1
|
Xu X, Wei H, Yao K, Wu H, Huang T, Han M, Su T, Cao F. Integrative omics studies revealed synergistic link between sucrose metabolic isogenes and carbohydrates in poplar roots infected by Fusarium wilt. PLANT MOLECULAR BIOLOGY 2024; 114:29. [PMID: 38502380 DOI: 10.1007/s11103-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
Advances in carbohydrate metabolism prompted its essential role in defense priming and sweet immunity during plant-pathogen interactions. Nevertheless, upstream responding enzymes in the sucrose metabolic pathway and associated carbohydrate derivatives underlying fungal pathogen challenges remain to be deciphered in Populus, a model tree species. In silico deduction of genomic features, including phylogenies, exon/intron distributions, cis-regulatory elements, and chromosomal localization, identified 59 enzyme genes (11 families) in the Populus genome. Spatiotemporal expression of the transcriptome and the quantitative real-time PCR revealed a minuscule number of isogenes that were predominantly expressed in roots. Upon the pathogenic Fusarium solani (Fs) exposure, dynamic changes in the transcriptomics atlas and experimental evaluation verified Susy (PtSusy2 and 3), CWI (PtCWI3), VI (PtVI2), HK (PtHK6), FK (PtFK6), and UGPase (PtUGP2) families, displaying promotions in their expressions at 48 and 72 h of post-inoculation (hpi). Using the gas chromatography-mass spectrometry (GC-MS)-based non-targeted metabolomics combined with a high-performance ion chromatography system (HPICS), approximately 307 metabolites (13 categories) were annotated that led to the quantification of 46 carbohydrates, showing marked changes between three compared groups. By contrast, some sugars (e.g., sorbitol, L-arabitol, trehalose, and galacturonic acid) exhibited a higher accumulation at 72 hpi than 0 hpi, while levels of α-lactose and glucose decreased, facilitating them as potential signaling molecules. The systematic overview of multi-omics approaches to dissect the effects of Fs infection provides theoretical cues for understanding defense immunity depending on fine-tuned Suc metabolic gene clusters and synergistically linked carbohydrate pools in trees.
Collapse
Affiliation(s)
- Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Kejun Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Tingting Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fuliang Cao
- College of Foresty, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Tong P, Liao G, Lu D, Zhou X, Zhang W, Xu Q, Wu C, Wang J. ZjHXK5 and ZjHXK6 negatively regulate the sugar metabolism of Ziziphus jujuba Mill. FRONTIERS IN PLANT SCIENCE 2024; 15:1335120. [PMID: 38410733 PMCID: PMC10895003 DOI: 10.3389/fpls.2024.1335120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Hexokinase (HXK) plays a crucial role in plants, catalyzing the phosphorylation of hexose substances, which is one of the key steps in sugar metabolism and energy production. While HXK genes have been well-studied in model plants, the evolutionary and functional characteristics of HXK gene family in jujube is unknow. In this study, the HXK gene family members were identified by bioinformatics methods, the key members regulating glucose metabolism were identified by transcriptome data, and finally the function of the key genes was verified by instantaneous and stable genetic transformation. Our results showed that seven HXK genes were identified in the jujube genome, all of which were predict located in the chloroplast and contain Hexokinase-1 (PF00349) and Hexokinase-2 (PF03727) conserved domains. Most of HXK proteins were transmembrane protein with stable, lipid-soluble, hydrophilic. The secondary structure of ZjHXK proteins main α-helix, and contains two distinct tertiary structure. All ZjHXK genes contain nine exons and eight introns. Predictions of cis-regulatory elements indicate that the promoter region of ZjHXK contains a large number of MeJA responsive elements. Finally, combined with the analysis of the relationship between the expression and glucose metabolism, found that ZjHXK5 and ZjHXK6 may the key genes regulating sugar metabolism. Transient overexpression of ZjHXK5 and ZjHXK6 on jujube, or allogeneic overexpression of ZjHXK5 and ZjHXK6 on tomato would significantly reduce the content of total sugar and various sugar components. Transient silencing of ZjHXK5 and ZjHXK6 genes results in a significant increase in sucrose and total sugar content. Interestingly, the expression of ZjHXK5 and ZjHXK6 were also affected by methyl jasmonate.
Collapse
Affiliation(s)
- Panpan Tong
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Guanglian Liao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dengyang Lu
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Xiaofeng Zhou
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Cuiyun Wu
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Jiangbo Wang
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
3
|
Liu Y, Jiang Y, Liu X, Cheng H, Han Y, Zhang D, Wu J, Liu L, Yan M, Que Y, Zhou D. Identification and Expression Analysis of Hexokinases Family in Saccharum spontaneum L. under Drought and Cold Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1215. [PMID: 36986904 PMCID: PMC10056587 DOI: 10.3390/plants12061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, the multi-gene family of dual-function hexokinases (HXKs) plays an important role in sugar metabolism and sensing, that affects growth and stress adaptation. Sugarcane is an important sucrose crop and biofuel crop. However, little is known about the HXK gene family in sugarcane. A comprehensive survey of sugarcane HXKs, including physicochemical properties, chromosomal distribution, conserved motifs, and gene structure was conducted, identifying 20 members of the SsHXK gene family that were located on seven of the 32 Saccharum spontaneum L. chromosomes. Phylogenetic analysis showed that the SsHXK family could be divided into three subfamilies (group I, II and III). Motifs and gene structure were related to the classification of SsHXKs. Most SsHXKs contained 8-11 introns which was consistent with other monocots. Duplication event analysis indicated that HXKs in S. spontaneum L. primarily originated from segmental duplication. We also identified putative cis-elements in the SsHXK promoter regions which were involved in phytohormone, light and abiotic stress responses (drought, cold et al.). During normal growth and development, 17 SsHXKs were constitutively expressed in all ten tissues. Among them, SsHXK2, SsHXK12 and SsHXK14 had similar expression patterns and were more highly expressed than other genes at all times. The RNA-seq analysis showed that 14/20 SsHXKs had the highest expression level after cold stress for 6 h, especially SsHXK15, SsHXK16 and SsHXK18. As for drought treatment, 7/20 SsHXKs had the highest expression level after drought stress for 10 days, 3/20 (SsHKX1, SsHKX10 and SsHKX11) had the highest expression level after 10 days of recovery. Overall, our results revealed the potential biological function of SsHXKs, which may provide information for in-depth functional verification.
Collapse
Affiliation(s)
- Ying Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yaolan Jiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaolan Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hefen Cheng
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuekun Han
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410000, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| |
Collapse
|
4
|
Chen S, Tian Z, Guo Y. Characterization of hexokinase gene family members in Glycine max and functional analysis of GmHXK2 under salt stress. Front Genet 2023; 14:1135290. [PMID: 36911414 PMCID: PMC9996050 DOI: 10.3389/fgene.2023.1135290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Hexokinase (HXK) is a bifunctional enzyme involved in carbohydrate metabolism and sugar signal sensing. HXK gene family has been extensively discussed in many species, while the detailed investigations of the family in Glycine max have yet to be reported. In this study, 17 GmHXK genes (GmHXKs) were identified in the G. max genome and the features of their encoded proteins, conserved domains, gene structures, and cis-acting elements were systematically characterized. The GmHXK2 gene isolated from G. max was firstly constructed into plant expression vector pMDC83 and then transformed with Agrobacterium tumefaciens into Arabidopsis thaliana. The expression of integrated protein was analyzed by Western Blotting. Subcellular localization analysis showed that the GmHXK2 was located on both vacuolar and cell membrane. Under salt stress, seedlings growth was significantly improved in Arabidopsis overexpressing GmHXK2 gene. Furthermore, physiological indicators and expression of salt stress responsive genes involved in K+ and Na+ homeostasis were significantly lower in GmHXK2-silenced soybean seedlings obtained by virus-induced gene silencing (VIGS) technique under salt stress compared with the control plants. Our study showed that GmHXK2 gene played an important role in resisting salt stress, which suggested potential value for the genetic improvement of abiotic resistant crops.
Collapse
Affiliation(s)
- Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
6
|
Ren R, Wan Z, Chen H, Zhang Z. The effect of inter-varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:1-13. [PMID: 36030618 DOI: 10.1016/j.plaphy.2022.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Sugar synthesis from photosynthesis and its utilization through sugar metabolism jointly determine leaf sugar content, and in contrast, excess sugar represses leaf photosynthesis. Although plant photosynthesis is affected by leaf sugar metabolism, the relationship between sugar metabolism and photosynthetic capacity of different grape genotypes remains unclear. In this study, two grape (Vitis vinifera L.) genotypes 'Riesling' (RI, high sugar content in leaf) and 'Petit Manseng' (PM, low sugar content in leaf) were used to evaluate the relationship between sugar metabolism and photosynthesis. Sugar content, chlorophyll content, photosynthetic parameters, enzyme activity, and gene expression related to sucrose metabolism in leaves were measured, and the correlations between photosynthesis and sugar metabolism were assessed. The contents of sucrose and glucose were significantly higher in RI leaves than in PM leaves, while the fructose content pattern was reversed. Cell wall invertase activity for sucrose hydrolysis and the transcript levels of VvCWINV, VvHTs, VvTMT1, VvFKs, and VvHXK2 were also higher in RI leaves than in PM leaves, whereas that of VvHXK1 mediating glucose phosphorylation, was lower in RI leaves than in PM leaves. Net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content were lower in RI leaves than in PM leaves and negatively correlated with glucose content, and the transcript levels of VvCWINV, VvHTs, VvTMT1, and VvHXK2. In conclusion, this study indicates that leaf sugar metabolism and transport are related to photosynthesis in Vitis vinifera L., which provides a theoretical basis for improving grape photosynthesis.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Huawei Chen
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China; China Wine Industry Technology Institute, Room 1606, Zhongguancun Innovation Center, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
7
|
Yun P, Li Y, Wu B, Zhu Y, Wang K, Li P, Gao G, Zhang Q, Li X, Li Z, He Y. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3417-3431. [PMID: 35941236 DOI: 10.1007/s00122-022-04189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.
Collapse
Affiliation(s)
- Peng Yun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Han M, Xu X, Xiong Y, Wei H, Yao K, Huang T, Long Y, Su T. Genome-Wide Survey and Expression Analyses of Hexokinase Family in Poplar (Populus trichocarpa). PLANTS 2022; 11:plants11152025. [PMID: 35956502 PMCID: PMC9370503 DOI: 10.3390/plants11152025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
Hexokinase (HXK) family proteins exert critical roles in catalyzing hexose phosphorylation, sugar sensing, and modulation of plant growth and stress adaptation. Nevertheless, a large amount remains unknown about the molecular profile of HXK enzymes in Populus trichocarpa, a woody model tree species. A genome-wide survey of HXK-encoding genes, including phylogenies, genomic structures, exon/intron organization, chromosomal distribution, and conserved features, was conducted, identifying six putative HXK isogenes (PtHXK1-6) in the Populus genome. The evolutionary tree demonstrated that 135 homologous HXKs between 17 plant species were categorized into four major subfamilies (type A, B, C, and D), clustering one plastidic (PtHXK3) and five mitochondrial PtHXKs grouped into type A and B, respectively. The in silico deduction prompted the presence of the conserved sugar-binding core (motif 4), phosphorylation sites (motif 2 and 3), and adenosine-binding domains (motif 7). The transcriptomic sequencing (RNA-seq) and the quantitative real-time PCR (qRT-PCR) assays revealed that three isogenes (PtHXK2, 3, and 6) were abundantly expressed in leaves, stems, and roots, while others appeared to be dominantly expressed in the reproductive tissues. Under the stress exposure, PtHXK2 and 6 displayed a significant induction upon the pathogenic fungi (Fusarium solani) infection and marked promotions by glucose feeding in roots. In contrast, the PtHXK3 and 6 are ABA-responsive genes, following a dose-dependent manner. The comprehensive analyses of the genomic patterns and expression profiling provide theoretical clues and lay a foundation for unraveling the physiological and signaling roles underlying the fine-tuned PtHXKs responding to diverse stressors.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Kejun Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Tingting Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Yingle Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
9
|
Li S, Yu S, Zhang Y, Zhu D, Li F, Chen B, Mei F, Du L, Ding L, Chen L, Song J, Kang Z, Mao H. Genome-wide association study revealed TaHXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2306-2323. [PMID: 35545896 DOI: 10.1111/pce.14342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/15/2023]
Abstract
Stomata are important channels for the control of gas exchange between plants and the atmosphere. To examine the genetic architecture of wheat stomatal index, we performed a genome-wide association study (GWAS) using a panel of 539 wheat accessions and 450 678 polymorphic single nucleotide polymorphisms (SNPs) that were detected using wheat-specific 660K SNP array. A total of 130 SNPs were detected to be significantly associated with stomatal index in both leaf surfaces of wheat seedlings. These significant SNPs were distributed across 16 chromosomes and involved 2625 candidate genes which participate in stress response, metabolism and cell/organ development. Subsequent bulk segregant analysis (BSA), combined with GWAS identified one major haplotype on chromosome 2A, that is responsible for stomatal index on the abaxial leaf surface. Candidate gene association analysis revealed that genetic variation in the promoter region of the hexokinase gene TaHXK3-2A was significantly associated with the stomatal index. Moreover, transgenic analysis confirmed that TaHXK3-2A overexpression in wheat decreased the size of leaf pavement cells but increased stomatal density through the glucose metabolic pathway, resulting in drought sensitivity among TaHXK3-2A transgenic lines due to an increased transpiration rate. Taken together, these results provide valuable insights into the genetic control of the stomatal index in wheat seedlings.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dehe Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- School of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia MD, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. THE NEW PHYTOLOGIST 2021; 231:1088-1104. [PMID: 33909299 DOI: 10.1111/nph.17427] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/18/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.
Collapse
Affiliation(s)
- Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | | | - Mathieu Caradeuc
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - José Le Gourrierec
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Soulaiman Sakr
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
12
|
Chen M, Ju Y, Ahmad Z, Yin Z, Ding Y, Que F, Yan J, Chu J, Wei Q. Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage. TREE PHYSIOLOGY 2021; 41:491-507. [PMID: 33079187 DOI: 10.1093/treephys/tpaa140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/16/2023]
Abstract
Sheath senescence is an important part of bamboo shoot development during the fast growth stage. However, no information has been reported about this distinctive process until now. Using multiple approaches, we found that sheath senescence is a complex process that occurs sequentially with chloroplast corruption, chlorophyll degradation and water loss. Reactive oxygen species (ROS), salicylic acid and abscisic acid also accumulate in the senescing sheath. Transcriptome analysis showed that NAC and WRKY transcription factors, such as NAC2 and WRKY75, as well as their possible downstream target genes, such as those involved in ROS production, proteolysis and nutrition recycling, constitute the gene network of the bamboo sheath senescence process. Furthermore, the initiation of sheath senescence might be triggered by hexokinase genes, such as HXK6, which is localized to the mitochondrion and could promote leaf senescence when overexpressed in Arabidopsis. Sheath senescence occurs after the growth decrease of the internodes, which provides assimilates. The slowing of internode growth possibly results in sugar accumulation, such as glucose, in the sheath, which finally upregulates hexokinase genes and initiates sheath senescence. These findings reveal that sheath senescence is a multilevel regulation process and has a close link to the corresponding internode growth, which provides new insights into the shoot development of bamboo during the fast growth stage.
Collapse
Affiliation(s)
- Ming Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Feng Que
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jijun Yan
- National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
13
|
Zheng W, Zhang Y, Zhang Q, Wu R, Wang X, Feng S, Chen S, Lu C, Du L. Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2020; 11:600. [PMID: 32508863 PMCID: PMC7248402 DOI: 10.3389/fpls.2020.00600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/20/2020] [Indexed: 05/18/2023]
Abstract
Plant hexokinases (HXKs) are a class of multifunctional proteins that not only act as the enzymes required for hexose phosphorylation but also serve as sugar sensors that repress the expression of some photosynthetic genes when internal glucose level increases and regulators of cell metabolism and some sugar-related signaling pathways independent on their catalytic actives. The HXKs have been studied in many plants; however, limited information is available on HXKs of moso bamboo (Phyllostachys edulis). In this study, we identified and characterized 12 hexokinase genes in moso bamboo. Phylogenetic analysis revealed that the moso bamboo hexokinases (PeHXKs) were classifiable into five subfamilies which represented the three types of hexokinases in plants. Gene structure and conserved motif analysis showed that the PeHXK genes contained diverse numbers of introns and exons and that the encoded proteins showed similar motif organization within each subfamily. Multiple sequence alignment revealed that the PeHXK proteins contained conserved domains, such as phosphate 1 (P1), phosphate 2 (P2), adenosine, and a sugar-binding domain. Evolutionary divergence analysis indicated that the PeHXK, OsHXK, and BdHXK families underwent negative selection and experienced a large-scale duplication event approximately 19-319 million years ago. Expression analysis of the PeHXK genes in the leaf, stem, root, and rhizome of moso bamboo seedlings indicated that the PeHXKs perform pivotal functions in the development of moso bamboo. A protein subcellular localization assay showed that PeHXK5a, PeHXK8, and PeHXK3b were predominantly localized in mitochondria, and PeHXK8 protein was also detected in the nucleus. The HXK activity of the PeHXK5a, PeHXK8, and PeHXK3b was verified by a functional complementation assay using the HXK-deficient triple-mutant yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that the three PeHXKs had the plant HXK-specific enzyme traits. The present findings would provide a foundation for further functional analysis of the PeHXK gene family.
Collapse
Affiliation(s)
- Wenqing Zheng
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuan Zhang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qian Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengnian Feng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Kelly G, Egbaria A, Khamaisi B, Lugassi N, Attia Z, Moshelion M, Granot D. Guard-Cell Hexokinase Increases Water-Use Efficiency Under Normal and Drought Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:1499. [PMID: 31803219 PMCID: PMC6877735 DOI: 10.3389/fpls.2019.01499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
Water is a limiting resource for many land plants. Most of the water taken up by plants is lost to the atmosphere through the stomata, which are adjustable pores on the leaf surface that allow for gas exchange between the plant and the atmosphere. Modulating stomatal activity might be an effective way to reduce plants' water consumption and enhance their productivity under normal, as well as water-limiting conditions. Our recent discovery of stomatal regulation by sugars that is mediated by guard-cell hexokinase (HXK), a sugar-sensing enzyme, has raised the possibility that HXK might be used to increase plant water-use efficiency (WUE; i.e., carbon gain per unit of water). We show here that transgenic tomato and Arabidopsis plants with increased expression of HXK in their guard cells (GCHXK plants) exhibit reduced transpiration and higher WUE without any negative effects on growth under normal conditions, as well as drought avoidance and improved photosynthesis and growth under limited-water conditions. Our results demonstrate that exclusive expression of HXK in guard cells is an effective tool for improving WUE, and plant performance under drought.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Belal Khamaisi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ziv Attia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
15
|
Zhang C, Zhang L, Fu J, Dong L. Isolation and characterization of hexokinase genes PsHXK1 and PsHXK2 from tree peony (Paeonia suffruticosa Andrews). Mol Biol Rep 2019; 47:327-336. [PMID: 31677036 DOI: 10.1007/s11033-019-05135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Hexokinase (HXK) plays important roles in hexose phosphorylation and sugar signaling. HXK regulates the glucose-induced accumulation of anthocyanin in many species. Little is known about the biological function of the HXK gene family in Paeonia suffruticosa. cDNA sequences of two hexokinase genes PsHXK1 and PsHXK2 were isolated using RACE-PCR and RT-PCR from P. suffruticosa. PsHXK1 encodes 498 amino acids with a 1497-bp open reading frame (ORF), and PsHXK2 contains 493 amino acids with a 1482-bp ORF. Sequence and phylogenetic analyses suggest that PsHXK1 and PsHXK2 belong to type-B HXK and may function as glucose sensors. PsHXK1 and PsHXK2 mRNA were detected in all tested tissues. PsHXK1 is highly expressed in petals and stamens, while PsHXK2 is highly expressed in stamens. At the former stages of flower opening, PsHXK1 and PsHXK2 show higher expression levels in on-tree flowers compared with cut flowers. Overexpressing PsHXK1 and PsHXK2 in Arabidopsis enhances glucose sensitivity, inhibits plant growth in response to glucose, and induces anthocyanin accumulation in response to the high level of glucose. Overall, our results primarily reveal the biological function of PsHXK1 and PsHXK2, especially their involvement in glucose-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.,Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Lili Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jianxin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.,Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
He C, Chen J, Wang H, Wan Y, Zhou J, Dan Z, Zeng Y, Xu W, Zhu Y, Huang W, Yin L. Crystal structures of rice hexokinase 6 with a series of substrates shed light on its enzymatic mechanism. Biochem Biophys Res Commun 2019; 515:614-620. [PMID: 31176485 DOI: 10.1016/j.bbrc.2019.05.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
Hexokinases (HXKs) have determined to be multifaceted proteins, and they are the only ones able to phosphorylate glucose in plants. However, the binding mode for ATP to plant HXKs remains unclear. Here, we report the crystal structures of rice hexokinase 6 (OsHXK6) in four different forms: (i) apo-form, (ii) binary complex with D-Glc, (iii) quaternary complex with ADP, PO4 and Mg2+, and (iv) pentanary complex with D-Glc, ADP, PO4, and Mg2+. The apo form is in the open state conformation, and the three others are in the closed state, indicating that glucose and ADP-PO4 binding induces a large conformational change by domain rearrangement. The quaternary complex is a novel intermediate during the catalytic reaction we trapped for the first time, which provides a new evidence for the enzymatic mechanism of HXKs. In addition, the latter two complexes reveal the binding mode for ADP-PO4 to plant HXKs, which provide the structural explanation for the dual-function of OsHXK6. In addition, we identified that residues Gly112, Thr261, Gly262, and Gly450 are essential to the binding between ADP-PO4 and OsHXK6 by a series of single mutations and enzymatic assays. Our study provide structural basis for the other functional studies of OsHXK6 in rice.
Collapse
Affiliation(s)
- Chunlan He
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Juan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yibin Wan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
17
|
Wang H, Xin H, Guo J, Gao Y, Liu C, Dai D, Tang L. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas. Mol Biol Rep 2019; 46:1649-1660. [PMID: 30756333 DOI: 10.1007/s11033-019-04613-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
Hexokinase, the key rate-limiting enzyme of plant respiration and glycolysis metabolism, has been found to play a vital role in plant sugar sensing and sugar signal transduction. Using Jatropha curcas genome database and bioinformatics method, J. curcas HXK gene family (JcHXK) was identified and its phylogenetic evolution, functional domain, signal peptide at the N-terminal, and expression analysis were conducted. The results showed that a total of 4 HXK genes (JcHXK1, JcHXK2, JcHXK3, and JcHKL1) with 9 exons were systematically identified from J. curcas. JcHXK1, JcHXK3, and JcHKL1 with putative transmembrane domain at the N-terminal belonged to the type of secretory pathway protein, and JcHXK2 contained putative chloroplast targeting peptide. Quantitative real-time PCR (qRT-PCR) analysis revealed that all the four JcHXKs were expressed in different tissues of the leaves, roots, and seeds; however, JcHXK1 and JcHKL1 expression were higher in the roots, whereas JcHXK2 and JcHXK3 showed over-expression in the leaves and seeds, respectively. Furthermore, all the four JcHXKs were up-regulated in the leaves after cold stress at 12 °C; however, only JcHXK3 remarkably demonstrated cold-induced expression in the roots, which reached the highest expression level at 12 h (2.28-fold). According to the cis-acting element analysis results, JcHXK2 contained the most low temperature responsive elements, which was closely related to the cold resistance in J. curcas. A pET-28a-JcHXK2 prokaryotic recombinant expression vector was successfully constructed and a 57.0 kDa protein was obtained, JcHXK2 revealed catalytic activity towards glucose and fructose, with a higher affinity for glucose than fructose. The subcellular localization assays revealed that JcHXK2 was localized in the chloroplast. The results of this study might provide theoretical foundation for further studies on gene cloning and functional verification of HXK family in J. curcas.
Collapse
Affiliation(s)
- Haibo Wang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Hu Xin
- Academy of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Junyun Guo
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Yong Gao
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Dongqin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China. .,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China.
| |
Collapse
|
18
|
Abstract
SIGNIFICANCE Hexokinases are key enzymes that are responsible for the first reaction of glycolysis, but they also moonlight other cellular processes, including mitochondrial redox signaling regulation. Modulation of hexokinase activity and spatiotemporal location by reactive oxygen and nitrogen species as well as other gasotransmitters serves as the basis for a unique, underexplored method of tight and flexible regulation of these fundamental enzymes. Recent Advances: Redox modifications of thiols serve as a molecular code that enables the precise and complex regulation of hexokinases. Redox regulation of hexokinases is also used by multiple parasites to cause widespread and severe diseases, including malaria, Chagas disease, and sleeping sickness. Redox-active molecules affect each other, and the moonlighting activity of hexokinases provides another feedback loop that affects the cellular redox status and is hijacked in malignantly transformed cells. CRITICAL ISSUES Several compounds affect the redox status of hexokinases in vivo. These include the dehydroascorbic acid (oxidized form of vitamin C), pyrrolidinium porrolidine-1-carbodithioate (contraceptive), peroxynitrite (product of ethanol metabolism), alloxan (a glucose analog), and isobenzothiazolinone ebselen. However, very limited information is available regarding which amino acid residues in hexokinases are affected by redox signaling. Except in cases of monogenic diabetes, direct evidence is absent for disease phenotypes that are associated with variations within motifs that are susceptible to redox signaling. FUTURE DIRECTIONS Further studies should address the propensity of hexokinases and their disease-associated variants to participate in redox regulation. Robust and straightforward proteomic methods are needed to understand the context and consequences of hexokinase-mediated redox regulation in health and disease.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
19
|
Aguilera-Alvarado GP, Guevara-García ÁA, Estrada-Antolín SA, Sánchez-Nieto S. Biochemical properties and subcellular localization of six members of the HXK family in maize and its metabolic contribution to embryo germination. BMC PLANT BIOLOGY 2019; 19:27. [PMID: 30646852 PMCID: PMC6332545 DOI: 10.1186/s12870-018-1605-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seed germination is a crucial process in the plant life cycle when a dramatic variation of type and sugar content occurs just as the seed is hydrated. The production of hexose 6 phosphate is a key node in different pathways that are required for a successful germination. Hexokinase (HXK) is the only plant enzyme that phosphorylates glucose (Glc), so it is key to fueling several metabolic pathways depending on their substrate specificity, metabolite regulatory responses and subcellular localization. In maize, the HXK family is composed of nine genes, but only six of them (ZmHXK4-9) putatively encode catalytically active enzymes. Here, we cloned and functionally characterized putative catalytic enzymes to analyze their metabolic contribution during germination process. RESULTS From the six HXKs analyzed here, only ZmHXK9 has minimal hexose phosphorylating activity even though enzymatic function of all isoforms (ZmHXK4-9) was confirmed using a yeast complementation approach. The kinetic parameters of recombinant proteins showed that ZmHXK4-7 have high catalytic efficiency for Glc, fructose (Fru) and mannose (Man), ZmHXK7 has a lower Km for ATP, and together with ZmHXK8 they have lower sensitivity to inhibition by ADP, G6P and N-acetylglucosamine than ZmHXK4-6 and ZmHXK9. Additionally, we demonstrated that ZmHXK4-6 and ZmHXK9 are located in the mitochondria and their location relies on the first 30 amino acids of the N-terminal domain. Otherwise, ZmHXK7-8 are constitutively located in the cytosol. HXK activity was detected in cytosolic and mitochondrial fractions and high Glc and Fru phosphorylating activities were found in imbibed embryos. CONCLUSIONS Considering the biochemical characteristics, location and the expression of ZmHXK4 at onset of germination, we suggest that it is the main contributor to mitochondrial activity at early germination times, at 24 h other ZmHXKs also contribute to the total activity. While in the cytosol, ZmHXK7 could be responsible for the activity at the onset of germination, although later, ZmHXK8 also contributes to the total HXK activity. Our observations suggest that the HXKs may be redundant proteins with specific roles depending on carbon and ATP availability, metabolic needs, or sensor requirements. Further investigation is necessary to understand their specific or redundant physiological roles.
Collapse
Affiliation(s)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E., Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
20
|
Liu Y, Wang J, Yin H, Zhang A, Huang S, Wang TJ, Meng Q, Nan N, Wu Y, Guo P, Ahmad R, Liu B, Xu ZY. Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module. PLANT MOLECULAR BIOLOGY 2018; 98:495-506. [PMID: 30406469 DOI: 10.1007/s11103-018-0791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/22/2018] [Indexed: 05/29/2023]
Abstract
Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
21
|
Meng S, Wang S, Quan J, Su W, Lian C, Wang D, Xia X, Yin W. Distinct Carbon and Nitrogen Metabolism of Two Contrasting Poplar Species in Response to Different N Supply Levels. Int J Mol Sci 2018; 19:E2302. [PMID: 30082610 PMCID: PMC6121361 DOI: 10.3390/ijms19082302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Poplars have evolved various strategies to optimize acclimation responses to environmental conditions. However, how poplars balance growth and nitrogen deficiency remains to be elucidated. In the present study, changes in root development, carbon and nitrogen physiology, and the transcript abundance of associated genes were investigated in slow-growing Populus simonii (Ps) and fast-growing Populus euramericana (Pe) saplings treated with low, medium, and high nitrogen supply. The slow-growing Ps showed a flourishing system, higher δ15N, accelerated C export, lower N uptake and assimilation, and less sensitive transcriptional regulation in response to low N supply. The slow-growing Ps also had greater resistance to N deficiency due to the transport of photosynthate to the roots and the stimulation of root development, which allows survival. To support its rapid metabolism and growth, compared with the slow-growing Ps, the fast-growing Pe showed greater root development, C/N uptake and assimilation capacity, and more responsive transcriptional regulation with greater N supply. These data suggest that poplars can differentially manage C/N metabolism and photosynthate allocation under different N supply conditions.
Collapse
Affiliation(s)
- Sen Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shu Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jine Quan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wanlong Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Dongli Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
22
|
Wang J, Wang X, Geng S, Singh SK, Wang Y, Pattanaik S, Yuan L. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. PLANTA 2018; 248:171-182. [PMID: 29644447 DOI: 10.1007/s00425-018-2888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Genome-wide identification, expression analysis, and functional characterization of previously uncharacterized hexokinase family of oil crop, Brassica napus, underscore the importance of this gene family in plant growth and development. In plants, the multi-gene family of dual-function hexokinases (HXKs) plays important roles in sugar metabolism and sensing that affect growth and development. Rapeseed (Brassica napus L.) is an important oil crop; however, little is known about the B. napus HXK gene family. We identified 19 putative HXKs in B. napus genome. B. rapa and B. oleracea, the two diploid progenitors of B. napus, contributed almost equally to the BnHXK genes. Phylogenetic analysis divided the 19 BnHXKs into four groups. The exon-intron structures of BnHXKs share high similarity to those of HXKs in Arabidopsis and rice. The group III and IV BnHXKs are highly expressed in roots, whereas group I members preferentially express in leaves. Analysis of seed transcriptomes at different developmental stages showed that most of group I and IV HXKs are highly expressed 2-weeks after pollination (2WAP), compared to 4WAP for group III. BnHKXs are differentially expressed in susceptible and tolerant B. napus cultivars after fungal infection, suggesting the possible involvement in defense response. We generated rapeseed RNAi lines for BnHXK9, a member of relatively less characterized group IV, by pollen-mediated gene transformation. The seedlings of BnHXK9-RNAi lines showed delayed growth compared to the wild type. The RNAi plants were dwarf with curly leaves, suggesting the involvement of BnHXK9 in plant development. Collectively, our findings provides a comprehensive account of BnHXK gene family in an important crop and a starting point for further elucidation of their roles in sugar metabolism and sensing, as well as plant growth and development.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Xiaomin Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Siyu Geng
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Yaohui Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Ling Yuan
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
23
|
Conformational Characteristics of Rice Hexokinase OsHXK7 as a Moonlighting Protein involved in Sugar Signalling and Metabolism. Protein J 2017; 36:249-256. [PMID: 28555318 DOI: 10.1007/s10930-017-9718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hexokinase (HXK) as a moonlighting protein involves in glucose metabolism and signalling to regulate growth and development in plants. Therefore, the clarification for the structural properties of OsHXK7 (Oryza sativa Hexokinase 7) is essential to understand its role mechanism associated with the Glc signalling and metabolism. In this study, the structural characteristics of OsHXK7 (Oryza sativa Hexokinase 7) were identified. In the fluorescence spectrum, the Trp peak representing OsHXK7 binding to D-glucose (D-Glc) and 2-deoxyglucose (2-dG) showed an obvious blue shift. The distinct change in the secondary structure of OsHXK7 after binding to Glc was also detected in circular dichroism spectra. Using superimposed modelling, OsHXK7 showed a Glc-induced structural change, in which the 76th glycine, 148th serine and 256th tryptophan were contained within the pocket region. It was further shown by site-directed mutagenesis that the 76th glycine and the 256th tryptophan, but not the 148th serine, are the pivotal sites of OsHXK7 that maintain its catalytic activity and intrinsic blue shift fluorescence. These results suggest that OsHXK7 binding to Glc leads to a conformational change, that is likely essential for the function of OsHXK7 in Glc signalling and metabolism during plant growth and development.
Collapse
|
24
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
25
|
Wang XQ, Zheng LL, Lin H, Yu F, Sun LH, Li LM. Grape hexokinases are involved in the expression regulation of sucrose synthase- and cell wall invertase-encoding genes by glucose and ABA. PLANT MOLECULAR BIOLOGY 2017; 94:61-78. [PMID: 28247243 DOI: 10.1007/s11103-017-0593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/09/2017] [Indexed: 05/18/2023]
Abstract
Hexokinase (HXK, EC 2.7.1.1) is a multifunctional protein that both is involved in catalyzing the first step of glycolysis and plays an important role in sugar signaling. However, the supporting genetic evidence on hexokinases (CsHXKs) from grape (Vitis vinifera L. cv. Cabernet Sauvignon) berries has been lacking. Here, to investigate the role of CsHXK isoforms as glucose (Glc) and abscisic acid (ABA) sensors, we cloned two hexokinase isozymes, CsHXK1 and CsHXK2 with highly conserved genomic structure of nine exons and eight introns. We also found adenosine phosphate binding, substrate recognition and connection sites in their putative proteins. During grape berry development, the expression profiles of two CsHXK isoforms, sucrose synthases (SuSys) and cell wall invertase (CWINV) genes increased concomitantly with high levels of endogenous Glc and ABA. Furthermore, we showed that in wild type grape berry calli (WT), glucose repressed the expression levels of sucrose synthase (SuSy) and cell wall invertase (CWINV) genes, while ABA increased their expression levels. ABA could not only effectively improve the expression levels of SuSy and CWINV, but also block the repression induced by glucose on the expression of both genes. However, after silencing CsHXK1 or CsHXK2 in grape calli, SuSy and CWINV expression were enhanced, and the expressions of the two genes are insensitive in response to Glc treatment. Interestingly, exogenous ABA alone could not or less increase SuSy and CWINV expression in silencing CsHXK1 or CsHXK2 grape calli compared to WT. Meantime, ABA could not block the repression induced by glucose on the expression of SuSy and CWINV in CsHXK1 or CsHXK2 mutants. Therefore, Glc signal transduction depends on the regulation of CsHXK1 or CsHXK2. ABA signal was also disturbed by CsHXK1 or CsHXK2 silencing. The present results provide new insights into the regulatory role of Glc and ABA on the enzymes related to sugar metabolism in grape berry.
Collapse
Affiliation(s)
- Xiu-Qin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China.
| | - Li-Li Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Hao Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Fei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Li-Hui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Li-Mei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| |
Collapse
|
26
|
Li L, Sheen J. Dynamic and diverse sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:116-125. [PMID: 27423125 PMCID: PMC5050104 DOI: 10.1016/j.pbi.2016.06.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar 'perception and signal transduction' in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
27
|
Kim HB, Cho JI, Ryoo N, Shin DH, Park YI, Hwang YS, Lee SK, An G, Jeon JS. Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:127-35. [PMID: 25951042 DOI: 10.1111/jipb.12366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/03/2015] [Indexed: 05/23/2023]
Abstract
We characterized the function of the rice cytosolic hexokinase OsHXK7 (Oryza sativa Hexokinase7), which is highly upregulated when seeds germinate under O2 -deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct, OsHXK7 enhanced the glucose (Glc)-dependent repression of a rice α-amylase gene (RAmy3D) in the mesophyll protoplasts of maize, but its catalytically inactive mutant alleles did not. Consistently, the expression of OsHXK7, but not its catalytically inactive alleles, complemented the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, thereby resulting in the wild type characteristics of Glc-dependent repression, seedling development, and plant growth. Interestingly, OsHXK7-mediated Glc-dependent repression was abolished in the O2 -deficient mesophyll protoplasts of maize. This result provides compelling evidence that OsHXK7 functions in sugar signaling via a glycolysis-dependent manner under normal conditions, but its signaling role is suppressed when O2 is deficient. The germination of two null OsHXK7 mutants, oshxk7-1 and oshxk7-2, was affected by O2 deficiency, but overexpression enhanced germination in rice. This result suggests the distinct role that OsHXK7 plays in sugar metabolism and efficient germination by enforcing glycolysis-mediated fermentation in O2 -deficient rice.
Collapse
Affiliation(s)
- Hyun-Bi Kim
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jung-Il Cho
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Nayeon Ryoo
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Dong-Ho Shin
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Youn-Il Park
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Yong-Sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sang-Kyu Lee
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
28
|
Ruedell CM, de Almeida MR, Fett-Neto AG. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:11-9. [PMID: 26397200 DOI: 10.1016/j.plaphy.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 05/13/2023]
Abstract
Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus.
Collapse
Affiliation(s)
- Carolina Michels Ruedell
- Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Márcia Rodrigues de Almeida
- Center for Biotechnology, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Arthur Germano Fett-Neto
- Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, Ma F. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res 2015; 59:255-66. [PMID: 26122919 DOI: 10.1111/jpi.12258] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Melatonin regulates growth in many plants; however, the mechanism remains unclear. In this study, exogenous melatonin feeding resulted in both promotional (≤10 μm) and inhibitory (≥100 μm) effects on maize seedling growth. Initial analyses suggested positive correlations between the amount of melatonin and sucrose synthesis and hydrolysis-related gene expression, enzyme activities, and sucrose metabolites. However, assays of photosynthetic rate, hexokinase (HxK) activity, expression of photosynthetic marker genes, and HxK-related genes showed opposite effects under 10 μm (positive) and 100 μm (negative) melatonin treatments. Similarly, 10 μm melatonin accelerated starch catabolism at night, whereas 100 μm melatonin significantly decreased this process and led to starch accumulation in photosynthetic tissues. Furthermore, expression analysis of genes related to sucrose phloem loading resulted in a slight upregulation of sucrose transporters (SUT1 and SUT2) when seedlings were induced with 10 μm melatonin, while treatment with 100 μm melatonin resulted in significant downregulation of these sucrose transporter genes (SUT1 and SUT2), as well as tie-dyed2 (Tdy2) and sucrose export defective 1. Taken together, these results suggest that low doses of melatonin benefit maize seedling growth by promoting sugar metabolism, photosynthesis, and sucrose phloem loading. Conversely, high doses of melatonin inhibit seedling growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing photosynthesis and sucrose phloem loading.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbin Wei
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Cordoba E, Aceves-Zamudio DL, Hernández-Bernal AF, Ramos-Vega M, León P. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:147-59. [PMID: 25281700 PMCID: PMC4265152 DOI: 10.1093/jxb/eru394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H(+)/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5' regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified.
Collapse
Affiliation(s)
- Elizabeth Cordoba
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Denise Lizeth Aceves-Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Alma Fabiola Hernández-Bernal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Maricela Ramos-Vega
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| |
Collapse
|
31
|
Zhang M, Zhuo X, Wang J, Yang C, Powell CA, Chen R. Phosphomannose isomerase affects the key enzymes of glycolysis and sucrose metabolism in transgenic sugarcane overexpressing the manA gene. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:100. [PMID: 25798049 PMCID: PMC4359708 DOI: 10.1007/s11032-015-0295-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/07/2015] [Indexed: 05/11/2023]
Abstract
Sugarcane is one of the most important crops cultivated for the production of sugar and ethanol. In our previous studies, an innovative positive selection system for obtaining transgenic sugarcane, which utilized the E. coli-derived manA gene as the selectable marker and mannose as the selective agent, was developed and patented in China. In this paper, the influence of phosphomannose isomerase (PMI) overexpression on the key enzymes of both glycolysis and sucrose metabolism was investigated in transgenic sugarcane through the manA gene. Overexpressed PMI increased hexokinase activity by approximately 24 % compared with non-transgenic control plants, but pyruvate kinase (PK) activity was reduced by approximately 14 %. In comparison with the non-transgenic control plants, the activities of sucrose synthase, sucrose-phosphate synthase, and acid invertase were also modestly affected in the PMI-overexpressing transgenic plants, but no significant differences were observed at the stalk elongation and maturity stages. However, agronomic and technical traits were not affected by manA gene overexpression in the transgenic sugarcane. In conclusion, PMI overexpression significantly affected the hexokinase and PK activities by catalyzing the reversible interconversion between mannose-6-phosphate and fructose-6-phosphate, which is an intermediate of glycolysis. However, it had no significant effects on sucrose accumulation in sugarcane.
Collapse
Affiliation(s)
- Muqing Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005 China
- Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Xiaolei Zhuo
- Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Jihua Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005 China
| | - Chuanyu Yang
- Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | | | - Rukai Chen
- Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
32
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
33
|
Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family. Mol Biol Rep 2014; 41:6157-66. [PMID: 24962048 DOI: 10.1007/s11033-014-3495-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2014] [Indexed: 12/26/2022]
Abstract
Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.
Collapse
|
34
|
Sheen J. Master Regulators in Plant Glucose Signaling Networks. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2014; 57:67-79. [PMID: 25530701 PMCID: PMC4270195 DOI: 10.1007/s12374-014-0902-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
35
|
Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:809-19. [PMID: 24293612 DOI: 10.1093/jxb/ert400] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic requirements for plant growth are light, CO2, water, and minerals. However, the absorption and utilization of each of these requires investment on the part of the plant. The primary products of plants are sugars, and the hexose sugars glucose and fructose are the raw material for most of the metabolic pathways and organic matter in plants. To be metabolized, hexose sugars must first be phosphorylated. Only two families of enzymes capable of catalysing the essential irreversible phosphorylation of glucose and fructose have been identified in plants, hexokinases (HXKs) and fructokinases (FRKs). These hexose-phosphorylating enzymes appear to coordinate sugar production with the abilities to absorb light, CO2, water, and minerals. This review describes the long- and short-term effects mediated by HXK and FRK in various tissues, as well as the role of these enzymes in the coordination of sugar production with the absorption of light, CO2, water, and minerals.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | |
Collapse
|
36
|
Reda M. Regulation of nitrate reduction in Arabidopsis WT and hxk1 mutant under C and N metabolites. PHYSIOLOGIA PLANTARUM 2013; 149:260-272. [PMID: 23480350 DOI: 10.1111/ppl.12045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
As in plants sugar sensing and signal transduction involve pathways dependent or independent on hexokinase 1 (HXK1) as a glucose sensor, research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. An Arabidopsis mutant with T-DNA insertion in the AtHXK1 gene and defects in glucose signaling (hxk1) was used to determine nitrate reductase (NR) activity, NIA genes expression in leaves after 8-h treatment with sugars (glucose and sucrose), organic acids [2-oxoglutarate (2OG)] and amino acids (glutamine and glutamate). Sugars, especially sucrose, caused induction of NR actual activity accompanied by an increase of the NR activation state, indicating the posttranslational nature of the modifications. Those modifications were observed in wild-type (WT) and hxk1 leaves, suggesting that regulation of NR activity by sugars does not involve HXK1 as a glucose sensor. Moreover, sugars enhanced expression of NIA genes. However, a higher level of NIA transcripts did not lead to an increase of total NR activity in sugar-treated plants. This may suggest that posttranslational modification of NR is fundamental regulatory mechanisms controlling NR activity in response to C metabolites. Treatment of plants with 2-OG also modified NR through the posttranslational modifications. Elevation of actual NR activity and the enzyme activation state in WT and hxk1 leaves was observed. Amino acids caused a decrease of NIA gene expression and NR activities in WT and hxk1 leaves indicating that mutation in the hexokinase-dependent glucose signaling pathway did not interrupt the amino acid feedback regulation of NR.
Collapse
Affiliation(s)
- Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wrocław University, Wrocław, 50-328, Poland
| |
Collapse
|
37
|
Kim YM, Heinzel N, Giese JO, Koeber J, Melzer M, Rutten T, Von Wirén N, Sonnewald U, Hajirezaei MR. A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. PLANT, CELL & ENVIRONMENT 2013; 36:1311-27. [PMID: 23305564 DOI: 10.1111/pce.12060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 05/09/2023]
Abstract
Hexokinase (HXK) is present in all virtually living organisms and is central to carbohydrate metabolism catalysing the ATP-dependent phosphorylation of hexoses. In plants, HXKs are supposed to act as sugar sensors and/or to interact with other enzymes directly supplying metabolic pathways such as glycolysis, the nucleotide phosphate monosaccharide (NDP-glucose) pathway and the pentose phosphate pathway. We identified nine members of the tobacco HXK gene family and observed that among RNAi lines of these nine NtHXKs, only RNAi lines of NtHXK1 showed an altered phenotype, namely stunted growth and leaf chlorosis. NtHXK1 was also the isoform with highest relative expression levels among all NtHXKs. GFP-tagging and immunolocalization indicated that NtHXK1 is associated with mitochondrial membranes. Overexpression of NtHXK1 resulted in elevated glucose phosphorylation activity in leaf extracts or chloroplasts. Moreover, NtHXK1 was able to complement the glucose-insensitive Arabidopsis mutant gin2-1 suggesting that NtHXK1 can take over glucose sensing functions. RNAi lines of NtHXK1 showed severely damaged leaf and chloroplast structure, coinciding with an excess accumulation of starch. We conclude that NtHXK1 is not only essential for maintaining glycolytic activity during respiration but also for regulating starch turnover, especially during the night.
Collapse
Affiliation(s)
- Young-Min Kim
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research IPK, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Nicolas Heinzel
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jens-Otto Giese
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Julia Koeber
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Michael Melzer
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Twan Rutten
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Nicolaus Von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-Universität, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Mohammad-Reza Hajirezaei
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
38
|
Alcántar-Aguirre FC, Chagolla A, Tiessen A, Délano JP, González de la Vara LE. ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris). PLANTA 2013; 237:1571-1583. [PMID: 23503782 DOI: 10.1007/s00425-013-1866-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Mitochondrial porins or voltage-dependent anion channels (VDAC) are the main route for solute transport through outer mitochondrial membranes (OMM). In mammals, hexokinase (HK) binds to VDAC, which allows the channeling of ATP synthesized by oxidative phosphorylation toward HK. In plants, although HK has been found associated with OMM, evidence for an interaction with VDAC is scarce. Thus, in this work, we studied the physical and functional interaction between these proteins in beetroot mitochondria. To observe a physical interaction between HK and VDAC, OMM presenting HK activity were prepared from purified mitochondria. Protein complexes were solubilized from OMM with mild detergents and separated by centrifugation in glycerol gradients. Both HK activity and immunodetected VDAC were found in small (9S-13S) and large (>40S) complexes. OMM proteins were also separated according to their hydropathy by serial phase partitioning with Triton X-114. Most of HK activity was found in hydrophobic fractions where VDAC was also present. These results indicated that HK could be bound to VDAC in beetroot mitochondria. The functional interaction of HK with VDAC was demonstrated by observing the effect of apyrase on HK-catalyzed glucose phosphorylation in intact mitochondria. Apyrase, which hydrolyzes freely soluble ATP, competed efficiently with hexokinase for ATP when it was produced outside mitochondria (with PEP and pyruvate kinase), but not when it was produced inside mitochondria by oxidative phosphorylation. These results suggest that HK closely interacts with VDAC in beetroot mitochondria, and that this interaction allows the channeling of respiratory ATP toward HK through VDAC.
Collapse
Affiliation(s)
- Flor C Alcántar-Aguirre
- Departamento de Biotecnología y Bioquímica, Cinvestav, Unidad Irapuato, Km 9.6 Libramiento Norte, CP 36821 Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
39
|
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:44. [PMID: 23487525 PMCID: PMC3594732 DOI: 10.3389/fpls.2013.00044] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
40
|
Katz ME, Braunberger K, Yi G, Cooper S, Nonhebel HM, Gondro C. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Res 2013; 2:72. [PMID: 24358888 PMCID: PMC3821154 DOI: 10.12688/f1000research.2-72.v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/11/2022] Open
Abstract
The
Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nutrient stress response. Our microarray data showed that the expression of a large number of genes, including genes involved in secondary metabolism, development, high-affinity glucose uptake and autolysis, were altered in an
xprGΔ null mutant. Many of these genes are known to be regulated in response to carbon starvation. We confirmed that sterigmatocystin and penicillin production is reduced in
xprG
- mutants. The loss of fungal mass and secretion of pigments that accompanies fungal autolysis in response to nutrient depletion was accelerated in an
xprG1 gain-of-function mutant and decreased or absent in an
xprG
- mutant. The results support the hypothesis that XprG plays a major role in the response to carbon limitation and that nutrient sensing may represent one of the ancestral roles for the p53-like superfamily. Disruption of the AN6015 gene, which encodes a second Ndt80-like protein, showed that it is required for sexual reproduction in
A. nidulans.
Collapse
Affiliation(s)
- Margaret E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Kathryn Braunberger
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Gauncai Yi
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia ; Current address: Nanjing Hospital for Women & Children's Health, Nanjing Medical University, Nanjing City, 210004, China
| | - Sarah Cooper
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Heather M Nonhebel
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Cedric Gondro
- The Centre for Genetic Analysis and Applications, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
41
|
|
42
|
Montella IR, Schama R, Valle D. The classification of esterases: an important gene family involved in insecticide resistance - A review. Mem Inst Oswaldo Cruz 2012; 107:437-49. [DOI: 10.1590/s0074-02762012000400001] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Renata Schama
- Fiocruz, Brasil; Instituto de Biologia do Exército, Brasil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Denise Valle
- Fiocruz, Brasil; Instituto de Biologia do Exército, Brasil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| |
Collapse
|
43
|
Kelly G, David-Schwartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D. The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. PLANT PHYSIOLOGY 2012; 159:47-51. [PMID: 22451715 PMCID: PMC3375979 DOI: 10.1104/pp.112.196105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/25/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - Rakefet David-Schwartz
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - Nir Sade
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - Menachem Moshelion
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - Asher Levi
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - Victor Alchanatis
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| | - David Granot
- Institute of Plant Sciences (G.K., R.D.-S., D.G.) and Institute of Agricultural Engineering (A.L., V.A.), Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., M.M.)
| |
Collapse
|
44
|
Karve A, Xia X, Moore BD. Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses. PLANT PHYSIOLOGY 2012; 158:1965-75. [PMID: 22366209 PMCID: PMC3320199 DOI: 10.1104/pp.112.195636] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) Hexokinase-Like1 (HKL1) lacks glucose (Glc) phosphorylation activity and has been shown to act as a negative regulator of plant growth. Interestingly, the protein has a largely conserved Glc-binding domain, and protein overexpression was shown previously to promote seedling tolerance to exogenous 6% (w/v) Glc. Since these phenotypes occur independently of cellular Glc signaling activities, we have tested whether HKL1 might promote cross talk between the normal antagonists Glc and ethylene. We show that repression by 1-aminocyclopropane-1-carboxylic acid (ACC) of the Glc-dependent developmental arrest of wild-type Arabidopsis seedlings requires the HKL1 protein. We also describe an unusual root hair phenotype associated with growth on high Glc medium that occurs prominently in HKL1 overexpression lines and in glucose insensitive 2-1 (gin2-1), a null mutant of Hexokinase1 (HXK1). Seedlings of these lines produce bulbous root hairs with an enlarged base after transfer from agar plates with normal medium to plates with 6% Glc. Seedling transfer to plates with 2% Glc plus ACC mimics the high-Glc effect in the HKL1 overexpression line but not in gin2-1. A similar ACC-stimulated, bulbous root hair phenotype also was observed in wild-type seedlings transferred to plates with 9% Glc. From transcript expression analyses, we found that HKL1 and HXK1 have differential roles in Glc-dependent repression of some ethylene biosynthesis genes. Since we show by coimmunoprecipitation assays that HKL1 and HXK1 can interact, these two proteins likely form a critical node in Glc signaling that mediates overlapping, but also distinct, cellular responses to Glc and ethylene treatments.
Collapse
Affiliation(s)
- Abhijit Karve
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | | | | |
Collapse
|
45
|
Heinrichs L, Schmitz J, Flügge UI, Häusler RE. The Mysterious Rescue of adg1-1/tpt-2 - an Arabidopsis thaliana Double Mutant Impaired in Acclimation to High Light - by Exogenously Supplied Sugars. FRONTIERS IN PLANT SCIENCE 2012; 3:265. [PMID: 23233856 PMCID: PMC3516064 DOI: 10.3389/fpls.2012.00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/12/2012] [Indexed: 05/05/2023]
Abstract
An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch [mutation in ADP glucose pyrophosphorylase (AGPase); adg1-1] exhibits severe growth retardation, a decrease in the photosynthetic capacity, and a high chlorophyll fluorescence (HCF) phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc) or glucose (Glc). Here we address the question whether Glc-sensing hexokinase1 (HXK1) defective in the Glc insensitive 2 (gin2-1) mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase, and HXK1 (adg1-1/tpt-2/gin2-1) were established as homozygous lines and grown together with Col-0 and Landsberg erecta (Ler) wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant, and the adg1-1/tpt-2/gpt2-1 triple mutant [additionally defective in the glucose 6-phosphate/phosphate translocator 2 (GPT2)] on agar in the presence or absence of 50 mM of each Glc, Suc, or fructose (Fru). The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru. All three sugars were capable of rescuing the HCF and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar-responsive genes revealed that plastidial HXK (pHXK) was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed.
Collapse
Affiliation(s)
- Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany. e-mail:
| |
Collapse
|
46
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Moisan MC, Garcés R, Martínez-Force E. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:299-308. [PMID: 20889232 DOI: 10.1016/j.jplph.2010.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 05/09/2023]
Abstract
A full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase. The predicted structural model resembles known hexokinase structures, folding into two domains of unequal size: a large and a small one separated by a deep cleft containing the residues involved in the enzyme active site. A truncated version, without the 24 N-terminal residues, was heterologously expressed in Escherichia coli, purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography and biochemically characterized. The purified enzyme behaved as a monomer on size exclusion chromatography and had a specific activity of 19.3 μmol/min/mg protein, the highest specific activity ever reported for a plant hexokinase. The enzyme had higher affinity for glucose and mannose relative to fructose, but the enzymatic efficiency was higher with glucose. Recombinant HaHXK1 was inhibited by ADP and was insensitive either to glucose-6-phosphate or to trehalose-6-phosphate. Its expression profile showed higher levels in heterotrophic tissues, developing seeds and roots, than in photosynthetic ones. A time course of HXK activity and expression in seeds showed that the highest HXK levels are found at the early stages of reserve compounds, lipids and proteins accumulation.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa, CSIC, Avenida Padre Garcia Tejero 4, Seville, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H. Two novel types of hexokinases in the moss Physcomitrella patens. BMC PLANT BIOLOGY 2011; 11:32. [PMID: 21320325 PMCID: PMC3045890 DOI: 10.1186/1471-2229-11-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/14/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss Physcomitrella. Type A, exemplified by PpHxk1, the major hexokinase in Physcomitrella, is a soluble protein that localizes to the chloroplast stroma. Type B, exemplified by PpHxk2, has an N-terminal membrane anchor. Both types are found also in vascular plants, and localize to the chloroplast stroma and mitochondrial membranes, respectively. RESULTS We have now characterized all 11 hexokinase encoding genes in Physcomitrella. Based on their N-terminal sequences and intracellular localizations, three of the encoded proteins are type A hexokinases and four are type B hexokinases. One of the type B hexokinases has a splice variant without a membrane anchor, that localizes to the cytosol and the nucleus. However, we also found two new types of hexokinases with no obvious orthologs in vascular plants. Type C, encoded by a single gene, has neither transit peptide nor membrane anchor, and is found in the cytosol and in the nucleus. Type D hexokinases, encoded by three genes, have membrane anchors and localize to mitochondrial membranes, but their sequences differ from those of the type B hexokinases. Interestingly, all moss hexokinases are more similar to each other in overall sequence than to hexokinases from other plants, even though characteristic sequence motifs such as the membrane anchor of the type B hexokinases are highly conserved between moss and vascular plants, indicating a common origin for hexokinases of the same type. CONCLUSIONS We conclude that the hexokinase gene family is more diverse in Physcomitrella, encoding two additional types of hexokinases that are absent in vascular plants. In particular, the presence of a cytosolic and nuclear hexokinase (type C) sets Physcomitrella apart from vascular plants, and instead resembles yeast, where all hexokinases localize to the cytosol. The fact that all moss hexokinases are more similar to each other than to hexokinases from vascular plants, even though both type A and type B hexokinases are present in all plants, further suggests that the hexokinase gene family in Physcomitrella has undergone concerted evolution.
Collapse
Affiliation(s)
- Anders Nilsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Tina Olsson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Mikael Ulfstedt
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Mattias Thelander
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
48
|
Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. MOLECULAR PLANT 2010; 3:406-19. [PMID: 20100798 DOI: 10.1093/mp/ssp114] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.
Collapse
Affiliation(s)
- Lies Vandesteene
- Laboratory of Functional Biology, Plant Metabolic Signaling Group, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31-bus 2438, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|