1
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
3
|
Ni Y, Nan S, Zheng L, Zhang L, Zhao Y, Fu Z. Time-dependent effect of REV-ERBα agonist SR9009 on nonalcoholic steatohepatitis and gut microbiota in mice. Chronobiol Int 2023; 40:769-782. [PMID: 37161366 DOI: 10.1080/07420528.2023.2207649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The circadian clock is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), and the target pathways of many NASH candidate drugs are controlled by the circadian clock. However, the application of chronopharmacology in NASH is little considered currently. Here, the time-dependent effect of REV-ERBα agonist SR9009 on diet-induced NASH and microbiota was investigated. C57BL/6J mice were fed a high-cholesterol and high-fat diet (CL) for 12 weeks to induce NASH and then treated with SR9009 either at Zeitgeber time 0 (ZT0) or ZT12 for another 6 weeks. Pharmacological activation of REV-ERBα by SR9009 alleviated hepatic steatosis, insulin resistance, liver inflammation, and fibrosis in CL diet-induced NASH mice. These effects were accompanied by improved gut barrier function and altered microbial composition and function in NASH mice, and the effect tended to be stronger when SR9009 was injected at ZT0. Moreover, SR9009 treatment at different time points resulted in a marked difference in the composition of the microbiota, with a stronger effect on the enrichment of beneficial bacteria and the diminishment of harmful bacteria when SR9009 was administrated at ZT0. Therefore, the time-dependent effect of REV-ERBα agonist on NASH was partly associated with the microbiota, highlighting the potential role of microbiota in the chronopharmacology of NASH and the possibility of discovering new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
5
|
Raza GS, Sodum N, Kaya Y, Herzig KH. Role of Circadian Transcription Factor Rev-Erb in Metabolism and Tissue Fibrosis. Int J Mol Sci 2022; 23:12954. [PMID: 36361737 PMCID: PMC9655416 DOI: 10.3390/ijms232112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/12/2023] Open
Abstract
Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Yagmur Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, 34854 Istanbul, Turkey
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
6
|
Iijima M, Takemi S, Aizawa S, Sakai T, Sakata I. The suppressive effect of REVERBs on ghrelin and GOAT transcription in gastric ghrelin-producing cells. Neuropeptides 2021; 90:102187. [PMID: 34450431 DOI: 10.1016/j.npep.2021.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gut peptide with a unique structure, which is modified by a medium chain fatty acid at the third serine by ghrelin O-acyl transferase (GOAT). It is well known that the major source of plasma ghrelin is the stomach, but the transcriptional regulation of gastric ghrelin and GOAT is incompletely understood. Here, we studied the involvement of the nuclear receptors REV-ERBα and REV-ERBβ on ghrelin and GOAT gene expression in vivo and in vitro. Reverse-transcriptase polymerase chain reaction analysis showed that REV-ERBα and REV-ERBβ mRNAs were expressed in the stomach and a stomach-derived ghrelin cell line (SG-1 cells). In vivo experiments with mice revealed the circadian rhythm of ghrelin, GOAT, and REV-ERBs. The peak expression of ghrelin and GOAT mRNAs occurred at Zeitgeber time (ZT) 4, whereas that of REV-ERBα and REV-ERBβ was observed at ZT8 and ZT12, respectively. Treatment of SG-1 cells with SR9009, a REV-ERB agonist, led to a significant reduction in ghrelin and GOAT mRNA levels. Overexpression of REV-ERBα and REV-ERBβ decreased ghrelin and GOAT mRNA levels in SG-1 cells. In contrast, small-interfering RNA (siRNA)-mediated double-knockdown of REV-ERBα and REV-ERBβ in SG-1 cells led to the upregulation in the expression of ghrelin and GOAT mRNAs. These results suggest that REV-ERBs suppress ghrelin and GOAT mRNA expression.
Collapse
Affiliation(s)
- Mio Iijima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530, Japan
| | - Takafumi Sakai
- Professor emeritus, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
7
|
Liu HY, Gu H, Li Y, Hu P, Yang Y, Li K, Li H, Zhang K, Zhou B, Wu H, Bao W, Cai D. Dietary Conjugated Linoleic Acid Modulates the Hepatic Circadian Clock Program via PPARα/REV-ERBα-Mediated Chromatin Modification in Mice. Front Nutr 2021; 8:711398. [PMID: 34722605 PMCID: PMC8553932 DOI: 10.3389/fnut.2021.711398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Scope: Disruptions of circadian rhythm cause metabolic disorders and are closely related to dietary factors. In this study, we investigated the interplays between the dietary conjugated linoleic acid (CLA)-induced hepatic steatosis and the circadian clock regulation, in association with lipid homeostasis. Methods and Results: Exposure of mice to 1.5% dietary CLA for 28 days caused insulin resistance, enlarged livers, caused hepatic steatosis, and increased triglyceride levels. Transcriptional profiling showed that hepatic circadian clock genes were significantly downregulated with increased expression of the negative transcription factor, REV-ERBα. We uncovered that the nuclear receptor (NR) PPARα, as a major target of dietary CLA, drives REV-ERBα expression via its binding to key genes of the circadian clock, including Cry1 and Clock, and the recruitment of histone marks and cofactors. The PPARα or REV-ERBα inhibition blocked the physical connection of this NR pair, reduced the cobinding of PPARα and REV-ERBα to the genomic DNA response element, and abolished histone modifications in the CLA-hepatocytes. In addition, we demonstrated that CLA promotes PPARα driving REV-ERBα transcriptional activity by directly binding to the PPAR response element (PPRE) at the Nr1d1 gene. Conclusions: Our results add a layer to the understanding of the peripheral clock feedback loop, which involves the PPARα-REV-ERBα, and provide guidance for nutrients optimization in circadian physiology.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanwei Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kexin Zhang
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bo Zhou
- Institute of Digestive Disease, Zhengzhou University, Zhengzhou, China
| | - Huaxing Wu
- Baijiu Science and Research Center, Sichuan Swellfun Co., Ltd., Chengdu, China
| | - Wenbin Bao
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Yang Z, Smalling RV, Huang Y, Jiang Y, Kusumanchi P, Bogaert W, Wang L, Delker DA, Skill NJ, Han S, Zhang T, Ma J, Huda N, Liangpunsakul S. The role of SHP/REV-ERBα/CYP4A axis in the pathogenesis of alcohol-associated liver disease. JCI Insight 2021; 6:e140687. [PMID: 34423788 PMCID: PMC8410014 DOI: 10.1172/jci.insight.140687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol-associated liver disease (ALD) represents a spectrum of histopathological changes, including alcoholic steatosis, steatohepatitis, and cirrhosis. One of the early responses to excessive alcohol consumption is lipid accumulation in the hepatocytes. Lipid ω-hydroxylation of medium- and long-chain fatty acid metabolized by the cytochrome P450 4A (CYP4A) family is an alternative pathway for fatty acid metabolism. The molecular mechanisms of CYP4A in ALD pathogenesis have not been elucidated. In this study, WT and Shp−/− mice were fed with a modified ethanol-binge, National Institute on Alcohol Abuse and Alcoholism model (10 days of ethanol feeding plus single binge). Liver tissues were collected every 6 hours for 24 hours and analyzed using RNA-Seq. The effects of REV-ERBα agonist (SR9009, 100 mg/kg/d) or CYP4A antagonist (HET0016, 5 mg/kg/d) in ethanol-fed mice were also evaluated. We found that hepatic Cyp4a10 and Cyp4a14 expression were significantly upregulated in WT mice, but not in Shp−/− mice, fed with ethanol. ChIP quantitative PCR and promoter assay revealed that REV-ERBα is the transcriptional repressor of Cyp4a10 and Cyp4a14. Rev-Erbα−/− hepatocytes had a marked induction of both Cyp4a genes and lipid accumulation. REV-ERBα agonist SR9009 or CYP4A antagonist HET0016 attenuated Cyp4a induction by ethanol and prevented alcohol-induced steatosis. Here, we have identified a role for the SHP/REV-ERBα/CYP4A axis in the pathogenesis of ALD. Our data also suggest REV-ERBα or CYP4A as the potential therapeutic targets for ALD.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rana V Smalling
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Will Bogaert
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Don A Delker
- Divisions of Gastroenterology, University of Utah, Salt Lake City, Utah, USA
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Guan D, Lazar MA. Interconnections between circadian clocks and metabolism. J Clin Invest 2021; 131:e148278. [PMID: 34338232 DOI: 10.1172/jci148278] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms evolved through adaptation to daily light/dark changes in the environment; they are believed to be regulated by the core circadian clock interlocking feedback loop. Recent studies indicate that each core component executes general and specific functions in metabolism. Here, we review the current understanding of the role of these core circadian clock genes in the regulation of metabolism using various genetically modified animal models. Additionally, emerging evidence shows that exposure to environmental stimuli, such as artificial light, unbalanced diet, mistimed eating, and exercise, remodels the circadian physiological processes and causes metabolic disorders. This Review summarizes the reciprocal regulation between the circadian clock and metabolism, highlights remaining gaps in knowledge about the regulation of circadian rhythms and metabolism, and examines potential applications to human health and disease.
Collapse
Affiliation(s)
- Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Uriz-Huarte A, Date A, Ang H, Ali S, Brady HJM, Fuchter MJ. The transcriptional repressor REV-ERB as a novel target for disease. Bioorg Med Chem Lett 2020; 30:127395. [PMID: 32738989 DOI: 10.1016/j.bmcl.2020.127395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
Abstract
REV-ERB is a member of the nuclear receptor superfamily of transcription factors involved in the regulation of many physiological processes, from circadian rhythm, to immune function and metabolism. Accordingly, REV-ERB has been considered as a promising, but difficult drug target for the treatment of numerous diseases. Here, we concisely review current understanding of the function of REV-ERB, modulation by endogenous factors and synthetic ligands, and the involvement of REV-ERB in select human diseases. Particular focus is placed on the medicinal chemistry of synthetic REV-ERB ligands, which demonstrates the need for higher quality ligands to aid in robust validation of this exciting target.
Collapse
Affiliation(s)
- Amaia Uriz-Huarte
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Amrita Date
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Heather Ang
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Hugh J M Brady
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
11
|
Rev-erbα heterozygosity produces a dose-dependent phenotypic advantage in mice. PLoS One 2020; 15:e0227720. [PMID: 32407314 PMCID: PMC7224546 DOI: 10.1371/journal.pone.0227720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Numerous mutational studies have demonstrated that circadian clock proteins regulate behavior and metabolism. Nr1d1(Rev-erbα) is a key regulator of circadian gene expression and a pleiotropic regulator of skeletal muscle homeostasis and lipid metabolism. Loss of Rev-erbα expression induces muscular atrophy, high adiposity, and metabolic syndrome in mice. Here we show that, unlike knockout mice, Nr1d1 heterozygous mice are not susceptible to muscular atrophy and in fact paradoxically possess larger myofiber diameters and improved neuromuscular function, compared to wildtype mice. Heterozygous mice lacked dyslipidemia, a characteristic of Nr1d1 knockout mice and displayed increased whole-body fatty-acid oxidation during periods of inactivity (light cycle). Heterozygous mice also exhibited higher rates of glucose uptake when fasted, and had elevated basal rates of gluconeogenesis compared to wildtype and knockout littermates. Rev-erbα ablation suppressed glycolysis and fatty acid-oxidation in white-adipose tissue (WAT), whereas partial Rev-erbα loss, curiously stimulated these processes. Our investigations revealed that Rev-erbα dose-dependently regulates glucose metabolism and fatty acid oxidation in WAT and muscle.
Collapse
|
12
|
Vitale JA, Bonato M, La Torre A, Banfi G. The Role of the Molecular Clock in Promoting Skeletal Muscle Growth and Protecting against Sarcopenia. Int J Mol Sci 2019; 20:ijms20174318. [PMID: 31484440 PMCID: PMC6747101 DOI: 10.3390/ijms20174318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
The circadian clock has a critical role in many physiological functions of skeletal muscle and is essential to fully understand the precise underlying mechanisms involved in these complex interactions. The importance of circadian expression for structure, function and metabolism of skeletal muscle is clear when observing the muscle phenotype in models of molecular clock disruption. Presently, the maintenance of circadian rhythms is emerging as an important new factor in human health, with disruptions linked to ageing, as well as to the development of many chronic diseases, including sarcopenia. Therefore, the aim of this review is to present the latest findings demonstrating how circadian rhythms in skeletal muscle are important for maintenance of the cellular physiology, metabolism and function of skeletal muscle. Moreover, we will present the current knowledge about the tissue-specific functions of the molecular clock in skeletal muscle.
Collapse
Affiliation(s)
- Jacopo A Vitale
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
| | - Matteo Bonato
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy.
| | - Antonio La Torre
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
13
|
SR9009 has REV-ERB-independent effects on cell proliferation and metabolism. Proc Natl Acad Sci U S A 2019; 116:12147-12152. [PMID: 31127047 DOI: 10.1073/pnas.1904226116] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nuclear receptors REV-ERBα and -β link circadian rhythms and metabolism. Like other nuclear receptors, REV-ERB activity can be regulated by ligands, including naturally occurring heme. A putative ligand, SR9009, has been reported to elicit a range of beneficial effects in healthy as well as diseased animal models and cell systems. However, the direct involvement of REV-ERBs in these effects of SR9009 has not been thoroughly assessed, as experiments were not performed in the complete absence of both proteins. Here, we report the generation of a mouse model for conditional genetic deletion of REV-ERBα and -β. We show that SR9009 can decrease cell viability, rewire cellular metabolism, and alter gene transcription in hepatocytes and embryonic stem cells lacking both REV-ERBα and -β. Thus, the effects of SR9009 cannot be used solely as surrogate for REV-ERB activity.
Collapse
|
14
|
Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO, Wright LE, Peña Paz MI, Casarin A, Pertegato V, Romanello V, Albiero M, Mazzucco S, Rizzuto R, Salviati L, Biolo G, Blaauw B, Schiaffino S, Uhlenhaut NH. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 2018; 16:e2005886. [PMID: 30096135 PMCID: PMC6105032 DOI: 10.1371/journal.pbio.2005886] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/22/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.
Collapse
Affiliation(s)
- Kenneth Allen Dyar
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Michaël Jean Hubert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Ashfaq Ali Mir
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | - Dominik Lutter
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Maximilian Kleinert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Katrin Fischer
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | | | | | - Alberto Casarin
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Vanessa Pertegato
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | | | - Mattia Albiero
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Mazzucco
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Gianni Biolo
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - N. Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Gene Center, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| |
Collapse
|
15
|
Welch RD, Billon C, Valfort AC, Burris TP, Flaveny CA. Pharmacological inhibition of REV-ERB stimulates differentiation, inhibits turnover and reduces fibrosis in dystrophic muscle. Sci Rep 2017; 7:17142. [PMID: 29215066 PMCID: PMC5719458 DOI: 10.1038/s41598-017-17496-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating X-linked disorder that is fatal. DMD patients lack the expression of the structural protein dystrophin caused by mutations within the DMD gene. The absence of functional dystrophin protein results in excessive damage from normal muscle use due to the compromised structural integrity of the dystrophin associated glycoprotein complex. As a result, DMD patients exhibit ongoing cycles of muscle destruction and regeneration that promote inflammation, fibrosis, mitochondrial dysfunction, satellite cell (SC) exhaustion and loss of skeletal and cardiac muscle function. The nuclear receptor REV-ERB suppresses myoblast differentiation and recently we have demonstrated that the REV-ERB antagonist, SR8278, stimulates muscle regeneration after acute injury. Therefore, we decided to explore whether the REV-ERB antagonist SR8278 could slow the progression of muscular dystrophy. In mdx mice SR8278 increased lean mass and muscle function, and decreased muscle fibrosis and muscle protein degradation. Interestingly, we also found that SR8278 increased the SC pool through stimulation of Notch and Wnt signaling. These results suggest that REV-ERB is a potent target for the treatment of DMD.
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Cyrielle Billon
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Thomas P Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Colin A Flaveny
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
16
|
Welch RD, Guo C, Sengupta M, Carpenter KJ, Stephens NA, Arnett SA, Meyers MJ, Sparks LM, Smith SR, Zhang J, Burris TP, Flaveny CA. Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome. Mol Metab 2017; 6:703-714. [PMID: 28702326 PMCID: PMC5485243 DOI: 10.1016/j.molmet.2017.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The loss of skeletal muscle mass and strength are a central feature of traumatic injury and degenerative myopathies. Unfortunately, pharmacological interventions typically fail to stem the long-term decline in quality of life. Reduced Rev-Erb-mediated gene suppression in cultured C2C12 myoblasts has been shown to stimulate myoblast differentiation. Yet the mechanisms that allow Rev-Erb to pleiotropically inhibit muscle differentiation are not well understood. In this study, we sought to elucidate the role of Rev-Erb in the regulation of muscle differentiation and regeneration in vivo. METHODS Using Rev-Erbα/β shRNAs, pharmacological ligands, and Rev-Erbα null and heterozygous mice, we probed the mechanism of Rev-Erbα/β regulation of muscle differentiation and muscle regeneration. RESULTS ChIP seq analysis of Rev-Erb in differentiating myoblasts showed that Rev-Erbα did not transcriptionally regulate muscle differentiation through cognate Rev-Erb/ROR-response elements but through possible interaction with the cell fate regulator NF-Y at CCAAT-motifs. Muscle differentiation is stimulated by Rev-Erb release from CCAAT-motifs at promoter and enhancer elements of a number of myogenesis proteins. Partial loss of Rev-Erb expression in mice heterozygous for Rev-Erbα accelerated muscle repair in vivo whereas Rev-Erb knockout mice showed deficiencies in regenerative repair compared to wild type mice. These phenotypic differences between heterozygous and knockout mice were not apparently dependent on MRF induction in response to injury. Similarly, pharmacological disruption of Rev-Erb suppressive activity in injured muscle accelerated regenerative repair in response to acute injury. CONCLUSIONS Disrupting Rev-Erb activity in injured muscle accelerates regenerative muscle repair/differentiation through transcriptional de-repression of myogenic programs. Rev-Erb, therefore, may be a potent therapeutic target for a myriad of muscular disorders.
Collapse
MESH Headings
- Adult
- Animals
- CCAAT-Binding Factor/genetics
- CCAAT-Binding Factor/metabolism
- Cell Differentiation
- Cells, Cultured
- Female
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/physiology
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Regeneration
Collapse
Affiliation(s)
- Ryan D. Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Monideepa Sengupta
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Katherine J. Carpenter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Natalie A. Stephens
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Stacy A. Arnett
- Center for World Health and Medicine at Saint Louis University, Saint Louis, MO 63104, USA
| | - Marvin J. Meyers
- Center for World Health and Medicine at Saint Louis University, Saint Louis, MO 63104, USA
| | - Lauren M. Sparks
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Steven R. Smith
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Colin A. Flaveny
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| |
Collapse
|
17
|
Abstract
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
18
|
Domain-Specific Monoclonal Antibodies Against Human Rev-erbβ. Appl Biochem Biotechnol 2016; 182:978-989. [PMID: 27987190 DOI: 10.1007/s12010-016-2375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The nuclear receptor Rev-erbβ is a potent transcriptional factor whose functional study has been limited by the lack of suitable antibodies against it. To better understand Rev-erbβ's biological roles, we generated five hybridoma cell lines secreting antibodies against human Rev-erbβ in mice immunized with the purified, prokaryotically expressed recombinant Rev-erbβ-6His fusion protein. Using Western blotting and immunofluorescence analyses, all the five monoclonal antibodies (MAbs) showed strong immunoreactivity to both prokaryotically and eukaryotically expressed recombinant Rev-erbβ. An immunoprecipitation study showed that all five monoclonal antibodies against Rev-erbβ were able to pull down the recombinant Rev-erbβ-Flag protein, but only one of the MAbs against Rev-erbβ, 37H8, could pull down the endogenous Rev-erbβ protein. Furthermore, domain specificity of these MAbs was characterized. Due to the high similarities between Rev-erbα and Rev-erbβ in the C and E domains, those C and E domain-specific anti-Rev-erbβ antibodies can react with human Rev-erbα as well. The MAbs produced in the study will provide a valuable tool for investigating the function of Rev-erbβ.
Collapse
|
19
|
Abstract
Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts.
Collapse
Affiliation(s)
- Somik Chatterjee
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ke Ma
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
20
|
Mayeuf-Louchart A, Staels B, Duez H. Skeletal muscle functions around the clock. Diabetes Obes Metab 2015; 17 Suppl 1:39-46. [PMID: 26332967 DOI: 10.1111/dom.12517] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/03/2015] [Indexed: 12/16/2022]
Abstract
In mammals, the central clock localized in the central nervous system imposes a circadian rhythmicity to all organs. This is achieved thanks to a well-conserved molecular clockwork, involving interactions between several transcription factors, whose pace is conveyed to peripheral tissues through neuronal and humoral signals. The molecular clock plays a key role in the control of numerous physiological processes and takes part in the regulation of metabolism and energy balance. Skeletal muscle is one of the peripheral organs whose function is under the control of the molecular clock. However, although skeletal muscle metabolism and performances display circadian rhythmicity, the role of the molecular clock in the skeletal muscle has remained unappreciated for years. Peripheral organs such as skeletal muscle, and the liver, among others, can be desynchronized from the central clock by external stimuli, such as feeding or exercise, which impose a new rhythm at the organism level. In this review, we discuss our current understanding of the clock in skeletal muscle circadian physiology, focusing on the control of myogenesis and skeletal muscle metabolism.
Collapse
Affiliation(s)
- A Mayeuf-Louchart
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| | - B Staels
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| | - H Duez
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| |
Collapse
|
21
|
Gréchez-Cassiau A, Feillet C, Guérin S, Delaunay F. The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis. Chronobiol Int 2015; 32:774-84. [PMID: 26125130 DOI: 10.3109/07420528.2015.1046601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The circadian timing system adapts most of the mammalian physiology and behaviour to the 24 h light/dark cycle. This temporal coordination relies on endogenous circadian clocks present in virtually all tissues and organs and implicated in the regulation of key cellular processes including metabolism, transport and secretion. Environmental or genetic disruption of the circadian coordination causes metabolic imbalance leading for instance to fatty liver, dyslipidaemia and obesity, thereby contributing to the development of a metabolic syndrome state. In the liver, a key metabolic organ, the rhythmic regulation of lipid biosynthesis is known, yet the molecular mechanisms through which the circadian clock controls lipogenesis, in particular, that of phospholipids, is poorly characterised. In this study, we show that the wild-type mice display a rhythmic accumulation of hepatic phosphatidylcholine with a peak at ZT 22-0 while clock-deficient Bmal1(-/-) mice show elevated phosphatidylcholine levels in the liver associated with an atherogenic lipoprotein profile. Profiling of the mRNA expression of enzymes from the Kennedy and phosphatidylethanolamine N-methyltransferase pathways which control the production of hepatic phosphatidylcholine revealed a robust circadian pattern for Chkα while other mRNA showed low amplitude (Chkβ and Pemt) or no rhythm (Cctα and Chpt1). Chkα mRNA expression was increased and no longer rhythmic in the liver from clock-deficient Bmal1(-/-) mice. This change resulted in the upregulation of the CHKα protein in these animals. We further show that the robust circadian expression of Chkα is restricted to the liver and adrenal glands. Analysis of the Chkα gene promoter revealed the presence of a conserved response element for the core clock transcription factors REV-ERB and ROR. Consistent with the antiphasic phase relationship between Chkα and Rev-erbα expression, in cotransfection experiments using HepG2 cells we show that RORα4-dependent transactivation of this element is repressed by REV-ERBα· Correspondingly, Rev-erbα(-/-)mice displayed higher Chkα mRNA levels in liver at ZT 12. Collectively, these data establish that hepatic phosphatidylcholine is regulated by the circadian clock through a Bmal1-Rev-erbα-Chkα axis and suggest that an intact circadian timing system is important for the temporal coordination of phospholipid metabolism.
Collapse
Affiliation(s)
- Aline Gréchez-Cassiau
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, CNRS UMR7277 , INSERM U1091, Nice , France
| | | | | | | |
Collapse
|
22
|
Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 2014; 25:586-92. [PMID: 25066191 PMCID: PMC4252361 DOI: 10.1016/j.tem.2014.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Rev-erbα is a nuclear receptor that links circadian rhythms to transcriptional control of metabolic pathways. Rev-erbα is a potent transcriptional repressor and plays an important role in the core mammalian molecular clock while also serving as a key regulator of clock output in metabolic tissues including liver and brown adipose tissue (BAT). Recent findings have shed new light on the role of Rev-erbα and its paralog Rev-erbβ in rhythm generation, as well as additional regulatory roles for Rev-erbα in other tissues that contribute to energy expenditure, inflammation, and behavior. This review highlights physiological functions of Rev-erbα and β in multiple tissues and discusses the therapeutic potential and challenges of targeting these pathways in human disease.
Collapse
Affiliation(s)
- Logan J Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Yang F, Inoue I, Kumagai M, Takahashi S, Nakajima Y, Ikeda M. Real-time analysis of the circadian oscillation of the Rev-Erb β promoter. J Atheroscler Thromb 2012; 20:267-76. [PMID: 23221024 DOI: 10.5551/jat.14381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Rev-Erb β gene plays crucial roles in circadian rhythm, lipid and glucose metabolism, and several diseases. The molecular mechanisms of the transcriptional regulation of Rev-Erb β that generate and determine the phase of the circadian oscillation remain unclear. METHODS We analyzed the Rev-Erb β promoter by luciferase reporter assays, real-time bioluminescence monitoring assays and electrophoretic mobility shift assays. RESULTS Luciferase reporter assays indicated that only the 5' region and exon 1 have obvious promoter activity. Real-time bioluminescence monitoring assays revealed that E1, E2, E3, D boxes are important for maintenance of the amplitude of Rev-Erb β oscillation. Based on EMSA results, REV-ERBβ binds ROREs in the Bmal1 promoter region and inhibits Bmal1 promoter activity. CONCLUSION We provide direct evidence that three E-boxes and one D-box located in the first intron are crucial for the phase of circadian oscillation in Rev-Erb β expression and that the sequences upstream from its transcription start site function as a promoter with no circadian regulation. We also found that the E1 box affects the Rev-Erb β oscillation phase. Our results offer new insight into the role of Rev-Erb β in the circadian rhythm system.
Collapse
Affiliation(s)
- Fang Yang
- Department of Neurology, Meitan General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Xiong G, Wang C, Evers BM, Zhou BP, Xu R. RORα suppresses breast tumor invasion by inducing SEMA3F expression. Cancer Res 2012; 72:1728-39. [PMID: 22350413 DOI: 10.1158/0008-5472.can-11-2762] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inactivation of tumor suppressors and inhibitory microenvironmental factors is necessary for breast cancer invasion; therefore, identifying those suppressors and factors is crucial not only to advancing our knowledge of breast cancer, but also to discovering potential therapeutic targets. By analyzing gene expression profiles of polarized and disorganized human mammary epithelial cells in a physiologically relevant three-dimensional (3D) culture system, we identified retinoid orphan nuclear receptor alpha (RORα) as a transcription regulator of semaphorin 3F (SEMA3F), a suppressive microenvironmental factor. We showed that expression of RORα was downregulated in human breast cancer tissue and cell lines, and that reduced mRNA levels of RORα and SEMA3F correlated with poor prognosis. Restoring RORα expression reprogrammed breast cancer cells to form noninvasiveness structures in 3D culture and inhibited tumor growth in nude mice, accompanied by enhanced SEMA3F expression. Inactivation of RORα in nonmalignant human mammary epithelial cells inhibited SEMA3F transcription and impaired polarized acinar morphogenesis. Using chromatin immunoprecipitation and luciferase reporter assays, we showed that transcription of SEMA3F is directly regulated by RORα. Knockdown of SEMA3F in RORα-expressing cancer cells rescued the aggressive 3D phenotypes and tumor invasion. These findings indicate that RORα is a potential tumor suppressor and inhibits tumor invasion by inducing suppressive cell microenvironment.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, and the Department of Molecular and Biomedical Pharmacology, Surgery, and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
25
|
The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011; 3:623-38. [PMID: 21526899 DOI: 10.4155/fmc.11.9] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research efforts spanning the past two decades have established a clear link between nuclear receptor function, regulation of the circadian clock and lipid homeostasis. As such, this family of receptors represents an important area of research. Recent advances in the field have identified two nuclear receptor subfamilies, the REV-ERBs and the 'retinoic acid receptor-related orphan receptors' (RORs), as critical regulators of the circadian clock with significant roles in lipid homeostasis. In this review, the latest information garnered from cutting-edge research on these two nuclear receptor subfamilies will be discussed. Through direct targeting of the REV-ERBs and RORs with synthetic ligands, generation of novel tools aimed at characterizing their function in vivo have been developed, which may lead to novel therapeutics for the treatment of metabolic disorders.
Collapse
|
26
|
Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Subcell Biochem 2011; 52:123-53. [PMID: 21557081 DOI: 10.1007/978-90-481-9069-0_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the largest groups of metazoan transcription factors (TFs), the Nuclear Receptor superfamily, regulates genes required for virtually all aspects of development, reproduction and metabolism. Together, these master regulators can be thought of as a fundamental operating system for metazoan life. Their most distinguishing feature is a structurally conserved domain that acts as a switch, powered by the presence of small diffusible ligands. This ligand-responsive regulation has allowed the Nuclear Receptors to help their hosts adapt to a wide variety of physiological niches and roles, making them one of the most evolutionarily successful TF families. Originally discovered as receptors for steroid hormones, the Nuclear Receptor field has grown to encompass much more than traditional endocrinology. For example, recent work has highlighted the role of Nuclear Receptors as major regulators of metabolism and biological clocks. By monitoring endogenous metabolites and absorbed xenobiotics, these receptors also coordinate rapid, system-wide responses to changing metabolic and environmental states. While many new Nuclear Receptor ligands have been discovered in the past couple of decades, approximately half of the 48 human receptors are still orphans, with a significantly higher percentage of orphans in other organisms. The discovery of new ligands has led to the elucidation of new regulatory mechanisms, target genes, pathways and functions. This review will highlight both the common as well as newly emerging traits and functions that characterize this particularly unique and important TF family.
Collapse
|
27
|
Yin L, Wu N, Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. NUCLEAR RECEPTOR SIGNALING 2010; 8:e001. [PMID: 20414452 PMCID: PMC2858265 DOI: 10.1621/nrs.08001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/24/2010] [Indexed: 12/22/2022]
Abstract
Nuclear receptor Rev-erbα (NR1D1), previously considered to be an orphan nuclear receptor, is a receptor for heme, which promotes transcriptional repression via recruitment of the NCoR-HDAC3 corepressor complex. Rev-erbα gene regulation is circadian, and Rev-erbα comprises a critical negative limb of the core circadian clock by directly repressing the expression of the positive clock component, Bmal1. Rev-erbα also regulates the metabolic gene pathway, thus serving as a heme sensor for coordination of circadian and metabolic pathways.
Collapse
Affiliation(s)
- Lei Yin
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
28
|
Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells. Biochem Biophys Res Commun 2009; 388:654-9. [DOI: 10.1016/j.bbrc.2009.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
|
29
|
Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 2009; 7:e43. [PMID: 19243223 PMCID: PMC2652392 DOI: 10.1371/journal.pbio.1000043] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 01/12/2009] [Indexed: 01/07/2023] Open
Abstract
Heme is a ligand for the human nuclear receptors (NR) REV-ERBalpha and REV-ERBbeta, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A crystal structure of the REV-ERBbeta LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBbeta complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.
Collapse
Affiliation(s)
- Keith I Pardee
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Xiaohui Xu
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
| | - Jeff Reinking
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Anja Schuetz
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Suya Liu
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Rongguang Zhang
- Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Gilles Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | - Alexey Botchkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Henry M Krause
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| | - Aled Edwards
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| |
Collapse
|
30
|
Guillaumond F, Teboul M. Fin de l’orphelinat pour les récepteurs nucléaires REVERB. Med Sci (Paris) 2008; 24:572-4. [DOI: 10.1051/medsci/20082467572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 2008; 283:4535-42. [PMID: 18086663 DOI: 10.1074/jbc.m705576200] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most living organisms show circadian (approximately 24 h) rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. Although circadian gating of mitosis has been reported for many years in some peripheral tissues, the underlying molecular mechanisms have remained poorly understood. Here we show that the cell cycle inhibitor p21WAF1/CIP1 is rhythmically expressed in mouse peripheral organs. This rhythmic pattern of mRNA and protein expression was recapitulated in vitro in serum-shocked differentiated skeletal muscle cells. p21WAF1/CIP1 circadian expression is dramatically increased and no longer rhythmic in clock-deficient Bmal1-/- knock-out mice. Biochemical and genetic data show that oscillation of p21WAF1/CIP1 gene transcription is regulated by the antagonistic activities of the orphan nuclear receptors REV-ERBalpha/beta and RORalpha4/gamma, which are core clock regulators. Importantly, p21WAF1/CIP1 overexpressing Bmal1-/- primary hepatocytes exhibit a decreased proliferation rate. This phenotype could be reversed using small interfering RNA-mediated knockdown of p21WAF1/CIP1. These data establish a novel molecular link between clock and cell cycle genes and suggest that the G1 progression phase is a target of the circadian clock during liver cell proliferation.
Collapse
MESH Headings
- ARNTL Transcription Factors
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Circadian Rhythm/physiology
- Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- G1 Phase/physiology
- Gene Expression Regulation/physiology
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Mice
- Mice, Knockout
- Mitosis/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- NIH 3T3 Cells
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 3
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Aline Gréchez-Cassiau
- Laboratoire de Biologie et Physiopathologie des Systèmes Intégrés, Université de Nice-Sophia-Antipolis, Centre National de la Recherche Scientifique, 06108 Nice cedex 2, France
| | | | | | | | | |
Collapse
|
32
|
Burris TP. Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock. Mol Endocrinol 2008; 22:1509-20. [PMID: 18218725 DOI: 10.1210/me.2007-0519] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear hormone receptors (NHRs), REV-ERBalpha and REV-ERBbeta, regulate a number of physiological functions including the circadian rhythm, lipid metabolism, and cellular differentiation. These two receptors lack the activation function-2 region that is associated with the ability of NHRs to recruit coactivators and activate target gene transcription. These NHRs have been characterized as constitutive repressors of transcription due to their lack of an identified ligand and their strong ability to recruit the corepressor, nuclear receptor corepressor. Recently, the porphyrin heme was demonstrated to function as a ligand for both REV-ERBs. Heme binds directly to the ligand-binding domain and regulates the ability of these NHRs to recruit nuclear receptor corepressor to target gene promoters. This review focuses on the physiological roles that these two receptors play and the implications of heme functioning as their ligand. The prospect that these NHRs, now known to be regulated by small molecule ligands, may be targets for development of drugs for treatment of diseases associated with aberrant circadian rhythms including metabolic and psychiatric disorders as well as cancer is also addressed.
Collapse
Affiliation(s)
- Thomas P Burris
- Nuclear Receptor Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
33
|
Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 2007; 14:1207-13. [PMID: 18037887 DOI: 10.1038/nsmb1344] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/30/2007] [Indexed: 11/08/2022]
Abstract
The nuclear receptors REV-ERBalpha (encoded by NR1D1) and REV-ERBbeta (NR1D2) have remained orphans owing to the lack of identified physiological ligands. Here we show that heme is a physiological ligand of both receptors. Heme associates with the ligand-binding domains of the REV-ERB receptors with a 1:1 stoichiometry and enhances the thermal stability of the proteins. Results from experiments of heme depletion in mammalian cells indicate that heme binding to REV-ERB causes the recruitment of the co-repressor NCoR, leading to repression of target genes including BMAL1 (official symbol ARNTL), an essential component of the circadian oscillator. Heme extends the known types of ligands used by the human nuclear receptor family beyond the endocrine hormones and dietary lipids described so far. Our results further indicate that heme regulation of REV-ERBs may link the control of metabolism and the mammalian clock.
Collapse
|
34
|
Kubota T, Maezawa S, Koiwai K, Hayano T, Koiwai O. Identification of functional domains in TdIF1 and its inhibitory mechanism for TdT activity. Genes Cells 2007; 12:941-59. [PMID: 17663723 DOI: 10.1111/j.1365-2443.2007.01105.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TdT interacting factor 1 (TdIF1) was identified as a protein that binds to terminal deoxynucleotidyltransferase (TdT) to negatively regulate TdT activity. TdT is a template-independent DNA polymerase that catalyzes the incorporation of deoxynucleotides to the 3'-hydroxyl end of DNA templates to increase the junctional diversity of immunoglobulin or T-cell receptor (TcR) genes. Here, using bioinformatics analysis, we identified the TdT binding, DNA binding and dimerization regions, and nuclear localization signal (NLS) in TdIF1. TdIF1 bound to double-stranded DNA (dsDNA) through three DNA binding regions: residues 1-75, the AT-hook-like motif (ALM) and the predicted helix-turn-helix (HTH) motif. ALM in TdIF1 preferentially bound to AT-rich DNA regions. NLS was of the bipartite type and overlapped ALM. TdIF1 bound to the Pol beta-like region in TdT and blocked TdT access to DNA ends. In the presence of dsDNA, however, TdIF1 bound to dsDNA to release TdT from the TdIF1/TdT complex and to exhibit TdT activity, implying that active TdT released microenvironmentally concentrates around AT-rich DNA to synthesize DNA.
Collapse
Affiliation(s)
- Takashi Kubota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
35
|
Wang J, Liu N, Liu Z, Li Y, Song C, Yuan H, Li YY, Zhao X, Lu H. The orphan nuclear receptor Rev-erbbeta recruits Tip60 and HDAC1 to regulate apolipoprotein CIII promoter. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:224-36. [PMID: 17996965 DOI: 10.1016/j.bbamcr.2007.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/21/2007] [Accepted: 09/20/2007] [Indexed: 11/19/2022]
Abstract
Nuclear hormone receptors function as ligand activated transcription factors. Ligand binding and modification such as acetylation have been reported to regulate nuclear hormone receptors. The orphan receptors, Rev-erbalpha and Rev-erbbeta, are members of the nuclear receptor superfamily and act as transcriptional repressors. In this study, the role of recruitment of co-factors by Rev-erbbeta and acetylation of Rev-erbbeta in modulating apolipoprotein CIII (apoCIII) transcription were investigated. Rev-erbbeta was found to transcriptionally repress apoCIII after binding to the apoCIII promoter. Tip60, a histone acetyl-transferase (HAT), was a novel binding partner for Rev-erbbeta and recruited to the apoCIII promoter by Rev-erbbeta. Tip60 was able to acetylate Rev-erbbeta and relieve the apoCIII repression mediated by Rev-erbbeta. This de-repression effect depended on acetylation of Rev-erbbeta at its RXKK motif by Tip60. In addition, histone deacetylase 1 (HDAC1) interacted with Rev-erbbeta and was recruited to the apoCIII promoter by Rev-erbbeta to antagonize Tip60's activity. Taken together, we have provided evidence that Rev-erbbeta modulates the apoCIII gene expression by recruiting different transcription co-activator or co-repressor.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang J, Li Y, Zhang M, Liu Z, Wu C, Yuan H, Li YY, Zhao X, Lu H. A zinc finger HIT domain-containing protein, ZNHIT-1, interacts with orphan nuclear hormone receptor Rev-erbbeta and removes Rev-erbbeta-induced inhibition of apoCIII transcription. FEBS J 2007; 274:5370-81. [PMID: 17892483 DOI: 10.1111/j.1742-4658.2007.06062.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orphan receptors, Rev-erbalpha and Rev-erbbeta, are members of the nuclear receptor superfamily and specifically repress apolipoprotein CIII (apoCIII) gene expression in rats and humans. Moreover, Rev-erbalpha null mutant mice have elevated very low density lipoprotein triacylglycerol and apoCIII levels. However, ligands for Rev-erb are unknown and the regulatory mechanism of Rev-erb is poorly understood. Conceivably, cofactors for Rev-erb may play an important role in the regulation of lipid metabolism. In this study, a zinc finger HIT domain-containing protein, ZNHIT-1, interacted with Rev-erbbeta. ZNHIT-1 was found to be a conserved protein in eukaryotes and was highly abundant in human liver. Furthermore, ZNHIT-1 was identified as a nuclear protein. Serial truncated fragments and substitution mutations established a putative nuclear localization signal at amino acids 38-47 of ZNHIT-1. A putative ligand-binding domain of Rev-erbbeta and the FxxLL motif of ZNHIT-1 were required for their interaction. Finally, ZNHIT-1 was recruited by Rev-erbbeta to the apoCIII promoter and removed the Rev-erbbeta-induced inhibition of apoCIII transcription. These findings demonstrate that ZNHIT-1 functions as a cofactor to regulate the activity of Rev-erbbeta, and may play a role in lipid metabolism.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Smith AG, Muscat GEO. Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 2006; 291:C203-17. [PMID: 16825600 DOI: 10.1152/ajpcell.00476.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for approximately 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (>16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Collapse
Affiliation(s)
- Aaron G Smith
- Institute for Molecular Bioscience, Univ. of Queensland, St. Lucia 4072, Queensland, Australia.
| | | |
Collapse
|
38
|
Ramakrishnan SN, Muscat GE. The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? NUCLEAR RECEPTOR SIGNALING 2006; 4:e009. [PMID: 16741567 PMCID: PMC1472670 DOI: 10.1621/nrs.04009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 03/10/2006] [Indexed: 12/12/2022]
Abstract
Nuclear hormone receptors (NRs) function as ligand dependent DNA binding proteins that translate physiological/nutritional signals into gene regulation. Dysfunctional NR signaling leads to many disorders in reproduction, inflammation, and metabolism. The opportunity to identify novel regulatory pathways in the context of human health and disease drives the challenge to unravel the biological function of the “orphan nuclear hormone receptors”. For example, the Rev-erb (NR1D) subgroup (Rev-erbα/NR1D1 and Rev-erbβ/NR1D2) of orphan NRs are transcriptional silencers and negative regulators of RORα mediated trans-activation. The NR1D subgroup is highly enriched in peripheral tissues with onerous energy demands including skeletal muscle, brown and white adipose, brain, liver and kidney. This alludes to the involvement of this subgroup in metabolism. In this context, Rev-erbα-/- mice have a dyslipidemic phenotype. Recent studies in vascular smooth and skeletal muscle cells also suggest that the NR1D subgroup modulates inflammation by regulating IκBα/NFκB dependent gene expression. Rev-erbα has been identified as a critical regulator (and target) of circadian rhythm, a factor in blood pressure control and inflammation. Finally, two recent reports have demonstrated: (i) lithium mediated regulation of Rev-erbα stability and (ii) E75 (the Drosophila orthologue of human Rev-erbα) is tightly bound by heme, and functions as a “gas sensor” through interaction with CO/NO and interferes with the repression of DHR3 (the Drosophila orthologue of human RORα). In conclusion, the role of these receptors at the cross-roads of metabolism, inflammation, and circadian cycling underscores the importance of understanding the organ-specific function of the NR1D subgroup in homeostasis.
Collapse
|
39
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|
40
|
Smith AG, Muscat GEO. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 2005; 37:2047-63. [PMID: 15922648 DOI: 10.1016/j.biocel.2005.03.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/22/2005] [Accepted: 03/11/2005] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
Collapse
MESH Headings
- Cardiovascular Diseases/metabolism
- Cholesterol/metabolism
- DNA-Binding Proteins/metabolism
- Dyslipidemias/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Metabolic Diseases/metabolism
- Models, Biological
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Peroxisome Proliferator-Activated Receptors/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Aaron G Smith
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072 Qld, Australia
| | | |
Collapse
|
41
|
Ramakrishnan SN, Lau P, Burke LJ, Muscat GEO. Rev-erbbeta regulates the expression of genes involved in lipid absorption in skeletal muscle cells: evidence for cross-talk between orphan nuclear receptors and myokines. J Biol Chem 2004; 280:8651-9. [PMID: 15623503 DOI: 10.1074/jbc.m413949200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Reverbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for >30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (>15-fold) in mRNA expression of interleukin-6, an "exercise-induced myokine" that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (>20-fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Collapse
Affiliation(s)
- Sathiya N Ramakrishnan
- Institute for Molecular Bioscience, Division of Molecular Genetics and Development, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
42
|
Ferrer-Martínez A, Marotta M, Baldán A, Haro D, Gómez-Foix AM. Chicken ovalbumin upstream promoter-transcription factor I represses the transcriptional activity of the human muscle glycogen phosphorylase promoter in C2C12 cells. ACTA ACUST UNITED AC 2004; 1678:157-62. [PMID: 15157742 DOI: 10.1016/j.bbaexp.2004.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 01/29/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
The responsiveness of the 1.13 kb proximal human muscle glycogen phosphorylase (MGP) gene promoter to the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) repressor, known to be ablated during muscle cell differentiation, was examined. Constitutive expression of COUP-TFI repressed the activity of the promoter in C2C12 muscle cells and sequential deletion analysis mapped the sensitive region between nucleotides -362 and -185, which included a putative consensus COUP-TF binding half-site at -198/-193. Mutation of this site abolished transcriptional response to COUP-TFI of the -362 construct. A -209/-180 probe bound in vitro to COUP-TFI and to protein extracts from proliferating but not fusing myoblasts. Thus, COUP-TF may be involved in repression of the human MGP gene promoter at the myoblast stage.
Collapse
Affiliation(s)
- Andreu Ferrer-Martínez
- Department de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
43
|
Lau P, Nixon SJ, Parton RG, Muscat GEO. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem 2004; 279:36828-40. [PMID: 15199055 DOI: 10.1074/jbc.m404927200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.
Collapse
Affiliation(s)
- Patrick Lau
- Institute for Molecular Bioscience, Division of Molecular Genetics and Development, School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
44
|
Sasao N, Hirayama E, Kim J. Characterization of heterokaryons between skeletal myoblasts and preadipocytes: myogenic potential of 3T3-L1 preadipocytes. Eur J Cell Biol 2003; 82:97-103. [PMID: 12647936 DOI: 10.1078/0171-9335-00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been shown previously that heterokaryons between myoblasts and non-myogenic cells disturb myogenic differentiation (Hirayama et al. (2001); Cell Struct. Funct. 26, 37-47), suggesting that some myogenesis inhibitory factors exist in non-myogenic cells. Skeletal myoblasts and adipose cells are derived from a common mesodermal stem cell, indicating that both cells have a closer relationship in the developmental lineage than the other somatic cells. To investigate the functional relationship between myoblasts and adipose cells, heterokaryons between quail myoblasts and 3T3-L1 cells, a mouse preadipocyte cell line, were prepared and examined for characteristics of myogenic differentiation. Myogenic differentiation was inhibited in the heterokaryons between quail myoblasts and well-differentiated (adipocytes) 3T3-L1 cells. On the contrary, normal myogenic differentiation proceeded in the heterokaryons between quail myoblasts and undifferentiated (preadipocytes) 3T3-L1 cells. Further investigation showed that the mouse myogenin gene from 3T3-L1 cells was transactivated in the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells. The results demonstrated that undifferentiated 3T3-L1 cells have no myogenesis inhibitory factors but acquire these during terminal differentiation into adipocytes.
Collapse
Affiliation(s)
- Nagako Sasao
- Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Kyoto, Japan
| | | | | |
Collapse
|
45
|
Coste H, Rodríguez JC. Orphan nuclear hormone receptor Rev-erbalpha regulates the human apolipoprotein CIII promoter. J Biol Chem 2002; 277:27120-9. [PMID: 12021280 DOI: 10.1074/jbc.m203421200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein CIII (apoCIII) plays an important role in plasma triglyceride and remnant lipoprotein metabolism. Because hypertriglyceridemia is an independent risk factor in coronary artery disease and the presence in plasma of triglyceride-rich remnant lipoproteins is correlated with atherosclerosis, considerable research efforts have been focused on the identification of factors regulating apoCIII gene expression to decrease its production. Here we report that the orphan nuclear hormone receptor Rev-erbalpha regulates the human apoCIII gene promoter. In apoCIII expressing human hepatic HepG2 cells, transfection of Rev-erbalpha specifically repressed apoCIII gene promoter activity. We determined by deletion and site-directed mutagenesis experiments that Rev-erbalpha dependent repression is mainly due to an element present in the proximal promoter of the apoCIII gene. In contrast, we found no functional Rev-erbalpha response elements in the convergently transcribed human apoAI gene or the common regulatory enhancer. The identified Rev-erbalpha response element coincides with a RORalpha1 element, and in the present study we provide evidence that functional cross-talk between these orphan receptors modulates the apoCIII promoter. In vitro binding analysis showed that monomers of Rev-erbalpha bound this element but not another upstream RORalpha1 response element. In addition, we showed that the closely related nuclear orphan receptor RVR also specifically repressed the human apoCIII gene. These studies underscore a novel physiological role for members of the Rev-erb family of nuclear receptors in the regulation of genes involved in triglyceride metabolism and the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Hervé Coste
- GlaxoSmithKline, 25 avenue du Québec, 91951 Les Ulis cedex, France.
| | | |
Collapse
|
46
|
Chapter 1 The myogenic regulatory factors. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1569-1799(02)11001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 2001; 276:17007-13. [PMID: 11279209 DOI: 10.1074/jbc.m101508200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7. MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Collapse
Affiliation(s)
- U Dressel
- University of Queensland, Institute for Molecular Bioscience, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, B402A, St. Lucia 4072, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Castagné C, Terenzi H, Zakin MM, Delepierre M. Solution structure of the orphan nuclear receptor rev-erb beta response element by 1H, 31P NMR and molecular simulation*. Biochimie 2000; 82:739-48. [PMID: 11018291 DOI: 10.1016/s0300-9084(00)01148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rev-erb beta is an orphan receptor that binds as a homodimer or as a monomer to DNA. The solution structure of the non-palindromic 15 bp DNA duplex d(TAGAATGTAGGTCAG), the response element of Rev-erb beta for monomeric binding, was determined by 1H and 31P NMR, energy minimization with NMR-derived restraints for distances and NOE back-calculation methods. The refined final structures have the typical overall features of B-type DNA. However, titration of this 15 bp duplex with ReDBD, the DNA binding domain of Rev-erb beta, showed large shifts of imino protons and 31P signals, suggesting major conformational changes.
Collapse
Affiliation(s)
- C Castagné
- Laboratoire de Résonance Magnétique Nucléaire, CNRS URA 1773, Institut Pasteur, 28, rue du Dr.-Roux, 75724 cedex 15, Paris, France
| | | | | | | |
Collapse
|
49
|
Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1209] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix–loop–helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two regions of GRIP-1, an amino-terminal bHLH–PAS region and the carboxy-terminal region between amino acids 1158 and 1423 (which encodes an activation domain, has HAT activity, and interacts with the coactivator-associated arginine methyltransferase). This work demonstrates that GRIP-1 potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2C-mediated transactivation and is the first study to ascribe a function to the amino-terminal bHLH–PAS region of SRCs.
Collapse
|
50
|
Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000; 14:1209-28. [PMID: 10817756 PMCID: PMC316616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Accepted: 03/24/2000] [Indexed: 02/16/2023]
Abstract
Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix-loop-helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two regions of GRIP-1, an amino-terminal bHLH-PAS region and the carboxy-terminal region between amino acids 1158 and 1423 (which encodes an activation domain, has HAT activity, and interacts with the coactivator-associated arginine methyltransferase). This work demonstrates that GRIP-1 potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2C-mediated transactivation and is the first study to ascribe a function to the amino-terminal bHLH-PAS region of SRCs.
Collapse
Affiliation(s)
- S L Chen
- University of Queensland, Institute for Molecular Biosciences, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, B402A, St. Lucia, 4072, Queensland, Australia
| | | | | | | |
Collapse
|