1
|
Liu J, Zhu J, Yang R, Su C, Wang Z, Meng J, Luan Y. SlLTPg1, a tomato lipid transfer protein, positively regulates in response to biotic stresses. Int J Biol Macromol 2024; 279:135219. [PMID: 39216573 DOI: 10.1016/j.ijbiomac.2024.135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is among the most devastating diseases affecting tomato and other Solanaceae species. Lipid transfer proteins (LTPs) represent a class of small, basic proteins that play a crucial role in combating biotic stresses. Previous studies have shown that SlLTPg1 most strongly responds after P. infestans infestation among the LTPs family in tomato. However, the function of SlLTPg1 in disease resistance remains unclear. Here, we constructed transient overexpression and VIGS-silenced plants of SlLTPg1. Our results revealed that SlLTPg1 plays a regulatory role in enhancing tomato resistance against P. infestans. This enhancement was attributed to the upregulation of defense-related genes and reactive oxygen species (ROS) scavenging genes, as well as increased enzymatic antioxidant activities. Importantly, we found that the SlLTPg1 protein significantly inhibited the growth of Fusarium oxysporum (F. oxysporum) by observing the zone of inhibition. Interestingly, we found smaller lesion diameters and upregulated expression levels of PR genes in transient overexpression SlLTPg1 of tobacco. Therefore, we further constructed transgenic tobacco lines of SlLTPg1, presenting evidence that overexpression of SlLTPg1 could positively regulate the resistance of tobacco to F. oxysporum. These findings revealed the role of SlLTPg1 in tomato resistance to P. infestans and tobacco resistance to F. oxysporum. Moreover, we propose SlLTPg1 as a potential candidate gene for augmenting broad-spectrum plant resistance against pathogens.
Collapse
Affiliation(s)
- Jie Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39465686 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zongqi Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Runjie Gao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Cherene MB, Taveira GB, Almeida-Silva F, da Silva MS, Cavaco MC, da Silva-Ferreira AT, Perales JEA, de Oliveira Carvalho A, Venâncio TM, da Motta OV, Rodrigues R, Castanho MARB, Gomes VM. Structural and Biochemical Characterization of Three Antimicrobial Peptides from Capsicum annuum L. var. annuum Leaves for Anti-Candida Use. Probiotics Antimicrob Proteins 2024; 16:1270-1287. [PMID: 37365421 DOI: 10.1007/s12602-023-10112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.
Collapse
Affiliation(s)
- Milena Bellei Cherene
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Calvinho Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Olney Vieira da Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
4
|
Morales-Quintana L, Rabert C, Mendez-Yañez A, Ramos P. Transcriptional and structural analysis of non-specific lipid transfer proteins modulated by fungal endophytes in Antarctic plants under drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14359. [PMID: 38797943 DOI: 10.1111/ppl.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Angela Mendez-Yañez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Patricio Ramos
- Plant-microorganisms Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
5
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
6
|
Gasser M, Keller J, Fournier P, Pujic P, Normand P, Boubakri H. Identification and evolution of nsLTPs in the root nodule nitrogen fixation clade and molecular response of Frankia to AgLTP24. Sci Rep 2023; 13:16020. [PMID: 37749152 PMCID: PMC10520049 DOI: 10.1038/s41598-023-41117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules compared to non-infected roots in different lineages within the RNF clade. Here, results highlight that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, which opens perspectives to investigate nsLTPs functions in RNF.
Collapse
Affiliation(s)
- Mélanie Gasser
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pascale Fournier
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Petar Pujic
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Philippe Normand
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Hasna Boubakri
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France.
| |
Collapse
|
7
|
Chen Q, Li L, Qi X, Fang H, Yu X, Bai Y, Chen Z, Liu Q, Liu D, Liang C. The non-specific lipid transfer protein McLTPII.9 of Mentha canadensis is involved in peltate glandular trichome density and volatile compound metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1188922. [PMID: 37324667 PMCID: PMC10264783 DOI: 10.3389/fpls.2023.1188922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Mentha canadensis L. is an important spice crop and medicinal herb with high economic value. The plant is covered with peltate glandular trichomes, which are responsible for the biosynthesis and secretion of volatile oils. Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family involved in various plant physiological processes. Here, we cloned and identified a non-specific lipid transfer protein gene (McLTPII.9) from M. canadensis, which may positively regulate peltate glandular trichome density and monoterpene metabolism. McLTPII.9 was expressed in most M. canadensis tissues. The GUS signal driven by the McLTPII.9 promoter in transgenic Nicotiana tabacum was observed in stems, leaves, and roots; it was also expressed in trichomes. McLTPII.9 was associated with the plasma membrane. Overexpression of McLTPII.9 in peppermint (Mentha piperita. L) significantly increased the peltate glandular trichome density and total volatile compound content compared with wild-type peppermint; it also altered the volatile oil composition. In McLTPII.9-overexpressing (OE) peppermint, the expression levels of several monoterpenoid synthase genes and glandular trichome development-related transcription factors-such as limonene synthase (LS), limonene-3-hydroxylase (L3OH), geranyl diphosphate synthase (GPPS), HD-ZIP3, and MIXTA-exhibited varying degrees of alteration. McLTPII.9 overexpression resulted in both a change in expression of genes for terpenoid biosynthetic pathways which corresponded with an altered terpenoid profile in OE plants. In addition, peltate glandular trichome density was altered in the OE plants as well as the expression of genes for transcription factors that were shown to be involved in trichome development in plants.
Collapse
Affiliation(s)
- Qiutong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Qun Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
9
|
Tian R, Jiang J, Bo S, Zhang H, Zhang X, Hearne SJ, Tang J, Ding D, Fu Z. Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC PLANT BIOLOGY 2023; 23:191. [PMID: 37038106 PMCID: PMC10084604 DOI: 10.1186/s12870-023-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Collapse
Affiliation(s)
- Runmiao Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shirong Bo
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Dong Ding
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Wei H, Liu G, Qin J, Zhang Y, Chen J, Zhang X, Yu C, Chen Y, Lian B, Zhong F, Movahedi A, Zhang J. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins. Int J Biol Macromol 2023; 231:123226. [PMID: 36641014 DOI: 10.1016/j.ijbiomac.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small and have a broad biological function involved in reproductive development and abiotic stress resistance. Although a small part of plant nsLTPs have been identified, these proteins have not been characterized in poplar at the genomic level. A genome-wide characterization and expression identification of poplar nsLTP members were performed in this study. A total of 42 poplar nsLTP genes were identified from the poplar genome. A comprehensive analysis of poplar nsLTPs was conducted by a phylogenetic tree, duplication events, gene structures, and conserved motifs. The cis-elements of poplar nsLTPs were predicted to respond to light, hormone, and abiotic stress. Many transcription factors (TFs) were identified to interact with poplar nsLTP cis-elements. The tested poplar nsLTPs were expressed in leaves, stems, and roots, but their expression levels differed among tested tissues. Most poplar nsLTP expression levels were changed by abiotic stress, implying that poplar nsLTP may be involved in abiotic stress resistance. Network analysis showed that poplar nsLTPs are putative genes involved in fatty acid (FA) metabolism. This research provides sight into the further study to explain the regulatory mechanism of the poplar nsLTPs.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
11
|
Wang D, Song J, Lin T, Yin Y, Mu J, Liu S, Wang Y, Kong D, Zhang Z. Identification of potato Lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. PLANT DIRECT 2023; 7:e491. [PMID: 36993902 PMCID: PMC10041547 DOI: 10.1002/pld3.491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP. Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Jian Song
- Institute of Industrial CropsShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Tuanrong Lin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Yuhe Yin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Junxiang Mu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Shuancheng Liu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Yaqin Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Zhicheng Zhang
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| |
Collapse
|
12
|
Emission of floral volatiles is facilitated by cell-wall non-specific lipid transfer proteins. Nat Commun 2023; 14:330. [PMID: 36658137 PMCID: PMC9852552 DOI: 10.1038/s41467-023-36027-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
For volatile organic compounds (VOCs) to be released from the plant cell into the atmosphere, they have to cross the plasma membrane, the cell wall, and the cuticle. However, how these hydrophobic compounds cross the hydrophilic cell wall is largely unknown. Using biochemical and reverse-genetic approaches combined with mathematical simulation, we show that cell-wall localized non-specific lipid transfer proteins (nsLTPs) facilitate VOC emission. Out of three highly expressed nsLTPs in petunia petals, which emit high levels of phenylpropanoid/benzenoid compounds, only PhnsLTP3 contributes to the VOC export across the cell wall to the cuticle. A decrease in PhnsLTP3 expression reduces volatile emission and leads to VOC redistribution with less VOCs reaching the cuticle without affecting their total pools. This intracellular build-up of VOCs lowers their biosynthesis by feedback downregulation of phenylalanine precursor supply to prevent self-intoxication. Overall, these results demonstrate that nsLTPs are intrinsic members of the VOC emission network, which facilitate VOC diffusion across the cell wall.
Collapse
|
13
|
Seed Storage Protein, Functional Diversity and Association with Allergy. ALLERGIES 2023. [DOI: 10.3390/allergies3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plants are essential for humans as they serve as a source of food, fuel, medicine, oils, and more. The major elements that are utilized for our needs exist in storage organs, such as seeds. These seeds are rich in proteins, show a broad spectrum of physiological roles, and are classified based on their sequence, structure, and conserved motifs. With the improvements to our knowledge of the basic sequence and our structural understanding, we have acquired better insights into seed proteins and their role. However, we still lack a systematic analysis towards understanding the functional diversity associated within each family and their associations with allergy. This review puts together the information about seed proteins, their classification, and diverse functional roles along with their associations with allergy.
Collapse
|
14
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
15
|
Pollen Coat Proteomes of Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea Reveal Remarkable Diversity of Small Cysteine-Rich Proteins at the Pollen-Stigma Interface. Biomolecules 2023; 13:biom13010157. [PMID: 36671543 PMCID: PMC9856046 DOI: 10.3390/biom13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The pollen coat is the outermost domain of the pollen grain and is largely derived from the anther tapetum, which is a secretory tissue that degenerates late in pollen development. By being localised at the interface of the pollen-stigma interaction, the pollen coat plays a central role in mediating early pollination events, including molecular recognition. Amongst species of the Brassicaceae, a growing body of data has revealed that the pollen coat carries a range of proteins, with a number of small cysteine-rich proteins (CRPs) being identified as important regulators of the pollen-stigma interaction. By utilising a state-of-the-art liquid chromatography/tandem mass spectrometry (LC-MS/MS) approach, rich pollen coat proteomic profiles were obtained for Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea, which greatly extended previous datasets. All three proteomes revealed a strikingly large number of small CRPs that were not previously reported as pollen coat components. The profiling also uncovered a wide range of other protein families, many of which were enriched in the pollen coat proteomes and had functions associated with signal transduction, cell walls, lipid metabolism and defence. These proteomes provide an excellent source of molecular targets for future investigations into the pollen-stigma interaction and its potential evolutionary links to plant-pathogen interactions.
Collapse
|
16
|
Huang MD, Wu CW, Chou HY, Cheng SY, Chang HY. The revealing of a novel lipid transfer protein lineage in green algae. BMC PLANT BIOLOGY 2023; 23:21. [PMID: 36627558 PMCID: PMC9832785 DOI: 10.1186/s12870-023-04040-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-specific lipid transfer proteins (nsLTPs) are a group of small and basic proteins that can bind and transfer various lipid molecules to the apoplastic space. A typical nsLTP carries a conserved architecture termed eight-cysteine motif (8CM), a scaffold of loop-linked helices folding into a hydrophobic cavity for lipids binding. Encoded by a multigene family, nsLTPs are widely distributed in terrestrial plants from bryophytes to angiosperms with dozens of gene members in a single species. Although the nsLTPs in the most primitive plants such as Marchantia already reach 14 members and are divergent enough to form separate groups, so far none have been identified in any species of green algae. RESULTS By using a refined searching strategy, we identified putative nsLTP genes in more than ten species of green algae as one or two genes per haploid genome but not in red and brown algae. The analyses show that the algal nsLTPs carry unique characteristics, including the extended 8CM spacing, larger molecular mass, lower pI value and multiple introns in a gene, which suggests that they could be a novel nsLTP lineage. Moreover, the results of further investigation on the two Chlamydomonas nsLTPs using transcript and protein assays demonstrated their late zygotic stage expression patterns and the canonical nsLTP properties were also verified, such as the fatty acids binding and proteinase resistance activities. CONCLUSIONS In conclusion, a novel nsLTP lineage is identified in green algae, which carries some unique sequences and molecular features that are distinguishable from those in land plants. Combined with the results of further examinations of the Chlamydomonas nsLTPs in vitro, possible roles of the algal nsLTPs are also suggested. This study not only reveals the existence of the nsLTPs in green algae but also contributes to facilitating future studies on this enigmatic protein family.
Collapse
Affiliation(s)
- Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424.
| | - Chin-Wei Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Hong-Yun Chou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424.
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 11221.
| |
Collapse
|
17
|
Renzaglia KS, Ashton NW, Suh DY. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture. Front Cell Dev Biol 2023; 11:1165293. [PMID: 37123413 PMCID: PMC10133578 DOI: 10.3389/fcell.2023.1165293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Although the evolution of spores was critical to the diversification of plants on land, sporogenesis is incompletely characterized for model plants such as Physcomitrium patens. In this study, the complete process of P. patens sporogenesis is detailed from capsule expansion to mature spore formation, with emphasis on the construction of the complex spore wall and proximal aperture. Both diploid (sporophytic) and haploid (spores) cells contribute to the development and maturation of spores. During capsule expansion, the diploid cells of the capsule, including spore mother cells (SMCs), inner capsule wall layer (spore sac), and columella, contribute a locular fibrillar matrix that contains the machinery and nutrients for spore ontogeny. Nascent spores are enclosed in a second matrix that is surrounded by a thin SMC wall and suspended in the locular material. As they expand and separate, a band of exine is produced external to a thin foundation layer of tripartite lamellae. Dense globules assemble evenly throughout the locule, and these are incorporated progressively onto the spore surface to form the perine external to the exine. On the distal spore surface, the intine forms internally, while the spiny perine ornamentation is assembled. The exine is at least partially extrasporal in origin, while the perine is derived exclusively from outside the spore. Across the proximal surface of the polar spores, an aperture begins formation at the onset of spore development and consists of an expanded intine, an annulus, and a central pad with radiating fibers. This complex aperture is elastic and enables the proximal spore surface to cycle between being compressed (concave) and expanded (rounded). In addition to providing a site for water intake and germination, the elastic aperture is likely involved in desiccation tolerance. Based on the current phylogenies, the ancestral plant spore contained an aperture, exine, intine, and perine. The reductive evolution of liverwort and hornwort spores entailed the loss of perine in both groups and the aperture in liverworts. This research serves as the foundation for comparisons with other plant groups and for future studies of the developmental genetics and evolution of spores across plants.
Collapse
Affiliation(s)
- Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
- *Correspondence: Karen S. Renzaglia,
| | - Neil W. Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
18
|
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211976. [PMID: 38033810 PMCID: PMC10683392 DOI: 10.1177/25152564231211976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
VPS13 is a lipid transfer protein family conserved among Eukaryotes and playing roles in fundamental processes involving vesicular transport and membrane expansion including autophagy and organelle biogenesis. VPS13 folds into a long hydrophobic tunnel, allowing lipid transport, decorated by distinct domains involved in protein localization and regulation. Whereas VPS13 organization and function have been extensively studied in yeast and mammals, information in organisms originating from primary endosymbiosis is scarce. In the higher plant Arabidopsis thaliana, four paralogs, AtVPS13S, X, M1, and M2, were identified, AtVPS13S playing a role in the regulation of root growth, cell patterning, and reproduction. In this work, we performed phylogenetic, as well as domain and structural modeling of VPS13 proteins in Archaeplastida in order to understand their general organization and evolutionary history. We confirmed the presence of human VPS13B orthologues in some phyla and described two new VPS13 families presenting a particular domain arrangement: VPS13R in Rhodophytes and VPS13Y in Chlorophytes and Streptophytes. By focusing on Viridiplantae, we were able to draw the evolutionary history of these proteins made by multiple gene gains and duplications as well as domain rearrangements. We showed that some Chlorophytes have only three (AtVPS13M, S, Y) whereas some Charophytes have up to six VPS13 paralogs (AtVPS13M1, M2, S, Y, X, B). We also highlighted specific structural features of VPS13M and X paralogs. This study reveals the complex evolution of VPS13 family and opens important perspectives for their functional characterization in photosynthetic organisms.
Collapse
Affiliation(s)
- Sébastien Leterme
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | | | - Alberto Amato
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| |
Collapse
|
19
|
Genome-Wide Identification of Common Bean PvLTP Family Genes and Expression Profiling Analysis in Response to Drought Stress. Genes (Basel) 2022; 13:genes13122394. [PMID: 36553661 PMCID: PMC9777604 DOI: 10.3390/genes13122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Common bean is one of the most important legume crops for human consumption. Its yield is adversely affected by environmental stress. Plant non-specific lipid transfer proteins (nsLTPs) are essential for plant growth, development, and resistance to abiotic stress, such as salt, drought, and alkali. However, changes in nsLTP family genes responding to drought stress are less known. The PvLTP gene family in the common bean was identified by a comprehensive genome-wide analysis. Molecular weights, theoretical isoelectric points, phylogenetic tree, conserved motifs, gene structures, gene duplications, chromosome localization, and expression profiles were analyzed by SignalP 5.0, ExPASy, ClustalX 2.1, MEGA 7.0, NCBI-CDD, MEME, Weblogo, and TBtools 1.09876, respectively. Heatmap and qRT-PCR analyses were performed to validate the expression profiles of PvLTP genes in different organs. In addition, the expression patterns of nine PvLTP genes in common beans treated with drought stress were investigated by qRT-PCR. We obtained 58 putative PvLTP genes in the common bean genome via genome-wide analyses. Based on the diversity of the eight-cysteine motif (ECM), these genes were categorized into five types (I, II, IV, V, and VIII). The signal peptides of the PvLTP precursors were predicted to be from 16 to 42 amino acid residues. PvLTPs had a predicated theoretical isoelectric point of 3.94-10.34 and a molecular weight of 7.15-12.17 kDa. The phylogenetic analysis showed that PvLTPs were closer to AtLTPs than OsLTPs. Conserved motif and gene structure analyses indicated that PvLTPs were randomly distributed on all chromosomes except chromosome 9. In addition, 23 tandem duplicates of PvLTP genes were arranged in 10 gene clusters on chromosomes 1 and 2. The heatmap and qRT-PCR showed that PvLTP expression significantly varied in different tissues. Moreover, 9 PvLTP genes were up-regulated under drought treatment. Our results reveal that PvLTPs play potentially vital roles in plants and provide a comprehensive reference for studies on PvLTP genes and a theoretical basis for further analysis of regulatory mechanisms influencing drought tolerance in the common bean.
Collapse
|
20
|
Yannam VRR, Caicedo M, Malvar RA, Ordás B. Genome-Wide Association Analysis of Senescence-Related Traits in Maize. Int J Mol Sci 2022; 23:ijms232415897. [PMID: 36555534 PMCID: PMC9782587 DOI: 10.3390/ijms232415897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Senescence is a programmed process that involves the destruction of the photosynthesis apparatus and the relocation of nutrients to the grain. Identifying senescence-associated genes is essential to adapting varieties for the duration of the cultivation cycle. A genome-wide association study (GWAS) was performed using 400 inbred maize lines with 156,164 SNPs to study the genetic architecture of senescence-related traits and their relationship with agronomic traits. We estimated the timing of senescence to be 45 days after anthesis in the whole plant and specifically in the husks. A list of genes identified in a previous RNAseq experiment as involved in senescence (core senescence genes) was used to propose candidate genes in the vicinity of the significant SNPs. Forty-six QTLs of moderate to high effect were found for senescence traits, including specific QTLs for husk senescence. The allele that delayed senescence primarily increased grain yield and moisture. Seven and one significant SNPs were found in the coding and promoter regions of eight core senescence genes, respectively. These genes could be potential candidates for generating a new variation by genome editing for functional analysis and breeding purposes, particularly Zm00001d014796, which could be responsible for a QTL of senescence found in multiple studies.
Collapse
Affiliation(s)
- Venkata Rami Reddy Yannam
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| | - Marlon Caicedo
- Estación Experimental Tropical Pichilingue, Programa de Maíz, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito 170518, Ecuador
| | - Rosa Ana Malvar
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
| | - Bernardo Ordás
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
- Correspondence:
| |
Collapse
|
21
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
22
|
Gasser M, Alloisio N, Fournier P, Balmand S, Kharrat O, Tulumello J, Carro L, Heddi A, Da Silva P, Normand P, Pujic P, Boubakri H. A Nonspecific Lipid Transfer Protein with Potential Functions in Infection and Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1096-1108. [PMID: 36102948 DOI: 10.1094/mpmi-06-22-0131-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of Alnus glutinosa to Frankia alni ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to Frankia alni. Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots. Most of these genes encode proteins involved in biological processes induced during microbial infection, such as oxidative stress or response to stimuli, but a large number of them are not differentially modulated or downregulated later in the process of nodulation. In contrast, several of them remained upregulated in mature nodules, and this included the gene most upregulated, which encodes a nonspecific lipid transfer protein (nsLTP). Classified as an antimicrobial peptide, this nsLTP was immunolocalized on the deformed root-hair surfaces that are points of contact for Frankia spp. during infection. Later in nodules, it binds to the surface of F. alni ACN14a vesicles, which are the specialized cells for nitrogen fixation. This nsLTP, named AgLTP24, was biologically produced in a heterologous host and purified for assay on F. alni ACN14a to identify physiological effects. Thus, the activation of the plant immunity response occurs upon first contact, while the recognition of F. alni ACN14a genes switches off part of the defense system during nodulation. AgLTP24 constitutes a part of the defense system that is maintained all along the symbiosis, with potential functions such as the formation of infection threads or nodule primordia to the control of F. alni proliferation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mélanie Gasser
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Severine Balmand
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Ons Kharrat
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Joris Tulumello
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Lorena Carro
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Abdelaziz Heddi
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Pedro Da Silva
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
23
|
Li F, Fan K, Guo X, Liu J, Zhang K, Lu P. Genome-wide identification, molecular evolution and expression analysis of the non-specific lipid transfer protein (nsLTP) family in Setaria italica. BMC PLANT BIOLOGY 2022; 22:547. [PMID: 36443672 PMCID: PMC9703814 DOI: 10.1186/s12870-022-03921-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Foxtail millet (Setaria italica L.) is a millet species with high tolerance to stressful environments. Plant non-specific lipid transfer proteins (nsLTPs) are a kind of small, basic proteins involved in many biological processes. So far, the genome of S. italica has been fully sequenced, and a comprehensive understanding of the evolution and expression of the nsLTP family is still lacking in foxtail millet. RESULTS Forty-five nsLTP genes were identified in S. italica and clustered into 5 subfamilies except three single genes (SinsLTP38, SinsLTP7, and SinsLTP44). The proportion of SinsLTPs was different in each subfamily, and members within the same subgroup shared conserved exon-intron structures. Besides, 5 SinsLTP duplication events were investigated. Both tandem and segmental duplication contributed to nsLTP expansion in S. italica, and the duplicated SinsLTPs had mainly undergone purifying selection pressure, which suggested that the function of the duplicated SinsLTPs might not diverge much. Moreover, we identified the nsLTP members in 5 other monocots, and 41, 13, 10, 4, and 1 orthologous gene pairs were identified between S. italica and S. viridis, S. bicolor, Z. mays, O. sativa, and B. distachyon, respectively. The functional divergence within the nsLTP orthologous genes might be limited. In addition, the tissue-specific expression patterns of the SinsLTPs were investigated, and the expression profiles of the SinsLTPs in response to abiotic stress were analyzed, all the 10 selected SinsLTPs were responsive to drought, salt, and cold stress. Among the selected SinsLTPs, 2 paired duplicated genes shared almost equivalent expression profiles, suggesting that these duplicated genes might retain some essential functions during subsequent evolution. CONCLUSIONS The present study provided the first systematic analysis for the phylogenetic classification, conserved domain and gene structure, expansion pattern, and expression profile of the nsLTP family in S. italica. These findings could pave a way for further comparative genomic and evolution analysis of nsLTP family in foxtail millet and related monocots, and lay the foundation for the functional analysis of the nsLTPs in S. italica.
Collapse
Affiliation(s)
- Feng Li
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, China.
- Research and Development Center of Agricultural Facility Technology, Shanxi Datong University, Datong, 037009, China.
| | - Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuhu Guo
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, China
- Research and Development Center of Agricultural Facility Technology, Shanxi Datong University, Datong, 037009, China
| | - Jianxia Liu
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, China
- Research and Development Center of Agricultural Facility Technology, Shanxi Datong University, Datong, 037009, China
| | - Kun Zhang
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, China
- Research and Development Center of Agricultural Facility Technology, Shanxi Datong University, Datong, 037009, China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|
25
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|
26
|
Xu K, Zhao Y, Gu J, Zhou M, Gao L, Sun RX, Wang WW, Zhang SH, Yang XJ. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111242. [PMID: 35351310 DOI: 10.1016/j.plantsci.2022.111242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Cold acclimation (CA) is an important evolutionary adaptive mechanism for wheat freezing resistence. To clarify the molecular basis of wheat CA and freezing tolerance, the effects of CA (4 °C) and non-CA (20 °C) treatments and freezing stress (-5 °C) on the proteins in the wheat crown were characterized via an iTRAQ-based proteomic analysis. A total of 669 differentially accumulated proteins (DAPs) were identified after the CA, of which seven were also DAPs in the CA plants exposed to freezing stress. Additionally, the 15 DAPs in the CA group and the 23 DAPs in the non-CA group after the freezing treatment differed substantially. Functional analyses indicated that CA enhanced freezing tolerance by regulating proteins involved in signal transduction, carbohydrate metabolism, stress and defense responses, and phenylpropanoid biosynthesis. An integrated transcriptomic, proteomic, and metabolomic analysis revealed significant changes in various components of the glutathione metabolic pathway. The overexpression and silencing of Wdhn13 in Arabidopsis and wheat resulted in increased tolerance and sensitivity to freezing stress, respectively, suggesting Wdhn13 promotes freezing tolerance. Overall, our study offers insights into the regulatory network underlying the CA and freezing tolerance of wheat, which may be useful for elucidating wheat freezing resistance.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Meng Zhou
- Hebei University, Baoding 071000, Hebei, China
| | - Le Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Ruo-Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Wei-Wei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei, China
| | - Shu-Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Xue-Ju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|
27
|
Missaoui K, Gonzalez-Klein Z, Jemli S, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J, Brini F. Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS One 2022; 17:e0266971. [PMID: 35417502 PMCID: PMC9007336 DOI: 10.1371/journal.pone.0266971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 01/15/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins, a part of the pathogenesis-related protein family, and numerous of them act as positive regulators during plant disease resistance, growth, and reproduction. These proteins are involved also in the intracellular transfer of lipids, as well as in plant immune responses. Besides their differences in sequences, they show similar features in their structure. However, they show distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. This study reports the identification, in silico characterization and purification of a novel member of the nsLTP2 protein family from durum wheat, TdLTP2. It was generated and purified using the combination of gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Its identity was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MALDI-TOF). TdLTP2 had been expressed in different stress to detect its localization; therefore, fluor-immunolocalization studies accomplished this data. In this approach, to assess the allergenicity of TdLTP2, thirty patients with baker’s asthma were enrolled and ELISA to detect the presence of specific IgE antibodies tested their sera. Moreover, the lipid-binding properties of TdLTP2 were examined in vitro and validated using a molecular docking study. In summary, our results demonstrate a new addition of member in plant nsLTPs family, TdLTP2, which can develop a better understanding about its biological functions and shed light on future applications.
Collapse
Affiliation(s)
- Khawla Missaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Maria Garrido-Arandia
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Araceli Diaz-Perales
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- * E-mail: (JTA); (FB)
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail: (JTA); (FB)
| |
Collapse
|
28
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
29
|
Tomato Allergy: The Characterization of the Selected Allergens and Antioxidants of Tomato ( Solanum lycopersicum)-A Review. Antioxidants (Basel) 2022; 11:antiox11040644. [PMID: 35453329 PMCID: PMC9031248 DOI: 10.3390/antiox11040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Tomatoes are one of the most broadly produced and consumed crop plants. They are the source of health-promoting nutrients such as antioxidants, including ascorbic acid, polyphenols, or carotenoids. Despite the beneficial role of tomatoes in the daily diet, they have been confirmed as one of the most prevalent allergenic vegetables. Food allergies can cause many clinical symptoms, e.g., in the gastrointestinal tract, skin, and lungs, as well as anaphylactic shock. A huge amount of clinical research has been carried out to improve the understanding of the immunological mechanisms that lead to the lack of tolerance of food antigens, which can result in either immunoglobulin E (IgE)-mediated reactions or non-IgE-mediated reactions. Lifestyle and diet play an important role in triggering food allergies. Allergy to tomatoes is also linked to other allergies, such as grass pollen and latex allergy. Numerous attempts have been made to identify and characterize tomato allergens; however, the data available on the subject are not sufficient.
Collapse
|
30
|
de Oliveira Silva L, da Silva Pereira L, Pereira JL, Gomes VM, Grativol C. Divergence and conservation of defensins and lipid transfer proteins (LTPs) from sugarcane wild species and modern cultivar genomes. Funct Integr Genomics 2022; 22:235-250. [PMID: 35195843 DOI: 10.1007/s10142-022-00832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Plant defensins and lipid transfer proteins (LTPs) constitute a large and evolutionarily diverse family of antimicrobial peptides. Defensins and LTPs are two pathogenesis-related proteins (PR proteins) whose characterization may help to uncover aspects about the sugarcane response to pathogens attack. LTPs have also been investigated for their participation in the response to different types of stress. Despite the important roles of defensins and LTPs in biotic and abiotic stresses, scarce knowledge is found about these proteins in sugarcane. By using bioinformatics approaches, we characterized defensins and LTPs in the sugarcane wild species and modern cultivar genomes. The identification of defensins and LTPs showed that all five defensins groups and eight of the nine LTPs have their respective genes loci, although some was only identified in the cultivar genome. Phylogenetic analysis showed that defensins appear to be more conserved among groups of plants than LTPs. Some defensins and LTPs showed opposite expression during pathogenic and benefic bacterial interactions. Interestingly, the expression of defensins and LTPs in shoots and roots was completely different in plants submitted to benefic bacteria or water depletion. Finally, the modeling and comparison of isoforms of LTPs and defensins in wild species and cultivars revealed a high conservation of tertiary structures, with variation of amino acids in different regions of proteins, which could impact their antimicrobial activity. Our data contributed to the characterization of defensins and LTPs in sugarcane and provided new elements for understanding the involvement of these proteins in sugarcane response to different types of stress.
Collapse
Affiliation(s)
- Leandro de Oliveira Silva
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lídia da Silva Pereira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Jacymara Lopes Pereira
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Clícia Grativol
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
31
|
Yang Y, Li P, Liu C, Wang P, Cao P, Ye X, Li Q. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:33-47. [PMID: 35016104 DOI: 10.1016/j.plaphy.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are characterized by an eight-cysteine motif backbone stabilized by four disulfide bonds; these proteins can bind or transfer lipids. NsLTPs play important roles in plant growth and development, and in the responses to abiotic and biotic stresses. In this study, 50, 51, and 100 nsLTPs from Nicotiana sylvestris, N. tomentosiformis, and their descendant N. tabacum, respectively, were identified and classified into six types (I, II, IV, V, VII, and VIII). The phylogeny, gene structures, motifs, tertiary structures, gene duplications and expression patterns were systematically analyzed. The intron/exon patterns and the conserved motifs were highly similar among the same types of nsLTP genes. Purifying selection and segmental duplication dominated the expansion of the nsLTPs family during evolution. Cis-regulatory elements of the NtLTP promoters were involved in light responsiveness, abiotic stress, and phytohormone responsiveness. Expression pattern analysis using RNA-seq and qPCR revealed that NtLTP family genes exhibited tissue-specific expression patterns and they have potential roles in response to abiotic and biotic stresses, especially drought stress, and resistance to black shank and bacterial wilt. Furthermore, overexpression of NtLTPI.38 in tobacco increased drought tolerance by improving the antioxidant defense ability, through reducing O2•- and H2O2 accumulation and increasing the number of lateral roots. These results provide a comprehensive overview of this gene family and provide valuable insights for the functional characterization of nsLTP family genes.
Collapse
Affiliation(s)
- Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China; Nanyang Municipal Tobacco Company, Nanyang, 473000, China
| | - Che Liu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peng Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430000, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450002, China
| | - Xiefeng Ye
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingchang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450002, China.
| |
Collapse
|
32
|
Wei H, Movahedi A, Liu G, Zhu S, Chen Y, Yu C, Zhong F, Zhang J. Characteristics, expression profile, and function of non-specific lipid transfer proteins of Populus trichocarpa. Int J Biol Macromol 2022; 202:468-481. [PMID: 35063485 DOI: 10.1016/j.ijbiomac.2022.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are involved in various physiological processes. However, the characteristics and function of LTPs in Populus trichocarpa are unclear. Here, we report the functional properties of type IV, V, and VI P. trichocarpa nsLTPs (PtLTPs). The IV, V, and VI PtLTPs clustered in the same clade shared similar gene structures and motif and distributions. Also, collinearity analysis revealed 2 and 7 gene pairs have tandem duplication and segmental duplication events, respectively. The expression patterns of type IV, V, and VI PtLTPs differed among poplar tissues. We investigated the effects of various stresses on the Potri.010G100600, Potri.010G196300, and Potri.016G104300 (type V LTPs) mRNA levels, and type V LTPs can respond to multiple stresses. Potri.008G061800 was localized to the cell wall, extracellular space, and plasma membrane. Glutathione-S-transferase-Potri.008G061800 obtained by prokaryotic expression had weakly inhibited the growth of Septotis populiperda in vitro. Taken together, our data show that type IV, V, and VI PtLTPs may be thought as novel regulators of plant stresses. They could be considered an effective genetic resource for molecular breeding in poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
33
|
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: An overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:115-127. [PMID: 34992048 DOI: 10.1016/j.plaphy.2021.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.
Collapse
Affiliation(s)
- Khawla Missaoui
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain.
| |
Collapse
|
34
|
Liang Y, Huang Y, Chen K, Kong X, Li M. Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation. BMC PLANT BIOLOGY 2022; 22:21. [PMID: 34996379 PMCID: PMC8740461 DOI: 10.1186/s12870-021-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/15/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Kong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2021; 12:biom12010024. [PMID: 35053172 PMCID: PMC8774254 DOI: 10.3390/biom12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.
Collapse
|
36
|
Assessment of antimicrobial phytopeptides: lipid transfer protein and hevein-like peptide in the prospect of structure, function and allergenic effect. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antimicrobial peptides (AMPs) are unique natural antibiotics that are crucial effectors of innate immune systems in almost all living organisms. Several different plant antimicrobial peptides have been identified and isolated, demonstrating a high level of protection against various types of bacteria, insects, nematodes and other microbes. Along with antimicrobial function, these peptides play a wide range of crucial function in plants, such as regulation of stomata, ion channel, heavy metals and membrane fluidity.
Main body
Antimicrobial peptides show a continuum of toxicity for a variety of plants and animals pathogenic microbes and even show cytotoxicity against cancer cells. Numerous studies have shown that transgenic plants have increased the expression of AMP-encoding genes in response to biotic and abiotic stresses, and plants that express transgenic AMP genes are more responsive to biotic, abiotic and other functions. In addition to being a molecule with protective properties, various allergic reactions are associated with some phytopeptides and proteins, in particular non-specific lipid transfer protein (nsLTP) and peptide-like hevein. Pru p3 from peach is the most clinically important allergen within the nsLTP family that cause real food allergies and also triggers extreme clinical reactions. Similarly, latex-fruit syndrome was primarily associated with well-studied latex allergen Hevein (Hev b8, Hev b6) and class I chitinases.
Short conclusions
Several findings have shown that, in the near future, transgenic plants based on AMPs against the verity of pathogenic fungi, bacteria and other abiotic stresses will be released without any adverse effects. Recent study reason that association of lipid with nsLTP enhances allergic sensitization and hevein-like domain of chitinase I essentially plays a role in cross-sensitivity of latex with different fruits and nuts. This review discusses the structures and various functions of lipid transfer protein and hevein-like peptide.
Collapse
|
37
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
38
|
Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:358-377. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menglin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
39
|
Duo J, Xiong H, Wu X, Li Y, Si J, Zhang C, Duan R. Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues. BMC Genomics 2021; 22:674. [PMID: 34544387 PMCID: PMC8451110 DOI: 10.1186/s12864-021-07958-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs), a group of small, basic ubiquitous proteins to participate in lipid transfer, cuticle formation and stress response, are involved in the regulation of plant growth and development. To date, although the nsLTP gene family of barley (Hordeum vulgare L.) has been preliminarily identified, it is still unclear in the recently completed genome database of barley and Qingke, and its transcriptional profiling under abiotic stress has not been elucidated as well. RESULTS We identified 40 barley nsLTP (HvLTP) genes through a strict screening strategy based on the latest barley genome and 35 Qingke nsLTP (HtLTP) orthologues using blastp, and these LTP genes were divided into four types (1, 2, D and G). At the same time, a comprehensive analysis of the physical and chemical characteristics, homology alignment, conserved motifs, gene structure and evolution of HvLTPs and HtLTPs further supported their similar nsLTP characteristics and classification. The genomic location of HvLTPs and HtLTPs showed that these genes were unevenly distributed, and obvious HvLTP and HtLTP gene clusters were found on the 7 chromosomes including six pairs of tandem repeats and one pair of segment repeats in the barley genome, indicating that these genes may be co-evolutionary and co-regulated. A spatial expression analysis showed that most HvLTPs and HtLTPs had different tissue-specific expression patterns. Moreover, the upstream cis-element analysis of HvLTPs and HtLTPs showed that there were many different stress-related transcriptional regulatory elements, and the expression pattern of HvLTPs and HtLTPs under abiotic stress also indicated that numerous HvLTP and HtLTP genes were related to the abiotic stress response. Taken together, these results may be due to the differences in promoters rather than by genes themselves resulting in different expression patterns under abiotic stress. CONCLUSION Due to a stringent screening and comprehensive analysis of the nsLTP gene family in barley and Qingke and its expression profile under abiotic stress, this study can be considered a useful source for the future studies of nsLTP genes in either barley or Qingke or for comparisons of different plant species.
Collapse
Affiliation(s)
- Jiecuo Duo
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China.,Qinghai Qaidam Vocational & Technical College, Delingha, 817000, Qinghai Province, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Xiongxiong Wu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Yuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Jianping Si
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Chao Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China.
| |
Collapse
|
40
|
Gao HN, Jiang H, Lian XY, Cui JY, You CX, Hao YJ, Li YY. Identification and functional analysis of the MdLTPG gene family in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:338-347. [PMID: 33906121 DOI: 10.1016/j.plaphy.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Cuticular wax is synthesized from intracellular lipids that are exported by epidermal cells, and plant lipid transfer proteins (LTPs) play an important role in this process. The glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs) are a large subgroup within the LTP family and function in lipid transport and wax formation. Although LTPG family members have been identified in several plant species, the LTPG gene family of apple (Malus domestica) remains uncharacterized. In this paper, we identified 26 potential LTPG genes by searching apple whole-genome annotation files using "GPI-anchored" and "lipid transferase" as keywords. Twenty of the 26 putative LTPG genes were confirmed as MdLTPG family members based on their subcellular localization predictions. The MdLTPGs were divided into four classes based on phylogenetic analysis and functional domain prediction. One member of each class was analyzed for subcellular localization, and all identified members were located on the plasma membrane. Most MdLTPG genes were induced by abiotic stress treatments such as low temperature, NaCl, and ABA. Finally, the MdLTPG17 protein was shown to interact with the lysine-rich arabinogalactan protein MdAGP18 to perform its function in wax transport during plant growth and development.
Collapse
Affiliation(s)
- Huai-Na Gao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yang ling, Shannxi, 712100, China
| | - Xin-Yu Lian
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jian-Ying Cui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
41
|
Song S, You J, Shi L, Sheng C, Zhou W, Dossou SSK, Dossa K, Wang L, Zhang X. Genome-Wide Analysis of nsLTP Gene Family and Identification of SiLTPs Contributing to High Oil Accumulation in Sesame ( Sesamum indicum L.). Int J Mol Sci 2021; 22:ijms22105291. [PMID: 34069840 PMCID: PMC8157352 DOI: 10.3390/ijms22105291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
The biosynthesis and storage of lipids in oil crop seeds involve many gene families, such as nonspecific lipid-transfer proteins (nsLTPs). nsLTPs are cysteine-rich small basic proteins essential for plant development and survival. However, in sesame, information related to nsLTPs was limited. Thus, the objectives of this study were to identify the Sesamum indicum nsLTPs (SiLTPs) and reveal their potential role in oil accumulation in sesame seeds. Genome-wide analysis revealed 52 SiLTPs, nonrandomly distributed on 10 chromosomes in the sesame variety Zhongzhi 13. Following recent classification methods, the SiLTPs were divided into nine types, among which types I and XI were the dominants. We found that the SiLTPs could interact with several transcription factors, including APETALA2 (AP2), DNA binding with one finger (Dof), etc. Transcriptome analysis showed a tissue-specific expression of some SiLTP genes. By integrating the SiLTPs expression profiles and the weighted gene co-expression network analysis (WGCNA) results of two contrasting oil content sesame varieties, we identified SiLTPI.23 and SiLTPI.28 as the candidate genes for high oil content in sesame seeds. The presumed functions of the candidate gene were validated through overexpression of SiLTPI.23 in Arabidopsis thaliana. These findings expand our knowledge on nsLTPs in sesame and provide resources for functional studies and genetic improvement of oil content in sesame seeds.
Collapse
Affiliation(s)
- Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
| | - Lisong Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
- Laboratory of Genetics, Horticulture and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
- Correspondence: (L.W.); (X.Z.)
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.S.); (J.Y.); (L.S.); (C.S.); (W.Z.); (S.S.K.D.); (K.D.)
- Correspondence: (L.W.); (X.Z.)
| |
Collapse
|
42
|
Skypala IJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann-Sommergruber K, Pastorello EA, Swoboda I, Bartra J, Ebo DG, Faber MA, Fernández-Rivas M, Gomez F, Konstantinopoulos AP, Luengo O, van Ree R, Scala E, Till SJ. Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology. Clin Transl Allergy 2021; 11:e12010. [PMID: 34025983 PMCID: PMC8129635 DOI: 10.1002/clt2.12010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Discovered and described 40 years ago, non‐specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross‐reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non‐specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen‐food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4‐disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross‐reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly‐sensitised both to botanically un‐related nsLTP in foods, and non‐food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non‐Mediterranean populations and there needs to be more recognition of this. Conclusion Non‐specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world‐wide prevalence of clinical symptoms associated with sensitization to these complex allergens.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology Royal Brompton & Harefield NHS Foundation Trust Imperial College London UK
| | - Ricardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Milan Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU CEU Universities Madrid Spain.,RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Arazeli Diaz Perales
- Departamento de Biotecnología-Biología Vegetal Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid Madrid Spain
| | | | - Elide A Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section FH Campus Wien University of Applied Sciences Vienna Austria
| | - Joan Bartra
- Hospital Clinic de Barcelona IDIBAPS Universitat de Barcelona ARADyAL Barcelona Spain
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Margaretha A Faber
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Montserrat Fernández-Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC, ARADyAL Madrid Spain
| | - Francesca Gomez
- Allergy Unit IBIMA- Hospital Regional Universitario de Malaga Malaga and Spanish Network for Allergy - RETICS de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | | | - Olga Luengo
- Allergy Unit, Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology Amsterdam University Medical Centers location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico Dell'immacolata IRCCS FLMM Rome Italy
| | - Stephen J Till
- Peter Gorer Department of Immunobiology King's College London London UK.,Department of Allergy Guy's & St Thomas' NHS Foundation Trust London UK
| | | | | |
Collapse
|
43
|
McLaughlin JE, Darwish NI, Garcia-Sanchez J, Tyagi N, Trick HN, McCormick S, Dill-Macky R, Tumer NE. A Lipid Transfer Protein has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat. PHYTOPATHOLOGY 2021; 111:671-683. [PMID: 32896217 DOI: 10.1094/phyto-04-20-0153-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trichothecene mycotoxins such as deoxynivalenol (DON) are virulence factors of Fusarium graminearum, which causes Fusarium head blight, one of the most important diseases of small grain cereals. We previously identified a nonspecific lipid transfer protein (nsLTP) gene, AtLTP4.4, which was overexpressed in an activation-tagged Arabidopsis line resistant to trichothecin, a type B trichothecene in the same class as DON. Here we show that overexpression of AtLTP4.4 in transgenic wheat significantly reduced F. graminearum growth in 'Bobwhite' and 'RB07' lines in the greenhouse and reduced fungal lesion size in detached leaf assays. Hydrogen peroxide accumulation was attenuated on exposure of transgenic wheat plants to DON, indicating that AtLTP4.4 may confer resistance by inhibiting oxidative stress. Field testing indicated that disease severity was significantly reduced in two transgenic 'Bobwhite' lines expressing AtLTP4.4. DON accumulation was significantly reduced in four different transgenic 'Bobwhite' lines expressing AtLTP4.4 or a wheat nsLTP, TaLTP3, which was previously shown to have antioxidant activity. Recombinant AtLTP4.4 purified from Pichia pastoris exhibited potent antifungal activity against F. graminearum. These results demonstrate that overexpression of AtLTP4.4 in transgenic wheat suppresses DON accumulation in the field. Suppression of DON-induced reactive oxygen species by AtLTP4.4 might be the mechanism by which fungal spread and mycotoxin accumulation are inhibited in transgenic wheat plants.
Collapse
Affiliation(s)
- John E McLaughlin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Noura I Darwish
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Jeffrey Garcia-Sanchez
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Neerja Tyagi
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Unit, USDA-ARS-NCAUR, Peoria, IL 61604
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
44
|
Ben Hsouna A, Ben Saad R, Dhifi W, Mnif W, Brini F. Novel non-specific lipid-transfer protein (TdLTP4) isolated from durum wheat: Antimicrobial activities and anti-inflammatory properties in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Microb Pathog 2021; 154:104869. [PMID: 33774106 DOI: 10.1016/j.micpath.2021.104869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Lipid transfer proteins (LTP) are members of the family of pathogenesis-related proteins (PR-14) that play a key role in plant defense mechanisms. In this study, a novel gene TdLTP4 encoding an antifungal protein from wheat (cv. Om Rabiaa) was cloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation. The TdLTP4 fusion protein was then tested against a panel of pathogens, food-borne and spoilage bacteria and fungi in order to evaluate the antimicrobial properties. TdLTP4 was applied to 0.5 μg/mL LPS-induced RAW 264.7 macrophages in vitro at different concentrations (5, 10, 20, 50 and 100 μg/mL). Levels of nitric oxide (NO), pro-inflammatory cytokines interleukin (IL)-1β (IL-1 β), interleukin (IL)-6 (IL-6), tumor necrosis factor (TNF-α) and anti-inflammatory cytokine IL-10 in the supernatant fraction were measured using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected via Western blot. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 14-26 mm and 62.5-250 μg/mL, respectively. Moreover, a remarkable activity against several fungal strains was revealed. TdLTP4 (5-100 μg/mL) decreased the production of NO (IC50 = 4.32 μg/mL), IL-6 (IC50 = 11.52 μg/mL), IL-1β (IC50 = 7.87 μg/mL) and TNF-α (IC50 = 8.66 μg/mL) by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. TdLTP4 could modulate the macrophages inflammatory mode by causing reduction in iNOS and COX-2. According to these findings, TdLTP4 fusion protein could be used as natural anti-inflammatory and antimicrobial agent in food preservation and human health.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia.
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| | - Wissal Dhifi
- LR17-ES03 Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, P.O. BOX 199, Bisha, 61922, Saudi Arabia; University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| |
Collapse
|
45
|
Moyer TB, Allen JL, Shaw LN, Hicks LM. Multiple Classes of Antimicrobial Peptides in Amaranthus tricolor Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization. JOURNAL OF NATURAL PRODUCTS 2021; 84:444-452. [PMID: 33576231 PMCID: PMC8601116 DOI: 10.1021/acs.jnatprod.0c01203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Traditional medicinal plants are rich reservoirs of antimicrobial agents, including antimicrobial peptides (AMPs). Advances in genomic sequencing, in silico AMP predictions, and mass spectrometry-based peptidomics facilitate increasingly high-throughput bioactive peptide discovery. Herein, Amaranthus tricolor aerial tissue was profiled via MS-based proteomics/peptidomics, identifying AMPs predicted in silico. Bottom-up proteomics identified seven novel peptides spanning three AMP classes including lipid transfer proteins, snakins, and a defensin. Characterization via top-down peptidomic analysis of Atr-SN1, Atr-DEF1, and Atr-LTP1 revealed unexpected proteolytic processing and enumerated disulfide bonds. Bioactivity screening of isolated Atr-LTP1 showed activity against the high-risk ESKAPE bacterial pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter cloacae). These results highlight the potential for integrating AMP prediction algorithms with complementary -omics approaches to accelerate characterization of biologically relevant AMP peptidoforms.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jessie L Allen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
46
|
Structural Characterization of Act c 10.0101 and Pun g 1.0101-Allergens from the Non-Specific Lipid Transfer Protein Family. Molecules 2021; 26:molecules26020256. [PMID: 33419110 PMCID: PMC7825401 DOI: 10.3390/molecules26020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.
Collapse
|
47
|
Peramuna A, Bae H, Quiñonero López C, Fromberg A, Petersen B, Simonsen HT. Connecting moss lipid droplets to patchoulol biosynthesis. PLoS One 2020; 15:e0243620. [PMID: 33284858 PMCID: PMC7721168 DOI: 10.1371/journal.pone.0243620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/03/2022] Open
Abstract
Plant-derived terpenoids are extensively used in perfume, food, cosmetic and pharmaceutical industries, and several attempts are being made to produce terpenes in heterologous hosts. Native hosts have evolved to accumulate large quantities of terpenes in specialized cells. However, heterologous cells lack the capacity needed to produce and store high amounts of non-native terpenes, leading to reduced growth and loss of volatile terpenes by evaporation. Here, we describe how to direct the sesquiterpene patchoulol production into cytoplasmic lipid droplets (LDs) in Physcomitrium patens (syn. Physcomitrella patens), by attaching patchoulol synthase (PTS) to proteins linked to plant LD biogenesis. Three different LD-proteins: Oleosin (PpOLE1), Lipid Droplet Associated Protein (AtLDAP1) and Seipin (PpSeipin325) were tested as anchors. Ectopic expression of PTS increased the number and size of LDs, implying an unknown mechanism between heterologous terpene production and LD biogenesis. The expression of PTS physically linked to Seipin increased the LD size and the retention of patchoulol in the cell. Overall, the expression of PTS was lower in the anchored mutants than in the control, but when normalized to the expression the production of patchoulol was higher in the seipin-linked mutants.
Collapse
Affiliation(s)
- Anantha Peramuna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Hansol Bae
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Mosspiration Biotech, Hørsholm, Denmark
| | - Carmen Quiñonero López
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Arvid Fromberg
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Bent Petersen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, Malaysia
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Mosspiration Biotech, Hørsholm, Denmark
| |
Collapse
|
48
|
Chiu LY, Chen IH, Hsu YH, Tsai CH. The Lipid Transfer Protein 1 from Nicotiana benthamiana Assists Bamboo mosaic virus Accumulation. Viruses 2020; 12:E1361. [PMID: 33261222 PMCID: PMC7760991 DOI: 10.3390/v12121361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Host factors play a pivotal role in regulating virus infection. Uncovering the mechanism of how host factors are involved in virus infection could pave the way to defeat viral disease. In this study, we characterized a lipid transfer protein, designated NbLTP1 in Nicotiana benthamiana, which was downregulated after Bamboo mosaic virus (BaMV) inoculation. BaMV accumulation significantly decreased in NbLTP1-knockdown leaves and protoplasts compared with the controls. The subcellular localization of the NbLTP1-orange fluorescent protein (OFP) was mainly the extracellular matrix. However, when we removed the signal peptide (NbLTP1/ΔSP-OFP), most of the expressed protein targeted chloroplasts. Both NbLTP1-OFP and NbLTP1/ΔSP-OFP were localized in chloroplasts when we removed the cell wall. These results suggest that NbLTP1 may have a secondary targeting signal. Transient overexpression of NbLTP1 had no effect on BaMV accumulation, but that of NbLTP1/ΔSP significantly increased BaMV expression. NbLTP1 may be a positive regulator of BaMV accumulation especially when its expression is associated with chloroplasts, where BaMV replicates. The mutation was introduced to the predicted phosphorylation site to simulate the phosphorylated status, NbLTP/ΔSP/P(+), which could still assist BaMV accumulation. By contrast, a mutant lacking calmodulin-binding or simulates the phosphorylation-negative status could not support BaMV accumulation. The lipid-binding activity of LTP1 was reported to be associated with calmodulin-binding and phosphorylation, by which the C-terminus functional domain of NbLTP1 may play a critical role in BaMV accumulation.
Collapse
Affiliation(s)
- Ling-Ying Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| |
Collapse
|
49
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
50
|
Hwang HS, Adhikari PB, Jo HJ, Han JY, Choi YE. Enhanced monoterpene emission in transgenic orange mint (Mentha × piperita f. citrata) overexpressing a tobacco lipid transfer protein (NtLTP1). PLANTA 2020; 252:44. [PMID: 32876749 DOI: 10.1007/s00425-020-03447-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Overexpression of the tobacco lipid transfer protein (NtLTP1) gene in transgenic orange mint resulted in enhanced accumulation of monoterpenes in the cavity of head cells of glandular trichomes, which resulted in enhanced emission of monoterpenes from transgenic orange mints. Plants in the genus Mentha (Lamiaceae) produce volatile oils that accumulate in peltate glandular trichomes in the aerial parts of plants. A lipid transfer protein (NtLTP1) in tobacco showed glandular trichome-specific expression and supported the secretion of diterpenoid lipids from head cells of glandular trichomes (Choi et al., Plant J 70:480-491,2012). Here, we constructed transgenic orange mint (Mentha × piperita f. citrata) overexpressing the tobacco NtLTP1 gene via Agrobacterium-mediated transformation. Transgenic lines of orange mint overexpressing NtLTP1 were confirmed by genomic PCR and RT-PCR. Immunoblotting analysis using an NtLTP1 polyclonal antibody showed clear dark spots at the position of the lipid exudates from tobacco glandular trichomes and the squeezed out lipids from the glandular trichomes of transgenic orange mint. Heads of glandular trichomes in transgenic plants overexpressing the NtLTP1 gene showed a larger diameter than those of the wild-type control. The enhanced size of trichome heads in transgenic orange mint was confirmed by scanning electron microscopy. Volatile components were extracted from wild-type and transgenic orange mint by solid-phase microextraction (SPME) and analyzed by headspace-gas chromatography-mass spectrometry (HS/GC/MS). Linalyl acetate was the most abundant component among the eleven identified monoterpenes in the volatile compounds extracted from both the wild-type and transgenic lines of orange mint. Overexpression of NtLTP1 in transgenic orange mint plants resulted in enhanced emission of volatile monoterpenoids compared with that of volatile monoterpenoids in the wild-type control plants.
Collapse
Affiliation(s)
- Hwan-Su Hwang
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hye-Jeong Jo
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|