1
|
Meinzinger A, Zsigmond Á, Horváth P, Kellenberger A, Paréj K, Tallone T, Flachner B, Cserhalmi M, Lőrincz Z, Cseh S, Shmerling D. RuX: A Novel, Flexible, and Sensitive Mifepristone-Induced Transcriptional Regulation System. Int J Cell Biol 2023; 2023:7121512. [PMID: 37941807 PMCID: PMC10630016 DOI: 10.1155/2023/7121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Inducible gene regulation methods are indispensable in diverse biological applications, yet many of them have severe limitations in their applicability. These include inducer toxicity, a limited variety of organisms the given system can be used in, and side effects of the induction method. In this study, a novel inducible system, the RuX system, was created using a mutant ligand-binding domain of the glucocorticoid receptor (CS1/CD), used together with various genetic elements such as the Gal4 DNA-binding domain or Cre recombinase. The RuX system is shown to be capable of over 1000-fold inducibility, has flexible applications, and is offered for use in cell cultures.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiziano Tallone
- Department of Endocrinology, Metabolism and Cardiovascular Research, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Sándor Cseh
- TargetEx Biosciences Ltd., Dunakeszi, Hungary
| | | |
Collapse
|
2
|
Schmidt K, Steiner K, Petrov B, Georgiev O, Schaffner W. Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats. Biometals 2016; 29:423-32. [PMID: 27067444 PMCID: PMC4879176 DOI: 10.1007/s10534-016-9926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022]
Abstract
Non-essential "heavy" metals such as cadmium tend to accumulate in an organism and thus are a particular threat for long-lived animals. Here we show that two unrelated, short-lived groups of mammals (rodents and shrews, separated by 100 Mio years of evolution) each have independently acquired mutations in their metal-responsive transcription factor (MTF-1) in a domain relevant for robust transcriptional induction by zinc and cadmium. While key amino acids are mutated in rodents, in shrews an entire exon is skipped. Rodents and especially shrews are unique regarding the alterations of this region. To investigate the biological relevance of these alterations, MTF-1s from the common shrew (Sorex araneus), the mouse, humans and a bat (Myotis blythii), were tested by cotransfection with a reporter gene into cells lacking MTF-1. Whereas shrews only live for 1.5-2.5 years, bats, although living on a very similar insect diet, have a lifespan of several decades. We find that bat MTF-1 is similarly metal-responsive as its human counterpart, while shrew MTF-1 is less responsive, similar to mouse MTF-1. We propose that in comparison to most other mammals, the short-lived shrews and rodents can afford a "lower-quality" system for heavy metal homeostasis and detoxification.
Collapse
Affiliation(s)
- Katharina Schmidt
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Kurt Steiner
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Boyan Petrov
- National Museum of Natural History, 1000, Sofia, Bulgaria
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
| | - Walter Schaffner
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Schmidt K, Keiser S, Günther V, Georgiev O, Hirsch HH, Schaffner W, Bethge T. Transcription enhancers as major determinants of SV40 polyomavirus growth efficiency and host cell tropism. J Gen Virol 2016; 97:1597-1603. [PMID: 27100458 PMCID: PMC5410105 DOI: 10.1099/jgv.0.000487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The non-coding control region (NCCR) of polyomaviruses includes the promoters for early and late genes, a transcription enhancer and the origin of DNA replication. Particularly virulent variants of the human pathogens BKPyV and JCPyV, as well as of simian virus 40 (SV40), occur in vitro and in vivo. These strains often harbour rearrangements in their NCCR, typically deletions of some DNA segment(s) and/or duplications of others. Using an SV40-based model system we provide evidence that duplications of enhancer elements, whether from SV40 itself or from the related BKPyV and JCPyV, increase early gene transcription and replicative capacity. SV40 harbouring subsegments of the strong cytomegalovirus (HCMV) enhancer replicated better than the common 'wild-type' SV40 in the human cell lines HEK293 and U2OS. In conclusion, replacing the SV40 enhancer with heterologous enhancers can profoundly influence SV40's infective capacity, underscoring the potential of small DNA viruses to overcome cell type and species barriers.
Collapse
Affiliation(s)
- Katharina Schmidt
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Simon Keiser
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Viola Günther
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Petersplatz 10, University of Basel, CH-4009 Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Walter Schaffner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tobias Bethge
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Georgiev O, Günther V, Steiner K, Schönrath K, Schaffner W. The legless lizard Anguis fragilis (slow worm) has a potent metal-responsive transcription factor 1 (MTF-1). Biol Chem 2014; 395:425-31. [PMID: 24413216 DOI: 10.1515/hsz-2013-0293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 12/16/2023]
Abstract
The metal-responsive transcription factor-1 (MTF-1) is a key regulator of heavy metal homeostasis and detoxification. Here we characterize the first MTF-1 from a reptile, the slow worm Anguis fragilis. The slow worm, or blind worm, is a legless lizard also known for its long lifespan of up to several decades. Anguis MTF-1 performs well and matches the strong zinc and cadmium response of its human ortholog, clearly surpassing the activity of rodent MTF-1s. Some amino acid positions critical for metal response are the same in humans and slow worm but not in rodent MTF-1. This points to a divergent evolution of rodent MTF-1, and we speculate that rodents can afford a less sophisticated metal handling than humans and (some) reptiles.
Collapse
|
5
|
Maricic T, Günther V, Georgiev O, Gehre S, Curlin M, Schreiweis C, Naumann R, Burbano HA, Meyer M, Lalueza-Fox C, de la Rasilla M, Rosas A, Gajovic S, Kelso J, Enard W, Schaffner W, Pääbo S. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 2012. [PMID: 23197593 DOI: 10.1093/molbev/mss271] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates. We find that the derived allele of this site is less efficient than the ancestral allele in activating transcription from a reporter construct. The derived allele also binds less POU3F2 dimers than POU3F2 monomers compared with the ancestral allele. Because the substitution in the POU3F2 binding site is likely to alter the regulation of FOXP2 expression, and because it is localized in a region of the gene associated with a previously described signal of positive selection, it is a plausible candidate for having caused a recent selective sweep in the FOXP2 gene.
Collapse
Affiliation(s)
- Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells. Adv Virol 2012; 2011:165871. [PMID: 22312334 PMCID: PMC3265293 DOI: 10.1155/2011/165871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/23/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022] Open
Abstract
An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.
Collapse
|
7
|
Günther V, Davis AM, Georgiev O, Schaffner W. A conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:476-83. [PMID: 22057392 DOI: 10.1016/j.bbamcr.2011.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein that activates transcription in response to heavy metals such as Zn(II), Cd(II) and Cu(I) and is also involved in the response to hypoxia and oxidative stress. MTF-1 recognizes a specific DNA sequence motif termed the metal response element (MRE), located in the promoter/enhancer region of its target genes. The functional domains of MTF-1 include, besides the DNA-binding and activation domains and signals for subcellular localization (NLS and NES), a cysteine cluster 632CQCQCAC638 located near the C-terminus. Here we show that this cysteine cluster mediates homodimerization of human MTF-1, and that dimer formation in vivo is important for basal and especially metal-induced transcriptional activity. Neither nuclear translocation nor DNA binding is impaired in a mutant protein in which these cysteines are replaced by alanines. Although zinc supplementation induces MTF-1 dependent transcription it does not per se enhance dimerization, implying that actual zinc sensing is mediated by another domain. By contrast copper, which on its own activates MTF-1 only weakly in the cell lines tested, stabilizes the dimer by inducing intermolecular disulfide bond formation and synergizes with zinc to boost MTF-1 dependent transcription.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, Universität Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
8
|
Günther V, Waldvogel D, Nosswitz M, Georgiev O, Schaffner W. Dissection of Drosophila MTF-1 reveals a domain for differential target gene activation upon copper overload vs. copper starvation. Int J Biochem Cell Biol 2012; 44:404-11. [PMID: 22138226 DOI: 10.1016/j.biocel.2011.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein conserved from mammals to insects. It mediates protection against heavy metal load by activating the expression of metallothionein and other genes. In Drosophila, MTF-1 serves a dual function in that it not only helps to protect against heavy metal load but also induces the expression of Ctr1B, the gene for an intestinal copper importer, upon copper starvation. By dissecting Drosophila MTF-1 function, we have identified determinants for nuclear import and export, and characterized a phosphorylation site mutant (T127A) that differentially affects MTF-1 target genes. Further, by generating a series of fusion proteins with the heterologous DNA binding domain of Gal4 we identified a strong, constitutive activation domain in the central region of MTF-1 (aa 352-540). By contrast, an extended fusion protein that includes MTF-1's C-terminus (aa 352-791) is not active in standard conditions but induced by copper load. The paramount regulatory importance of the C-terminal part, that harbors a cysteine-rich "metallothionein-like" domain, was corroborated by different experiments. Transgenic flies expressing C-terminally truncated MTF-1 variants displayed high constitutive transcription of both, the genes for metallothioneins and the copper importer Ctr1B. The indiscriminate activation of these genes that are normally induced under opposite conditions of copper load and copper starvation manifested itself in a shortened lifespan, crippled wings, and female sterility.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Atanesyan L, Günther V, Dichtl B, Georgiev O, Schaffner W. Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals. Biol Chem 2012; 393:63-70. [DOI: 10.1515/bc-2011-252] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/15/2022]
Abstract
Abstract
Microsatellite repeats are genetically unstable and subject to expansion and shrinkage. A subset of them, triplet repeats, can occur within the coding region and specify homomeric tracts of amino acids. Polyglutamine (polyQ) tracts are enriched in eukaryotic regulatory proteins, notably transcription factors, and we had shown before that they can contribute to transcriptional activation in mammalian cells. Here we generalize this finding by also including evolutionarily divergent organisms, namely, Drosophila and baker’s yeast. In all three systems, Gal4-based model transcription factors were more active if they harbored a polyQ tract, and the activity depended on the length of the tract. By contrast, a polyserine tract was inactive. PolyQs acted from either an internal or a C-terminal position, thus ruling out a merely structural ‘linker’ effect. Finally, a two-hybrid assay in mammalian cells showed that polyQ tracts can interact with each other, supporting the concept that a polyQ-containing transcription factor can recruit other factors with polyQ tracts or glutamine-rich activation domains. The widespread occurrence of polyQ repeats in regulatory proteins suggests a beneficial role; in addition to the contribution to transcriptional activity, their genetic instability might help a species to adapt to changing environmental conditions in a potentially reversible manner.
Collapse
|
10
|
Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 2009; 29:6283-93. [PMID: 19797083 PMCID: PMC2786702 DOI: 10.1128/mcb.00847-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/25/2009] [Accepted: 09/12/2009] [Indexed: 01/10/2023] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) mediates both basal and heavy metal-induced transcription of metallothionein genes and also regulates other genes involved in the cell stress response and in metal homeostasis. In resting cells, MTF-1 localizes to both the cytoplasm and the nucleus but quantitatively accumulates in the nucleus upon metal load and under other stress conditions. Here we show that within the DNA-binding domain, a region spanning zinc fingers 1 to 3 (amino acids [aa] 137 to 228 in human MTF-1) harbors a nonconventional nuclear localization signal. This protein segment confers constitutive nuclear localization to a cytoplasmic marker protein. The deletion of the three zinc fingers impairs nuclear localization. The export of MTF-1 to the cytoplasm is controlled by a classical nuclear export signal (NES) embedded in the acidic activation domain. We show that this activation domain confers metal inducibility in distinct cell types when fused to a heterologous DNA-binding domain. Furthermore, the cause of a previously described stronger inducibility of human versus mouse MTF-1 could be narrowed down to a 3-aa difference in the NES; "humanizing" mouse MTF-1 at these three positions enhanced its metal inducibility to the level of human MTF-1.
Collapse
Affiliation(s)
- Uschi Lindert
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Mirjam Cramer
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Michael Meuli
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
11
|
Lindert U, Leuzinger L, Steiner K, Georgiev O, Schaffner W. Characterization of metal-responsive transcription factor (MTF-1) from the giant rodent capybara reveals features in common with human as well as with small rodents (mouse, rat). Short communication. Chem Biodivers 2008; 5:1485-1494. [PMID: 18729110 DOI: 10.1002/cbdv.200890137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
From mammals to insects, metal-responsive transcription factor 1 (MTF-1) is essential for the activation of metallothionein genes upon heavy-metal load. We have previously found that human MTF-1 induces a stronger metal response than mouse MTF-1. The latter differs from the human one in a number of amino acid positions and is also shorter by 78 aa at its C-terminus. We reasoned that the weaker metal inducibility might be associated with a lesser demand for tight metal homeostasis in a low-weight, short-lived animal, and thus set out to determine the sequence of MTF-1 from the largest living rodent, the Brazilian capybara that can reach 65 kg and also has a considerably longer life span than smaller rodents. An expression clone for capybara MTF-1 was then tested for its activity in both mouse and human cells. Our analysis revealed three unexpected features: i) capybara MTF-1 in terms of amino acid sequence is much more closely related to human than to mouse MTF-1, suggesting an accelerated evolution of MTF-1 in the evolutionary branch leading to small rodents; ii) capybara MTF-1 is even 32 aa shorter at its C-terminus than mouse MTF-1, and iii) in an activity test, it is not more active than mouse MTF-1. The latter two findings might indicate that capybara has evolved in an environment with low heavy-metal load.
Collapse
Affiliation(s)
- Uschi Lindert
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Lucas Leuzinger
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Kurt Steiner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Oleg Georgiev
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| |
Collapse
|
12
|
Kato A, Endo T, Abiko S, Ariga H, Matsumoto KI. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions. Exp Cell Res 2008; 314:2661-73. [DOI: 10.1016/j.yexcr.2008.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/23/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
13
|
vandenBerghe P, Folmer D, Malingré H, vanBeurden E, Klomp A, vandeSluis B, Merkx M, Berger R, Klomp L. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J 2007; 407:49-59. [PMID: 17617060 PMCID: PMC2267400 DOI: 10.1042/bj20070705] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis, epitope-tagged hCTR2 was transiently expressed in different cell lines. hCTR2-vsvG (vesicular-stomatitis-virus glycoprotein) predominantly migrated as a 17 kDa protein after imunoblot analysis, consistent with its predicted molecular mass. Chemical cross-linking resulted in the detection of higher-molecular-mass complexes containing hCTR2-vsvG. Furthermore, hCTR2-vsvG was co-immunoprecipitated with hCTR2-FLAG, suggesting that hCTR2 can form multimers, like hCTR1. Transiently transfected hCTR2-eGFP (enhanced green fluorescent protein) was localized exclusively to late endosomes and lysosomes, and was not detected at the plasma membrane. To functionally address the role of hCTR2 in copper metabolism, a novel transcription-based copper sensor was developed. This MRE (metal-responsive element)-luciferase reporter contained four MREs from the mouse metallothionein 1A promoter upstream of the firefly luciferase open reading frame. Thus the MRE-luciferase reporter measured bioavailable cytosolic copper. Expression of hCTR1 resulted in strong activation of the reporter, with maximal induction at 1 muM CuCl2, consistent with the K(m) of hCTR1. Interestingly, expression of hCTR2 significantly induced MRE-luciferase reporter activation in a copper-dependent manner at 40 and 100 microM CuCl2. Taken together, these results identify hCTR2 as an oligomeric membrane protein localized in lysosomes, which stimulates copper delivery to the cytosol of human cells at relatively high copper concentrations. This work suggests a role for endosomal and lysosomal copper pools in the maintenance of cellular copper homoeostasis.
Collapse
Affiliation(s)
- Peter V. E. vandenBerghe
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Dineke E. Folmer
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Helga E. M. Malingré
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Ellen vanBeurden
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Adriana E. M. Klomp
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Bart vandeSluis
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- †Complex Genetics Section, Department of Medical Genetics, University Medical Center Utrecht, 3508 TA Utrecht, The Netherlands
| | - Maarten Merkx
- ‡Department of Biomedical Engineering, Technical University Eindhoven, 5600 MB Eindhoven, The Netherlands
| | - Ruud Berger
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Leo W. J. Klomp
- *Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Stumpf M, Waskow C, Krötschel M, van Essen D, Rodriguez P, Zhang X, Guyot B, Roeder RG, Borggrefe T. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci U S A 2006; 103:18504-9. [PMID: 17132730 PMCID: PMC1693692 DOI: 10.1073/pnas.0604494103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mediator complex forms the bridge between transcriptional activators and RNA polymerase II. Mediator subunit Med1/TRAP220 is a key component of Mediator originally found to associate with nuclear hormone receptors. Med1 deficiency causes lethality at embryonic day 11.5 because of defects in heart and placenta development. Here we show that Med1-deficient 10.5 days postcoitum embryos are anemic but have normal numbers of hematopoietic progenitor cells. Med1-deficient progenitor cells have a defect in forming erythroid burst-forming units (BFU-E) and colony-forming units (CFU-E), but not in forming myeloid colonies. At the molecular level, we demonstrate that Med1 interacts physically with the erythroid master regulator GATA-1. In transcription assays, Med1 deficiency leads to a defect in GATA-1-mediated transactivation. In chromatin immunoprecipitation experiments, we find Mediator components at GATA-1-occupied enhancer sites. Thus, we conclude that Mediator subunit Med1 acts as a pivotal coactivator for GATA-1 in erythroid development.
Collapse
Affiliation(s)
- Melanie Stumpf
- *Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
- Department of Immunology, University Clinics Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Claudia Waskow
- Department of Immunology, University Clinics Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Marit Krötschel
- *Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
- Department of Immunology, University Clinics Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Dominic van Essen
- *Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | - Patrick Rodriguez
- *Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | - Boris Guyot
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; and
| | | | - Tilman Borggrefe
- *Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
- Department of Immunology, University Clinics Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- To whom reprint requests should be addressed.
| |
Collapse
|
15
|
Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci U S A 2006; 103:16454-9. [PMID: 17050683 PMCID: PMC1637603 DOI: 10.1073/pnas.0607626103] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
JNKs are attractive targets for treatment of obesity and type-2 diabetes. A sustained increase in JNK activity was observed in dietary and genetic models of obesity in mice, whereas JNK deficiency prevented obesity-induced insulin resistance. A similar insulin-sensitizing effect was seen upon treatment of obese mice with JNK inhibitors. We now demonstrate that treatment with the saturated fatty acid palmitic acid results in sustained JNK activation and insulin resistance in primary mouse hepatocytes and pancreatic beta-cells. In the latter, palmitic acid treatment inhibits glucose-induced insulin gene transcription, in part, by interfering with autocrine insulin signaling through phosphorylation of insulin-receptor substrates 1 and 2 at sites that interfere with binding to activated insulin receptors. This mechanism may account for the induction of central insulin resistance by free fatty acids.
Collapse
Affiliation(s)
- Giovanni Solinas
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
| | - Willscott Naugler
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
| | - Francesco Galimi
- Department of Biomedical Sciences/Instituto Nazionale di Biostrutture e Biosistemi, University of Sassari Medical School, 07100 Sassari, Italy; and
| | - Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, 50 Irwon-dong Kangnam-ku, Seoul 135-710, Korea
| | - Michael Karin
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Matsumoto KI, Abiko S, Ariga H. Transcription regulatory complex including YB-1 controls expression of mouse matrix metalloproteinase-2 gene in NIH3T3 cells. Biol Pharm Bull 2005; 28:1500-4. [PMID: 16079501 DOI: 10.1248/bpb.28.1500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase 2 (MMP-2) is a metalloproteinase belonging to a family of structurally related zinc-dependent endopeptidases capable of degrading extracellular matrix components. To elucidate the functional promoter of the mouse MMP-2 gene, systematic transient expression analysis of the 5'-flanking region of the MMP-2 gene was performed using serially nested deletions. The deletion analysis indicated that the proximal 327-bp sequence from nucleotide positions -313 to +14 relative to the transcription start site is essential for minimal promoter activity and that a 10-bp sequence of the promoter at positions -939 to -930 is required for high expression level of the MMP-2 gene. The 10-bp fragment functioned as a potent stimulator of heterologous SV40 promoter activity. This element is identical to the YB-1 binding motif (Y-box) present within the responsive element-1 (RE-1), which has been shown to act as a potent cis-activator of transcription of the rat MMP-2 gene. The binding of a nuclear factor(s) to the 10-bp fragment was also revealed by electrophoretic mobility shift assays (EMSAs). Antibody-supershift EMSAs of nuclear extracts from NIH 3T3 cells demonstrated YB-1 binding to the RE-1 sequence. It was concluded that the RE-1 is the conserved element for potent expression of MMP-2 gene among rodents.
Collapse
Affiliation(s)
- Ken-ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | |
Collapse
|
17
|
Cramer M, Nagy I, Murphy BJ, Gassmann M, Hottiger MO, Georgiev O, Schaffner W. NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biol Chem 2005; 386:865-72. [PMID: 16164411 DOI: 10.1515/bc.2005.101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Placenta growth factor (PlGF) is a member of the vascular endothelial growth factor family of cytokines that control vascular and lymphatic endothelium development. It has been implicated in promoting angiogenesis in pathological conditions via signaling to vascular endothelial growth factor receptor-1. PlGF expression is induced by hypoxia and proinflammatory stimuli. Metal responsive transcription factor 1 (MTF-1) was shown to take part in the hypoxic induction of PlGF in Ras-transformed mouse embryonic fibroblasts. Here we report that PlGF expression is also controlled by NF-kappaB. We identified several putative binding sites for NF-kappaB in the PlGF promoter/enhancer region by sequence analyses, and show binding and transcriptional activity of NF-kappaB p65 at these sites. Expression of NF-kappaB p65 from a plasmid vector in HEK293 cells caused a substantial increase of PlGF transcript levels. Furthermore, we found that hypoxic conditions induce nuclear translocation and interaction of MTF-1 and NF-kappaB p65 proteins, suggesting a role for this complex in hypoxia-induced transcription of PlGF.
Collapse
Affiliation(s)
- Mirjam Cramer
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Rodriguez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, Heck AJR, Vyas P, de Boer E, Grosveld F, Strouboulis J. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J 2005; 24:2354-66. [PMID: 15920471 PMCID: PMC1173143 DOI: 10.1038/sj.emboj.7600702] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 05/03/2005] [Indexed: 11/09/2022] Open
Abstract
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. Importantly, we show that FOG-1 mediates GATA-1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA-1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA-1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA-1 in erythroid differentiation.
Collapse
Affiliation(s)
- Patrick Rodriguez
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edgar Bonte
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Krijgsveld
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Katarzyna E Kolodziej
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Boris Guyot
- Department of Haematology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Paresh Vyas
- Department of Haematology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ernie de Boer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John Strouboulis
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands. Tel.: + 31 10 408 7352; Fax: + 31 10 408 9768; E-mail:
| |
Collapse
|
19
|
Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol 2005; 279:58-72. [PMID: 15708558 DOI: 10.1016/j.ydbio.2004.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 11/19/2004] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is thought to regulate ductal and lobuloalveolar development as well as involution in the mammary gland. In an attempt to understand the role TGF-beta plays during normal mammary gland development, and ultimately cancer, we previously generated transgenic mice that express a dominant-negative TGF-beta type II receptor under control of the metallothionine promoter (MT-DNIIR). Upon stimulation with zinc sulfate, the transgene was expressed in the mammary stroma and resulted in an increase in ductal side branching. In this study, mammary gland transplantation experiments confirm that the increase in side branching observed was due to DNIIR activity in the stroma. Development during puberty through the end buds was also accelerated. Cbl is a multifunctional intracellular adaptor protein that regulates receptor tyrosine kinase ubiquitination and downregulation. Mice with a targeted disruption of the c-Cbl gene displayed increased side branching similar to that observed in MT-DNIIR mice; however, end bud development during puberty was normal. Transplantation experiments showed that the mammary stroma was responsible for the increased side branching observed in Cbl-null mice. Cbl expression was reduced in mammary glands from DNIIR mice compared to controls and TGF-beta stimulated expression of Cbl in cultures of primary mammary fibroblasts. In addition, both TGF-beta and Cbl regulated platelet-derived growth factor receptor-alpha (PDGFR alpha) expression in vivo and in isolated mammary fibroblasts. The hypothesis that TGF-beta mediates the levels of PDGFR alpha protein via regulation of c-Cbl was tested. We conclude that TGF-beta regulates PDGFR alpha in the mammary stroma via a c-Cbl-independent mechanism. Finally, the effects of PDGF-AA on branching were determined. Treatment in vivo with PDGF-AA did not affect branching making a functional interaction between TGF-beta and PDGF unlikely.
Collapse
Affiliation(s)
- Michael R Crowley
- The Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard 310, MCLM, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
20
|
Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W. Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 2005; 19:891-6. [PMID: 15833915 PMCID: PMC1080128 DOI: 10.1101/gad.1301805] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/04/2005] [Indexed: 11/24/2022]
Abstract
From insects to mammals, metallothionein genes are induced in response to heavy metal load by the transcription factor MTF-1, which binds to short DNA sequence motifs, termed metal response elements (MREs). Here we describe a novel and seemingly paradoxical role for MTF-1 in Drosophila in that it also mediates transcriptional activation of Ctr1B, a copper importer, upon copper depletion. Activation depends on the same type of MRE motifs in the upstream region of the Ctr1B gene as are normally required for metal induction. Thus, a single transcription factor, MTF-1, plays a direct role in both copper detoxification and acquisition by inducing the expression of metallothioneins and of a copper importer, respectively.
Collapse
Affiliation(s)
- Anand Selvaraj
- Institute of Molecular Biology, University of Zurich, CH-8057, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Balamurugan K, Egli D, Selvaraj A, Zhang B, Georgiev O, Schaffner W. Metal-responsive transcription factor (MTF-1) and heavy metal stress response in Drosophila and mammalian cells: a functional comparison. Biol Chem 2004; 385:597-603. [PMID: 15318808 DOI: 10.1515/bc.2004.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The zinc finger transcription factor MTF-1 (metal-responsive transcription factor-1) is conserved from insects to vertebrates. Its major role in both organisms is to control the transcription of genes involved in the homeostasis and detoxification of heavy metal ions such as Cu2+, Zn2+ and Cd2+. In mammals, MTF-1 serves at least two additional roles. First, targeted disruption of the MTF-1 gene results in death at embryonic day 14 due to liver degeneration, revealing a stage-specific developmental role. Second, under hypoxic-anoxic stress, MTF-1 helps to activate the transcription of the gene placental growth factor (PIGF), an angiogenic protein. Recently we characterized dMTF-1, the Drosophila homolog of mammalian MTF-1. Here we present a series of studies to compare the metal response in mammals and insects, which reveal common features but also differences. A human MTF-1 transgene can restore to a large extent metal tolerance to flies lacking their own MTF-1 gene, both at low and high copper concentrations. Likewise, Drosophila MTF-1 can substitute for human MTF-1 in mammalian cell culture, although both the basal and the metal-induced transcript levels are lower. Finally, a clear difference was revealed in the response to mercury, a highly toxic heavy metal: metallothionein-type promoters respond poorly, if at all, to Hg2+ in mammalian cells but strongly in Drosophila, and this response is completely dependent on dMTF-1.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Wang Y, Lorenzi I, Georgiev O, Schaffner W. Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. Biol Chem 2004; 385:623-32. [PMID: 15318811 DOI: 10.1515/bc.2004.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein with a central role in heavy metal homeostasis/detoxification. MTF-1 binds to DNA sequence motifs known as metal response elements (MREs) with a core consensus TGCRCNC. Since MTF-1 is also involved in other stress responses, we tested whether it is able to recognize different types of DNA sequence motifs. To this end we selected MTF-1-binding oligonucleotides from a collection of random sequences. Since MTF-1 binds to known target sequences at relatively high zinc concentrations, oligonucleotide selection was performed in a mammalian cell nuclear extract both at high and low zinc concentrations. Irrespective of zinc concentration, we find a robust representation of MRE consensus sequences, however with specific features. Selection was most efficient at 100 microM zinc, yielding many oligonucleotides with two MRE motifs in divergent orientation of the sequence GTGTGCATCACTTTGCGCAC (core consensus underlined). Oligonucleotides selected without zinc supplement contain a single high-affinity MRE with an extended flanking sequence of consensus TTTTGCGCACGGCACTAAAT (core consensus underlined). This low-zinc MRE motif can bind MTF-1 and induce transcription in vivo, and is less dependent on zinc than the classical MREd motif from the mouse metallothionein-I promoter. At low zinc, we also found evidence for a negative role of nuclear factor-I (NF-I/CTF-I) in MTF-1-dependent transcription. Finally, a selection in the presence of cadmium yielded no specific binding site for MTF-1, strongly supporting the concept of an indirect activation of MTF-1 by cadmium within a living cell.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
23
|
Chen X, Zhang B, Harmon PM, Schaffner W, Peterson DO, Giedroc DP. A novel cysteine cluster in human metal-responsive transcription factor 1 is required for heavy metal-induced transcriptional activation in vivo. J Biol Chem 2004; 279:4515-22. [PMID: 14610091 DOI: 10.1074/jbc.m308924200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) specifically binds to metal response elements (MREs) associated with a number of metal- and stress-responsive genes. Human MTF-1 contains a cysteine-rich cluster, -632Cys-Gln-Cys-Gln-Cys-Ala-Cys638-, conserved from pufferfish to humans far removed from the MRE-binding zinc finger domain and just C-terminal to a previously mapped serine/threonine-rich transcriptional activation domain. MTF-1 proteins containing two Cys-->Ala substitutions (C632A/C634A) or a deletion in this region altogether (Delta(632-644)) are significantly impaired in their ability to induce Zn(II)- and Cd(II)-responsive transcription of a MRE-linked reporter gene in transiently transfected mouse dko7 (MTF-1-/-) cells in culture under moderate metal stress but retain the ability to drive basal levels of transcription in a MRE-dependent manner in vivo and in vitro. In addition, the mutated proteins respond to induction by Zn(II) or Cd(II) with nuclear translocation and MRE binding activities comparable with wild-type MTF-1. Attempts to rescue the Delta(632-644) deletion mutant phenotype by inserting similar Cys-rich sequences from Drosophila MTF-1 were unsuccessful, suggesting that the structure of this motif within intact human MTF-1, rather than the simple presence of multiple closely spaced Cys residues, is required for function. This cysteine cluster therefore functions at a step subsequent to nuclear translocation and MRE-binding DNA to naked promoter-containing DNA and appears to be specifically required for MTF-1 to activate transcription in the presence of inducing heavy metal ions.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
24
|
Biemans-Oldehinkel E, Poolman B. On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J 2004; 22:5983-93. [PMID: 14609945 PMCID: PMC275439 DOI: 10.1093/emboj/cdg581] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of two transporter families of the ATP-binding cassette (ABC) superfamily use two or even four extracytoplasmic substrate-binding domains (SBDs) for transport. We report on the role of the two SBDs in the translocation cycle of the ABC transporter OpuA from Lactococcus lactis. Heterooligomeric OpuA complexes with only one SBD or one functional and one non-functional SBD (inactivated by covalent linkage of a substrate mimic) have been constructed, and the substrate binding and transport kinetics of the purified transporters, reconstituted in liposomes, have been determined. The data indicate that the two SBDs of OpuA interact in a cooperative manner in the translocation process by stimulating either the docking of the SBDs onto the translocator or the delivery of glycine betaine to the translocator. It appears that one of these initial steps, but not the later steps in translocation or resetting of the system to the initial state, is rate determining for transport. These new insights on the functional role of the extracytoplasmic SBDs are discussed in the light of the current knowledge of substrate-binding-protein-dependent ABC transporters.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
25
|
Zhang B, Georgiev O, Hagmann M, Günes C, Cramer M, Faller P, Vasák M, Schaffner W. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 2003; 23:8471-85. [PMID: 14612393 PMCID: PMC262672 DOI: 10.1128/mcb.23.23.8471-8485.2003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/16/2003] [Accepted: 08/25/2003] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins are small, cysteine-rich proteins that avidly bind heavy metals such as zinc, copper, and cadmium to reduce their concentration to a physiological or nontoxic level. Metallothionein gene transcription is induced by several stimuli, notably heavy metal load and oxidative stress. Transcriptional induction of metallothionein genes is mediated by the metal-responsive transcription factor 1 (MTF-1), an essential zinc finger protein that binds to specific DNA motifs termed metal-response elements. In cell-free DNA binding reactions with nuclear extracts, MTF-1 requires elevated zinc concentrations for efficient DNA binding but paradoxically is inactivated by other in vivo inducers such as cadmium, copper, and hydrogen peroxide. Here we have developed a cell-free, MTF-1-dependent transcription system which accurately reproduces the activation of metallothionein gene promoters not only by zinc but also by these other inducers. We found that while transcriptional induction by zinc can be achieved by elevated zinc concentration alone, induction by cadmium, copper, or H2O2 additionally requires the presence of zinc-saturated metallothionein. This is explained by the preferential binding of cadmium or copper to metallothionein or its oxidation by H2O2; the concomitant release of zinc in turn leads to the activation of transcription factor MTF-1. Conversely, thionein, the metal-free form of metallothionein, inhibits activation of MTF-1. The release of zinc from cellular components, including metallothioneins, and the sequestration of zinc by newly produced apometallothionein might be a basic mechanism to regulate MTF-1 activity upon cellular stress.
Collapse
Affiliation(s)
- Bo Zhang
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Saydam N, Steiner F, Georgiev O, Schaffner W. Heat and heavy metal stress synergize to mediate transcriptional hyperactivation by metal-responsive transcription factor MTF-1. J Biol Chem 2003; 278:31879-83. [PMID: 12805380 DOI: 10.1074/jbc.m302138200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells react to heavy metal stress by transcribing a number of genes that contain metal-response elements (MREs) in their promoter/enhancer region; this activation is mediated by metal-responsive transcription factor-1 (MTF-1). Well-known target genes of MTF-1 are those encoding metallothioneins, small, cysteine-rich proteins with a high affinity for heavy metals. The response to heat shock, another cell stress, is mediated by heat shock transcription factor 1 (HSF1), which activates a battery of heat shock genes. Little is known about the cross-talk between the different anti-stress systems of the cell. Here we report a synergistic activation of metal-responsive promoters by heavy metal load (zinc or cadmium) and heat shock. An obvious explanation, cooperativity between MTF-1 and HSF1, seems unlikely: transfected HSF1 boosts the activity of an Hsp70 promoter but hardly affects an MRE-containing promoter upon exposure to metal and heat shock. A clue to the mechanism is given by our finding that heat shock leads to intracellular accumulation of heavy metals. We propose that the known anti-apoptotic effect of heat shock proteins allows for cell survival despite heavy metal accumulation and, consequently, results in a hyperactivation of the metal response pathway.
Collapse
Affiliation(s)
- Nurten Saydam
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
27
|
Stamminger T, Gstaiger M, Weinzierl K, Lorz K, Winkler M, Schaffner W. Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol 2002; 76:4836-47. [PMID: 11967300 PMCID: PMC136153 DOI: 10.1128/jvi.76.10.4836-4847.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A selection strategy, the activator trap, was used in order to identify genes of human cytomegalovirus (HCMV) that encode strong transcriptional activation domains in mammalian cells. This approach is based on the isolation of activation domains from a GAL4 fusion library by means of selective plasmid replication, which is mediated in transfected cells by a GAL4-inducible T antigen gene. With this screening strategy, we were able to isolate two types of plasmids encoding transactivating fusion proteins from a library of random HCMV DNA inserts. One plasmid contained the exon 3 of the HCMV IE-1/2 gene region, which has previously been identified as a strong transcriptional activation domain. In the second type of plasmid, the open reading frame (ORF) UL26 of HCMV was fused to the GAL4 DNA-binding domain. By quantitative RNA mapping using S1 nuclease analysis, we were able to classify UL26 as a strong enhancer-type activation domain with no apparent homology to characterized transcriptional activators. Western blot analysis with a specific polyclonal antibody raised against a prokaryotic UL26 fusion protein revealed that two protein isoforms of 21 and 27 kDa are derived from the UL26 ORF in both infected and transfected cells. Both protein isoforms, which arise via alternative usage of two in-frame translational start codons, showed a nuclear localization and could be detected as early as 6 h after infection of primary human fibroblasts. By performing Western blot analysis with purified virions combined with fractionation experiments, we provide evidence that pUL26 is a novel tegument protein of HCMV that is imported during viral infection. Furthermore, we observed transactivation of the HCMV major immediate-early enhancer-promoter by pUL26, whereas several early and late promoters were not affected. Our data suggest that pUL26 is a novel tegument protein of HCMV with a strong transcriptional activation domain that could play an important role during initiation of the viral replicative cycle.
Collapse
Affiliation(s)
- Thomas Stamminger
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang B, Egli D, Georgiev O, Schaffner W. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 2001; 21:4505-14. [PMID: 11416130 PMCID: PMC87110 DOI: 10.1128/mcb.21.14.4505-4514.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Accepted: 04/24/2001] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins (MTs) are short, cysteine-rich proteins for heavy metal homeostasis and detoxification; they bind a variety of heavy metals and also act as radical scavengers. Transcription of mammalian MT genes is activated by heavy metal load via the metal-responsive transcription factor 1 (MTF-1), an essential zinc finger protein whose elimination in mice leads to embryonic lethality due to liver decay. Here we characterize the Drosophila homolog of vertebrate MTF-1 (dMTF-1), a 791-amino-acid protein which is most similar to its mammalian counterpart in the DNA-binding zinc finger region. Like mammalian MTF-1, dMTF-1 binds to conserved metal-responsive promoter elements (MREs) and requires zinc for DNA binding, yet some aspects of heavy metal regulation have also been subject to divergent evolution between Drosophila and mammals. dMTF-1, unlike mammalian MTF-1, is resistant to low pH (6 to 6.5). Furthermore, mammalian MT genes are activated best by zinc and cadmium, whereas in Drosophila cells, cadmium and copper are more potent inducers than zinc. The latter species difference is most likely due to aspects of heavy metal metabolism other than MTF-1, since in transfected mammalian cells, dMTF-1 responds to zinc like mammalian MTF-1. Heavy metal induction of both Drosophila MTs is abolished by double-stranded RNA interference: small amounts of cotransfected double-stranded RNA of dMTF-1 but not of unrelated control RNA inhibit the response to both the endogenous dMTF-1 and transfected dMTF-1. These data underline an important role for dMTF-1 in MT gene regulation and thus heavy metal homeostasis.
Collapse
Affiliation(s)
- B Zhang
- Institut für Molekularbiologie, Universität Zürich-Irchel, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Thiel G, Lietz M, Bach K, Guethlein L, Cibelli G. Biological activity of mammalian transcriptional repressors. Biol Chem 2001; 382:891-902. [PMID: 11501753 DOI: 10.1515/bc.2001.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research on the regulation of transcription in mammals has focused in recent years mainly on the mechanism of transcriptional activation. However, transcriptional repression mediated by repressor proteins is a common regulatory mechanism in mammals and might play an important role in many biological processes. To understand the molecular mechanism of transcriptional repression, the activity of eight mammalian repressors or repressor domains was investigated using a set of model promoters in combination with two different transcriptional detection methods. The repressors studied were: REST, the thyroid hormone receptors alpha and beta, the zinc finger protein NK10 containing a 'krüppel-associated box' (KRAB), repressor domains derived from the proteins Egr-1, Oct2A and Dr1 and the repressor/activator protein YY1. Here we show that the repressor domains of REST, Egr-1, the thyroid hormone receptors alpha< and beta and NK10 were transferable to a heterologous DNA-binding domain and repressed transcription from proximal and distal positions. Moreover, these repressor domains also blocked the activity of a strong viral enhancer in a 'remote position'. Thus, these domains are 'general' transcriptional repressor domains. The 'krüppel-associated box' was the most powerful repressor domain tested. In contrast, the repressor domains derived from Oct2A and Dr1 were inactive when fused to a heterologous DNA-binding domain. The repressor domain of YY1 exhibited transcriptional repression activity only in one of the transcriptional assay systems. The recruitment of histone deacetylases to the proximity of the basal transcriptional apparatus was recently discussed as a mechanism for some mammalian transcriptional repressor proteins. Here we show here that histone deacetylase 2, targeted to the reporter gene via DNA-protein interaction, functions as a transcriptional repressor protein regardless of the location of its binding site within the transcription unit.
Collapse
Affiliation(s)
- G Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical School, Homburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Fujino H, Regan JW. FP prostanoid receptor activation of a T-cell factor/beta -catenin signaling pathway. J Biol Chem 2001; 276:12489-92. [PMID: 11278257 DOI: 10.1074/jbc.c100039200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FP prostanoid receptors are G-protein-coupled receptors (GPCR) that consist of two known isoforms, FP(A) and FP(B). These isoforms, which are generated by alternative mRNA splicing, are identical except for their carboxyl-terminal domains. Previously we have shown that stimulation of both isoforms with prostaglandin F(2alpha) (PGF(2alpha)) activates the small G-protein Rho, leading to morphological changes consisting of cell rounding and the formation of cell aggregates. Following the removal of PGF(2alpha), however, FP(A)-expressing cells show rapid reversal of cell rounding, whereas FP(B)-expressing cells do not. We now show that acute treatment of FP(B)-expressing cells with PGF(2alpha) leads to a subcellular reorganization of beta-catenin, a decrease in the phosphorylation of cytoplasmic beta-catenin, and persistent stimulation of Tcf/Lef-mediated transcriptional activation. This does not occur in FP(A)-expressing cells and may underlie the differences between these isoforms with respect to the reversal of cell rounding. The Tcf/beta-catenin signaling pathway is known to mediate the actions of Wnt acting through the heptahelical receptor, Frizzled, and has not been associated previously with GPCR activation. Our findings expand the signaling possibilities for GPCRs and suggest novel roles for FP receptors in normal tissue development and malignant transformation.
Collapse
Affiliation(s)
- H Fujino
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-80207, USA
| | | |
Collapse
|
31
|
Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner W. Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 2001; 29:1514-23. [PMID: 11266553 PMCID: PMC31279 DOI: 10.1093/nar/29.7.1514] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Revised: 02/07/2001] [Accepted: 02/07/2001] [Indexed: 11/13/2022] Open
Abstract
Activation of genes by heavy metals, notably zinc, cadmium and copper, depends on MTF-1, a unique zinc finger transcription factor conserved from insects to human. Knockout of MTF-1 in the mouse results in embryonic lethality due to liver decay, while knockout of its best characterized target genes, the stress-inducible metallothionein genes I and II, is viable, suggesting additional target genes of MTF-1. Here we report on a multi-pronged search for potential target genes of MTF-1, including microarray screening, SABRE selective amplification, a computer search for MREs (DNA-binding sites of MTF-1) and transfection of reporter genes driven by candidate gene promoters. Some new candidate target genes emerged, including those encoding alpha-fetoprotein, the liver-enriched transcription factor C/EBPalpha and tear lipocalin/von Ebner's gland protein, all of which have a role in toxicity/the cell stress response. In contrast, expression of other cell stress-associated genes, such as those for superoxide dismutases, thioredoxin and heat shock proteins, do not appear to be affected by loss of MTF-1. Our experiments have also exposed some problems with target gene searches. First, finding the optimal time window for detecting MTF-1 target genes in a lethal phenotype of rapid liver decay proved problematical: 12.5-day-old mouse embryos (stage E12.5) yielded hardly any differentially expressed genes, whereas at stage 13.0 reduced expression of secretory liver proteins probably reflected the onset of liver decay, i.e. a secondary effect. Likewise, up-regulation of some proliferation-associated genes may also just reflect responses to the concomitant loss of hepatocytes. Another sobering finding concerns gamma-glutamylcysteine synthetase(hc) (gamma-GCS(hc)), which controls synthesis of the antioxidant glutathione and which was previously suggested to be a target gene contributing to the lethal phenotype in MTF-1 knockout mice. gamma-GCS(hc) mRNA is reduced at the onset of liver decay but MTF-1 null mutant embryos manage to maintain a very high glutathione level until shortly before that stage, perhaps in an attempt to compensate for low expression of metallothioneins, which also have a role as antioxidants.
Collapse
Affiliation(s)
- P Lichtlen
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Nitschke L, Kestler J, Tallone T, Pelkonen S, Pelkonen J. Deletion of the DQ52 element within the Ig heavy chain locus leads to a selective reduction in VDJ recombination and altered D gene usage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2540-52. [PMID: 11160315 DOI: 10.4049/jimmunol.166.4.2540] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of V(D)J recombination that leads to the assembly of Ig gene segments is tightly controlled during B cell differentiation. Two germline transcripts, one of which (mu(0)) originates from the promoter region of DQ52, may control the accessibility of the heavy chain locus. Here, we present the analysis of a mouse line in which the DQ52 gene together with its regulatory sequences is deleted by a Cre/loxP-based strategy. In F(1) (DQ52(+/-)) mice, the use of the JH3 and JH4 elements in DJ or VDJ junctions of the DQ52(-) allele was strongly reduced in both the bone marrow pre-B and spleen cells, while the JH1 and JH2 elements were used with normal frequencies. In addition, IgM(+) B cells of bone marrow and spleen used the DQ52(-) allele less frequently. On DJ joints of the DQ52(-) allele, there was 2 times less processing of JH3 ends, which resulted in clearly increased addition of P nucleotides. Although the use of D elements in DJ joints was quite similar, an altered D repertoire was found in VDJ joints of the DQ52(-) allele. In splenic B cells of the DQ52(-/-) mouse the amino acid distribution of the CDR3 was skewed, probably to compensate for the altered processing of JH3 ends. Thus, we have shown an interesting selective effect of the DQ52 region on controlling accessibility to 3' JH elements on the Ig locus, which also seems to influence the processing of DJ joints. We propose a model in which the DQ52 promoter region enhances the induction of secondary DJ rearrangements.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acids/analysis
- Animals
- Antibody Diversity/genetics
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Base Sequence
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- DNA, Complementary/isolation & purification
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Targeting
- Genes, Immunoglobulin
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Immunoglobulin mu-Chains/genetics
- Immunoglobulin mu-Chains/isolation & purification
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Regulatory Sequences, Nucleic Acid/immunology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- L Nitschke
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
33
|
Thiel G, Kaufmann K, Magin A, Lietz M, Bach K, Cramer M. The human transcriptional repressor protein NAB1: expression and biological activity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:289-301. [PMID: 11018254 DOI: 10.1016/s0167-4781(00)00207-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The zinc finger protein early growth response 1 (Egr-1) is a transcriptional activator involved in the regulation of growth and differentiation. Egr-1 has a large activating domain and three zinc finger motifs that function as a DNA binding region. We show here that a third functional domain of the Egr-1 protein, localized between the extended activation domain and the zinc finger DNA binding region, acts as a transcriptional repressor domain when fused to a heterologous DNA binding domain (DBD). Through protein-protein interaction this inhibitory domain of Egr-1 brings the transcriptional corepressor NAB1 in close proximity to the transcription unit. NAB1 is expressed ubiquitously in human cell lines as shown by RNase protection mapping. Overexpression studies revealed that NAB1 is able to completely block transcription mediated by Egr-1. In addition, the transcriptional repression activity of a fusion protein containing the inhibitory domain of Egr-1 and the DBD of the yeast transcription factor GAL4 was increased by overexpression of NAB1. A fusion protein consisting of the DBD of GAL4 and the coding region of human NAB1 repressed transcription from model promoters with engineered upstream GAL4 binding sites. The GAL4-NAB1 fusion protein functioned from proximal and distal positions indicating that NAB1 displays transcriptional repressor activity at any position within the transcription unit. Thus, the biological function of the inhibitory domain of Egr-1 is solely to provide a docking site for NAB1 via protein-protein interaction.
Collapse
Affiliation(s)
- G Thiel
- Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
der Maur AA, Belser T, Wang Y, Günes C, Lichtlen P, Georgiev O, Schaffner W. Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress Chaperones 2000; 5:196-206. [PMID: 11005378 PMCID: PMC312886 DOI: 10.1379/1466-1268(2000)005<0196:cotmgf>2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Revised: 02/22/2000] [Accepted: 02/23/2000] [Indexed: 11/24/2022] Open
Abstract
MTF-1 is a zinc finger transcription factor that mediates the cellular response to heavy metal stress; its targeted disruption in the mouse leads to liver decay and embryonic lethality at day E14. Recently, we have sequenced the entire MTF-1 gene in the compact genome of the pufferfish Fugu rubripes. Here we have defined the promoter sequences of human and mouse MTF-1 and the genomic structure of the mouse MTF-1 locus. The transcription unit of MTF-1 spans 42 kb (compared to 8.5 kb in Fugu) and is located downstream of the gene for a phosphatase (INPP5P) in mouse, human, and fish. In all of these species, the MTF promoter region has the features of a CpG island. In both mouse and human, the 5' untranslated region harbors conserved short reading frames of unknown function. RNA mapping experiments revealed that in these two species, MTF-1 mRNA is transcribed from a cluster of multiple initiation sites from a TATA-less promoter without metal-responsive elements. Transcription from endogenous and transfected MTF-1 promoters was not affected by heavy metal load or other stressors, in support of the notion that MTF-1 activity is regulated at the posttranscriptional level. Tissue Northern blots normalized for poly A+ RNA indicate that MTF-1 is expressed at similar levels in all tissues, except in the testes, that contain more than 10-fold higher mRNA levels.
Collapse
Affiliation(s)
- Adrian Auf der Maur
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Tanja Belser
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Ying Wang
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Cagatay Günes
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Peter Lichtlen
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurer St. 190, CH-8057 Zürich, Switzerland
- Correspondence to: W. Schaffner, Tel: +41-1-635-3151; Fax: +41-1-635-6811; .
| |
Collapse
|
35
|
Knutson A, Castaño E, Oelgeschläger T, Roeder RG, Westin G. Downstream promoter sequences facilitate the formation of a specific transcription factor IID-promoter complex topology required for efficient transcription from the megalin/low density lipoprotein receptor-related protein 2 promoter. J Biol Chem 2000; 275:14190-7. [PMID: 10799495 DOI: 10.1074/jbc.275.19.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Megalin/low density lipoprotein receptor-related protein 2 (LRP-2) is an endocytic receptor expressed in highly specialized cell types such as parathyroid cells and epithelia of the kidney. Previous experiments identified a nonconsensus TATA element, with the sequence TAGAAAA, as crucial for accurate and efficient transcription from the LRP-2 promoter. Here we show that, in addition to the TAGA element, promoter sequences downstream of the transcription start site contribute significantly to transcription both in vitro and in transfected cells. Deletion and point mutational analyses reveal that the promoter region located between positions +5 and +11 (sequence TTTTGGC) is of particular importance. Complementation experiments in nuclear extracts lacking transcription factor IID (TFIID) activity show that TATA-binding protein-associated factors of TFIID are essential for the function of LRP-2 downstream promoter sequences. Interestingly, DNase I footprinting studies show that the downstream region between positions +5 and +11 does not significantly affect overall TFIID affinity to the promoter but that it profoundly affects the topology of the TFIID x promoter complex not only downstream of the transcription start site, but in particular in the TATA box region. Our observations suggest a model for a novel downstream sequence function, in which TATA-binding protein-associated factor-promoter interactions downstream of the transcription start site modulate TFIID-DNA interactions in the TATA box region.
Collapse
Affiliation(s)
- A Knutson
- Department of Surgery, Endocrine Unit, Uppsala University Hospital, S-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
36
|
Escher D, Bodmer-Glavas M, Barberis A, Schaffner W. Conservation of glutamine-rich transactivation function between yeast and humans. Mol Cell Biol 2000; 20:2774-82. [PMID: 10733580 PMCID: PMC85493 DOI: 10.1128/mcb.20.8.2774-2782.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several eukaryotic transcription factors such as Sp1 or Oct1 contain glutamine-rich domains that mediate transcriptional activation. In human cells, promoter-proximally bound glutamine-rich activation domains activate transcription poorly in the absence of acidic type activators bound at distal enhancers, but synergistically stimulate transcription with these remote activators. Glutamine-rich activation domains were previously reported to also function in the fission yeast Schizosaccharomyces pombe but not in the budding yeast Saccharomyces cerevisiae, suggesting that budding yeast lacks this pathway of transcriptional activation. The strong interaction of an Sp1 glutamine-rich domain with the general transcription factor TAF(II)110 (TAF(II)130), and the absence of any obvious TAF(II)110 homologue in the budding yeast genome, seemed to confirm this notion. We reinvestigated the phenomenon by reconstituting in the budding yeast an enhancer-promoter architecture that is prevalent in higher eukaryotes but less common in yeast. Under these conditions, we observed that glutamine-rich activation domains derived from both mammalian and yeast transcription factors activated only poorly on their own but strongly synergized with acidic activators bound at the remote enhancer position. The level of activation by the glutamine-rich activation domains of Sp1 and Oct1 in combination with a remote enhancer was similar in yeast and human cells. We also found that mutations in a glutamine-rich domain had similar phenotypes in budding yeast and human cells. Our results show that glutamine-rich activation domains behave very similarly in yeast and mammals and that their activity in budding yeast does not depend on the presence of a TAF(II)110 homologue.
Collapse
Affiliation(s)
- D Escher
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Yeh JR, Hsu LC, Chung BC. Sp1-like proteins function in the transcription of human ferredoxin genes. J Biomed Sci 2000; 7:144-51. [PMID: 10754389 DOI: 10.1007/bf02256621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We characterized a regulatory element located in the -76 to -62 region of the human ferredoxin gene. This region bound to Sp1-like proteins with low affinity, as shown using electrophoretic mobility shift, competition, antibody binding, and Southwestern experiments. The similarity of the regulatory element to Sp1 extends beyond its DNA-binding domain, as cloned Sp1 functioned equally well when fused to a peptide that bound to an irrelevant site. The function of these Sp1-binding sites is mediated through the cAMP-dependent protein kinase (PKA) signaling pathway, because reporter genes downstream of the Sp1-binding sites were not activated in a PKA-deficient cell line. Transfection of the catalytic subunit of PKA restored activated transcription. Similar Sp1-binding sites identified in the CYP11A1 and CYP21 genes also controlled cAMP-dependent transcription of the reporter gene. Our finding of the function of Sp1-like proteins in steroidogenic gene transcription adds one more role Sp1 plays in controlling physiological events.
Collapse
Affiliation(s)
- J R Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | |
Collapse
|
38
|
O'Connor MJ, Stünkel W, Koh CH, Zimmermann H, Bernard HU. The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol 2000; 74:401-10. [PMID: 10590129 PMCID: PMC111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 09/29/1999] [Indexed: 02/14/2023] Open
Abstract
The life cycles of human papillomaviruses (HPVs) are intimately linked to the differentiation program of infected stratified epithelia, with both viral gene expression and replication being maintained at low levels in undifferentiated basal cells and increased upon host cell differentiation. We recently identified, in HPV-16, a negative regulatory element between the epithelial-cell-specific enhancer and the E6 promoter that is capable of silencing E6 promoter activity, and we termed this element a papillomavirus silencing motif (PSM) and the unknown cellular factor that bound to it PSM binding protein (PSM-BP). Here we show that the homologous genomic segments of six other distantly related genital HPV types contain a PSM that binds PSM-BP and is capable of repressing transcription. Conservation of the PSM suggests that it is indispensable for the HPV life cycle. Purification, electrophoretic mobility shift assay experiments, and the use of specific antibodies proved that the cellular factor PSM-BP is identical to a previously described transcriptional repressor, the CCAAT displacement protein (CDP), also referred to as the human Cut protein (Cut). CDP/Cut repression of HPV-16 may stem from the modification of specifically positioned nucleosomes, as suggested by transcriptional stimulation under the influence of the histone deacetylase inhibitor trichostatin A. CDP/Cut is an important developmental regulator in several different tissues. It was recently shown that CDP/Cut is expressed in basal epithelial cells but not in differentiated primary keratinocytes. This suggests the possibility that repression by PSM couples HPV transcription to the stratification of epithelia. In each of the studied HPV types, the two CDP/Cut binding sites of PSM overlap with the known or presumed binding sites of the replication initiator protein E1. Transfection of CDP/Cut expression vectors into cells that support HPV-16 or HPV-31 replication leads to the elimination of viral episomes. Similarly, two PSM-like motifs overlapping the E1 binding site of bovine papillomavirus type 1 bind CDP/Cut, and CDP/Cut overexpression reduces the copy number of episomally replicating BPV-1 genomes in mouse fibroblasts. CDP/Cut appears to be a master regulator of HPV transcription and replication during epithelial differentiation, and PSMs are important cis-responsive targets of this repressor.
Collapse
Affiliation(s)
- M J O'Connor
- Institute of Molecular and Cell Biology, Singapore 117 609, Singapore
| | | | | | | | | |
Collapse
|
39
|
The Differentiation-Specific Factor CDP/Cut Represses Transcription and Replication of Human Papillomaviruses through a Conserved Silencing Element. J Virol 2000. [DOI: 10.1128/jvi.74.1.401-410.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT
The life cycles of human papillomaviruses (HPVs) are intimately linked to the differentiation program of infected stratified epithelia, with both viral gene expression and replication being maintained at low levels in undifferentiated basal cells and increased upon host cell differentiation. We recently identified, in HPV-16, a negative regulatory element between the epithelial-cell-specific enhancer and the E6 promoter that is capable of silencing E6 promoter activity, and we termed this element a papillomavirus silencing motif (PSM) and the unknown cellular factor that bound to it PSM binding protein (PSM-BP). Here we show that the homologous genomic segments of six other distantly related genital HPV types contain a PSM that binds PSM-BP and is capable of repressing transcription. Conservation of the PSM suggests that it is indispensable for the HPV life cycle. Purification, electrophoretic mobility shift assay experiments, and the use of specific antibodies proved that the cellular factor PSM-BP is identical to a previously described transcriptional repressor, the CCAAT displacement protein (CDP), also referred to as the human Cut protein (Cut). CDP/Cut repression of HPV-16 may stem from the modification of specifically positioned nucleosomes, as suggested by transcriptional stimulation under the influence of the histone deacetylase inhibitor trichostatin A. CDP/Cut is an important developmental regulator in several different tissues. It was recently shown that CDP/Cut is expressed in basal epithelial cells but not in differentiated primary keratinocytes. This suggests the possibility that repression by PSM couples HPV transcription to the stratification of epithelia. In each of the studied HPV types, the two CDP/Cut binding sites of PSM overlap with the known or presumed binding sites of the replication initiator protein E1. Transfection of CDP/Cut expression vectors into cells that support HPV-16 or HPV-31 replication leads to the elimination of viral episomes. Similarly, two PSM-like motifs overlapping the E1 binding site of bovine papillomavirus type 1 bind CDP/Cut, and CDP/Cut overexpression reduces the copy number of episomally replicating BPV-1 genomes in mouse fibroblasts. CDP/Cut appears to be a master regulator of HPV transcription and replication during epithelial differentiation, and PSMs are important
cis
-responsive targets of this repressor.
Collapse
|
40
|
Caderas G, Klauser S, Liu N, Bienz A, Gutte B. Inhibition of HIV-1 enhancer-controlled transcription by artificial enhancer-binding peptides derived from bacteriophage 434 repressor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:599-607. [PMID: 10561603 DOI: 10.1046/j.1432-1327.1999.00899.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An artificial HIV-1 enhancer-binding 42-residue peptide (R42) that had been derived from bacteriophage 434 repressor inhibited the cell-free in vitro transcription of HIV-1 enhancer-containing plasmids [Hehlgans, T., Stolz, M., Klauser, S., Cui, T., Salgam, P., Brenz Verca, S., Widmann, M., Leiser, A., Städler, K. & Gutte, B. (1993) FEBS Lett. 315, 51-55; Caderas, G. (1997) PhD Thesis, University of Zürich]. Here we show that, after N-terminal extension of R42 with a viral nuclear localization signal, the resulting nucR42 peptide was active in intact cells. NucR42 could be detected immunologically in nuclear extracts and produced a 60-70% reduction of the rate of transcription of an HIV-1 enhancer-carrying plasmid in COS-1 cells that had been cotransfected with the HIV enhancer plasmid, an expression plasmid for nucR42, and a control. NucR42 was also synthesized chemically and the synthetic product characterized by HPLC, mass spectrometry, and quantitative amino acid analysis. Band shift, footprint, and in vitro transcription assays in the presence of exogenous NF-kappaBp50 indicated that the binding sites of nucR42 and NF-kappaB on the HIV enhancers overlapped and that a relatively small excess of nucR42 sufficed to displace NF-kappaBp50. Band shift and in vitro transcription experiments showed also that exchange of the 434 repressor-derived nine-residue recognition helix of nucR42 for four glycines abolished the HIV enhancer binding specificity whereas leucine zipper- or retro-leucine zipper-mediated dimerization of R42 analogues increased it suggesting the potential application of such dimeric HIV enhancer-binding peptides as intracellular inhibitors of HIV replication.
Collapse
Affiliation(s)
- G Caderas
- Biochemisches Institut der Universität Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung BC. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 1999; 13:1588-98. [PMID: 10478848 DOI: 10.1210/mend.13.9.0349] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Normal endocrine development and function require nuclear hormone receptor SF-1 (steroidogenic factor 1). To understand the molecular mechanism of SF-1 action, we have investigated its domain function by mutagenesis and functional analyses. Our mutant studies show that the putative AF2 (activation function 2) helix located at the C-terminal end is indispensable for gene activation. SF-1 does not have an N-terminal AF1 domain. Instead, it contains a unique FP region, composed of the Ftz-F1 box and the proline cluster, after the zinc finger motif. The FP region interacts with transcription factor IIB (TFIIB) in vitro. This interaction requires residues 178-201 of TFIIB, a domain capable of binding several transcription factors. The FP region also mediates physical interaction with c-Jun, and this interaction greatly enhances SF-1 activity. The putative SF-1 ligand, 25-hydroxycholesterol, has no effects on these bindings. In addition, the Ftz-F1 box contains a bipartite nuclear localization signal (NLS). Removing the basic residues at either end of the key nuclear localization sequence NLS2.2 abolishes the nuclear transport. Expression of mutants containing only the FP region or lacking the AF2 domain blocks wild-type SF-1 activity in cells. By contrast, the mutant having a truncated nuclear localization signal lacks this dominant negative effect. These results delineate the importance of the FP and AF2 regions in nuclear localization, protein-protein interaction, and transcriptional activation.
Collapse
Affiliation(s)
- L A Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Taira T, Sawai M, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H. Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J Biol Chem 1999; 274:24270-9. [PMID: 10446203 DOI: 10.1074/jbc.274.34.24270] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A CCAAT box-binding protein subunit, CBF-C/NF-YC, was cloned as a protein involved in the c-Myc complex formed on the G(1)-specific enhancer in the human hsp70 gene. CBF-C/NF-YC directly bound to c-Myc in vitro and in vivo in cultured cells. The CBF/NF-Y.c-Myc complex required the HSP-MYC-B element as well as CCAAT in the hsp70 G(1)-enhancer, while the purified CBF subunits recognized only CCAAT even in the presence of c-Myc. Both the HSP-MYC-B and CCAAT elements were also required for the enhancer activity. In transient transfection experiments, the CBF/NF-Y.c-Myc complex, as well as transcription due to the G(1)-enhancer, was increased by the introduction of c-Myc at low doses but decreased at high doses. The repression of both complex formation and transcription by c-Myc at high doses was abrogated by the introduction of CBF/NF-Y in a dose-dependent manner. Furthermore, the CBF/NF-Y.c-Myc complex bound to the G(1)-enhancer appeared in the early G(1) phase of the cell cycle when c-Myc was not higly expressed and gradually disappeared after the c-Myc expression reached its maximum. The results indicate that the cell cycle-dependent expression of the hsp70 gene is regulated by the intracellular amount of c-Myc through the complex formation states between CBF/NF-Y and c-Myc.
Collapse
Affiliation(s)
- T Taira
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Spodsberg N, Troelsen JT, Carlsson P, Enerbäck S, Sjöström H, Norén O. Transcriptional regulation of pig lactase-phlorizin hydrolase: involvement of HNF-1 and FREACs. Gastroenterology 1999; 116:842-54. [PMID: 10092306 DOI: 10.1016/s0016-5085(99)70067-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS One-kilobase sequence of the upstream fragment of the pig lactase-phlorizin hydrolase gene has been shown to control small intestinal-specific expression and postweaning decline of lactase-phlorizin hydrolase in transgenic mice. The aim of this study was to identify the regulatory DNA elements and transcription factors controlling lactase-phlorizin hydrolase expression. METHODS The activity of different lactase-phlorizin hydrolase promoter fragments was investigated by transfection experiments using Caco-2 cells. Electrophoretic mobility shift assays and supershift analyses were used to characterize the interaction between intestinal transcription factors and the identified regulatory elements. RESULTS Functional analysis revealed three previously undescribed regulatory regions in the lactase-phlorizin hydrolase promoter: a putative enhancer between -894 and -798 binding hepatocyte nuclear factor (HNF)-1 at position -894 to -880; a repressor-binding element between -278 to -264 to which an HNF-3-like factor is able to bind; and an element between -178 to -164 that binds an activating transcription factor. CONCLUSIONS Identification of three new regulatory regions and HNF-1 and HNF-3-like transcription factor as players in the regulation of lactase-phlorizin hydrolase gene transcription has an impact on the understanding of the molecular mechanisms behind age-dependent, tissue-specific, differentiation-dependent, and regional regulation of expression in the intestine.
Collapse
Affiliation(s)
- N Spodsberg
- Department of Medical Biochemistry and Genetics, Biochemical Laboratory C, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Joseph H, Gorska AE, Sohn P, Moses HL, Serra R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999; 10:1221-34. [PMID: 10198068 PMCID: PMC25256 DOI: 10.1091/mbc.10.4.1221] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-beta type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-betas in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-betas, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-beta-mediated regulation of lateral branching. Loss of responsiveness to TGF-betas in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-betas play an important role in the stromal-epithelial interactions required for branching morphogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Estrus
- Female
- Fibroblasts/cytology
- Fibroblasts/physiology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/physiology
- Metallothionein/genetics
- Mice
- Mice, Transgenic
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Recombinant Fusion Proteins/biosynthesis
- Stromal Cells/cytology
- Stromal Cells/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- H Joseph
- Department of Cell Biology and The Vanderbilt Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
45
|
Thiel G, Cibelli G. Corticotropin-releasing factor and vasoactive intestinal polypeptide activate gene transcription through the cAMP signaling pathway in a catecholaminergic immortalized neuron. Neurochem Int 1999; 34:183-91. [PMID: 10355485 DOI: 10.1016/s0197-0186(98)00086-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Corticotropin-releasing factor (CRF) and vasoactive intestinal polypeptide (VIP) are neuropeptides displaying a variety of short-term effects in the nervous system. It is shown here in transfection experiments of an immortalized noradrenergic locus coeruleus-like cell line that both CRF and VIP also trigger a signaling cascade capable of activating gene transcription. To elucidate the signaling pathway leading to transcriptional induction, cells were transfected with an inhibitor for cAMP-dependent protein kinase, targeted to the nucleus via a nuclear-localization signal. Transcriptional induction of a reporter gene by CRF and VIP was blocked in these cells, indicating that the cAMP-dependent protein kinase is required for transducing CRF and VIP generated signals into the nucleus. Additionally, transfection experiments with a reporter gene containing cAMP response elements in its regulatory region demonstrate that CRF and VIP receptor activation induce transcription through this genetic regulatory element. We conclude that long-term effects of CRF and VIP in neurons are likely to be mediated by the transcriptional regulation of CRF and VIP-responsive genes via the cAMP signaling pathway.
Collapse
Affiliation(s)
- G Thiel
- Medical Biochemistry and Molecular Biology, University of the Saarland, Medical School, Homburg, Germany.
| | | |
Collapse
|
46
|
Auf der Maur A, Belser T, Elgar G, Georgiev O, Schaffner W. Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem 1999; 380:175-85. [PMID: 10195425 DOI: 10.1515/bc.1999.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pufferfish Fugu rubripes was recently introduced as a new model organism for genomic studies, since it contains a full set of vertebrate genes but only 13% as much DNA as a mammal. Fugu genes tend to be smaller and densely spaced due to shortening of introns and intergenic spacers. We isolated the Fugu gene for the metal-responsive transcription factor MTF-1 (MTF1), a mediator of heavy metal regulation and oxidative stress response previously characterized in mammals. In addition, most of the cDNA sequence was also determined. The 780 amino acid MTF-1 protein of Fugu is very similar to that of mouse and human, with 90% amino acid identity in the DNA binding zinc finger domain and 57% overall identity. Expression of the pufferfish cDNA in mammalian cells shows that Fugu MTF-1 has the same DNA binding specificity as its mammalian counterpart and also induces transcription in response to zinc and cadmium. The protein-coding part of the Fugu MTF-1 gene spans 6.4 kb and consists of 11 exons. Upstream region and first exon constitute a CpG island. The distance between stop codon and polyadenylation motifs is >2 kb, suggesting a very long 3' untranslated mRNA region, followed by another CpG island which may represent the promoter of the next gene downstream. Part of the MTF-1 genomic structure was also determined in the mouse, and some striking similarities were found: for example, the upstream adjacent gene in both species is INPP5P, encoding a phosphatase. The mouse MTF-1 promoter is also embedded in a CpG island, which however shares no sequence similarity to the one of Fugu. The Fugu CpG island is shorter than the one of the mouse and has no elevated [G+C] content; these and other data indicate that CpG islands of fish may represent a primordial stage of CpG island evolution.
Collapse
Affiliation(s)
- A Auf der Maur
- Institut für Molekularbiologie der Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|
47
|
O'Connor MJ, Stünkel W, Zimmermann H, Koh CH, Bernard HU. A novel YY1-independent silencer represses the activity of the human papillomavirus type 16 enhancer. J Virol 1998; 72:10083-92. [PMID: 9811748 PMCID: PMC110540 DOI: 10.1128/jvi.72.12.10083-10092.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of the human papillomavirus type 16 (HPV-16) E6 promoter is a complex process in which transcriptional repression as well as activation plays an important role. Here, we identify a negative regulatory element that in the context of a continuous long control region fragment overcomes the activation of the HPV-16 enhancer. This silencing element, which we have termed a PSM (papillomavirus silencing motif), consists of two copies of the sequence 5'-TAYAATAAT-3' that overlap the origin of replication. Each copy of this 9-bp sequence binds the same unknown cellular factor, which we refer to as PSM-BP (PSM binding protein). Both copies of the binding sequence are required for transcriptional repression, and we provide evidence that suggests that this particular organization results in the stabilization of a PSM-BP dimer. The silencing motif, while functioning in either orientation, showed a positional requirement between the enhancer and the promoter. Experiments with both a heterologous enhancer and a promoter also demonstrated a general ability of this element to function as a transcriptional silencer in non-HPV systems. Our findings provide an important addition to our understanding of HPV-16 gene regulation and an interesting model for the study of transcriptional repression.
Collapse
Affiliation(s)
- M J O'Connor
- Institute of Molecular and Cell Biology, Singapore 117 609, Singapore
| | | | | | | | | |
Collapse
|
48
|
Thiel G, Lietz M, Cramer M. Biological activity and modular structure of RE-1-silencing transcription factor (REST), a repressor of neuronal genes. J Biol Chem 1998; 273:26891-9. [PMID: 9756936 DOI: 10.1074/jbc.273.41.26891] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger protein RE-1-silencing transcription factor (REST)1 is a transcriptional repressor that represses neuronal genes in nonneuronal tissues. Transfection experiments of neuroblastoma cells using a REST expression vector revealed that synapsin I promoter activity is controlled by REST. The biological activity of REST was further investigated using a battery of model promoters containing strong promoters/enhancers and REST binding sites. REST functioned as a transcriptional repressor when REST binding motifs derived from the genes encoding synapsin I, SCG10, alpha1-glycine receptor, the beta2-subunit of the neuronal nicotinic acetylcholine receptor, and the m4-subunit of the muscarinic acetylcholine receptor were present in the promoter region. No differences in the biological activity of these REST binding motifs tested were detected. Moreover, we found that REST functioned very effectively as a transcriptional repressor at a distance. Thus, REST represents a general transcriptional repressor that blocks transcription regardless of the location or orientation of its binding site relative to the enhancer and promoter. This biological activity could also be attributed to isolated domains of REST. Both repressor domains identified at the N and C termini of REST were transferable to a heterologous DNA binding domain and functioned from proximal and distal positions, similar to the REST protein.
Collapse
Affiliation(s)
- G Thiel
- Medical Biochemistry and Molecular Biology, University of the Saarland, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
49
|
Li LA, Lala D, Chung BC. Function of steroidogenic factor 1 (SF1) ligand-binding domain in gene activation and interaction with AP1. Biochem Biophys Res Commun 1998; 250:318-20. [PMID: 9753627 DOI: 10.1006/bbrc.1998.9305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear receptor SF1 is an essential mediator in ventromedial hypothalamus-pituitary-gonadal development. As with other nuclear receptors, SF1 possesses a DNA-binding domain composed of two zinc fingers and a ligand-binding domain containing a ligand-dependent activation sequence termed AF2. To dissect the domain function of SF1, we examined various SF1 mutants in mouse adrenocortical Y1 cells and human placental JEG3 cells. Destruction of the AF2 structure removed 73-90% transactivation activity, suggesting that AF2 is indispensable for transactivation. Mutants carrying the DNA-binding domain but lacking the AF2 or the ligand-binding domain blocked the activity of normal SF1. Disrupting the zinc finger diminished the dominant negative effect of mutant. Cotransfection of SF1 with AP1 showed that the two transcription factors cooperated to activate gene expression. Some mutants lost the synergistic action with AP1, while some retained partial activity. These experiments delineate the functional domains of SF1.
Collapse
Affiliation(s)
- L A Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
50
|
Gillemans N, Tewari R, Lindeboom F, Rottier R, de Wit T, Wijgerde M, Grosveld F, Philipsen S. Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. Genes Dev 1998; 12:2863-73. [PMID: 9744863 PMCID: PMC317172 DOI: 10.1101/gad.12.18.2863] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The locus control region of the beta-globin cluster contains five DNase I hypersensitive sites (5'HS1-5) required for locus activation. 5'HS3 contains six G-rich motifs that are essential for its activity. Members of a protein family, characterized by three zinc fingers highly homologous to those found in transcription factor Sp1, interact with these motifs. Because point mutagenesis cannot distinguish between family members, it is not known which protein activates 5'HS3. We show that the function of such closely related proteins can be distinguished in vivo by matching point mutations in 5'HS3 with amino acid changes in the zinc fingers of Sp1 and EKLF. Testing their activity in transgenic mice shows that EKLF is a direct activator of 5'HS3.
Collapse
Affiliation(s)
- N Gillemans
- Erasmus University Rotterdam, Medical Genetics Center-Department of Cell Biology, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|