, Campus Espinardo, Murcia, Spain
| | - Sara Cimini
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Maria Chiara Zonno
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Napoli, Italy
| | | | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| |
Collapse
|
38
|
Quain MD, Makgopa ME, Cooper JW, Kunert KJ, Foyer CH. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. PHYTOCHEMISTRY 2015; 112:179-87. [PMID: 25659749 DOI: 10.1016/j.phytochem.2014.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 05/04/2023]
Abstract
Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type.
Collapse
Affiliation(s)
- Marian D Quain
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Council for Scientific and Industrial Research, Crops Research Institute, P.O. Box 3785, Kumasi, Ghana
| | - Matome E Makgopa
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - James W Cooper
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Karl J Kunert
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
39
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
40
|
Øverby A, Stokland RA, Åsberg SE, Sporsheim B, Bones AM. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:277. [PMID: 25954298 PMCID: PMC4406002 DOI: 10.3389/fpls.2015.00277] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 05/08/2023]
Abstract
Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes.
Collapse
Affiliation(s)
- Anders Øverby
- *Correspondence: Anders Øverby and Atle M. Bones, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway ;
| | | | | | | | - Atle M. Bones
- *Correspondence: Anders Øverby and Atle M. Bones, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway ;
| |
Collapse
|
41
|
Schmidt R, Schippers JHM. ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta Gen Subj 2014; 1850:1497-508. [PMID: 25542301 DOI: 10.1016/j.bbagen.2014.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. SCOPE OF REVIEW The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. MAJOR CONCLUSIONS Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. GENERAL SIGNIFICANCE We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Fang SC, Chung CL, Chen CH, Lopez-Paz C, Umen JG. Defects in a new class of sulfate/anion transporter link sulfur acclimation responses to intracellular glutathione levels and cell cycle control. PLANT PHYSIOLOGY 2014; 166:1852-68. [PMID: 25361960 PMCID: PMC4256884 DOI: 10.1104/pp.114.251009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Cristina Lopez-Paz
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - James G Umen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| |
Collapse
|
43
|
Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:903-13. [PMID: 24754628 DOI: 10.1111/pbi.12193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/20/2014] [Indexed: 05/04/2023]
Abstract
Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.
Collapse
Affiliation(s)
- Marian D Quain
- Faculty of Biology, Centre for Plant Sciences, University of Leeds, Leeds, UK; Crops Research Institute, Council for Scientific and Industrial Research, Kumasi, Ghana
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:779-88. [PMID: 24877669 DOI: 10.1016/j.jplph.2014.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 05/02/2023]
Abstract
The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages.
Collapse
Affiliation(s)
- Fatima Ezzohra Ikbal
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - José Antonio Hernández
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain
| | - Gregorio Barba-Espín
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain
| | - Tayeb Koussa
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - Aziz Aziz
- URVVC EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, 51687 Reims Cedex 02, France
| | - Mohamed Faize
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - Pedro Diaz-Vivancos
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain.
| |
Collapse
|
45
|
Schulz P, Jansseune K, Degenkolbe T, Méret M, Claeys H, Skirycz A, Teige M, Willmitzer L, Hannah MA. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number. PLoS One 2014; 9:e90322. [PMID: 24587323 PMCID: PMC3938684 DOI: 10.1371/journal.pone.0090322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/28/2014] [Indexed: 12/22/2022] Open
Abstract
A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.
Collapse
Affiliation(s)
- Philipp Schulz
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria
| | - Karel Jansseune
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
| | - Thomas Degenkolbe
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Michaël Méret
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Skirycz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Markus Teige
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria
| | - Lothar Willmitzer
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Matthew A. Hannah
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
- * E-mail:
| |
Collapse
|
46
|
Wallström SV, Florez-Sarasa I, Araújo WL, Aidemark M, Fernández-Fernández M, Fernie AR, Ribas-Carbó M, Rasmusson AG. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. MOLECULAR PLANT 2014; 7:356-368. [PMID: 23939432 DOI: 10.1093/mp/sst115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ca(2+)-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPH dehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript was suppressed by 80% in Arabidopsis thaliana plants, and external Ca(2+)-dependent NADPH dehydrogenase activity became undetectable in isolated mitochondria. This was linked to a decreased level of NADP(+) in rosettes of the transgenic lines. Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of (14)C-glucose was increased. On soil, NDB1-suppressing plants had a decreased vegetative biomass, but leaf maximum quantum efficiency of photosystem II and CO2 assimilation rates, as well as total respiration, were similar to the wild-type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealed decreased levels of sugars, citric acid cycle intermediates, and amino acids in the transgenic lines. The NDB1-suppression induced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. The transcriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thaliana overexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H) reduction levels, which in turn affect central metabolism and growth, and interact with defense signaling.
Collapse
Affiliation(s)
- Sabá V Wallström
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nigmatullina LR, Rumyantseva NI, Kostyukova YA. Effect of D,L-buthionine-S,R-sulfoximine on the ratio of glutathione forms and the growth of Tatar buckwheat calli. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:976-85. [PMID: 23750614 DOI: 10.1111/pbi.12090] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 05/23/2023]
Abstract
To fortify the antioxidant capacity of plum plants, genes encoding cytosolic antioxidants ascorbate peroxidase (cytapx) and Cu/Zn-superoxide dismutase (cytsod) were genetically engineered in these plants. Transgenic plum plants expressing the cytsod and/or cytapx genes in cytosol have been generated under the control of the CaMV35S promoter. High levels of cytsod and cytapx gene transcripts suggested that the transgenes were constitutively and functionally expressed. We examined the potential functions of cytSOD and cytAPX in in vitro plum plants against salt stress (100 mm NaCl). Several transgenic plantlets expressing cytsod and/or cytapx showed an enhanced tolerance to salt stress, mainly lines C5-5 and J8-1 (expressing several copies of sod and apx, respectively). Transformation as well as NaCl treatments influenced the antioxidative metabolism of plum plantlets, including enzymatic and nonenzymatic antioxidants. Transgenic plantlets exhibited higher contents of nonenzymatic antioxidants glutathione and ascorbate than nontransformed control, which correlated with lower accumulation of hydrogen peroxide. Overall, our results suggest that transformation of plum plants with genes encoding antioxidant enzymes enhances the tolerance to salinity.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B, Avolio F, Delporte C, Cimmino A, Dubois J, Van Antwerpen P, Zonno MC, Vurro M, Poumay Y, Berger W, Evidente A, De Gara L, Kiss R, Locato V. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 2013; 43:575-85. [PMID: 23754298 DOI: 10.3892/ijo.2013.1979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.
Collapse
Affiliation(s)
- Marina Bury
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Viola IL, Güttlein LN, Gonzalez DH. Redox modulation of plant developmental regulators from the class I TCP transcription factor family. PLANT PHYSIOLOGY 2013; 162:1434-47. [PMID: 23686421 PMCID: PMC3707549 DOI: 10.1104/pp.113.216416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants.
Collapse
|