1
|
Morotomi-Yano K, Yano KI. Aclarubicin Reduces the Nuclear Mobility of Human DNA Topoisomerase IIβ. Int J Mol Sci 2024; 25:10681. [PMID: 39409010 PMCID: PMC11476477 DOI: 10.3390/ijms251910681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems arising in various nuclear processes, such as transcription. Aclarubicin, a member of the anthracyclines, is known to prevent the association of TOP2 with DNA, inhibiting the early step of TOP2 catalytic reactions. During our research on the subnuclear distribution of human TOP2B, we found that aclarubicin affects the mobility of TOP2B in the nucleus. FRAP analysis demonstrated that aclarubicin decreased the nuclear mobility of EGFP-tagged TOP2B in a concentration-dependent manner. Aclarubicin exerted its inhibitory effects independently of TOP2B enzymatic activities: TOP2B mutants defective for either ATPase or topoisomerase activity also exhibited reduced nuclear mobility in the presence of aclarubicin. Immunofluorescence analysis showed that aclarubicin antagonized the induction of DNA damage by etoposide. Although the prevention of the TOP2-DNA association is generally considered a primary action of aclarubicin in TOP2 inhibition, our findings highlight a previously unanticipated effect of aclarubicin on TOP2B in the cellular environment.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Ken-ichi Yano
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Nettles SA, Ikeuchi Y, Lefton KB, Abbasi L, Erickson A, Agwu C, Papouin T, Bonni A, Gabel HW. MeCP2 represses the activity of topoisomerase IIβ in long neuronal genes. Cell Rep 2023; 42:113538. [PMID: 38096051 PMCID: PMC10844882 DOI: 10.1016/j.celrep.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
A unique signature of neurons is the high expression of the longest genes in the genome. These genes have essential neuronal functions, and disruption of their expression has been implicated in neurological disorders. DNA topoisomerases resolve DNA topological constraints and facilitate neuronal long gene expression. Conversely, the Rett syndrome protein, methyl-CpG-binding protein 2 (MeCP2), can transcriptionally repress long genes. How these factors regulate long genes is not well understood, and whether they interact is not known. Here, we identify and map a functional interaction between MeCP2 and topoisomerase IIβ (TOP2β) in mouse neurons. We profile neuronal TOP2β activity genome wide, detecting enrichment at regulatory regions and gene bodies of long genes, including MeCP2-regulated genes. We show that loss and overexpression of MeCP2 alter TOP2β activity at MeCP2-regulated genes. These findings uncover a mechanism of TOP2β inhibition by MeCP2 in neurons and implicate TOP2β dysregulation in disorders caused by MeCP2 disruption.
Collapse
Affiliation(s)
- Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoshiho Ikeuchi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katheryn B Lefton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ladan Abbasi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chibueze Agwu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Morotomi-Yano K, Hiromoto Y, Higaki T, Yano KI. Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ. Sci Rep 2022; 12:20627. [PMID: 36450898 PMCID: PMC9712534 DOI: 10.1038/s41598-022-24883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hiromoto
- grid.274841.c0000 0001 0660 6749Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ken-ichi Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
6
|
Nucleolar translocation of human DNA topoisomerase II by ATP depletion and its disruption by the RNA polymerase I inhibitor BMH-21. Sci Rep 2021; 11:21533. [PMID: 34728715 PMCID: PMC8563764 DOI: 10.1038/s41598-021-00958-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is a nuclear protein that resolves DNA topological problems and plays critical roles in multiple nuclear processes. Human cells have two TOP2 proteins, TOP2A and TOP2B, that are localized in both the nucleoplasm and nucleolus. Previously, ATP depletion was shown to augment the nucleolar localization of TOP2B, but the molecular details of subnuclear distributions, particularly of TOP2A, remained to be fully elucidated in relation to the status of cellular ATP. Here, we analyzed the nuclear dynamics of human TOP2A and TOP2B in ATP-depleted cells. Both proteins rapidly translocated from the nucleoplasm to the nucleolus in response to ATP depletion. FRAP analysis demonstrated that they were highly mobile in the nucleoplasm and nucleolus. The nucleolar retention of both proteins was sensitive to the RNA polymerase I inhibitor BMH-21, and the TOP2 proteins in the nucleolus were immediately dispersed into the nucleoplasm by BMH-21. Under ATP-depleted conditions, the TOP2 poison etoposide was less effective, indicating the therapeutic relevance of TOP2 subnuclear distributions. These results give novel insights into the subnuclear dynamics of TOP2 in relation to cellular ATP levels and also provide discussions about its possible mechanisms and biological significance.
Collapse
|
7
|
Kaur M, Mehta V, Arora S, Munshi A, Singh S, Kumar R. Design, Synthesis and Biological Evaluation of New 5‐(2‐Nitrophenyl)‐1‐aryl‐1
H
‐pyrazoles as Topoisomerase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Vikrant Mehta
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
8
|
Yasuda K, Kato Y, Ikeda S, Kawano S. Regulation of catalytic activity and nucleolar localization of rat DNA topoisomerase IIα through its C-terminal domain. Genes Genet Syst 2021; 95:291-302. [PMID: 33551432 DOI: 10.1266/ggs.20-00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type II DNA topoisomerase (topo II) catalyzes double-stranded DNA cleavage and re-ligation, thus solving problems in DNA topology. Vertebrates have two isozymes (α and β). Recently, the C-terminal regulatory domain (CRD), which regulates catalytic activity and subnuclear localization by associating with RNA, was identified within the C-terminal domain (CTD) of rat topo IIβ. In contrast, it is unclear whether a β CRD-like domain is present in the CTD of topo IIα. In this study, we aimed to identify an RNA-mediated regulatory domain in the rat topo IIα CTD. First, we exchanged the CTDs of rat topo IIα (amino acids 1,192-1,528) and β (1,201-1,614) and examined the two chimeras' in vitro catalytic activities. Interestingly, the relaxation activities of topo IIα WT enzyme and both of the CTD-swapped mutants were inhibited in the presence of isolated cellular RNA, suggesting that the α CTD is involved in the RNA-mediated regulation of catalytic activity in topo IIα. The results of on-bead assays using a CTD-deleted mutant of rat topo IIα indicated that the RNA-mediated inhibition of the relaxation activity was caused by an interaction between the α CTD and RNA. Further, to identify the domain within the CTD that is associated with subnuclear localization of rat topo IIα, we transiently expressed EGFP-tagged CTD deletion mutants in human cells. The data indicated that the 1,192-1,289 region of rat topo IIα was required for targeting the enzyme to nucleoli. Finally, a relaxation assay using 1-1,289 and Δ1,192-1,289 truncated mutants indicated that the 1,192-1,289 region is involved in RNA-mediated inhibition. These results indicated that the CTD of rat topo IIα, containing the 1,192-1,289 region, is involved in the regulation of catalytic activity by associating with RNA, as well as in the localization to nucleoli in interphase cells.
Collapse
Affiliation(s)
- Kazushi Yasuda
- Department of Biochemistry, Faculty of Science, Okayama University of Science
| | - Yuri Kato
- Department of Biochemistry, Faculty of Science, Okayama University of Science
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science
| |
Collapse
|
9
|
Tokala R, Sana S, Lakshmi UJ, Sankarana P, Sigalapalli DK, Gadewal N, Kode J, Shankaraiah N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg Chem 2020; 105:104357. [PMID: 33091673 PMCID: PMC7543778 DOI: 10.1016/j.bioorg.2020.104357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
The conjoining of salient pharmacophoric properties directing the development of prominent cytotoxic agents was executed by constructing thiadiazolo-carboxamide bridged β-carboline-indole hybrids. On the evaluation of in vitro cytotoxic potential, 12c exhibited prodigious cytotoxicity among the synthesized new molecules 12a-k, with an IC50 < 5 μM in all the tested cancer cell lines (A549, MDA-MB-231, BT-474, HCT-116, THP-1) and the best cytotoxic potential was expressed in lung cancer cell line (A549) with an IC50 value of 2.82 ± 0.10 μM. Besides, another compound 12a also displayed impressive cytotoxicity against A549 cell line (IC50: 3.00 ± 1.40 μM). Further target-based assay of these two compounds 12c and 12a revealed their potential as DNA intercalative topoisomerase-IIα inhibitors. Additionally, the antiproliferative activity of compound 12c was measured in A549 cells by traditional apoptosis assays revealing the nuclear, morphological alterations, and depolarization of membrane potential in mitochondria and externalization of phosphatidylserine in a concentration-dependent manner. Cell cycle analysis unveiled the G0/G1 phase inhibition and wound healing assay inferred the inhibition of in vitro cell migration by compound 12c in lung cancer cells. Remarkably, the safety profile of compound 12c was disclosed by screening against normal human lung epithelial cell line (BEAS-2B: IC50: 71.2 ± 7.95 μM) with a selectivity index range of 14.9-25.26. Moreover, Molecular modeling studies affirm the intercalative binding of compound 12c and 12a in the active pocket of topo-IIα. Furthermore, in silico prediction of physico-chemical parameters divulged the propitious drug-like properties of the synthesized derivatives.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Uppu Jaya Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Prasanthi Sankarana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi-Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
10
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|
11
|
Kawano S, Fujimoto K, Yasuda K, Ikeda S. DNA binding activity of the proximal C-terminal domain of rat DNA topoisomerase IIβ is involved in ICRF-193-induced closed-clamp formation. PLoS One 2020; 15:e0239466. [PMID: 32960919 PMCID: PMC7508362 DOI: 10.1371/journal.pone.0239466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
DNA topoisomerase II (topo II) is an essential enzyme that regulates DNA topology by DNA cleavage and re-ligation. In vertebrates, there are two isozymes, α and β. The C-terminal domain (CTD) of the isozymes, which shows a low degree of sequence homology between α and β, is involved in each isozyme-specific intracellular behavior. The CTD of topo IIβ is supposedly involved in topo II regulation. Topo IIβ is maintained in an inactive state in the nucleoli by the binding of RNA to the 50-residue region termed C-terminal regulatory domain (CRD) present in the CTD. Although in vitro biochemical analysis indicates that the CTD of topo IIβ has DNA binding activity, it is unclear whether CTD influences catalytic reaction in the nucleoplasm. Here, we show that the proximal CTD (hereafter referred to as pCTD) of rat topo IIβ, including the CRD, is involved in the catalytic reaction in the nucleoplasm. We identified the pCTD as a domain with DNA binding activity by in vitro catenation assay and electrophoretic mobility shift assay. Fluorescence recovery after photo-bleaching (FRAP) analysis of pCTD-lacking mutant (ΔpCTD) showed higher mobility in nucleoplasm than that of the wild-type enzyme, indicating that the pCTD also affected the nuclear dynamics of topo IIβ. ICRF-193, one of the topo II catalytic inhibitors, induces the formation of closed-clamp intermediates of topo II. Treatment of ΔpCTD with ICRF-193 significantly decreased the efficiency of closed-clamp formation. Altogether, our data indicate that the binding of topo IIβ to DNA through the pCTD is required for the catalytic reaction in the nucleoplasm.
Collapse
Affiliation(s)
- Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama, Japan
- * E-mail:
| | - Kunpei Fujimoto
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Kazushi Yasuda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
12
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Austin CA, Lee KC, Swan RL, Khazeem MM, Manville CM, Cridland P, Treumann A, Porter A, Morris NJ, Cowell IG. TOP2B: The First Thirty Years. Int J Mol Sci 2018; 19:ijms19092765. [PMID: 30223465 PMCID: PMC6163646 DOI: 10.3390/ijms19092765] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Type II DNA topoisomerases (EC 5.99.1.3) are enzymes that catalyse topological changes in DNA in an ATP dependent manner. Strand passage reactions involve passing one double stranded DNA duplex (transported helix) through a transient enzyme-bridged break in another (gated helix). This activity is required for a range of cellular processes including transcription. Vertebrates have two isoforms: topoisomerase IIα and β. Topoisomerase IIβ was first reported in 1987. Here we review the research on DNA topoisomerase IIβ over the 30 years since its discovery.
Collapse
Affiliation(s)
- Caroline A Austin
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mushtaq M Khazeem
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Catriona M Manville
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Peter Cridland
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Achim Treumann
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Porter
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Nick J Morris
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
14
|
Morotomi-Yano K, Saito S, Adachi N, Yano KI. Dynamic behavior of DNA topoisomerase IIβ in response to DNA double-strand breaks. Sci Rep 2018; 8:10344. [PMID: 29985428 PMCID: PMC6037730 DOI: 10.1038/s41598-018-28690-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
DNA topoisomerase II (Topo II) is crucial for resolving topological problems of DNA and plays important roles in various cellular processes, such as replication, transcription, and chromosome segregation. Although DNA topology problems may also occur during DNA repair, the possible involvement of Topo II in this process remains to be fully investigated. Here, we show the dynamic behavior of human Topo IIβ in response to DNA double-strand breaks (DSBs), which is the most harmful form of DNA damage. Live cell imaging coupled with site-directed DSB induction by laser microirradiation demonstrated rapid recruitment of EGFP-tagged Topo IIβ to the DSB site. Detergent extraction followed by immunofluorescence showed the tight association of endogenous Topo IIβ with DSB sites. Photobleaching analysis revealed that Topo IIβ is highly mobile in the nucleus. The Topo II catalytic inhibitors ICRF-187 and ICRF-193 reduced the Topo IIβ mobility and thereby prevented Topo IIβ recruitment to DSBs. Furthermore, Topo IIβ knockout cells exhibited increased sensitivity to bleomycin and decreased DSB repair mediated by homologous recombination (HR), implicating the role of Topo IIβ in HR-mediated DSB repair. Taken together, these results highlight a novel aspect of Topo IIβ functions in the cellular response to DSBs.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinta Saito
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
| | - Noritaka Adachi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Ken-Ichi Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan.
| |
Collapse
|
15
|
The Roles of DNA Topoisomerase IIβ in Transcription. Int J Mol Sci 2018; 19:ijms19071917. [PMID: 29966298 PMCID: PMC6073266 DOI: 10.3390/ijms19071917] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
Type IIA topoisomerases allow DNA double helical strands to pass through each other by generating transient DNA double strand breaks βDSBs), and in so doing, resolve torsional strain that accumulates during transcription, DNA replication, chromosome condensation, chromosome segregation and recombination. Whereas most eukaryotes possess a single type IIA enzyme, vertebrates possess two distinct type IIA topoisomerases, Topo IIα and Topo IIβ. Although the roles of Topo IIα, especially in the context of chromosome condensation and segregation, have been well-studied, the roles of Topo IIβ are only beginning to be illuminated. This review begins with a summary of the initial studies surrounding the discovery and characterization of Topo IIβ and then focuses on the insights gained from more recent studies that have elaborated important functions for Topo IIβ in transcriptional regulation.
Collapse
|
16
|
Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci Rep 2018; 8:9272. [PMID: 29915179 PMCID: PMC6006247 DOI: 10.1038/s41598-018-27606-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.
Collapse
|
17
|
Bollimpelli VS, Dholaniya PS, Kondapi AK. Topoisomerase IIβ and its role in different biological contexts. Arch Biochem Biophys 2017; 633:78-84. [PMID: 28669856 DOI: 10.1016/j.abb.2017.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Topoisomerase IIβ is a type II DNA topoisomerase that was reported to be expressed in all mammalian cells but abundantly expressed in cells that have undergone terminal differentiation to attain a post mitotic state. Enzymatically it catalyzes ATP-dependent topological changes of double stranded DNA, while as a protein it was reported to be associated with several factors in promoting cell growth, migration, DNA repair and transcription regulation. The cellular roles of topoisomerase IIβ are very less understood compared to its counterpart topoisomerase IIα. This review discusses origin of Topoisomerase II beta, its structure, activities reported in vitro and in vivo along with implications in cellular processes namely transcription, DNA repair, neuronal development, aging, HIV-infection and cancer.
Collapse
Affiliation(s)
- V Satish Bollimpelli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pankaj S Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
18
|
Yan H, Tammaro M, Liao S. Collision of Trapped Topoisomerase 2 with Transcription and Replication: Generation and Repair of DNA Double-Strand Breaks with 5' Adducts. Genes (Basel) 2016; 7:genes7070032. [PMID: 27376333 PMCID: PMC4962002 DOI: 10.3390/genes7070032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
Topoisomerase 2 (Top2) is an essential enzyme responsible for manipulating DNA topology during replication, transcription, chromosome organization and chromosome segregation. It acts by nicking both strands of DNA and then passes another DNA molecule through the break. The 5′ end of each nick is covalently linked to the tyrosine in the active center of each of the two subunits of Top2 (Top2cc). In this configuration, the two sides of the nicked DNA are held together by the strong protein-protein interactions between the two subunits of Top2, allowing the nicks to be faithfully resealed in situ. Top2ccs are normally transient, but can be trapped by cancer drugs, such as etoposide, and subsequently processed into DSBs in cells. If not properly repaired, these DSBs would lead to genome instability and cell death. Here, I review the current understanding of the mechanisms by which DSBs are induced by etoposide, the unique features of such DSBs and how they are repaired. Implications for the improvement of cancer therapy will be discussed.
Collapse
Affiliation(s)
- Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Margaret Tammaro
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Shuren Liao
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
19
|
Singh S, Das T, Awasthi M, Pandey VP, Pandey B, Dwivedi UN. DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation. Biotechnol Appl Biochem 2015; 63:125-37. [DOI: 10.1002/bab.1346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Swati Singh
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
- Amity Institute of Biotechnology; Amity University; Lucknow Uttar Pradesh India
| | - Tamal Das
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Manika Awasthi
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Veda P. Pandey
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Brijesh Pandey
- Amity Institute of Biotechnology; Amity University; Lucknow Uttar Pradesh India
| | - Upendra N. Dwivedi
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| |
Collapse
|
20
|
Molecular dynamics simulated validation of anti-cancerous alkaloids as Topo IIβ inhibitors screened by QSAR, pharmacophore and molecular docking approaches. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Regal KM, Mercer SL, Deweese JE. HU-331 is a catalytic inhibitor of topoisomerase IIα. Chem Res Toxicol 2014; 27:2044-51. [PMID: 25409338 DOI: 10.1021/tx500245m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Topoisomerases are essential enzymes that are involved in DNA metabolism. Topoisomerase II generates transient DNA strand breaks that are stabilized by anticancer drugs, such as doxorubicin, causing an accumulation of DNA damage. However, doxorubicin causes cardiac toxicity and, like etoposide and other topoisomerase II-targeted agents, can induce DNA damage, resulting in secondary cancers. The cannabinoid quinone HU-331 has been identified as a potential anticancer drug that demonstrates more potency in cancer cells with less off-target toxicity than that of doxorubicin. Reports indicate that HU-331 does not promote cell death via apoptosis, cell cycle arrest, caspase activation, or DNA strand breaks. However, the precise mechanism of action is poorly understood. We employed biochemical assays to study the mechanism of action of HU-331 against purified topoisomerase IIα. These assays examined DNA binding, cleavage, ligation, relaxation, and ATPase activities of topoisomerase IIα. Our results demonstrate that HU-331 inhibits topoisomerase IIα-mediated DNA relaxation at micromolar levels. We find that HU-331 does not induce DNA strand breaks in vitro. When added prior to the DNA substrate, HU-331 blocks DNA cleavage and relaxation activities of topoisomerase IIα in a redox-sensitive manner. The action of HU-331 can be blocked, but not reversed, by the presence of dithiothreitol. Our results also show that HU-331 inhibits the ATPase activity of topoisomerase IIα using a noncompetitive mechanism. Preliminary binding studies also indicate that HU-331 decreases the ability of topoisomerase IIα to bind DNA. In summary, HU-331 inhibits relaxation activity without poisoning DNA cleavage. This action is sensitive to reducing agents and appears to involve noncompetitive inhibition of the ATPase activity and possibly inhibition of DNA binding. These studies provide a promising foundation for the exploration of HU-331 as a catalytic inhibitor of topoisomerase IIα.
Collapse
Affiliation(s)
- Kellie M Regal
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences , Nashville, Tennessee 37204-3951, United States
| | | | | |
Collapse
|
22
|
Onoda A, Hosoya O, Sano K, Kiyama K, Kimura H, Kawano S, Furuta R, Miyaji M, Tsutsui K, Tsutsui KM. Nuclear dynamics of topoisomerase IIβ reflects its catalytic activity that is regulated by binding of RNA to the C-terminal domain. Nucleic Acids Res 2014; 42:9005-20. [PMID: 25034690 PMCID: PMC4132749 DOI: 10.1093/nar/gku640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme is controlled in a nuclear context. Several studies have suggested that its C-terminal domain (CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In this work, we examined the impact of nuclear localization on regulation of activity in nuclei. Specifically, human cells were transfected with wild-type and mutant topo IIβ tagged with EGFP. Activity attenuation experiments and nuclear localization data reveal that the endogenous activity of topo IIβ is correlated with its subnuclear distribution. The enzyme shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. Isolated RNA inhibits the catalytic activity of topo IIβ in vitro through the interaction with a specific 50-residue region of the CTD (termed the CRD). Taken together, these results suggest that both the subnuclear distribution and activity regulation of topo IIβ are mediated by the interplay between cellular RNA and the CRD.
Collapse
Affiliation(s)
- Akihisa Onoda
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Osamu Hosoya
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kuniaki Sano
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuko Kiyama
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Kimura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinji Kawano
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryohei Furuta
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mary Miyaji
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kimiko M Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
23
|
Thakurela S, Garding A, Jung J, Schübeler D, Burger L, Tiwari VK. Gene regulation and priming by topoisomerase IIα in embryonic stem cells. Nat Commun 2014; 4:2478. [PMID: 24072229 DOI: 10.1038/ncomms3478] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 11/09/2022] Open
Abstract
Topoisomerases resolve torsional stress, while their function in gene regulation, especially during cellular differentiation, remains unknown. Here we find that the expression of topo II isoforms, topoisomerase IIα and topoisomerase IIβ, is the characteristic of dividing and postmitotic tissues, respectively. In embryonic stem cells, topoisomerase IIα preferentially occupies active gene promoters. Topoisomerase IIα inhibition compromises genomic integrity, which results in epigenetic changes, altered kinetics of RNA Pol II at target promoters and misregulated gene expression. Common targets of topoisomerase IIα and topoisomerase IIβ are housekeeping genes, while unique targets are involved in proliferation/pluripotency and neurogenesis, respectively. Topoisomerase IIα targets exhibiting bivalent chromatin resolve upon differentiation, concomitant with their activation and occupancy by topoisomerase IIβ, features further observed for long genes. These long silent genes display accessible chromatin in embryonic stem cells that relies on topoisomerase IIα activity. These findings suggest that topoisomerase IIα not only contributes to stem-cell transcriptome regulation but also primes developmental genes for subsequent activation upon differentiation.
Collapse
|
24
|
Tammaro M, Barr P, Ricci B, Yan H. Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide. PLoS One 2013; 8:e79202. [PMID: 24244448 PMCID: PMC3820710 DOI: 10.1371/journal.pone.0079202] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023] Open
Abstract
Etoposide is a DNA topoisomerase 2-targeting drug widely used for the treatment of cancer. The cytoxicity of etoposide correlates with the generation of DNA double-strand breaks (DSBs), but the mechanism of how it induces DSBs in cells is still poorly understood. Catalytically, etoposide inhibits the re-ligation reaction of Top2 after it nicks the two strands of DNA, trapping it in a cleavable complex consisting of two Top2 subunits covalently linked to the 5' ends of DNA (Top2cc). Top2cc is not directly recognized as a true DSB by cells because the two subunits interact strongly with each other to hold the two ends of DNA together. In this study we have investigated the cellular mechanisms that convert Top2ccs into true DSBs. Our data suggest that there are two mechanisms, one dependent on active replication and the other dependent on proteolysis and transcription. The relative contribution of each mechanism is affected by the concentration of etoposide. We also find that Top2α is the major isoform mediating the replication-dependent mechanism and both Top2α and Top2 mediate the transcription-dependent mechanism. These findings are potentially of great significance to the improvement of etoposide's efficacy in cancer therapy.
Collapse
Affiliation(s)
- Margaret Tammaro
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Peri Barr
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Brett Ricci
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sapetto-Rebow B, McLoughlin SC, O'Shea LC, O'Leary O, Willer JR, Alvarez Y, Collery R, O'Sullivan J, Van Eeden F, Hensey C, Kennedy BN. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants. BMC DEVELOPMENTAL BIOLOGY 2011; 11:71. [PMID: 22111588 PMCID: PMC3287258 DOI: 10.1186/1471-213x-11-71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. RESULTS Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. CONCLUSIONS We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.
Collapse
Affiliation(s)
- Beata Sapetto-Rebow
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Type II DNA topoisomerases (Tops) are ATP-dependent enzymes that catalyze topological transformations of genomic DNA by the transport of one DNA double helix through another. In mammals, there are 2 isoforms of DNA Top II, termed Top IIα and Top IIβ. The IIβ isoform is abundantly expressed in cells that have undergone the final cell division and are committed to differentiation into neuronal cells. In recent years, there have been accumulating studies showing the significant role of Top IIβ in neuronal development through regulating expression of certain genes in cells committed to the neuronal fate after the final division. These genes are involved in the processes of neuronal differentiation, migration, axon guidance and so on. The present review mainly focused on the research progress on the role of Top IIβ in neuronal development over the recent decades.
Collapse
Affiliation(s)
- Xin Heng
- Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | | |
Collapse
|
27
|
Singh PK, Chan PF, Hibbs MJ, Vazquez MJ, Segura DC, Thomas DA, Theobald AJ, Gallagher KT, Hassan NJ. High-yield production and characterization of biologically active GST-tagged human topoisomerase IIα protein in insect cells for the development of a high-throughput assay. Protein Expr Purif 2010; 76:165-72. [PMID: 20709174 DOI: 10.1016/j.pep.2010.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
DNA topoisomerase type II enzymes are well-validated targets of anti-bacterial and anti-cancer compounds. In order to facilitate discovery of these types of inhibitors human topoisomerase II in vitro assays can play an important role to support drug discovery processes. Typically, human topoisomerase IIα proteins have been purified from human cell lines or as untagged proteins from yeast cells. This study reports a method for the rapid over-expression and purification of active GST-tagged human topoisomerase IIα using the baculovirus mediated insect cell expression system. Expression of the GST fused protein was observed in the nuclear fraction of insect cells. High yields (40 mg/L i.e. 8 mg/10(9) cells) at >80% purity of this target was achieved by purification using a GST HiTrap column followed by size exclusion chromatography. Functional activity of GST-tagged human topoisomerase IIα was demonstrated by ATP-dependent relaxation of supercoiled DNA in an agarose gel based assay. An 8-fold DNA-dependent increase in ATPase activity of this target compared to its intrinsic activity was also demonstrated in a high-throughput ATPase fluorescence based assay. Human topoisomerase IIα inhibitors etoposide, quercetin and suramin were tested in the fluorescence assay. IC(50) values obtained were in good agreement with published data. These inhibitors also demonstrated ≥ 30-fold potency over the anti-bacterial topoisomerase II inhibitor ciprofloxacin in the assay. Collectively these data validated the enzyme and the high-throughput fluorescence assay as tools for inhibitor identification and selectivity studies.
Collapse
Affiliation(s)
- Praveen K Singh
- Biological Reagents & Assay Development, GlaxoSmithKline R&D, New Frontiers Science Park, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Type II topoisomerases are essential enzymes that regulate DNA under- and overwinding and remove knots and tangles from the genetic material. In order to carry out their critical physiological functions, these enzymes utilize a double-stranded DNA passage mechanism that requires them to generate a transient double-stranded break. Consequently, while necessary for cell survival, type II topoisomerases also have the capacity to fragment the genome. This feature of the prokaryotic and eukaryotic enzymes, respectively, is exploited to treat a variety of bacterial infections and cancers in humans. All type II topoisomerases require divalent metal ions for catalytic function. These metal ions function in two separate active sites and are necessary for the ATPase and DNA cleavage/ligation activities of the enzymes. ATPase activity is required for the strand passage process and utilizes the metal-dependent binding and hydrolysis of ATP to drive structural rearrangements in the protein. Both the DNA cleavage and ligation activities of type II topoisomerases require divalent metal ions and appear to utilize a novel variant of the canonical two-metal-ion phosphotransferase/hydrolase mechanism to facilitate these reactions. This article will focus primarily on eukaryotic type II topoisomerases and the roles of metal ions in the catalytic functions of these enzymes.
Collapse
Affiliation(s)
- Joseph E Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN 37204-3951, USA
| | | |
Collapse
|
29
|
Park JS, Kim HS, Park MY, Kim CH, Chung YJ, Hong YK, Kim TG. Topoisomerase II alpha as a universal tumor antigen: antitumor immunity in murine tumor models and H-2K(b)-restricted T cell epitope. Cancer Immunol Immunother 2010; 59:747-57. [PMID: 19936747 PMCID: PMC11030946 DOI: 10.1007/s00262-009-0795-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/31/2009] [Indexed: 10/20/2022]
Abstract
Topoisomerase II alpha (Top2alpha) is an attractive candidate to be used as a tumor antigen for cancer immunotherapy, because it is abundantly expressed in various tumors and serves as a target for a number of chemotherapeutic agents. In this study, we demonstrated the immunogenicity of Top2alpha, using dendritic cells (DC) electroporated with RNA encoding the Top2alpha C-terminus (Top2alphaCRNA/DC). Top2alphaCRNA/DC were able to demonstrate in vitro stimulation of T cells from mice that were previously vaccinated with Top2alpha-expressing tumor lysate-pulsed DC. Vaccination with Top2alphaCRNA/DC induced Top2alpha-specific T cell responses in vivo as well as antitumor effects in various murine tumor models including MC-38, B16F10, and GL26. DC pulsed with p1327 (DSDEDFSGL), defined as an epitope presented by H-2K(b), also induced Top2alpha-specific immune responses and antitumor effects. Based on these data, Top2alpha is suggested to be a universal target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Sun Park
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Hye-Sung Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Mi-Young Park
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Chang-Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Yeun-Jun Chung
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Tai-Gyu Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| |
Collapse
|
30
|
Rampakakis E, Zannis-Hadjopoulos M. Transient dsDNA breaks during pre-replication complex assembly. Nucleic Acids Res 2009; 37:5714-24. [PMID: 19638425 PMCID: PMC2761281 DOI: 10.1093/nar/gkp617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.
Collapse
Affiliation(s)
- Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
31
|
Stros M, Polanská E, Struncová S, Pospísilová S. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res 2009; 37:2070-86. [PMID: 19223331 PMCID: PMC2673423 DOI: 10.1093/nar/gkp067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Topoisomerase IIα (topo IIα) is a nuclear enzyme involved in several critical processes, including chromosome replication, segregation and recombination. Previously we have shown that chromosomal protein HMGB1 interacts with topo IIα, and stimulates its catalytic activity. Here we show the effect of HMGB1 on the activity of the human topo IIα gene promoter in different cell lines. We demonstrate that HMGB1, but not a mutant of HMGB1 incapable of DNA bending, up-regulates the activity of the topo IIα promoter in human cells that lack functional retinoblastoma protein pRb. Transient over-expression of pRb in pRb-negative Saos-2 cells inhibits the ability of HMGB1 to activate the topo IIα promoter. The involvement of HMGB1 and its close relative, HMGB2, in modulation of activity of the topo IIα gene is further supported by knock-down of HMGB1/2, as evidenced by significantly decreased levels of topo IIα mRNA and protein. Our experiments suggest a mechanism of up-regulation of cellular expression of topo IIα by HMGB1/2 in pRb-negative cells by modulation of binding of transcription factor NF-Y to the topo IIα promoter, and the results are discussed in the framework of previously observed pRb-inactivation, and increased levels of HMGB1/2 and topo IIα in tumors.
Collapse
Affiliation(s)
- Michal Stros
- Laboratory of Analysis of Chromosomal Proteins, Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic.
| | | | | | | |
Collapse
|
32
|
McClendon AK, Gentry AC, Dickey JS, Brinch M, Bendsen S, Andersen AH, Osheroff N. Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 2008; 47:13169-78. [PMID: 19053267 PMCID: PMC2629653 DOI: 10.1021/bi800453h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human topoisomerase IIalpha, but not topoisomerase IIbeta, can sense the geometry of DNA during relaxation and removes positive supercoils >10-fold faster than it does negative superhelical twists. In contrast, both isoforms maintain lower levels of DNA cleavage intermediates with positively supercoiled substrates. Since topoisomerase IIalpha and IIbeta differ primarily in their C-terminal domains (CTD), this portion of the protein may play a role in sensing DNA geometry. Therefore, to more fully assess the importance of the topoisomerase IIalpha CTD in the recognition of DNA topology, hTop2alphaDelta1175, a mutant human enzyme that lacks its CTD, was examined. The mutant enzyme relaxed negative and positive supercoils at similar rates but still maintained lower levels of cleavage complexes with positively supercoiled DNA. Furthermore, when the CTD of topoisomerase IIbeta was replaced with that of the alpha isoform, the resulting enzyme preferentially relaxed positively supercoiled substrates. In contrast, a chimeric topoisomerase IIalpha that carried the CTD of the beta isoform lost its ability to recognize the geometry of DNA supercoils during relaxation. These findings demonstrate that human topoisomerase IIalpha recognizes DNA geometry in a bimodal fashion, with the ability to preferentially relax positive DNA supercoils residing in the CTD. Finally, results with a series of human topoisomerase IIalpha mutants suggest that clusters of positively charged amino acid residues in the CTD are required for the enzyme to distinguish supercoil geometry during DNA relaxation and that deletion of even the most C-terminal cluster abrogates this recognition.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Binding Sites/genetics
- DNA Cleavage
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Sequence Deletion
- Topoisomerase II Inhibitors
Collapse
Affiliation(s)
- A Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res 2008; 37:738-48. [PMID: 19042970 PMCID: PMC2647315 DOI: 10.1093/nar/gkn937] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.
Collapse
Affiliation(s)
- Joseph E Deweese
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | | |
Collapse
|
34
|
Singh R, Winn LM. The effects of 1,4-benzoquinone on c-Myb and topoisomerase II in K-562 cells. Mutat Res 2008; 645:33-38. [PMID: 18778717 DOI: 10.1016/j.mrfmmm.2008.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/05/2008] [Accepted: 08/08/2008] [Indexed: 05/26/2023]
Abstract
Exposure to benzene, a ubiquitous environmental pollutant, has been linked to leukemia, although the mechanism of benzene-initiated leukemogenesis remains unclear. Benzene can be bioactivated to toxic metabolites such as 1,4 benzoquinone (BQ), which can alter signaling pathways and affect chromosomal integrity. BQ has been shown to increase the activity of c-Myb, which is an important transcription factor involved in hematopoiesis, cell proliferation, and cell differentiation. The c-Myb protein has also been shown to increase topoisomerase IIalpha (Topo IIalpha) promoter activity specifically in cell lines with hematopoietic origin. Topo IIalpha is a critical nuclear enzyme that removes torsional strain by cleaving, untangling and religating double-stranded DNA. Since Topo IIalpha mediates DNA strand breaks, aberrant Topo IIalpha activity or increased protein levels may increase the formation of DNA strand breaks, leaving the cell susceptible to mutational events. We hypothesized that BQ can increase c-Myb activity, which in turn increases Topo IIalpha promoter activity resulting in increased DNA strand breaks. Using luciferase reporter assays in K-562 cells we demonstrated that BQ (25 and 37microM) exposure caused an increase in c-Myb activity after 24h. Contradictory to previous findings, overexpression of exogenous c-Myb or a polypeptide consisting of c-Myb's DNA binding domain (DBD), which competitively inhibits the binding of endogenous c-Myb to DNA, did not affect Topo IIalpha promoter activity. However, BQ (37microM for 24h) exposure caused a significant increase in Topo IIalpha promoter activity, which could be blocked by the overexpression of the DBD polypeptide, suggesting that BQ exposure increases Topo IIalpha promoter activity through the c-Myb signaling pathway.
Collapse
Affiliation(s)
- Roopam Singh
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
35
|
Jenkins JR. A proteomic approach to identifying new drug targets (potentiating topoisomerase II poisons). Br J Radiol 2008; 81 Spec No 1:S69-77. [DOI: 10.1259/bjr/76952340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Bender RP, Jablonksy MJ, Shadid M, Romaine I, Dunlap N, Anklin C, Graves DE, Osheroff N. Substituents on etoposide that interact with human topoisomerase IIalpha in the binary enzyme-drug complex: contributions to etoposide binding and activity. Biochemistry 2008; 47:4501-9. [PMID: 18355043 DOI: 10.1021/bi702019z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Etoposide is a widely prescribed anticancer agent that stabilizes topoisomerase II-mediated DNA strand breaks. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. A recent study that focused on yeast topoisomerase II demonstrated that the H15 geminal protons of the etoposide A-ring, the H5 and H8 protons of the B-ring, and the H2', H6', 3'-methoxyl, and 5'-methoxyl protons of the E-ring contact topoisomerase II in the binary enzyme-drug complex [ Wilstermann et al. (2007) Biochemistry 46, 8217-8225 ]. No interactions with the C4 sugar were observed. The present study used DNA cleavage assays, saturation transfer difference [ (1)H] NMR spectroscopy, and enzyme-drug binding studies to further define interactions between etoposide and human topoisomerase IIalpha. Etoposide and three derivatives that lacked the C4 sugar were analyzed. Except for the sugar, 4'-demethyl epipodophyllotoxin is identical to etoposide, epipodophyllotoxin contains a 4'-methoxyl group on the E-ring, and 6,7- O, O-demethylenepipodophyllotoxin replaces the A-ring with a diol. Results suggest that etoposide-topoisomerase IIalpha binding is driven by interactions with the A- and B-rings and potentially by stacking interactions with the E-ring. We propose that the E-ring pocket on the enzyme is confined, because the addition of bulk to this ring adversely affects drug function. The A- and E-rings do not appear to contact DNA in the enzyme-drug-DNA complex. Conversely, the sugar moiety subtly alters DNA interactions. The identification of etoposide substituents that contact topoisomerase IIalpha in the binary complex has predictive value for drug behavior in the enzyme-etoposide-DNA complex.
Collapse
Affiliation(s)
- Ryan P Bender
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mandraju RK, Kannapiran P, Kondapi AK. Distinct roles of Topoisomerase II isoforms: DNA damage accelerating α, double strand break repair promoting β. Arch Biochem Biophys 2008; 470:27-34. [DOI: 10.1016/j.abb.2007.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/26/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
|
38
|
Li C, Zhang J, Huang C, Chen Q, Wang H. Isolation of DNA topoisomerase II gene from Pleurotus ostreatus and its application in phylogenetic analysis. J Appl Microbiol 2007; 103:2026-32. [DOI: 10.1111/j.1365-2672.2007.03446.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 2007; 623:83-97. [PMID: 17681352 PMCID: PMC2679583 DOI: 10.1016/j.mrfmmm.2007.06.009] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 06/06/2007] [Accepted: 06/16/2007] [Indexed: 12/23/2022]
Abstract
Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.
Collapse
Affiliation(s)
- A. Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Corresponding author. Tel: +1 615 3224338; fax: +1 615 3431166, E-mail address: (N. Osheroff)
| |
Collapse
|
40
|
Nur-E-Kamal A, Meiners S, Ahmed I, Azarova A, Lin CP, Lyu YL, Liu LF. Role of DNA topoisomerase IIβ in neurite outgrowth. Brain Res 2007; 1154:50-60. [PMID: 17493591 DOI: 10.1016/j.brainres.2007.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/26/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Failure to establish neuromuscular junctions is a major phenotype of top2beta knockout mice. However, the precise mechanism for this defect is not known. In the current study, we have investigated the role of TopIIbeta in cultured neurons. We showed that the TopII inhibitor ICRF-193 significantly blocked neurite outgrowth and growth cone formation in cultured cerebellar granule neurons (CGNs), dorsal root ganglions (DRGs) and cortical neurons (CNs). In addition, ICRF-193 also blocked neurite outgrowth and growth cone formation of PC12 cells undergoing NGF-induced differentiation. Isolated cortical neurons from top2beta knockout embryos elaborated shorter neurites than did those from their wild type counterparts, confirming the role of TopIIbeta in neurite outgrowth. Together, these results demonstrate a critical role of TopIIbeta in neurite outgrowth in cultured neurons. Furthermore, we demonstrated that neurons derived from top2beta knockout mice failed to form contacts with muscle cells in co-cultures. These results suggest that the defect in establishing neuromuscular junctions in top2beta knockout mice could be due to the lack of TopIIbeta-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Alam Nur-E-Kamal
- Department of Biology, MEC-CUNY, 1150 Carroll Street, Brooklyn, NY 11225, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Linka RM, Porter AC, Volkov A, Mielke C, Boege F, Christensen MO. C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res 2007; 35:3810-22. [PMID: 17526531 PMCID: PMC1920234 DOI: 10.1093/nar/gkm102] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Topoisomerase II removes supercoils and catenanes generated during DNA metabolic processes such as transcription and replication. Vertebrate cells express two genetically distinct isoforms (alpha and beta) with similar structures and biochemical activities but different biological roles. Topoisomerase IIalpha is essential for cell proliferation, whereas topoisomerase IIbeta is required only for aspects of nerve growth and brain development. To identify the structural features responsible for these differences, we exchanged the divergent C-terminal regions (CTRs) of the two human isoforms (alpha 1173-1531 and beta 1186-1621) and tested the resulting hybrids for complementation of a conditional topoisomerase IIalpha knockout in human cells. Proliferation was fully supported by all enzymes bearing the alpha CTR. The alpha CTR also promoted chromosome binding of both enzyme cores, and was by itself chromosome-bound, suggesting a role in enzyme targeting during mitosis. In contrast, enzymes bearing the beta CTR supported proliferation only rarely and when expressed at unusually high levels. A similar analysis of the divergent N-terminal regions (alpha 1-27 and beta 1-43) revealed no role in isoform-specific functions. Our results show that it is the CTRs of human topoisomerase II that determine their isoform-specific functions in proliferating cells. They also indicate persistence of some functional redundancy between the two isoforms.
Collapse
Affiliation(s)
- René M. Linka
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew C.G. Porter
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Arsen Volkov
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Christian Mielke
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Morten O. Christensen
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- *To whom correspondence should be addressed. +49 211 8118036; +49 211 8118021;
| |
Collapse
|
42
|
Sheval EV, Polyakov VY. Chromosome scaffold and structural integrity of mitotic chromosomes. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406060014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Tsutsui KM, Sano K, Hosoya O, Tsutsui K. Expression dynamics and functional implications of DNA topoisomerase II beta in the brain. Anat Sci Int 2006; 81:156-63. [PMID: 16955666 DOI: 10.1111/j.1447-073x.2006.00146.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian DNA topoisomerase II beta is a type II DNA topoisomerase that catalyses topological transformations of genomic DNA by the transport of one DNA double helix through another. The II beta enzyme is highly expressed in cells that have undergone the final cell division and committed to differentiate into neuronal cells. The II beta enzyme in the differentiating neuronal cells is located in the nucleoplasm and is actively engaged in its catalytic reaction in vivo. When enzyme action is interfered with a specific inhibitor in vitro, transcriptional induction of a subset of genes fails to occur during neuronal differentiation. Detailed analyses of developing rat cerebellum and the cerebrum of mice with disrupted II beta genes have revealed that DNA topoisomerase II beta is necessary for the developmentally regulated expression of certain genes in cells committed to a neuronal fate after the final division. Herein, we review a dynamic aspect of DNA topoisomerase II beta in the brain with special emphasis on developing cerebellar neurons.
Collapse
Affiliation(s)
- Kimiko M Tsutsui
- Department of Neuroanatomy and Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | |
Collapse
|
44
|
Abstract
Acute leukemias with balanced chromosomal translocations, protean morphologic and immunophenotypic presentations but generally shorter latency and absence of myelodysplasia are recognized as a complication of anti-cancer drugs that behave as topoisomerase II poisons. Translocations affecting the breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular genetic aberrations in leukemias associated with the topoisomerase II poisons. These agents perturb the cleavage-religation equilibrium of topoisomerase II and increase cleavage complexes. One model suggests that this damages the DNA directly and leads to chromosomal breakage, which may result in untoward DNA recombination in the form of translocations. This review will summarize the evidence for topoisomerase II involvement in the genesis of translocations and extension of the model to acute leukemia in infants characterized by similar MLL translocations.
Collapse
Affiliation(s)
- Carolyn A Felix
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
45
|
Barker CR, Hamlett J, Pennington SR, Burrows F, Lundgren K, Lough R, Watson AJM, Jenkins JR. The topoisomerase II-Hsp90 complex: a new chemotherapeutic target? Int J Cancer 2006; 118:2685-93. [PMID: 16385570 DOI: 10.1002/ijc.21717] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The modulation of DNA topology by topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and has thus become a highly attractive target for chemotherapeutic drugs. However, these drugs are highly toxic, and so new approaches are required. One such strategy is to target topoisomerase II-interacting proteins. Here we report the identification of potential topoisomerase II-associated proteins using immunoprecipitation, followed by 1-D and 2-D gel electrophoresis and MALDI-TOF mass spectrometry. A total of 23 proteins were identified and, of these, 17 were further validated as topoisomerase IIalpha-associated proteins by coimmunoprecipitation and Western blot. Six of the interacting proteins were cellular chaperones, including 3 members of the heat shock protein-90 (Hsp90) family, and so the effect of Hsp90 modulation on the antitumor activity of topoisomerase II drugs was tested using the sulforhodamine B assay, clonogenic assays and a xenograft model. The Hsp90 inhibitors geldanamycin, 17-AAG (17-allylamino-17-demethoxygeldanamycin) and radicicol significantly enhanced the activity of the topoisomerase II poisons etoposide and mitoxantrone in vitro and in vivo. Thus, our method of identifying topoisomerase II-interacting proteins appears to be effective, and at least 1 novel topoisomerase IIalpha-associated protein, Hsp90, may represent a valid drug target in the context of topoisomerase II-directed chemotherapy.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Animals
- Benzoquinones
- Breast Neoplasms/pathology
- Carcinoma, Adenosquamous/pathology
- Colonic Neoplasms/drug therapy
- DNA Topoisomerases, Type II/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Inhibitors/pharmacology
- Female
- HSP90 Heat-Shock Proteins/analysis
- HSP90 Heat-Shock Proteins/physiology
- Humans
- Immunoprecipitation
- Lactams, Macrocyclic
- Lactones/pharmacology
- Macrolides
- Mice
- Mice, Nude
- Molecular Chaperones
- Neoplasms/drug therapy
- Protein Binding
- Quinones/pharmacology
- Rifabutin/analogs & derivatives
- Rifabutin/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Catherine R Barker
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Division of Gastroenterology, School of Clinical Sciences, The University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Balan KV, Sitaras NM, Dimas K, Han Z, Wyche JH, Pantazis P. Differential susceptibility to etoposide in clones derived from a human ovarian cancer cell line. Chemotherapy 2006; 52:137-46. [PMID: 16645270 DOI: 10.1159/000093009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To identify parameters/factors that may contribute to the differential sensitivity to etoposide in two clones isolated from the human ovarian carcinoma SKOV-3 cell line, which does not express p53 and is resistant to platinum-based regimens. METHODS Differential sensitivity of the cells to etoposide was monitored by microscopy to observe morphological changes, by flow cytometry analyses to detect cell cycle perturbations, and by molecular/biochemical assays to identify events involved in induction of apoptosis. RESULTS Etoposide treatment (1) induced apoptosis in one clone, ES, but not in another clone, ER, (2) had no effect on the expression of the antiapoptotic proteins Bcl-2 and Bcl-X(L) in both cell clones, whereas the proapoptotic proteins Bak and Bax were dramatically upregulated in ES, but not ER cells, and (3) induced more extensive processing of procaspase-8, procaspase-9, and the caspase-3-targeted substrates, topoisomerase I and PARP, in ES cells. Ectopic overexpression of Bcl-2 in ES cells failed to inhibit etoposide-induced apoptosis. CONCLUSIONS The differential susceptibility of ES and ER cells to etoposide-induced apoptosis is associated with differences in several events rather than with a specific single genetic regulator of the apoptotic machinery. We propose that the differential response of ovarian cancer patients to etoposide treatment is associated with the number of etoposide-sensitive cells in the tumor.
Collapse
Affiliation(s)
- K V Balan
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | | | | | | |
Collapse
|
47
|
Barker CR, McNamara AV, Rackstraw SA, Nelson DE, White MR, Watson AJM, Jenkins JR. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage. Nucleic Acids Res 2006; 34:1148-57. [PMID: 16504968 PMCID: PMC1373695 DOI: 10.1093/nar/gkj516] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/23/2005] [Accepted: 02/01/2006] [Indexed: 01/29/2023] Open
Abstract
Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.
Collapse
Affiliation(s)
- Catherine R. Barker
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Division of Gastroenterology, School of Clinical Sciences, University of LiverpoolCrown Street, Liverpool L69 3BX, UK
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - Anne V. McNamara
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Division of Gastroenterology, School of Clinical Sciences, University of LiverpoolCrown Street, Liverpool L69 3BX, UK
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - Stephen A. Rackstraw
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Division of Gastroenterology, School of Clinical Sciences, University of LiverpoolCrown Street, Liverpool L69 3BX, UK
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - David E. Nelson
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - Mike R. White
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - Alastair J. M. Watson
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Division of Gastroenterology, School of Clinical Sciences, University of LiverpoolCrown Street, Liverpool L69 3BX, UK
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, University of LiverpoolCrown Street, Liverpool, L69 7ZB, UK
| | - John R. Jenkins
- To whom correspondence should be addressed at Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Department of Medicine, University of Liverpool, Liverpool L69 3BX, U.K. Tel: +44 151 794 6828; Fax: +44 151 794 6825;
| |
Collapse
|
48
|
Barker CR, Mouchel NAP, Jenkins JR. The identification and characterisation of a functional interaction between arginyl-tRNA-protein transferase and topoisomerase II. Biochem Biophys Res Commun 2006; 342:596-604. [PMID: 16488395 DOI: 10.1016/j.bbrc.2006.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 01/22/2023]
Abstract
Topoisomerase II is required for the viability of all eukaryotic cells. It plays important roles in DNA replication, recombination, chromosome segregation, and the maintenance of the nuclear scaffold. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between arginyl-tRNA-protein transferase (Ate1) and the N-terminal domain of the S. cerevisiae topoisomerase II, including the potential site of interaction. Ate1 is a component of the N-end rule protein degradation pathway which targets proteins for degradation. We also propose a previously unidentified role for Ate1 in modulating the level of topoisomerase II through the cell cycle.
Collapse
Affiliation(s)
- Catherine R Barker
- School of Clinical Sciences, Division of Gastroenterology, The University of Liverpool, Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
49
|
Lage H, Aki-Sener E, Yalcin I. High antineoplastic activity of new heterocyclic compounds in cancer cells with resistance against classical DNA topoisomerase II-targeting drugs. Int J Cancer 2006; 119:213-20. [PMID: 16450374 DOI: 10.1002/ijc.21792] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Twenty previously synthesized fused heterocyclic DNA-topoisomerase II (Topo II)-inhibiting compounds were investigated for their potential efficacy in various human cancer cell lines that were derived from different tumor entities. Moreover, different multidrug-resistant variants of these cancer cell lines with decreased Topo II expression were investigated. In parental, drug-sensitive cells merely the compounds BD3 and G35 showed efficacies, in terms of microM, which were similar to that of the classical Topo II inhibitor etoposide. On the other hand, most of the tested heterocyclic compounds were found more effective in drug-resistant cells than in the parental, drug-sensitive ones, and some of the compounds showed high antineoplastic efficacy in several drug-resistant cell models. Compounds BD13, BD14 and BD16 exhibited high antineoplastic activities against the drug-resistant sublines EPG85-257RNOV and EPG85-257RDB derived from gastric carcinoma, EPP85-181RNOV and EPP85-181RDB derived from pancreatic carcinoma, MCF-7/Adr derived from breast cancer, D79/86RNOV derived from fibrosarcoma, and MeWoETO1 derived from melanoma. Furthermore, compound D23 was found highly efficient in the multidrug-resistant variants HT-29RNOV and HT-29RDB derived from colon carcinoma, and compound D24 exhibited the highest antineoplastic activity among the tested compounds in the drug-resistant subline MDA-MB-231ROV derived from breast cancer. In conclusion, compounds BD 13, BD 14, BD 16, D 23 and D 24 may be useful for the treatment of different multidrug-resistant cancer cells with cross resistance against "classical" Topo II-targeting drugs.
Collapse
Affiliation(s)
- Hermann Lage
- Charité Campus Mitte, Institute of Pathology, Berlin, Germany.
| | | | | |
Collapse
|
50
|
Mouchel NAP, Jenkins JR. The identification of a functional interaction between PKC and topoisomerase II. FEBS Lett 2005; 580:51-7. [PMID: 16364307 DOI: 10.1016/j.febslet.2005.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/31/2005] [Accepted: 11/09/2005] [Indexed: 11/29/2022]
Abstract
Topoisomerase II plays an essential role in the segregation of chromosomes during cell division. It is also a major component of the nuclear matrix. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between the catalytic domain of the yeast protein kinase 1 enzyme (Pkc1) and the N-terminal domain of the S. cerevisiae topoisomerase II. The S. cerevisiae Pkc1 is the homologue of the mammalian calcium dependent PKC.
Collapse
Affiliation(s)
- Nathalie A P Mouchel
- Compton Paddock Laboratories, Frilsham Home Farm Business Unit, Yattendon, Thatcham RG 18 0XT, UK
| | | |
Collapse
|