1
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
2
|
Rahmadanthi FR, Maksum IP. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:871. [PMID: 37372155 DOI: 10.3390/biology12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Transfer RNA (tRNA) genes in the mitochondrial DNA genome play an important role in protein synthesis. The 22 tRNA genes carry the amino acid that corresponds to that codon but changes in the genetic code often occur such as gene mutations that impact the formation of adenosine triphosphate (ATP). Insulin secretion does not occur because the mitochondria cannot work optimally. tRNA mutation may also be caused by insulin resistance. In addition, the loss of tRNA modification can cause pancreatic β cell dysfunction. Therefore, both can be indirectly associated with diabetes mellitus because diabetes mellitus, especially type 2, is caused by insulin resistance and the body cannot produce insulin. In this review, we will discuss tRNA in detail, several diseases related to tRNA mutations, how tRNA mutations can lead to type 2 diabetes mellitus, and one example of a point mutation that occurs in tRNA.
Collapse
Affiliation(s)
- Fanny Rizki Rahmadanthi
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Cui W, Zhao D, Jiang J, Tang F, Zhang C, Duan C. tRNA Modifications and Modifying Enzymes in Disease, the Potential Therapeutic Targets. Int J Biol Sci 2023; 19:1146-1162. [PMID: 36923941 PMCID: PMC10008702 DOI: 10.7150/ijbs.80233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
tRNA is one of the most conserved and abundant RNA species, which plays a key role during protein translation. tRNA molecules are post-transcriptionally modified by tRNA modifying enzymes. Since high-throughput sequencing technology has developed rapidly, tRNA modification types have been discovered in many research fields. In tRNA, numerous types of tRNA modifications and modifying enzymes have been implicated in biological functions and human diseases. In our review, we talk about the relevant biological functions of tRNA modifications, including tRNA stability, protein translation, cell cycle, oxidative stress, and immunity. We also explore how tRNA modifications contribute to the progression of human diseases. Based on previous studies, we discuss some emerging techniques for assessing tRNA modifications to aid in discovering different types of tRNA modifications.
Collapse
Affiliation(s)
- Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, PR China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, PR China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, PR China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, PR China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, PR China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, PR China.,Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| |
Collapse
|
4
|
ATF5, a putative therapeutic target for the mitochondrial DNA 3243A > G mutation-related disease. Cell Death Dis 2021; 12:701. [PMID: 34262025 PMCID: PMC8280182 DOI: 10.1038/s41419-021-03993-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.
Collapse
|
5
|
Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S, Mito M, Iwasaki S, Ma D, Zhao X, Asano K, Lin H, Kirino Y, Sakaguchi Y, Suzuki T. Complete chemical structures of human mitochondrial tRNAs. Nat Commun 2020; 11:4269. [PMID: 32859890 PMCID: PMC7455718 DOI: 10.1038/s41467-020-18068-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.
Collapse
Affiliation(s)
- Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuka Yashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ittoku Kikuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hironori Saito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ikuya Matsuzawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Mari Mito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ding Ma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xuewei Zhao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huan Lin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, Hainan, P.R. China
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
6
|
Tabebi M, Safi W, Felhi R, Alila Fersi O, Keskes L, Abid M, Mnif M, Fakhfakh F. The first concurrent detection of mitochondrial DNA m.3243A>G mutation, deletion, and depletion in a family with mitochondrial diabetes. Mol Genet Genomic Med 2020; 8:e1292. [PMID: 32394641 PMCID: PMC7336730 DOI: 10.1002/mgg3.1292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial diabetes (MD) is a rare monogenic form of diabetes and divided into type l and type 2. It is characterized by a strong familial clustering of diabetes with the presence of maternal transmission in conjunction with bilateral hearing impairment in most of the carriers. The most common form of MD is associated with the m.3243A>G mutation in the mitochondrial MT-TL1, but there are also association with a range of other point mutations, deletion, and depletion in mtDNA. METHODS The mitochondrial genome anomalies were investigated in a family with clinical features of MD, which includes a proband presenting severe MD conditions including cardiomyopathy, retinopathy, and psychomotor retardation. RESULTS By investigating the patient's blood leukocytes and skeletal muscle, we identified the m.3243A>G mutation in heteroplasmic state. This mutation was absent in the rest of the family members. In addition, our analysis revealed in the proband a large mtDNA heteroplasmic deletion (~1 kb) and a reduction in mtDNA copy number. CONCLUSION Our study points out, for the first time, a severe phenotypic expression of the m.3243A>G point mutation in association with mtDNA deletion and depletion in MD.
Collapse
Affiliation(s)
- Mouna Tabebi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia.,Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Safi
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Alila Fersi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Leila Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Abid
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Mouna Mnif
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
8
|
Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'. Open Biol 2018; 7:rsob.170077. [PMID: 28566301 PMCID: PMC5451548 DOI: 10.1098/rsob.170077] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| |
Collapse
|
9
|
|
10
|
Siira SJ, Shearwood AMJ, Bracken CP, Rackham O, Filipovska A. Defects in RNA metabolism in mitochondrial disease. Int J Biochem Cell Biol 2017; 85:106-113. [PMID: 28189843 DOI: 10.1016/j.biocel.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022]
Abstract
The expression of mitochondrially-encoded genes requires the efficient processing of long precursor RNAs at the 5' and 3' ends of tRNAs, a process which, when disrupted, results in disease. Two such mutations reside within mt-tRNALeu(UUR); a m.3243A>G transition, which is the most common cause of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), and m.3302A>G which often causes mitochondrial myopathy (MM). We used parallel analysis of RNA ends (PARE) that captures the 5' terminal end of 5'-monophosphorylated mitochondrial RNAs to compare the effects of the m.3243A>G and m.3302A>G mutations on mitochondrial tRNA processing and downstream RNA metabolism. We confirmed previously identified RNA processing defects, identified common internal cleavage sites and new sites unique to the m.3243A>G mutants that do not correspond to transcript ends. These sites occur in regions of predicted RNA secondary structure, or are in close proximity to such regions, and may identify regions of importance to the processing of mtRNAs.
Collapse
Affiliation(s)
- Stefan J Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Anne-Marie J Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Cameron P Bracken
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
11
|
Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce SF, Powell CA, Rorbach J, Lantaff R, Blanco S, Sauer S, Kotzaeridou U, Hoffmann GF, Memari Y, Kolb-Kokocinski A, Durbin R, Mayr JA, Frye M, Prokisch H, Minczuk M. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun 2016; 7:12039. [PMID: 27356879 PMCID: PMC4931328 DOI: 10.1038/ncomms12039] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m(5)C) methyltransferase NSun3 and link m(5)C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m(5)C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNA(Met)). Further, we demonstrate that m(5)C deficiency in mt-tRNA(Met) results in the lack of 5-formylcytosine (f(5)C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f(5)C in human mitochondrial RNA is generated by oxidative processing of m(5)C.
Collapse
Affiliation(s)
| | - Sabine Dietmann
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Laura Kremer
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Human Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technical University Munich, Institute of Human Genetics, Trogerstrasse 32, 81675 München, Germany
| | - Shobbir Hussain
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sarah F. Pearce
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | | | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Rebecca Lantaff
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sandra Blanco
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sascha Sauer
- Max-Planck-Institute for Molecular Genetics, Otto-Warburg Laboratory, 14195 Berlin, Germany
- University of Würzburg, CU Systems Medicine, 97080 Würzburg, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology/Berlin Institute of Health, 13125 Berlin, Germany
| | - Urania Kotzaeridou
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Georg F. Hoffmann
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Anja Kolb-Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Johannes A. Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, Salzburg 5020, Austria
| | - Michaela Frye
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Holger Prokisch
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Human Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technical University Munich, Institute of Human Genetics, Trogerstrasse 32, 81675 München, Germany
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
12
|
Byrnes J, Hauser K, Norona L, Mejia E, Simmerling C, Garcia-Diaz M. Base Flipping by MTERF1 Can Accommodate Multiple Conformations and Occurs in a Stepwise Fashion. J Mol Biol 2016; 428:2542-2556. [PMID: 26523681 PMCID: PMC4851923 DOI: 10.1016/j.jmb.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 11/28/2022]
Abstract
Human mitochondrial transcription termination occurs within the leu-tRNA gene and is mediated by the DNA binding protein MTERF1. The crystal structure of MTERF1 bound to the canonical termination sequence reveals a rare base flipping event that involves the eversion of three nucleotides. These nucleotides are stabilized by stacking interactions with three MTERF1 residues, which are essential not only for base flipping but also for termination activity. To further understand the mechanism of base flipping, we examined each of the individual stacking interactions in structural, energetic and functional detail. Individual substitutions of Arg162, Tyr288 and Phe243 have revealed unequal contributions to overall termination activity. Furthermore, our work identifies an important role for Phe322 in the base flipping mechanism and we demonstrate how Phe322 and Phe243 are important for coupling base flipping between the heavy and light strand DNA chains. We propose a stepwise model for the base flipping process that recapitulates our observations. Finally, we show that MTERF1 has the ability to accommodate alternate active conformations. The adaptability of base flipping has implications for MTERF1 function and for the putative function of MTERF1 at alternative binding sites in human mitochondria.
Collapse
Affiliation(s)
- James Byrnes
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Hauser
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leah Norona
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Edison Mejia
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
13
|
Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. A human transcription factor in search mode. Nucleic Acids Res 2015; 44:63-74. [PMID: 26673724 PMCID: PMC4705650 DOI: 10.1093/nar/gkv1091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.
Collapse
Affiliation(s)
- Kevin Hauser
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Yiqing He
- Great Neck South High School, Great Neck, NY 11023, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Alila OF, Rebai EM, Tabebi M, Tej A, Chamkha I, Tlili A, Bouguila J, Tilouche S, Soyah N, Boughamoura L, Fakhfakh F. Whole mitochondrial genome analysis in two families with dilated mitochondrial cardiomyopathy: detection of mutations in MT-ND2 and MT-TL1 genes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2873-80. [PMID: 26258512 DOI: 10.3109/19401736.2015.1060417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. These mutations were described in the mt-tRNA genes and in the mitochondrial protein-coding genes. The aim of this study was to identify the genetic defect in two patients belonging to two families with cardiac dysfunction associated to a wide spectrum of clinical phenotypes. The sequencing analysis of the whole mitochondrial DNA in the two patients and their parents revealed the presence of known polymorphisms associated to cardiomyopathy and two pathogenic mutations in DNA extracted from blood leucocytes: the heteroplasmic m.3243A > G mutation in the MT-TL1 gene in patient A; and the homoplasmic m.5182C > T mutation in the ND2 gene in patient B. Secondary structure analysis of the ND2 protein further supported the deleterious role of the m.5182C > T mutation, as it was found to be involved an extended imbalance in its hydrophobicity and affect its function. In addition, the mitochondrial variants identified in patients A and B classify both of them in the same haplogroup H2a2a1.
Collapse
Affiliation(s)
- Olfa Fersi Alila
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Emna Mkaouar Rebai
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Mouna Tabebi
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Amel Tej
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Imen Chamkha
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| | - Abdelaziz Tlili
- c Department of Applied Biology , College of Sciences, University of Sharjah , Sharjah , UAE
| | - Jihene Bouguila
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Samia Tilouche
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Nejla Soyah
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Lamia Boughamoura
- b Service de Pédiatrie, C.H.U. Farhat Hached de Sousse , Sousse , Tunisia , and
| | - Faiza Fakhfakh
- a Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax , Sfax , Tunisia
| |
Collapse
|
15
|
Kellner S, Ochel A, Thüring K, Spenkuch F, Neumann J, Sharma S, Entian KD, Schneider D, Helm M. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res 2014; 42:e142. [PMID: 25129236 PMCID: PMC4191383 DOI: 10.1093/nar/gku733] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC-MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding (13)C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations<2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude.
Collapse
Affiliation(s)
- Stefanie Kellner
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Antonia Ochel
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Felix Spenkuch
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Jennifer Neumann
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Johann-Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Johann-Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
16
|
Multiplicity of 5' cap structures present on short RNAs. PLoS One 2014; 9:e102895. [PMID: 25079783 PMCID: PMC4117478 DOI: 10.1371/journal.pone.0102895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
Most RNA molecules are co- or post-transcriptionally modified to alter their chemical and functional properties to assist in their ultimate biological function. Among these modifications, the addition of 5′ cap structure has been found to regulate turnover and localization. Here we report a study of the cap structure of human short (<200 nt) RNAs (sRNAs), using sequencing of cDNA libraries prepared by enzymatic pretreatment of the sRNAs with cap sensitive-specificity, thin layer chromatographic (TLC) analyses of isolated cap structures and mass spectrometric analyses for validation of TLC analyses. Processed versions of snoRNAs and tRNAs sequences of less than 50 nt were observed in capped sRNA libraries, indicating additional processing and recapping of these annotated sRNAs biotypes. We report for the first time 2,7 dimethylguanosine in human sRNAs cap structures and surprisingly we find multiple type 0 cap structures (mGpppC, 7mGpppG, GpppG, GpppA, and 7mGpppA) in RNA length fractions shorter than 50 nt. Finally, we find the presence of additional uncharacterized cap structures that wait determination by the creation of needed reference compounds to be used in TLC analyses. These studies suggest the existence of novel biochemical pathways leading to the processing of primary and sRNAs and the modifications of their RNA 5′ ends with a spectrum of chemical modifications.
Collapse
|
17
|
Matam K, Shaik NA, Aggarwal S, Diwale S, Banaganapalli B, Al-Aama JY, Elango R, Rao P, Hasan Q. Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients. Mol Genet Genomics 2014; 289:533-40. [DOI: 10.1007/s00438-014-0828-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022]
|
18
|
Ryvkin P, Leung YY, Silverman IM, Childress M, Valladares O, Dragomir I, Gregory BD, Wang LS. HAMR: high-throughput annotation of modified ribonucleotides. RNA (NEW YORK, N.Y.) 2013; 19:1684-92. [PMID: 24149843 PMCID: PMC3884653 DOI: 10.1261/rna.036806.112] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 08/23/2013] [Indexed: 05/17/2023]
Abstract
RNA is often altered post-transcriptionally by the covalent modification of particular nucleotides; these modifications are known to modulate the structure and activity of their host RNAs. The recent discovery that an RNA methyl-6 adenosine demethylase (FTO) is a risk gene in obesity has brought to light the significance of RNA modifications to human biology. These noncanonical nucleotides, when converted to cDNA in the course of RNA sequencing, can produce sequence patterns that are distinguishable from simple base-calling errors. To determine whether these modifications can be detected in RNA sequencing data, we developed a method that can not only locate these modifications transcriptome-wide with single nucleotide resolution, but can also differentiate between different classes of modifications. Using small RNA-seq data we were able to detect 92% of all known human tRNA modification sites that are predicted to affect RT activity. We also found that different modifications produce distinct patterns of cDNA sequence, allowing us to differentiate between two classes of adenosine and two classes of guanine modifications with 98% and 79% accuracy, respectively. To show the robustness of this method to sample preparation and sequencing methods, as well as to organismal diversity, we applied it to a publicly available yeast data set and achieved similar levels of accuracy. We also experimentally validated two novel and one known 3-methylcytosine (3mC) sites predicted by HAMR in human tRNAs. Researchers can now use our method to identify and characterize RNA modifications using only RNA-seq data, both retrospectively and when asking questions specifically about modified RNA.
Collapse
Affiliation(s)
- Paul Ryvkin
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ian M. Silverman
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Micah Childress
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Isabelle Dragomir
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian D. Gregory
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding authorsE-mail E-mail
| | - Li-San Wang
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
19
|
|
20
|
Dowlati MA, Derakhshandeh-peykar P, Houshmand M, Farhadi M, Shojaei A, Bazzaz JT. Novel human mitochondrial tRNAphemutation in a patient with hearing impairment: A case study. ACTA ACUST UNITED AC 2012; 24:132-6. [DOI: 10.3109/19401736.2012.717935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Koga Y, Povalko N, Nishioka J, Katayama K, Yatsuga S, Matsuishi T. Molecular pathology of MELAS and l-arginine effects. Biochim Biophys Acta Gen Subj 2012; 1820:608-14. [DOI: 10.1016/j.bbagen.2011.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
|
22
|
Rötig A. Human diseases with impaired mitochondrial protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1198-205. [DOI: 10.1016/j.bbabio.2011.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
23
|
Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombès A, Boucheham A, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011; 39:8173-86. [PMID: 21724600 PMCID: PMC3185436 DOI: 10.1093/nar/gkr546] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.
Collapse
Affiliation(s)
- Olga Z Karicheva
- UMR 7156 University of Strasbourg - CNRS, Molecular Genetics, Genomics & Microbiology, Strasbourg 67084, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Glatz C, D'Aco K, Smith S, Sondheimer N. Mutation in the mitochondrial tRNA(Val) causes mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Mitochondrion 2011; 11:615-9. [PMID: 21540128 DOI: 10.1016/j.mito.2011.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/17/2011] [Accepted: 04/14/2011] [Indexed: 11/17/2022]
Abstract
An m.1630A>G mutation in the mitochondrial tRNA(Val) (MTTV) was identified in a patient with hearing impairment, short stature and new onset of stroke. This mutation has previously been identified in a patient with the mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE). The mother of the proband also had high levels of the m.1630A>G allele present in blood and other tissues, without symptoms. To confirm the pathogenicity of this mutation, we created cybrid cell lines with various mutation loads. The m.1630A>G mutation impairs oxygen consumption, affects the stability of the MTTV and reduces the levels of subunits of the electron transport chain.
Collapse
Affiliation(s)
- Catherine Glatz
- Section of Biochemical Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
25
|
Mezghani N, Mkaouar-Rebai E, Mnif M, Charfi N, Rekik N, Youssef S, Abid M, Fakhfakh F. The heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in two Tunisian families with mitochondrial diabetes. J Diabetes Complications 2010; 24:270-7. [PMID: 20045353 DOI: 10.1016/j.jdiacomp.2009.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/26/2009] [Accepted: 11/18/2009] [Indexed: 11/26/2022]
Abstract
UNLABELLED Diabetes mellitus (DM) is a heterogeneous disorder characterized by the presence of chronic hyperglycemia. Genetic factors play an important role in the development of this disorder, and several studies reported mutations in nuclear genes implicated in the insulin function. Besides, DM can be maternally transmitted in some families, possibly due to the maternal mitochondrial inheritance. In fact, mitochondrial genes may be plausible causative agents for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. MATERIALS AND METHODS In this report, we screened two Tunisian families with mitochondrial diabetes for the m.3243A>G and the m.14709T>C mutations, respectively, in the tRNA(Leu(UUR)) and the tRNA(Glu) genes. RESULTS The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the sequence-specific primers by polymerase chain reaction (SSP-PCR) analysis in the leucocytes and the buccal mucosa in the members of the two families showed the absence of the m.3243A>G mutation and the presence of the heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in the two tested tissues. CONCLUSIONS We conclude that the m.14709T>C mutation in the tRNA(Glu) gene could be a cause of mitochondrial diabetes in Tunisian affected families. In addition, the heteroplasmic loads correlated with the severity and the onset of mitochondrial diabetes in one family but not in the other, suggesting the presence of environmental factors or nuclear modifier genes.
Collapse
Affiliation(s)
- Najla Mezghani
- Faculty of Medicine of Sfax, Human Molecular Genetic Laboratory, Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|
27
|
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147-54. [PMID: 20194621 DOI: 10.1128/mcb.01614-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
Collapse
|
28
|
Messmer M, Pütz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Catherine F. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Res 2009; 37:6881-95. [PMID: 19767615 PMCID: PMC2777451 DOI: 10.1093/nar/gkp697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria.
Collapse
Affiliation(s)
- Marie Messmer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Mitochondrial DNA mutations and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:113-28. [PMID: 19761752 DOI: 10.1016/j.bbabio.2009.09.005] [Citation(s) in RCA: 422] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.
Collapse
|
30
|
Messmer M, Gaudry A, Sissler M, Florentz C. Pathology-related mutation A7526G (A9G) helps in the understanding of the 3D structural core of human mitochondrial tRNA(Asp). RNA (NEW YORK, N.Y.) 2009; 15:1462-1468. [PMID: 19535463 PMCID: PMC2714750 DOI: 10.1261/rna.1626109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/08/2009] [Indexed: 05/27/2023]
Abstract
More than 130 mutations in human mitochondrial tRNA (mt-tRNA) genes have been correlated with a variety of neurodegenerative and neuromuscular disorders. Their molecular impacts are of mosaic type, affecting various stages of tRNA biogenesis, structure, and/or functions in mt-translation. Knowledge of mammalian mt-tRNA structures per se remains scarce however. Primary and secondary structures deviate from classical tRNAs, while rules for three-dimensional (3D) folding are almost unknown. Here, we take advantage of a myopathy-related mutation A7526G (A9G) in mt-tRNA(Asp) to investigate both the primary molecular impact underlying the pathology and the role of nucleotide 9 in the network of 3D tertiary interactions. Experimental evidence is presented for existence of a 9-12-23 triple in human mt-tRNA(Asp) with a strongly conserved interaction scheme in mammalian mt-tRNAs. Mutation A7526G disrupts the triple interaction and in turn reduces aspartylation efficiency.
Collapse
|
31
|
Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA (NEW YORK, N.Y.) 2008; 14:2407-2416. [PMID: 18796578 PMCID: PMC2578859 DOI: 10.1261/rna.1208808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
The A3243G mutation in the human mitochondrial tRNA(Leu(UUR)) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNA(Leu(UUR)) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNA(Leu(UUR)) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
32
|
Hall AM, Unwin RJ, Hanna MG, Duchen MR. Renal function and mitochondrial cytopathy (MC): more questions than answers? QJM 2008; 101:755-66. [PMID: 18487272 DOI: 10.1093/qjmed/hcn060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of mitochondrial biology has advanced significantly in the last 10 years. The effects of mitochondrial dysfunction or cytopathy (MC) on the heart and neuromuscular system are well known, and its involvement in the pathophysiology of several common clinical disorders such as diabetes, hyperlipidaemia and hypertension, is just beginning to emerge; however, its contribution to renal disease has received much less attention, and the available literature raises some interesting questions: Why do children with MC commonly present with a renal phenotype that is often quite different from adults? How does a mutation in mitochondrial DNA (mtDNA) lead to disease at the cellular level, and how can a single mtDNA point mutation result in such a variety of renal- and non-renal phenotypes in isolation or combined? Why are some regions of the nephron seemingly more sensitive to mitochondrial dysfunction and damage by mitochondrial toxins? Perhaps most important of all, what can be done to diagnose and treat MC, now and in the future? In this review we summarize our current understanding of the relationship between mitochondrial biology, renal physiology and clinical nephrology, in an attempt to try to answer some of these questions. Although MC is usually considered a rare defect, it is almost certainly under-diagnosed. A greater awareness and understanding of kidney involvement in MC might lead to new treatment strategies for diseases in which mitochondrial dysfunction is secondary to toxic or ischaemic injury, rather than to an underlying genetic mutation.
Collapse
Affiliation(s)
- A M Hall
- Department of Physiology, University College London, London, UK.
| | | | | | | |
Collapse
|
33
|
Sissler M, Lorber B, Messmer M, Schaller A, Pütz J, Florentz C. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Methods 2008; 44:176-89. [PMID: 18241799 DOI: 10.1016/j.ymeth.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022] Open
Abstract
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Collapse
Affiliation(s)
- Marie Sissler
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
34
|
DiFrancesco JC, Cooper JM, Lam A, Hart PE, Tremolizzo L, Ferrarese C, Schapira AH. MELAS mitochondrial DNA mutation A3243G reduces glutamate transport in cybrids cell lines. Exp Neurol 2008; 212:152-6. [PMID: 18455161 DOI: 10.1016/j.expneurol.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/10/2008] [Accepted: 03/15/2008] [Indexed: 12/01/2022]
Abstract
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) is commonly associated with the A3243G mitochondrial DNA (mtDNA) mutation encoding the transfer RNA of leucine (UUR) (tRNA (Leu(UUR))). The pathogenetic mechanisms of this mutation are not completely understood. Neuronal functions are particularly vulnerable to alterations in oxidative phosphorylation, which may affect the function of the neurotransmitter glutamate, leading to excitotoxicity. In order to investigate the possible effects of A3243G upon glutamate homeostasis, we assessed glutamate uptake in osteosarcoma-derived cytoplasmic hybrids (cybrids) expressing high levels of this mutation. High-affinity Na(+)-dependent glutamate uptake was assessed as radioactive [(3)H]-glutamate influx mediated by specific excitatory amino acid transporters (EAATs). The maximal rate (V(max)) of Na(+)-dependent glutamate uptake was significantly reduced in all the mutant clones. Although the defect did not relate to either the mutant load or magnitude of oxidative phosphorylation defect, we found an inverse relationship between A3243G mutation load and mitochondrial ATP synthesis, without any evidence of increased cellular or mitochondrial free radical production in these A3243G clones. These data suggest that a defect of glutamate transport in MELAS neurons may be due to decreased energy production and might be involved in mediating the pathogenic effects of the A3243G mtDNA mutation.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neuroscience and Biomedical Technologies, University of Milano-Bicocca, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hengesbach M, Meusburger M, Lyko F, Helm M. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA (NEW YORK, N.Y.) 2008; 14:180-187. [PMID: 17998290 PMCID: PMC2151034 DOI: 10.1261/rna.742708] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/15/2007] [Indexed: 05/25/2023]
Abstract
Post-transcriptional ribonucleotide modifications are widespread and abundant processes that have not been analyzed adequately due to the lack of appropriate detection methods. Here, two methods for the analysis of modified nucleotides in RNA are presented that are based on the quantitative and site-specific DNAzyme-mediated cleavage of the target RNA at or near the site of modification. Quantitative RNA cleavage is achieved by cycling the DNAzyme and its RNA substrate through repeated periods of heating and cooling. In a first approach, DNAzyme-directed cleavage directly 5' of the residue in question allows radioactive labeling of the newly freed 5'-OH. After complete enzymatic hydrolysis, the modification status can be assessed by two-dimensional thin layer chromatography. In a second approach, oligoribonucleotide fragments comprising the modification site are excised from the full-length RNA in an endonucleolytic fashion, using a tandem DNAzyme. The excised fragment is isolated by electrophoresis and submitted to further conventional analysis. These results establish DNAzymes as valuable tools for the site-specific and highly sensitive detection of ribonucleotide modifications.
Collapse
Affiliation(s)
- Martin Hengesbach
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Ling J, Roy H, Qin D, Rubio MAT, Alfonzo JD, Fredrick K, Ibba M. Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Proc Natl Acad Sci U S A 2007; 104:15299-304. [PMID: 17878308 PMCID: PMC2000536 DOI: 10.1073/pnas.0704441104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Indexed: 11/18/2022] Open
Abstract
Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions. We tested the impact of hmt-tRNA(Phe) mutations on aminoacylation, structure, and translation elongation-factor binding. The majority of the mutants were pleiotropic, exhibiting defects in aminoacylation, global structure, and elongation-factor binding. One notable exception was the G34A anticodon mutation of hmt-tRNA(Phe) (mitochondrial DNA mutation G611A), which is associated with MERRF (myoclonic epilepsy with ragged red fibers). In vitro, the G34A mutation decreases aminoacylation activity by 100-fold, but does not affect global folding or recognition by elongation factor. Furthermore, G34A hmt-tRNA(Phe) does not undergo adenosine-to-inosine (A-to-I) editing, ruling out miscoding as a possible mechanism for mitochondrial malfunction. To improve the aminoacylation state of the mutant tRNA, we modified the tRNA binding domain of the nucleus-encoded human mitochondrial phenylalanyl-tRNA synthetase, which aminoacylates hmt-tRNA(Phe) with cognate phenylalanine. This variant enzyme displayed significantly improved aminoacylation efficiency for the G34A mutant, suggesting a general strategy to treat certain classes of mitochondrial diseases by modification of the corresponding nuclear gene.
Collapse
Affiliation(s)
| | - Hervé Roy
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | | | - Mary Anne T. Rubio
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Juan D. Alfonzo
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Kurt Fredrick
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Michael Ibba
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| |
Collapse
|
37
|
Finsterer J. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 2007; 116:1-14. [PMID: 17587249 DOI: 10.1111/j.1600-0404.2007.00836.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
38
|
Mkaouar-Rebai E, Tlili A, Masmoudi S, Belguith N, Charfeddine I, Mnif M, Triki C, Fakhfakh F. Mutational analysis of the mitochondrial tRNALeu(UUR) gene in Tunisian patients with mitochondrial diseases. Biochem Biophys Res Commun 2007; 355:1031-7. [PMID: 17336924 DOI: 10.1016/j.bbrc.2007.02.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/29/2022]
Abstract
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine, 3029 Sfax, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A previous limitation in the analysis of ribonucleic acids (RNAs) by mass spectrometry (MS) has been the inability to obtain quantitative information relating to total RNA, RNA subunits, and undermodified nucleosides in a straightforward manner. Here, a simple and rapid method has been developed for the relative quantitation of small RNAs using 18O labeling and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). One RNA sample is digested with RNase T1 in 18O-labeled ("heavy") water with the 18O being incorporated at the 3'-phosphate end of oligonucleotides upon hydrolysis. A second RNA sample is digested with RNase T1 in normal ("light") water. The two samples are then combined and analyzed by MALDI-MS. Relative ion abundances of the light- and heavy-water digestion products, which are separated by 2 Da due to the isotopic mass of 18O, reveal relative quantitation information from the two RNA samples. The accuracy and reproducibility of this approach were tested on 18 known RNA samples and 4 unknown RNA samples. The coefficients of variation for quantitation were found to be generally below 15% when using MALDI-MS. The approach yields accurate quantitative information for heavy-to-light ratios greater than 1:2. This method should prove useful for quantitatively characterizing variations in RNA production and variations in the amount of posttranscriptionally modified nucleosides.
Collapse
Affiliation(s)
- Zhaojing Meng
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, P.O. Box 210172, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | |
Collapse
|
40
|
Maniura-Weber K, Helm M, Engemann K, Eckertz S, Möllers M, Schauen M, Hayrapetyan A, von Kleist-Retzow JC, Lightowlers RN, Bindoff LA, Wiesner RJ. Molecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene. Nucleic Acids Res 2006; 34:6404-15. [PMID: 17130166 PMCID: PMC1702489 DOI: 10.1093/nar/gkl727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gene encoding mt-tRNALeu(UUR), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNALeu(UUR) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G in transmitochondrial cybrids. Increased steady-state levels of RNA19 was confirmed, although not to the levels previously reported in muscle. This data was consistent with an increase in RNA19 stability. The mutation resulted in decreased mt-tRNALeu(UUR) levels, but its stability was unchanged, consistent with a defect in RNA19 processing responsible for low tRNA levels. A partial defect in aminoacylation was also identified, potentially caused by an alteration in tRNA structure. These deficiencies lead to a severe defect in respiration in the transmitochondrial cybrids, consistent with the profound mitochondrial disorder originally associated with this mutation.
Collapse
Affiliation(s)
- Katharina Maniura-Weber
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Katrin Engemann
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Sabrina Eckertz
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Myriam Möllers
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Matthias Schauen
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- Department of Pediatrics, University of KölnKerpener Strasse 62, 50924 Köln, Germany
| | - Robert N. Lightowlers
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon TyneUK
| | - Laurence A. Bindoff
- Department of Neurology, Institute of Clinical Medicine, Haukeland University Hospital, University of Bergen5021 Bergen, Norway
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| |
Collapse
|
41
|
Pye D, Kyriakouli DS, Taylor GA, Johnson R, Elstner M, Meunier B, Chrzanowska-Lightowlers ZMA, Taylor RW, Turnbull DM, Lightowlers RN. Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants. Nucleic Acids Res 2006; 34:e95. [PMID: 16885236 PMCID: PMC1540737 DOI: 10.1093/nar/gkl516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes polypeptides that are critical for coupling oxidative phosphorylation. Our detailed understanding of the molecular processes that mediate mitochondrial gene expression and the structure–function relationships of the OXPHOS components could be greatly improved if we were able to transfect mitochondria and manipulate mtDNA in vivo. Increasing our knowledge of this process is not merely of fundamental importance, as mutations of the mitochondrial genome are known to cause a spectrum of clinical disorders and have been implicated in more common neurodegenerative disease and the ageing process. In organellar or in vitro reconstitution studies have identified many factors central to the mechanisms of mitochondrial gene expression, but being able to investigate the molecular aetiology of a limited number of cell lines from patients harbouring mutated mtDNA has been enormously beneficial. In the absence of a mechanism for manipulating mtDNA, a much larger pool of pathogenic mtDNA mutations would increase our knowledge of mitochondrial gene expression. Colonic crypts from ageing individuals harbour mutated mtDNA. Here we show that by generating cytoplasts from colonocytes, standard fusion techniques can be used to transfer mtDNA into rapidly dividing immortalized cells and, thereby, respiratory-deficient transmitochondrial cybrids can be isolated. A simple screen identified clones that carried putative pathogenic mutations in MTRNR1, MTRNR2, MTCOI and MTND2, MTND4 and MTND6. This method can therefore be exploited to produce a library of cell lines carrying pathogenic human mtDNA for further study.
Collapse
Affiliation(s)
| | | | | | | | | | - Brigitte Meunier
- Centre de Génétique Moléculaire, CNRSAvenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | - Robert N. Lightowlers
- To whom correspondence should be addressed. Tel: +44 191 222 8028; Fax: +44 191 222 8553;
| |
Collapse
|
42
|
Bornstein B, Mas J, Patrono C, Fernández-Moreno M, González-Vioque E, Campos Y, Carrozzo R, Martín M, Hoyo P, Santorelli F, Arenas J, Garesse R. Comparative analysis of the pathogenic mechanisms associated with the G8363A and A8296G mutations in the mitochondrial tRNA(Lys) gene. Biochem J 2006; 387:773-8. [PMID: 15554876 PMCID: PMC1135008 DOI: 10.1042/bj20040949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two mutations (G8363A and A8296G) in the mtDNA (mitochondrial DNA) tRNA(Lys) gene have been associated with severe mitochondrial diseases in a number of reports. Their functional significance, however, remains unknown. We have already shown that homoplasmic cybrids harbouring the A8296G mutation display normal oxidative phosphorylation, although the possibility of a subtle change in mitochondrial respiratory capacity remains an open issue. We have now investigated the pathogenic mechanism of another mutation in the tRNA(Lys) gene (G8363A) by repopulating an mtDNA-less human osteosarcoma cell line with mitochondria harbouring either this genetic variant alone or an unusual combination of the two mutations (A8296G+G8363A). Cybrids homoplasmic for the single G8363A or the A8296G+G8363A mutations have defective respiratory-chain enzyme activities and low oxygen consumption, indicating a severe impairment of the oxidative phosphorylation system. Generation of G8363A cybrids within a wild-type or the A8296G mtDNA genetic backgrounds resulted in an important alteration in the conformation of the tRNA(Lys), not affecting tRNA steady-state levels. Moreover, mutant cybrids have an important decrease in the proportion of amino-acylated tRNA(Lys) and, consequently, mitochondrial protein synthesis is greatly decreased. Our results demonstrate that the pathogenicity of the G8363A mutation is due to a change in the conformation of the tRNA that severely impairs aminoacylation in the absence of changes in tRNA stability. The only effect detected in the A8296G mutation is a moderate decrease in the aminoacylation capacity, which does not affect mitochondrial protein biosynthesis.
Collapse
Affiliation(s)
- Belén Bornstein
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- †Servicio de Bioquímica, Hospital Severo Ochoa, Leganés, Madrid, Spain
| | - José Antonio Mas
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Clarice Patrono
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- ‡Unit of Molecular Medicine, Children's Hospital ‘Bambino Gesù’, Rome, Italy
| | - Miguel Angel Fernández-Moreno
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Emiliano González-Vioque
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Yolanda Campos
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Rosalba Carrozzo
- ‡Unit of Molecular Medicine, Children's Hospital ‘Bambino Gesù’, Rome, Italy
| | | | - Pilar del Hoyo
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | | | - Joaquín Arenas
- §Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Rafael Garesse
- *Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Abstract
Alternative foldings are an inherent property of RNA and a ubiquitous problem in scientific investigations. To a living organism, alternative foldings can be a blessing or a problem, and so nature has found both, ways to harness this property and ways to avoid the drawbacks. A simple and effective method employed by nature to avoid unwanted folding is the modulation of conformation space through post-transcriptional base modification. Modified nucleotides occur in almost all classes of natural RNAs in great chemical diversity. There are about 100 different base modifications known, which may perform a plethora of functions. The presumably most ancient and simple nucleotide modifications, such as methylations and uridine isomerization, are able to perform structural tasks on the most basic level, namely by blocking or reinforcing single base-pairs or even single hydrogen bonds in RNA. In this paper, functional, genomic and structural evidence on cases of folding space alteration by post-transcriptional modifications in native RNA are reviewed.
Collapse
Affiliation(s)
- Mark Helm
- Department of Chemistry, Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Yasukawa T, Suzuki T, Ohta S, Watanabe K. Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion 2005; 2:129-41. [PMID: 16120315 DOI: 10.1016/s1567-7249(02)00033-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/17/2002] [Accepted: 04/18/2002] [Indexed: 10/27/2022]
Abstract
By purifying mutant mitochondrial tRNAs, we were able to ascertain that post-transcriptional modification at the anticodon wobble uridine is absent in tRNA(Lys) with the 8344 MERRF mutation and in tRNA(Leu(UUR)) with either the 3243 or 3271 MELAS mutation. Both the MERRF and MELAS mutant tRNAs substantially lost their translational ability, the extent of the loss in each mutant corresponding to the reduction in actual mitochondrial translational activity. Lack of the wobble modification deprived mutant tRNA(Lys) of interaction with the cognate codons. These features indicate that the modification defect plays a primary role in the molecular pathophysiology of these mitochondrial diseases.
Collapse
Affiliation(s)
- Takehiro Yasukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
45
|
Vilmi T, Moilanen JS, Finnilä S, Majamaa K. Sequence variation in the tRNA genes of human mitochondrial DNA. J Mol Evol 2005; 60:587-97. [PMID: 15983868 DOI: 10.1007/s00239-003-0202-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
Recent analyses have shown that nonsynonymous variation in human mitochondrial DNA (mtDNA) contains nonneutral variants, suggesting the presence of mildly deleterious mutations. Many of the disease-causing mutations in mtDNA occur in the genes encoding the tRNAs. Nucleotide sequence variation in these genes has not been studied in human populations, nor have the structural consequences of nucleotide substitutions in tRNA molecules been examined. We therefore determined the nucleotide sequences of the 22 tRNA genes in the mtDNA of 477 Finns and, also, obtained 435 European sequences from the MitoKor database. No differences in population polymorphism indices were found between the two data sets. We assessed selective constraints against various tRNA domains by comparing allele frequencies between these domains and the synonymous and nonsynonymous sites, respectively. All tRNA domains except the variable loop were more conserved than synonymous sites, and T stem and D stem were more conserved than the respective loops. We also analyzed the energetic consequences of the 96 polymorphisms recovered in the two data sets or in the Mitomap database. The minimum free energy (DeltaG) was calculated using the free energy rules as implemented in mfold version 3.1. The DeltaG's were normally distributed among the 22 wild-type tRNA genes, whereas the 96 polymorphic tRNAs departed significantly from a normal distribution. The largest differences in DeltaG between the wild-type and the polymorphic tRNAs in the Finnish population tended to be in the polymorphisms that were present at low frequencies. Allele frequency distributions and minimum free energy calculations both suggested that some polymorphisms in tRNA genes are nonneutral.
Collapse
Affiliation(s)
- Tiina Vilmi
- Department of Neurology, University of Oulu, Finland
| | | | | | | |
Collapse
|
46
|
Yasukawa T, Kirino Y, Ishii N, Holt IJ, Jacobs HT, Makifuchi T, Fukuhara N, Ohta S, Suzuki T, Watanabe K. Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett 2005; 579:2948-52. [PMID: 15893315 DOI: 10.1016/j.febslet.2005.04.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 04/15/2005] [Indexed: 11/21/2022]
Abstract
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.
Collapse
Affiliation(s)
- Takehiro Yasukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Roy MD, Wittenhagen LM, Kelley SO. Structural probing of a pathogenic tRNA dimer. RNA (NEW YORK, N.Y.) 2005; 11:254-260. [PMID: 15701731 PMCID: PMC1370715 DOI: 10.1261/rna.7143305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 12/09/2004] [Indexed: 05/24/2023]
Abstract
The A3243G mutation within the human mitochondrial (hs mt) tRNALeuUUR gene is associated with maternally inherited deafness and diabetes (MIDD) and other mitochondrial encephalopathies. One of the most pronounced structural effects of this mutation is the disruption of the native structure through stabilization of a high-affinity dimeric complex. We conducted a series of studies that address the structural properties of this tRNA dimer, and we assessed its formation under physiological conditions. Enzymatic probing was used to directly define the dimeric interface for the complex, and a discrete region of the D-stem and loop of hs mt tRNALeuUUR was identified. The dependence of dimerization on magnesium ions and temperature was also tested. The formation of the tRNA dimer is influenced by temperature, with dimerization becoming more efficient at physiological temperature. Complexation of the mutant tRNA is also affected by the amount of magnesium present, and occurs at concentrations present intracellularly. Terbium probing experiments revealed a specific metal ion-binding site localized at the site of the A3243G mutation that is unique to the dimer structure. This metal ion-binding site presents a striking parallel to dimeric complexes of viral RNAs, which use the same hexanucleotide sequence for complexation and feature a similarly positioned metal ion-binding site within the dimeric structure. Taken together, these results indicate that the unique dimeric complex formed by the hs mt tRNALeuUUR A3243G mutant exhibits interesting similarities to biological RNA dimers, and may play a role in the loss of function caused by this mutation in vivo.
Collapse
Affiliation(s)
- Marc D Roy
- Boston College, Eugene F. Merkert Chemistry Center, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
49
|
Anitori R, Manning K, Quan F, Weleber RG, Buist NRM, Shoubridge EA, Kennaway NG. Contrasting phenotypes in three patients with novel mutations in mitochondrial tRNA genes. Mol Genet Metab 2005; 84:176-88. [PMID: 15670724 DOI: 10.1016/j.ymgme.2004.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/01/2004] [Accepted: 10/02/2004] [Indexed: 11/22/2022]
Abstract
We studied three patients, each harboring a novel mutation at a highly conserved position in a different mitochondrial tRNA gene. The mutation in patient 1 (T5543C) was associated with isolated mitochondrial myopathy, and occurred in the anticodon loop of tRNA(Trp). In patient 2, with mitochondrial myopathy and marked retinopathy, the mutation (G14710A) resulted in an anticodon swap (Glu to Lys) in tRNA(Glu). Patient 3, who manifested mitochondrial encephalomyopathy and moderate retinal dysfunction, harbored a mutation (C3287A) in the TpsiC loop of tRNA(Leu(UUR)). The mutations were heteroplasmic in muscle in all cases, and sporadic in two cases. PCR-RFLP analysis in all patients showed much higher amounts of mutated mtDNA in affected tissue (muscle) than unaffected tissue (blood), and significantly higher levels of mutated mtDNA in cytochrome c oxidase (COX)-negative muscle fibers than in COX-positive fibers, confirming the pathogenicity of these mutations. The mutation was also detected in single hair roots from all three patients, indicating that each mutation must have arisen early in embryonic development or in maternal germ cells. This suggests that individual hair root analyses may reflect a wider tissue distribution of mutated mtDNA than is clinically apparent, and might be useful in predicting prognosis and, perhaps, the risk of transmitting the mutation to offspring. Our data suggest a correlation between clinical phenotype and distribution of mutated mtDNA in muscle versus hair roots. Furthermore, the high threshold for phenotypic expression in single muscle fibers (92-96%) suggests that therapies may only need to increase the percentage of wild-type mtDNA by a small amount to be beneficial.
Collapse
Affiliation(s)
- Roberto Anitori
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The mitochondrial diseases encompass a diverse group of disorders that can exhibit various combinations of clinical features. Defects in mitochondrial DNA (mtDNA) have been associated with these diseases, and studies have been able to assign biochemical defects. Deficiencies in mitochondrial oxidative phosphorylation appear to be the main pathogenic factors, although recent studies suggest that other mechanisms are involved. Reactive oxygen species (ROS) generation has been implicated in a wide variety of neurodegenerative diseases, and mitochondrial ROS generation may be an important factor in mitochondrial disease pathogenesis. Altered apoptotic signaling as a consequence of defective mitochondrial function has also been observed in both in vitro and in vivo disease models. Our current understanding of the contribution of these various mechanisms to mitochondrial disease pathophysiology will be discussed.
Collapse
Affiliation(s)
- Matthew McKenzie
- Department of Physiology, University College London, Gower Street, London, United Kingdom WC1E 6BT.
| | | | | |
Collapse
|