1
|
Agati G, Brunetti C, Dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2024. [PMID: 39434218 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics 'Carrara' (IFAC), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| | | | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences (DAGRI), University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Ermes Lo Piccolo
- Department of Agri-Food Production and Environmental Sciences (DAGRI), University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Choudhary N, Pucker B. Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR. PLoS One 2024; 19:e0305837. [PMID: 39196921 PMCID: PMC11356453 DOI: 10.1371/journal.pone.0305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/05/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Flavonoids, an important class of specialized metabolites, are synthesized from phenylalanine and present in almost all plant species. Different branches of flavonoid biosynthesis lead to products like flavones, flavonols, anthocyanins, and proanthocyanidins. Dihydroflavonols form the branching point towards the production of non-colored flavonols via flavonol synthase (FLS) and colored anthocyanins via dihydroflavonol 4-reductase (DFR). Despite the wealth of publicly accessible data, there remains a gap in understanding the mechanisms that mitigate competition between FLS and DFR for the shared substrate, dihydroflavonols. RESULTS An angiosperm-wide comparison of FLS and DFR sequences revealed the amino acids at positions associated with the substrate specificity in both enzymes. A global analysis of the phylogenetic distribution of these amino acid residues revealed that monocots generally possess FLS with Y132 (FLSY) and DFR with N133 (DFRN). In contrast, dicots generally possess FLSH and DFRN, DFRD, and DFRA. DFRA, which restricts substrate preference to dihydrokaempferol, previously believed to be unique to strawberry species, is found to be more widespread in angiosperms and has evolved independently multiple times. Generally, angiosperm FLS appears to prefer dihydrokaempferol, whereas DFR appears to favor dihydroquercetin or dihydromyricetin. Moreover, in the FLS-DFR competition, the dominance of one over the other is observed, with typically only one gene being expressed at any given time. CONCLUSION This study illustrates how almost mutually exclusive gene expression and substrate-preference determining residues could mitigate competition between FLS and DFR, delineates the evolution of these enzymes, and provides insights into mechanisms directing the metabolic flux of the flavonoid biosynthesis, with potential implications for ornamental plants and molecular breeding strategies.
Collapse
Affiliation(s)
- Nancy Choudhary
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Aguilar-Méndez ED, Monribot-Villanueva JL, Guerrero-Analco JA, De-la-Peña C. Chlorophyll deficiency in Agave angustifolia Haw.: unveiling the impact on secondary metabolite production. PLANTA 2024; 260:77. [PMID: 39164400 DOI: 10.1007/s00425-024-04506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
MAIN CONCLUSIONS The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.
Collapse
Affiliation(s)
- Edder D Aguilar-Méndez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, México
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
4
|
Heuermann MC, Meyer RC, Knoch D, Tschiersch H, Altmann T. Strong prevalence of light regime-specific QTL in Arabidopsis detected using automated high-throughput phenotyping in fluctuating or constant light. PHYSIOLOGIA PLANTARUM 2024; 176:e14255. [PMID: 38528708 DOI: 10.1111/ppl.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.
Collapse
Affiliation(s)
- Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
5
|
Lyu ZY, Zhou XL, Wang SQ, Yang GM, Sun WG, Zhang JY, Zhang R, Shen SK. The first high-altitude autotetraploid haplotype-resolved genome assembled (Rhododendron nivale subsp. boreale) provides new insights into mountaintop adaptation. Gigascience 2024; 13:giae052. [PMID: 39110622 PMCID: PMC11304948 DOI: 10.1093/gigascience/giae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Wen-Guang Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Jie-Yu Zhang
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| |
Collapse
|
6
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Song L, Weng Y, Liu X, Ren H. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. PLANT PHYSIOLOGY 2023:kiad236. [PMID: 37099480 PMCID: PMC10400037 DOI: 10.1093/plphys/kiad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, non-glandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber glandular trichomes. Work from this study provides insight into the development of secondary metabolite biosynthesis in multi-cellular glandular trichomes.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Song
- Agricultural and Rural Bureau of Qingxian in Hebei Province, Qingxian 062650, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Yang F, Wang T, Guo Q, Zou Q, Yu S. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:791-803. [PMID: 36840758 DOI: 10.1007/s00299-023-02991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium MYB3 factors are transcriptional activators for the regulation of flavonol biosynthesis. Flavonol was not only the critical secondary metabolite participating in the growth and development of plants but also the main active ingredient in medicinal chrysanthemum. However, few pieces of research revealed the transcriptional regulation of flavonol biosynthesis in Chrysanthemum morifolium. Here, we isolated two CmMYB3 transcription factors (CmMYB3a and CmMYB3b) from the capitulum of Chrysanthemum morifolium cv 'Hangju'. According to the sequence characteristics, the CmMYB3a and CmMYB3b belonged to the R2R3-MYB subgroup 7, whose members were often reported to regulate flavonol biosynthesis positively. CmMYB3a and CmMYB3b factors were identified to localize in the nucleus by subcellular localization assay. Besides, both of them have obvious transcriptional self-activation activity in their C-terminal. After the overexpression of CmMYB3 genes in Nicotiana benthamiana and Arabidopsis thaliana, the flavonol contents in plants were increased, and the expression of AtCHS, AtCHI, AtF3H, and AtFLS genes in A. thaliana was also improved. Interestingly, the CmMYB3a factor had stronger functions in improving flavonol contents and related gene expression levels than CmMYB3b. The interaction analysis between transcription factors and promoters suggested that CmMYB3 could bind and activate the promoters of CmCHI and CmFLS genes in C. morifolium, and CmMYB3a also functioned more powerfully. Overall, these results indicated that CmMYB3a and CmMYB3b work as transcriptional activators in controlling flavonol biosynthesis.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qingjun Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuyan Yu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
9
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Pucker B, Iorizzo M. Apiaceae FNS I originated from F3H through tandem gene duplication. PLoS One 2023; 18:e0280155. [PMID: 36656808 PMCID: PMC9851555 DOI: 10.1371/journal.pone.0280155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Flavonoids are specialized metabolites with numerous biological functions in stress response and reproduction of plants. Flavones are one subgroup that is produced by the flavone synthase (FNS). Two distinct enzyme families evolved that can catalyze the biosynthesis of flavones. While the membrane-bound FNS II is widely distributed in seed plants, one lineage of soluble FNS I appeared to be unique to Apiaceae species. RESULTS We show through phylogenetic and comparative genomic analyses that Apiaceae FNS I evolved through tandem gene duplication of flavanone 3-hydroxylase (F3H) followed by neofunctionalization. Currently available datasets suggest that this event happened within the Apiaceae in a common ancestor of Daucus carota and Apium graveolens. The results also support previous findings that FNS I in the Apiaceae evolved independent of FNS I in other plant species. CONCLUSION We validated a long standing hypothesis about the evolution of Apiaceae FNS I and predicted the phylogenetic position of this event. Our results explain how an Apiaceae-specific FNS I lineage evolved and confirm independence from other FNS I lineages reported in non-Apiaceae species.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
- * E-mail: (BP); (MI)
| | - Massimo Iorizzo
- Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, United States of America
- Department of Horticultural Science, NC State University, Raleigh, North Carolina, United States of America
- * E-mail: (BP); (MI)
| |
Collapse
|
11
|
Lei L, Yuan X, Fu K, Chen Y, Lu Y, Shou N, Wu D, Chen X, Shi J, Zhang M, Chen Z, Shi Z. Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1052640. [PMID: 36570906 PMCID: PMC9784223 DOI: 10.3389/fpls.2022.1052640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4'-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yijun Lu
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian Shi
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Minjuan Zhang
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Zhe Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Ke L, Yu D, Zheng H, Xu Y, Wu Y, Jiao J, Wang X, Mei J, Cai F, Zhao Y, Sun J, Zhang X, Sun Y. Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1546-1560. [PMID: 35503731 PMCID: PMC9342615 DOI: 10.1111/pbi.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/23/2022] [Indexed: 05/25/2023]
Abstract
Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.
Collapse
Affiliation(s)
- Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yihan Xu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yuqing Wu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Junye Jiao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xiaoli Wang
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yanyan Zhao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jie Sun
- College of AgricultureThe Key Laboratory of Oasis Eco‐AgricultureShihezi UniversityShiheziChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
14
|
Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int J Mol Sci 2022; 23:ijms23158357. [PMID: 35955513 PMCID: PMC9369206 DOI: 10.3390/ijms23158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Light is the key factor affecting the synthesis of anthocyanins in pepper. In this study, pepper fruit under different light days was used as experimental material to explore the synthesis of anthocyanins in purple pepper. A total of 38 flavonoid metabolites were identified in the purple pepper germplasm HNUCA21 by liquid chromatography–tandem mass spectrometry (LC-MS/MS), of which 30 belong to anthocyanins. The detected anthocyanin with the highest content was Delphinidin-3-O-glucoside (17.13 µg/g), which reached the maximum after 168 h of light treatment. Through weighted gene co-expression network analysis (WGCNA), the brown module was identified to be related to the early synthesis of anthocyanins. This module contains many structural genes related to flavonoid synthesis, including chalcone synthase (CHS 107871256, 107864266), chalcone isomerase (CHI 107871144, 107852750), dihydroflavonol 4-reductase (DFR 107860031), flavonoid 3′ 5′-hydroxylase (F3’5’H 107848667), flavonoid 3′-monooxygenase (F3M 107862334), leucoanthocyanidin dioxygenase (LDOX 107866341), and trans-cinnamate 4-monooxygenase (TCM 107875406, 107875407). The module also contained some genes related to anthocyanin transport function, such as glutathione S-transferase (GST 107861273), anthocyanidin 3-O-glucosyltransferase (UDPGT 107861697, 107843659), and MATE (107863234, 107844661), as well as some transcription factors, such as EGL1 (107865400), basic helix-loop-helix 104 (bHLH104 107864591), and WRKY44 (107843538, 107843524). The co-expression regulatory network indicated the involvement of CHS, DFR, CHI, and EGL1, as well as two MATE and two WRKY44 genes in anthocyanin synthesis. The identified genes involved in early, middle, and late light response provided a reference for the further analysis of the regulatory mechanism of anthocyanin biosynthesis in pepper.
Collapse
|
15
|
Xie L, Guo Y, Ren C, Cao Y, Li J, Lin J, Grierson D, Zhao X, Zhang B, Sun C, Chen K, Li X. Unravelling the consecutive glycosylation and methylation of flavonols in peach in response to UV-B irradiation. PLANT, CELL & ENVIRONMENT 2022; 45:2158-2175. [PMID: 35357710 DOI: 10.1111/pce.14323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Flavonol glycosides are bioactive compounds important for plant defence and human nutrition. Glycosylation and methylation play an important role in enriching the diversity of flavonols in response to the environment. Peach flowers and fruit are rich in flavonol diglycosides such as isorhamnetin 3-O-rutinoside (I3Rut), kaempferol 3-O-rutinoside and quercetin 3-O-rutinoside, and flavonol monoglycosides such as I 3-O-glucoside and Q 3-O-galactoside. UV-B irradiation of fruit significantly induced accumulation of all these flavonol glycosides. Candidate biosynthetic genes induced by UV-B were identified by genome homology searches and the in vitro catalytic activities of purified recombinant proteins determined. PpUGT78T3 and PpUGT78A2 were identified as flavonol 3-O-glucosyltransferase and 3-O-galactosyltransferase, respectively. PpUGT91AK6 was identified as flavonol 1,6-rhamnosyl trasferase catalysing the formation of flavonol rutinosides and PpFOMT1 was identified as a flavonol O-methyltransferase that methylated Q at the 3'-OH-OH to form isorhamnetin derivatives. Transient expression in Nicotiana benthamiana confirmed the specificity of PpUGT78T3 as a flavonol 3-O-glucosyltransferase, PpUGT78A2 as a 3-O-galactosyltransferase, PpUGT91AK6 as a 1,6-rhamnosyltrasferase and PpFOMT1 as an O-methyltransferase. This study provides new insights into the mechanisms of glycosylation and methylation of flavonols, especially the formation of flavonol diglycosides such as I3Rut, and will also be useful for future potential metabolic engineering of complex flavonols.
Collapse
Affiliation(s)
- Linfeng Xie
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jing Lin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Xiaoyong Zhao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Yang Y, Zhang K, Xiao Y, Zhang L, Huang Y, Li X, Chen S, Peng Y, Yang S, Liu Y, Cheng F. Genome Assembly and Population Resequencing Reveal the Geographical Divergence of Shanmei (Rubus corchorifolius). GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1106-1118. [PMID: 35643190 DOI: 10.1016/j.gpb.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Rubus corchorifolius (Shanmei or mountain berry, 2n = 14) is widely distributed in China, and its fruits possess high nutritional and medicinal values. Here, we reported a high-quality chromosome-scale genome assembly of Shanmei, with contig size of 215.69 Mb and 26,696 genes. Genome comparison among Rosaceae species showed that Shanmei and Fupenzi (Rubus chingii Hu) were most closely related, followed by blackberry (Rubus occidentalis), and that environmental adaptation-related genes were significantly expanded in the Shanmei genome. Further resequencing of 101 samples of Shanmei collected from four regions in the provinces of Yunnan, Hunan, Jiangxi, and Sichuan in China revealed that the Hunan population of Shanmei possessed the highest diversity and represented the more ancestral population. Moreover, the Yunnan population underwent strong selection based on the nucleotide diversity, linkage disequilibrium, and historical effective population size analyses. Furthermore, genes from candidate genomic regions that showed strong divergence were significantly enriched in the flavonoid biosynthesis and plant hormone signal transduction pathways, indicating the genetic basis of adaptation of Shanmei to the local environment. The high-quality assembled genome and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.
Collapse
Affiliation(s)
- Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Ya Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China; Biotechnology Research Center, Xiangxi Academy of Agricultural Sciences, Jishou 416000, China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Yile Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Xing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Yansong Peng
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 332900, China
| | - Shuhua Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
| |
Collapse
|
17
|
Liu XW, Wang YH, Shen SK. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. TREE PHYSIOLOGY 2022; 42:1100-1113. [PMID: 34850945 DOI: 10.1093/treephys/tpab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Understanding the molecular mechanisms and evolutionary process of plant adaptation to the heterogeneous environment caused by altitude gradients in plateau mountain ecosystems can provide novel insight into species' responses to global changes. Flower color is the most conspicuous and highly diverse trait in nature. Herein, the gene expression patterns, evolutionary adaptation and metabolites changes of different-colored flowers of alpine Rhododendron L. species along altitude gradients were investigated based on a combined analysis of transcriptomics and metabolomics. Differentially expressed genes were found to be related to the biosynthesis of carbohydrates, fatty acids, amino acids and flavonoids, suggesting their important roles in the altitude adaptability of Rhododendron species. The evolution rate of high-altitude species was faster than that of low-altitude species. Genes related to DNA repair, mitogen-activated protein kinase and ABA signal transduction, and lipoic acid and propanoate metabolism were positively selected in the flowers of high-altitude Rhododendron species and those associated with carotenoid biosynthesis pathway, ABA signal transduction and ethylene signal transduction were positively selected in low-altitude species. These results indicated that the genes with differentiated expressions or functions exhibit varying evolution during the adaptive divergence of heterogeneous environment caused by altitude gradients. Flower-color variation might be attributed to the significant differences in gene expression or metabolites related to sucrose, flavonoids and carotenoids at the transcription or metabolism levels of Rhododendron species. This work suggests that Rhododendron species have multiple molecular mechanisms in their adaptation to changing environments caused by altitude gradients.
Collapse
Affiliation(s)
- Xing-Wen Liu
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| |
Collapse
|
18
|
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:963. [PMID: 35406945 PMCID: PMC9002769 DOI: 10.3390/plants11070963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
19
|
Boutet S, Barreda L, Perreau F, Totozafy JC, Mauve C, Gakière B, Delannoy E, Martin-Magniette ML, Monti A, Lepiniec L, Zanetti F, Corso M. Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:147-165. [PMID: 34997644 DOI: 10.1111/tpj.15662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Stéphanie Boutet
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Léa Barreda
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Jean-Chrisologue Totozafy
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
| | - Andrea Monti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Federica Zanetti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
20
|
Zhou Y, Mumtaz MA, Zhang Y, Yang Z, Hao Y, Shu H, Zhu J, Bao W, Cheng S, Zhu G, Wang Z. Response of anthocyanin biosynthesis to light by strand-specific transcriptome and miRNA analysis in Capsicum annuum. BMC PLANT BIOLOGY 2022; 22:79. [PMID: 35193520 PMCID: PMC8862587 DOI: 10.1186/s12870-021-03423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/30/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Anthocyanins have distinct biological functions in plant coloring, plant defense against strong light, UV irradiation, and pathogen infection. Aromatic hydroxyl groups and ortho-dihydroxyl groups in anthocyanins are able to inhibit free-radical chain reactions and hydroxyl radicals. Thus, anthocyanins play an antioxidative role by removing various types of ROS. Pepper is one of the solanaceous vegetables with the largest cultivation area in China. The purple-fruited pepper is rich in anthocyanins, which not only increases the ornamental nature of the pepper fruit but also benefits the human body. In this experiment, light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis were examined through integrative transcriptomic and metabolomic analysis. RESULTS Results revealed that delphinium 3-O-glucoside significantly accumulated in light exposed surface of pepper fruit after 48 h as compared to shaded surface. Furthermore, through strand-specific sequencing technology, 1341 differentially expressed genes, 172 differentially expressed lncRNAs, 8 differentially expressed circRNAs, and 28 differentially expressed miRNAs were identified significantly different among both surfaces. The flavonoid synthesis pathway was significantly enriched by KEGG analysis including SHT (XM_016684802.1), AT-like (XM_016704776.1), CCoAOMT (XM_016698340.1, XM_016698341.1), CHI (XM_016697794.1, XM_016697793.1), CHS2 (XM_016718139.1), CHS1B (XM_016710598.1), CYP98A2-like (XM_016688489.1), DFR (XM_016705224.1), F3'5'H (XM_016693437.1), F3H (XM_016705025.1), F3'M (XM_016707872.1), LDOX (XM_016712446.1), TCM (XM_016722116.1) and TCM-like (XM_016722117.1). Most of these significantly enriched flavonoid synthesis pathway genes may be also regulated by lncRNA. Some differentially expressed genes encoding transcription factors were also identified including MYB4-like (XM_016725242.1), MYB113-like (XM_016689220.1), MYB308-like (XM_016696983.1, XM_016702244.1), and EGL1 (XM_016711673.1). Three 'lncRNA-miRNA-mRNA' regulatory networks with sly-miR5303, stu-miR5303g, stu-miR7997a, and stu-miR7997c were constructed, including 28 differentially expressed mRNAs and 6 differentially expressed lncRNAs. CONCLUSION Possible light regulated anthocyanin biosynthesis and transport genes were identified by transcriptome analysis, and confirmed by qRT-PCR. These results provide important data for further understanding of the anthocyanin metabolism in response to light in pepper.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yonghao Zhang
- Institute of Tropical Horticulture Research in Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China.
| |
Collapse
|
21
|
Ferreyra MLF, Serra P, Casati P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. PHYSIOLOGIA PLANTARUM 2021; 173:736-749. [PMID: 34453749 DOI: 10.1111/ppl.13543] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/25/2023]
Abstract
Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.
Collapse
Affiliation(s)
- María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paloma Serra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
22
|
Zhou X, Lyu J, Sun L, Dong J, Xu H. Metabolic programming of Rhododendron chrysanthum leaves following exposure to UVB irradiation. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1175-1185. [PMID: 34600596 DOI: 10.1071/fp20386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Excessive UVB reaching the earth is a cause for concern. To decipher the mechanism concerning UVB resistance of plants, we studied the effects of UVB radiation on photosynthesis and metabolic profiling of Rhododendron chrysanthum Pall. by applying 2.3Wm-2 of UVB radiation for 2days. Results showed that maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (φPSII) decreased by 7.95% and 8.36%, respectively, following UVB exposure. Twenty five known metabolites were identified as most important by two different methods, including univariate and multivariate statistical analyses. Treatment of R. chrysanthum with UVB increased the abundance of flavonoids, organic acids, and amino acids by 62%, 22%, and 5%, respectively. UVB irradiation also induced about 1.18-fold increase in 11 top-ranked metabolites identified: five organic acids (d-2,3-dihydroxypropanoic acid, maleic acid, glyceric acid, fumaric acid and suberic acid), four amino acids (l-norleucine, 3-oxoalanine, l-serine and glycine), and two fatty acids (pelargonic acid and myristoleic acid). In addition, UVB irradiation increased the intermediate products of arginine biosynthesis and the TCA cycle. Taken together, the accumulation of flavonoids, organic acids, amino acids and fatty acids, accompanied by enhancement of TCA cycle and arginine biosynthesis, may protect R. chrysanthum plants against UVB deleterious effects.
Collapse
Affiliation(s)
- Xiaofu Zhou
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Jie Lyu
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou 014030, China
| | - Li Sun
- Faculty of Siping Central People's Hospital, Siping 136000, China
| | - Jiawei Dong
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Hongwei Xu
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
23
|
Schulz E, Tohge T, Winkler JB, Albert A, Schäffner AR, Fernie AR, Zuther E, Hincha DK. Natural Variation among Arabidopsis Accessions in the Regulation of Flavonoid Metabolism and Stress Gene Expression by Combined UV Radiation and Cold. PLANT & CELL PHYSIOLOGY 2021; 62:502-514. [PMID: 33544865 PMCID: PMC8286136 DOI: 10.1093/pcp/pcab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/20/2021] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to stressful environmental conditions. Plant stress reactions were mainly investigated for single stress factors. However, under natural conditions plants may be simultaneously exposed to different stresses. Responses to combined stresses cannot be predicted from the reactions to the single stresses. Flavonoids accumulate in Arabidopsis thaliana during exposure to UV-A, UV-B or cold, but the interactions of these factors on flavonoid biosynthesis were unknown. We therefore investigated the interaction of UV radiation and cold in regulating the expression of well-characterized stress-regulated genes, and on transcripts and metabolites of the flavonoid biosynthetic pathway in 52 natural Arabidopsis accessions that differ widely in their freezing tolerance. The data revealed interactions of cold and UV on the regulation of stress-related and flavonoid biosynthesis genes, and on flavonoid composition. In many cases, plant reactions to a combination of cold and UV were unique under combined stress and not predictable from the responses to the single stresses. Strikingly, all correlations between expression levels of flavonoid biosynthesis genes and flavonol levels were abolished by UV-B exposure. Similarly, correlations between transcript levels of flavonoid biosynthesis genes or flavonoid contents, and freezing tolerance were lost in the presence of UV radiation, while correlations with the expression levels of cold-regulated genes largely persisted. This may indicate different molecular cold acclimation responses in the presence or absence of UV radiation.
Collapse
Affiliation(s)
- Elisa Schulz
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam 14476, Germany
- MetaSysX GmbH, Am Mühlenberg 11, Potsdam 14476, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam 14476, Germany
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192 Japan
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
- Deutsches Patent- und Markenamt, Zweibrückenstr. 12, München 80331, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam 14476, Germany
- Corresponding author: E-mail,
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
24
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
25
|
Zhang X, He Y, Li L, Liu H, Hong G. Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4319-4332. [PMID: 33831169 PMCID: PMC8163065 DOI: 10.1093/jxb/erab156] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Commonly found flavonols in plants are synthesized from dihydroflavonols by flavonol synthase (FLS). The genome of Arabidopsis thaliana contains six FLS genes, among which FLS1 encodes a functional enzyme. Previous work has demonstrated that the R2R3-MYB subgroup 7 transcription factors MYB11, MYB12, and MYB111 redundantly regulate flavonol biosynthesis. However, flavonol accumulation in pollen grains was unaffected in the myb11myb12myb111 triple mutant. Here we show that MYB21 and its homologs MYB24 and MYB57, which belong to subgroup 19, promote flavonol biosynthesis through regulation of FLS1 gene expression. We used a combination of genetic and metabolite analysis to identify the role of MYB21 in regulating flavonol biosynthesis through direct binding to the GARE cis-element in the FLS1 promoter. Treatment with kaempferol or overexpression of FLS1 rescued stamen defects in the myb21 mutant. We also observed that excess reactive oxygen species (ROS) accumulated in the myb21 stamen, and that treatment with the ROS inhibitor diphenyleneiodonium chloride partly rescued the reduced fertility of the myb21 mutant. Furthermore, drought increased ROS abundance and impaired fertility in myb21, myb21myb24myb57, and chs, but not in the wild type or myb11myb12myb111, suggesting that pollen-specific flavonol accumulation contributes to drought-induced male fertility by ROS scavenging in Arabidopsis.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Hongru Liu
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
26
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Bhatia C, Gaddam SR, Pandey A, Trivedi PK. COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110760. [PMID: 33487344 DOI: 10.1016/j.plantsci.2020.110760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 05/25/2023]
Abstract
Flavonols, a class of flavonoids, accumulate as protective agents in response to various stresses. Among various environmental stimuli, light is one of the factors regulating flavonol production. MYB12/11/111, members of the R2R3 MYBs family, regulates spatio-temporal flavonol accumulation in Arabidopsis. Although various studies indicate at the involvement of an E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and ELONGATED HYPOCOTYL 5 (HY5) in flavonoid biosynthesis in response to UV-B, the regulatory roles of these components under visible light are yet to be investigated. Here, we demonstrate that flavonol accumulation in Arabidopsis is light-regulated. Furthermore, our analysis suggests that MYB12 is a HY5-dependent light-inducible gene and plays a key role in the activation of the flavonol biosynthesis in response to light. Our results indicate the involvement of COP1 in the dark-dependent repression of MYB12 expression and flavonol accumulation. In addition, results also suggest that the effect of COP1 on MYB12 is indirect and is mediated through HY5, a direct transcriptional activator of the MYB12. Together these findings indicate that COP1 acts as a master negative regulator of flavonol biosynthesis in the dark.
Collapse
Affiliation(s)
- Chitra Bhatia
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhash Reddy Gaddam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Xu P, Wu L, Cao M, Ma C, Xiao K, Li Y, Lian H. Identification of MBW Complex Components Implicated in the Biosynthesis of Flavonoids in Woodland Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:774943. [PMID: 34819941 PMCID: PMC8606683 DOI: 10.3389/fpls.2021.774943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 05/02/2023]
Abstract
Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Minghao Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongli Lian,
| |
Collapse
|
29
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
30
|
Dong X, Guo Y, Xiong C, Sun L. Evaluation of Two Major Rhodiola Species and the Systemic Changing Characteristics of Metabolites of Rhodiola crenulata in Different Altitudes by Chemical Methods Combined with UPLC-QqQ-MS-Based Metabolomics. Molecules 2020; 25:E4062. [PMID: 32899531 PMCID: PMC7570721 DOI: 10.3390/molecules25184062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Rhodiola species have a long history of use in traditional medicine in Asian and European countries and have been considered to possess resistance to the challenges presented by extreme altitudes. However, the influence of different Rhodiola species on quality is unclear, as well as the influence of altitude on phytochemicals. In this study, the phenolic components and antioxidant abilities of two major Rhodiola species are compared, namely Rhodiolacrenulata and Rhodiola rosea, and the metabolomes of Rhodiolacrenulata from two representative elevations of 2907 and 5116 m are analyzed using a UPLC-QqQ-MS-based metabolomics approach. The results show that the phenolic components and antioxidant activities of Rhodiolacrenulata are higher than those of Rhodiola rosea, and that these effects in the two species are positively correlated with elevation. Here, 408 metabolites are identified, of which 178 differential metabolites (128 upregulated versus 50 downregulated) and 19 biomarkers are determined in Rhodiola crenulata. Further analysis of these differential metabolites showed a significant upregulation of flavonoids, featuring glucosides, the enhancement of the phenylpropanoid pathway, and the downregulation of hydrolyzed tannins in Rhodiola crenulata as elevation increased. Besides, the amino acids of differential metabolites were all upregulated as the altitude increased. Our results contribute to further exploring the Rhodiola species and providing new insights into the Rhodiola crenulata phytochemical response to elevation.
Collapse
Affiliation(s)
| | | | | | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.D.); (Y.G.); (C.X.)
| |
Collapse
|
31
|
Zheng M, Zhu C, Yang T, Qian J, Hsu YF. GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2020; 104:39-53. [PMID: 32564178 DOI: 10.1007/s11103-020-01022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Kost MA, Perales H, Wijeratne S, Wijeratne AJ, Stockinger EJ, Mercer KL. Transcriptional differentiation of UV-B protectant genes in maize landraces spanning an elevational gradient in Chiapas, Mexico. Evol Appl 2020; 13:1949-1967. [PMID: 32908597 PMCID: PMC7463351 DOI: 10.1111/eva.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022] Open
Abstract
Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.
Collapse
Affiliation(s)
- Matthew A. Kost
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Hugo Perales
- Departamento de Agricultura, Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - Saranga Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
| | - Asela J. Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
- Department of Biological SciencesArkansas State UniversityJonesboroARUSA
| | - Eric J. Stockinger
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Kristin L. Mercer
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
33
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
34
|
Li J, Luan Q, Han J, Zhang C, Liu M, Ren Z. CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber. HORTICULTURE RESEARCH 2020; 7:103. [PMID: 32637131 PMCID: PMC7327083 DOI: 10.1038/s41438-020-0327-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Flavonols and proanthocyanidins (PAs) are the main pigments in the black spines of cucumber (Cucumis sativus) fruit, and CsMYB60 is a key regulator of the biosynthesis of flavonols and PAs. However, in cucumber, the tissue distribution pattern of flavonols and PAs and the mechanism of their biosynthesis regulated by CsMYB60 remain unclear. In this study, we clarified the tissue-specific distribution of flavonoids and the unique transcriptional regulation of flavonoid biosynthesis in cucumber. CsMYB60 activated CsFLS and CsLAR by binding to their promoters and directly or indirectly promoted the expression of CsbHLH42, CsMYC1, CsWD40, and CsTATA-box binding protein, resulting in the formation of complexes of these four proteins to increase the expression of Cs4CL and interact with CsTATA-box binding protein to regulate the expression of CsCHS, thereby regulating the biosynthesis of flavonols and PAs in cucumber. Our data provide new insights into the molecular mechanism of flavonoid biosynthesis, which will facilitate molecular breeding to improve fruit quality in cucumber.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Qianqian Luan
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jing Han
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Cunjia Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Mengyu Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
35
|
Maulión E, Gomez MS, Bustamante CA, Casati P. AtCAF-1 mutants show different DNA damage responses after ultraviolet-B than those activated by other genotoxic agents in leaves. PLANT, CELL & ENVIRONMENT 2019; 42:2730-2745. [PMID: 31145828 DOI: 10.1111/pce.13596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 05/27/2023]
Abstract
Chromatin assembly factor-1 (CAF-1) is a histone H3/H4 chaperone that participates in DNA and chromatin interaction processes. In this manuscript, we show that organs from CAF-1 deficient plants respond differently to ultraviolet-B (UV-B) radiation than to other genotoxic stresses. For example, CAF-1 deficient leaves tolerate better UV-B radiation, showing lower cyclobutane pyrimidine dimer (CPD) accumulation, lower inhibition of cell proliferation, increased cell wall thickness, UV-B absorbing compounds, and ploidy levels, whereas previous data from different groups have shown that CAF-1 mutants show shortening of telomeres, loss of 45S rDNA, and increased homologous recombination, phenotypes associated to DNA breaks. Interestingly, CAF-1 deficient roots show increased inhibition of primary root elongation, with decreased meristem size due to a higher inhibition of cell proliferation after UV-B exposure. The decrease in root meristem size in CAF-1 mutants is a consequence of defects in programmed cell death after UV-B exposure. Together, we provide evidence demonstrating that root and shoot meristematic cells may have distinct protection mechanisms against CPD accumulation by UV-B, which may be linked with different functions of the CAF-1 complex in these different organs.
Collapse
Affiliation(s)
- Evangelina Maulión
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - María Sol Gomez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
36
|
Schultze M, Bilger W. Acclimation of Arabidopsis thaliana to low temperature protects against damage of photosystem II caused by exposure to UV-B radiation at 9 °C. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:73-80. [PMID: 30366738 DOI: 10.1016/j.plaphy.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Various environmental variables interact with UV-B radiation (280-315 nm), among them temperature. In many plants epidermal UV screening is induced by low temperature even in the absence of UV irradiation. On the other hand, low temperature can aggravate damage caused by UV-B radiation. We investigated the interaction of UV-B radiation and low temperature in Arabidopsis thaliana (L.) Heynh. Exposure of plants grown at moderate temperature (21 °C) to UV-B radiation at 9 °C resulted in significantly higher damage of photosystem II (PS II) as compared to exposure at 21 °C. The higher damage at low temperature was related to slower recovery of maximal PS II quantum efficiency at this temperature. Epidermal UV-B transmittance was measured using a method based on chlorophyll fluorescence measurements. Acclimation to low temperature enhanced epidermal UV-B screening and improved the UV-B resistance considerably. Differences in the apparent UV-B sensitivity of PS II between plants grown in moderate or acclimated to cool temperatures were strongly diminished when damage was related to the UV-B radiation reaching the mesophyll (UV-Bint) as calculated from incident UV-B irradiance and epidermal UV-B transmittance. Evidence is presented that the remaining differences in sensitivity are caused by an increased rate of repair in plants acclimated to 9 °C. The data suggest that enhanced epidermal UV-B screening at low temperature functions to compensate for slower repair of UV-B damage at these temperatures. It is proposed that the UV-B irradiance reaching the mesophyll should be considered as an important parameter in experiments on UV-B resistance of plants.
Collapse
Affiliation(s)
- Matthias Schultze
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany; BioConsult SH GmbH & Co KG, Schobüller Straße 36, D-25813, Husum, Germany
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
37
|
Szopiński M, Sitko K, Gieroń Ż, Rusinowski S, Corso M, Hermans C, Verbruggen N, Małkowski E. Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. FRONTIERS IN PLANT SCIENCE 2019; 10:748. [PMID: 31244873 PMCID: PMC6563759 DOI: 10.3389/fpls.2019.00748] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Hyperaccumulation and hypertolerance of Trace Metal Elements (TME) like Cd and Zn are highly variable in pseudo-metallophytes species. In this study we compared the impact of high Cd or Zn concentration on the photosynthetic apparatus of the Arabidopsis arenosa and Arabidopsis halleri pseudo-metallophytes growing on the same contaminated site in Piekary Slaskie in southern Poland. Plants were grown in hydroponic culture for 6 weeks, and then treated with 1.0 mM Cd or 5.0 mM Zn for 5 days. Chlorophyll a fluorescence and pigment content were measured after 0, 1, 2, 3, 4, and 5 days in plants grown in control and exposed to Cd or Zn treatments. Moreover, the effect of TME excess on the level of oxidative stress and gas-exchange parameters were investigated. In both plant species, exposure to high Cd or Zn induced a decrease in chlorophyll and an increase in anthocyanin contents in leaves compared to the control condition. After 5 days Cd treatment, energy absorbance, trapped energy flux and the percentage of active reaction centers decreased in both species. However, the dissipated energy flux in the leaves of A. arenosa was smaller than in A. halleri. Zn treatment had more toxic effect than Cd on electron transport in A. halleri compared with A. arenosa. A. arenosa plants treated with Zn excess did not react as strongly as in the Cd treatment and a decrease only in electron transport flux and percentage of active reaction centers compared with control was observed. The two species showed contrasting Cd and Zn accumulation. Cd concentration was almost 3-fold higher in A. arenosa leaves than in A. halleri. On the opposite, A. halleri leaves contained 3-fold higher Zn concentration than A. arenosa. In short, our results showed that the two Arabidopsis metallicolous populations are resistant to high Cd or Zn concentration, however, the photosynthetic apparatus responded differently to the toxic effects.
Collapse
Affiliation(s)
- Michał Szopiński
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Michał Szopiński
| | - Krzysztof Sitko
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
| | - Żaneta Gieroń
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
| | | | - Massimiliano Corso
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian Hermans
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugeniusz Małkowski
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
- Eugeniusz Małkowski
| |
Collapse
|
38
|
Emiliani J, D'Andrea L, Lorena Falcone Ferreyra M, Maulión E, Rodriguez E, Rodriguez-Concepción M, Casati P. A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4921-4933. [PMID: 29945243 DOI: 10.1093/jxb/ery242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Plastidial isoprenoids, such as carotenoids and tocopherols, are important anti-oxidant metabolites synthesized in plastids from precursors generated by the methylerythritol 4-phosphate (MEP) pathway. In this study, we found that irradiation of Arabidopsis thaliana plants with UV-B caused a strong increase in the accumulation of the photoprotective xanthophyll zeaxanthin but also resulted in slightly higher levels of γ-tocopherol. Plants deficient in the MEP enzymes 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase showed a general reduction in both carotenoids and tocopherols and this was associated with increased DNA damage and decreased photosynthesis after exposure to UV-B. Genetic blockage of tocopherol biosynthesis did not affect DNA damage accumulation. In contrast, lut2 mutants that accumulate β,β-xanthophylls showed decreased DNA damage when irradiated with UV-B. Analysis of aba2 mutants showed that UV-B protection was not mediated by ABA (a hormone derived from β,β-xanthophylls). Plants accumulating β,β-xanthophylls also showed decreased oxidative damage and increased expression of DNA-repair enzymes, suggesting that this may be a mechanism for these plants to decrease DNA damage. In addition, in vitro experiments also provided evidence that β,β-xanthophylls can directly protect against DNA damage by absorbing radiation. Together, our results suggest that xanthophyll-cycle carotenoids that protect against excess illumination may also contribute to protection against UV-B.
Collapse
Affiliation(s)
- Julia Emiliani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Lucio D'Andrea
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | | | - Evangelina Maulión
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Manuel Rodriguez-Concepción
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
39
|
Luengo Escobar A, Magnum de Oliveira Silva F, Acevedo P, Nunes-Nesi A, Alberdi M, Reyes-Díaz M. Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:541-550. [PMID: 28779619 DOI: 10.1016/j.plaphy.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/21/2023]
Abstract
UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds.
Collapse
Affiliation(s)
- Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, 54-D, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile
| | | | - Patricio Acevedo
- Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile.
| |
Collapse
|
40
|
Luengo Escobar A, Alberdi M, Acevedo P, Machado M, Nunes-Nesi A, Inostroza-Blancheteau C, Reyes-Díaz M. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation. PHYSIOLOGIA PLANTARUM 2017; 160:46-64. [PMID: 27943328 DOI: 10.1111/ppl.12536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/04/2016] [Accepted: 11/27/2016] [Indexed: 05/14/2023]
Abstract
Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-BBE irradiance doses of 0, 0.07 and 0.19 W m-2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy.
Collapse
Affiliation(s)
- Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, 54-D, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| | - Patricio Acevedo
- Departamento de Física, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
- Center for Optics and Photonics, Universidad de Concepción, Concepción, 4012, Chile
| | - Mariana Machado
- Max Planck Partner Group at Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa-Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa-Minas Gerais, 36570-900, Brazil
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, Temuco, 56-D, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| |
Collapse
|
41
|
Popova AV, Hincha DK. Effects of flavonol glycosides on liposome stability during freezing and drying. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3050-3060. [PMID: 27677212 DOI: 10.1016/j.bbamem.2016.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
Flavonoids are a large and diverse group of plant secondary metabolites that are mainly present as glycosides. They are often accumulated in response to abiotic stresses such as UV radiation, drought, cold and freezing. The most extensively studied function of flavonoids is their antioxidant activity although their importance as antioxidants in plants has been questioned. We therefore aim to study effects of flavonols on cellular stress tolerance that are independent of their antioxidant function. Here we investigate the effects of the glycosylated flavonols kaempferol-3-O-glucoside, kaempferol-7-O-glucoside, quercetin-3-O-glucoside and quercetin-3-O-rhamnoside on liposome stability after freezing and drying. Insertion of flavonols in lipid bilayers destabilized egg phosphatidylcholine (EPC) liposomes and to a lesser extent vesicles made from equal proportions of EPC and egg phosphatidylethanolamine (EPE) during a freeze-thaw cycle, while liposomes containing the unsaturated non-bilayer lipid 18:2 PE were either unaffected or slightly stabilized. In general, the kaempferol derivatives were more destabilizing for liposomes during freezing than the quercetin derivatives. Fourier-transform infrared spectroscopy revealed that all flavonols were localized in the interfacial region of the lipid bilayers, forming H-bonds with the lipid phosphate and carbonyl groups. The phase transition temperature of dry 16:0/18:1 PC (POPC) and POPC/EPE liposomes was decreased by 75°C and 55°C, respectively. Changes in the vibration bands attributed to the phenolic ring structures of the flavonols in the presence of liposomes provided further evidence of interactions of these molecules in particular with the interfacial region of the bilayers.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
42
|
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep 2016; 6:34027. [PMID: 27658445 PMCID: PMC5034326 DOI: 10.1038/srep34027] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
In plants from temperate climates such as Arabidopsis thaliana low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. This process is accompanied by massive changes in gene expression and in the content of primary metabolites and lipids. In addition, most flavonols and anthocyanins accumulate upon cold exposure, along with most transcripts encoding transcription factors and enzymes of the flavonoid biosynthetic pathway. However, no evidence for a functional role of flavonoids in plant freezing tolerance has been shown. Here, we present a comprehensive analysis using qRT-PCR for transcript, LC-MS for flavonoid and GC-MS for primary metabolite measurements, and an electrolyte leakage assay to determine freezing tolerance of 20 mutant lines in two Arabidopsis accessions that are affected in different steps of the flavonoid biosynthetic pathway. This analysis provides evidence for a functional role of flavonoids in plant cold acclimation. The accumulation of flavonoids in the activation tagging mutant line pap1-D improved, while reduced flavonoid content in different knock-out mutants impaired leaf freezing tolerance. Analysis of the different knock-out mutants suggests redundancy of flavonoid structures, as the lack of flavonols or anthocyanins could be compensated by other compound classes.
Collapse
Affiliation(s)
- Elisa Schulz
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K. Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
43
|
Li Q, Wang Z, Zhao Y, Zhang X, Zhang S, Bo L, Wang Y, Ding Y, An L. Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. PLANT CELL REPORTS 2016; 35:1155-68. [PMID: 26910861 DOI: 10.1007/s00299-016-1952-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/05/2016] [Indexed: 05/23/2023]
Abstract
In hulless barley, H 2 S mediated increases in H 2 O 2 induced by putrescine, and their interaction enhanced tolerance to UV-B by maintaining redox homeostasis and promoting the accumulation of UV-absorbing compounds. This study investigated the possible relationship between putrescence (Put), hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) as well as the underlying mechanism of their interaction in reducing UV-B induced damage. UV-B radiation increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and UV-absorbing compounds but reduced antioxidant enzyme activities and glutathione (GSH) and ascorbic acid (AsA) contents. Exogenous application of Put, H2S or H2O2 reduced some of the above-mentioned negative effects, but were enhanced by the addition of Put, H2S and H2O2 inhibitors. Moreover, the protective effect of Put against UV-B radiation-induced damage to hulless barley was diminished by DL-propargylglycine (PAG, a H2S biosynthesis inhibitor), hydroxylamine (HT, a H2S scavenger), diphenylene iodonium (DPI, a PM-NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS scavenger), and the effect of Put on H2O2 accumulation was abolished by HT. Taken together, as the downstream component of the Put signaling pathway, H2S mediated H2O2 accumulation, and H2O2 induced the accumulation of UV-absorbing compounds and maintained redox homeostasis under UV-B stress, thereby increasing the tolerance of hulless barley seedlings to UV-B stress.
Collapse
Affiliation(s)
- Qien Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- Tibetan Traditional Medical Hospital of Lhari, 18 South Renmin Road, Lhari, 852000, Nagchu, China
| | - Zhaofeng Wang
- Life Science of College, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yanning Zhao
- Department of Biology, Qinghai University, 97 Ningzhang Road, Xining, 810016, China
| | - Xiaochen Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shuaijun Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Letao Bo
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yao Wang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingfeng Ding
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lizhe An
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
44
|
Schäffner AR. Flavonoid biosynthesis and Arabidopsis genetics: more good music. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1203-4. [PMID: 26912907 PMCID: PMC4762394 DOI: 10.1093/jxb/erw050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
45
|
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. PLANT, CELL & ENVIRONMENT 2015; 38:1658-72. [PMID: 25689473 DOI: 10.1111/pce.12518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 05/03/2023]
Abstract
In plants from temperate climates such as Arabidopsis thaliana, low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. During cold acclimation, massive changes in gene expression and in the content of primary metabolites and lipids have been observed. Here, we have analysed the influence of cold acclimation on flavonol and anthocyanin content and on the expression of genes related to flavonoid metabolism in 54 Arabidopsis accessions covering a wide range of freezing tolerance. Most flavonols and anthocyanins accumulated upon cold exposure, but the extent of accumulation varied strongly among the accessions. This was also true for most of the investigated transcripts. Correlation analyses revealed a high degree of coordination among metabolites and among transcripts, but only little correlation between metabolites and transcripts, indicating an important role of post-transcriptional regulation in flavonoid metabolism. Similarly, levels of many flavonoid biosynthesis genes were correlated with freezing tolerance after cold acclimation, but only the pool sizes of a few flavonols and anthocyanins. Collectively, our data provide evidence for an important role of flavonoid metabolism in Arabidopsis freezing tolerance and point to the importance of post-transcriptional mechanisms in the regulation of flavonoid metabolism in response to cold.
Collapse
Affiliation(s)
- Elisa Schulz
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| |
Collapse
|
46
|
Nascimento LBDS, Leal-Costa MV, Menezes EA, Lopes VR, Muzitano MF, Costa SS, Tavares ES. Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:73-81. [PMID: 25900552 DOI: 10.1016/j.jphotobiol.2015.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/17/2022]
Abstract
Ultraviolet-B radiation is an important abiotic factor that can stimulate the production of secondary metabolites, including polyphenolic compounds. Kalanchoe pinnata (Crassulaceae) is a medicinal plant popularly used in Brazil for treating wounds and inflammation. This species is rich in phenolic compounds, which could account for some of its biological activities, including antileishmanial, antihypertensive and antibacterial properties. We investigated the effects of supplemental UV-B radiation on the phenolic profile, antioxidant activity and total flavonoid content of leaves of K. pinnata. Plants were grown under white light (W - control) and supplemental UV-B radiation (W+UVB). Supplemental UV-B radiation enhanced the total flavonoid content of the leaf extracts, without affecting the antioxidant activity or yield of extracts. Analysis by TLC and HPLC of W and W+UVB leaf extracts revealed quantitative and qualitative differences in their phenolic profiles. W+UVB extracts contained a higher diversity of phenolic compounds and a larger amount of quercitrin, an important bioactive flavonoid of this species. This is the first report of the use of ImageJ® program to analyze a TLC visualized by spraying with NP-PEG reagent. UV-B radiation is proposed as a supplemental light source in K. pinnata cultivation in order to improve its flavonoid composition.
Collapse
Affiliation(s)
| | | | - Eloá Aragão Menezes
- Plant Anatomy Laboratory, Botanical Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Virgínia Rodrigues Lopes
- Plant Anatomy Laboratory, Botanical Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sônia Soares Costa
- Chemistry of Natural Bioactive Products Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Eliana Schwartz Tavares
- Plant Anatomy Laboratory, Botanical Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors. PLANT PHYSIOLOGY 2015; 167:295-306. [PMID: 25501946 PMCID: PMC4326757 DOI: 10.1104/pp.114.251769] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/08/2014] [Indexed: 05/19/2023]
Abstract
WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
48
|
Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A, Latsague M, Acevedo P, Loyola R, Arce-Johnson P, Alberdi M. Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:85-95. [PMID: 25394804 DOI: 10.1016/j.plaphy.2014.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The effects of increased doses of UV-B radiation on anatomical, biochemical and molecular features of leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes were investigated. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 Wm(-2) of biologically effective UV-B radiation for up to 72 h. Leaf thickness and the adaxial epidermis thickness fell more than 3-fold in both genotypes at the highest UV-B dose. Moreover, in Bluegold an evident disorganization in the different cell layers was observed at the highest UV-B radiation. A significant decrease in chlorophyll a/b after 6 h in Brigitta under the greater UV-B doses was observed. Anthocyanin and total phenolics were increased, especially at 0.19 Wm(-2), when compared to the control in both genotypes.Chlorogenic acid was the most abundant hydroxycinnamic acid in Brigitta, and was significantly higher (P ≤ 0.05) than in Bluegold leaves. Regarding the expression of phenylpropanoid genes, only the transcription factor VcMYBPA1 showed a significant and sustained induction at higher doses of UV-B radiation in both genotypes compared to the controls. Thus, the reduction of leaf thickness concomitant with a lower lipid peroxidation and rapid enhancement of secondary metabolites, accompanied by a stable induction of the VcMYBPA1 transcription factor suggest a better performance against UV-B radiation of the Brigitta genotype.
Collapse
|
49
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:474. [PMID: 25278950 PMCID: PMC4165212 DOI: 10.3389/fpls.2014.00474] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| |
Collapse
|
50
|
Fornalé S, Lopez E, Salazar-Henao JE, Fernández-Nohales P, Rigau J, Caparros-Ruiz D. AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:507-16. [PMID: 24319076 DOI: 10.1093/pcp/pct187] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid metabolic pathway provides a wide variety of essential compounds for plants. Together with sinapate esters, in Brassicaceae species, flavonoids play an important role in protecting plants against UV irradiation. In this work we have characterized Arabidopsis thaliana AtMYB7, the closest homolog of AtMYB4 and AtMYB32, described as repressors of different branches of phenylpropanoid metabolism. The characterization of atmyb7 plants revealed an induction of several genes involved in flavonol biosynthesis and an increased amount of these compounds. In addition, AtMYB7 gene expression is repressed by AtMYB4. As a consequence, the atmyb4 mutant plants present a reduction of flavonol contents, indicating once more that AtMYB7 represses flavonol biosynthesis. Our results also show that AtMYB7 gene expression is induced by salt stress. Induction assays indicated that AtMYB7 represses several genes of the flavonoid pathway, DFR and UGT being early targets of this transcription factor. The results obtained indicate that AtMYB7 is a repressor of flavonol biosynthesis and also led us to propose AtMYB4 and AtMYB7 as part of the regulatory mechanism controlling the balance of the main A. thaliana UV-sunscreens.
Collapse
Affiliation(s)
- Silvia Fornalé
- Centre for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|