1
|
Misic J, Milenkovic D. Studying Mitochondrial Nucleic Acid Synthesis Utilizing Intact Isolated Mitochondria. Methods Mol Biol 2023; 2615:219-228. [PMID: 36807795 DOI: 10.1007/978-1-0716-2922-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mitochondria are eukaryotic organelles of endosymbiotic origin that contain their own genetic material, mitochondrial DNA (mtDNA), and dedicated systems for mtDNA maintenance and expression. MtDNA molecules encode a limited number of proteins that are nevertheless all essential subunits of the mitochondrial oxidative phosphorylation system. Here, we describe protocols to monitor DNA and RNA synthesis in intact, isolated mitochondria. These in organello synthesis protocols are valuable techniques for studying the mechanisms and regulation of mtDNA maintenance and expression.
Collapse
Affiliation(s)
- Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Sidarala V, Zhu J, Levi-D'Ancona E, Pearson GL, Reck EC, Walker EM, Kaufman BA, Soleimanpour SA. Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nat Commun 2022; 13:2340. [PMID: 35487893 PMCID: PMC9055072 DOI: 10.1038/s41467-022-29945-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in β-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient β-cells. Thus, the primary physiologic role of Mfn1 and 2 in β-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.
Collapse
Affiliation(s)
- Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Elena Levi-D'Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emma C Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emily M Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Brett A Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48105, United States.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, United States.
| |
Collapse
|
3
|
Wasner K, Smajic S, Ghelfi J, Delcambre S, Prada-Medina CA, Knappe E, Arena G, Mulica P, Agyeah G, Rakovic A, Boussaad I, Badanjak K, Ohnmacht J, Gérardy JJ, Takanashi M, Trinh J, Mittelbronn M, Hattori N, Klein C, Antony P, Seibler P, Spielmann M, Pereira SL, Grünewald A. Parkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation. Mov Disord 2022; 37:1405-1415. [PMID: 35460111 DOI: 10.1002/mds.29025] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | | | - Evelyn Knappe
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Patrycja Mulica
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Gideon Agyeah
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Disease Modeling and Screening Platform, Luxembourg Centre of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, Luxembourg
| | - Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Department of Life Science and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Center of Neuropathology, Dudelange, Luxembourg.,Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Disease Modeling and Screening Platform, Luxembourg Centre of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Department of Neurology, Juntendo University, Tokyo, Japan
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Liu Y, Chen Z, Wang ZH, Delaney KM, Tang J, Pirooznia M, Lee DY, Tunc I, Li Y, Xu H. The PPR domain of mitochondrial RNA polymerase is an exoribonuclease required for mtDNA replication in Drosophila melanogaster. Nat Cell Biol 2022; 24:757-765. [PMID: 35449456 DOI: 10.1038/s41556-022-00887-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial DNA (mtDNA) replication and transcription are of paramount importance to cellular energy metabolism. Mitochondrial RNA polymerase is thought to be the primase for mtDNA replication. However, it is unclear how this enzyme, which normally transcribes long polycistronic RNAs, can produce short RNA oligonucleotides to initiate mtDNA replication. We show that the PPR domain of Drosophila mitochondrial RNA polymerase (PolrMT) has 3'-to-5' exoribonuclease activity, which is indispensable for PolrMT to synthesize short RNA oligonucleotides and prime DNA replication in vitro. An exoribonuclease-deficient mutant, PolrMTE423P, partially restores mitochondrial transcription but fails to support mtDNA replication when expressed in PolrMT-mutant flies, indicating that the exoribonuclease activity is necessary for mtDNA replication. In addition, overexpression of PolrMTE423P in adult flies leads to severe neuromuscular defects and a marked increase in mtDNA transcript errors, suggesting that exoribonuclease activity may contribute to the proofreading of mtDNA transcription.
Collapse
Affiliation(s)
- Yi Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine M Delaney
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juanjie Tang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duck-Yeon Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilker Tunc
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Poveda-Huertes D, Matic S, Marada A, Habernig L, Licheva M, Myketin L, Gilsbach R, Tosal-Castano S, Papinski D, Mulica P, Kretz O, Kücükköse C, Taskin AA, Hein L, Kraft C, Büttner S, Meisinger C, Vögtle FN. An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Mol Cell 2020; 77:180-188.e9. [PMID: 31630969 PMCID: PMC6941230 DOI: 10.1016/j.molcel.2019.09.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stanka Matic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030 Vienna, Austria
| | - Patrycja Mulica
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden; Institute for Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
7
|
Matkarimov BT, Saparbaev MK. DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:77-100. [DOI: 10.1007/978-3-030-41283-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ramesh M, Campos JC, Lee P, Song Y, Hernandez G, Sin J, Tucker KC, Saadaeijahromi H, Gurney M, Ferreira JCB, Andres AM. Mitophagy protects against statin-mediated skeletal muscle toxicity. FASEB J 2019; 33:11857-11869. [PMID: 31365836 PMCID: PMC6902735 DOI: 10.1096/fj.201900807rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
The deleterious effects of statins on skeletal muscle are well known, but the mechanism associated with these effects remains unresolved. Statins are associated with mitochondrial damage, which may contribute to muscle myopathy. Here we demonstrate that simvastatin induces mitophagy in skeletal muscle cells and hypothesized that attenuating this process by silencing the mitophagy adapter p62/sequestosome-1 (SQSTM1) might mitigate myotoxicity. Surprisingly, silencing p62/SQSTM1 in differentiated C2C12 muscle cells exacerbated rather than attenuated myotoxicity. This inhibition of mitophagy in the face of statin challenge correlated with increased release of cytochrome c to the cytosol, activation of caspase-3, and lactate dehydrogenase (LDH) release. Correspondingly, targeted knockdown of Parkin, a canonical E3 ubiquitin ligase important for mitophagy, mirrored the effects of p62/SQSTM1 silencing. To corroborate these findings in vivo, we treated Parkin knockout mice with simvastatin for 2 wk. In line with our findings in vitro, these mitophagy-compromised mice displayed reduced spontaneous activity, loss of grip strength, and increased circulating levels of muscle damage marker LDH. Our findings demonstrate that mitophagy is an important mechanism to resist statin-induced skeletal muscle damage.-Ramesh, M., Campos, J. C., Lee, P., Song, Y., Hernandez, G., Sin, J., Tucker, K. C., Saadaeijahromi, H., Gurney, M., Ferreira, J. C. B., Andres, A. M. Mitophagy protects against statin-mediated skeletal muscle toxicity.
Collapse
Affiliation(s)
- Mridula Ramesh
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Juliane C. Campos
- Cedars-Sinai Medical Center, Los Angeles, California, USA
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Pamela Lee
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Yang Song
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Genaro Hernandez
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Jon Sin
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kyle C. Tucker
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Michael Gurney
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | | | | |
Collapse
|
9
|
Kauppila JHK, Bonekamp NA, Mourier A, Isokallio MA, Just A, Kauppila TES, Stewart JB, Larsson NG. Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Res 2019; 46:6642-6669. [PMID: 29860357 PMCID: PMC6061787 DOI: 10.1093/nar/gky456] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e. replicative errors and oxidative damage, but the contribution of each of these processes is much discussed. To elucidate the origin of mtDNA mutations, we measured point mutation load in mice with deficient mitochondrial base-excision repair (BER) caused by knockout alleles preventing mitochondrial import of the DNA repair glycosylases OGG1 and MUTYH (Ogg1 dMTS, Mutyh dMTS). Surprisingly, we detected no increase in the mtDNA mutation load in old Ogg1 dMTS mice. As DNA repair is especially important in the germ line, we bred the BER deficient mice for five consecutive generations but found no increase in the mtDNA mutation load in these maternal lineages. To increase reactive oxygen species (ROS) levels and oxidative damage, we bred the Ogg1 dMTS mice with tissue specific Sod2 knockout mice. Although increased superoxide levels caused a plethora of changes in mitochondrial function, we did not detect any changes in the mutation load of mtDNA or mtRNA. Our results show that the importance of oxidative damage as a contributor of mtDNA mutations should be re-evaluated.
Collapse
Affiliation(s)
- Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nina A Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, Bordeaux, France
| | - Marita A Isokallio
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Alexandra Just
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - James B Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Hübner A, Wachsmuth M, Schröder R, Li M, Eis-Hübinger AM, Madea B, Stoneking M. Sharing of heteroplasmies between human liver lobes varies across the mtDNA genome. Sci Rep 2019; 9:11219. [PMID: 31375696 PMCID: PMC6677727 DOI: 10.1038/s41598-019-47570-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) heteroplasmy (intra-individual variation) varies among different human tissues and increases with age, suggesting that the majority of mtDNA heteroplasmies are acquired, rather than inherited. However, the extent to which heteroplasmic sites are shared across a tissue remains an open question. We therefore investigated heteroplasmy in two liver samples (one from each primary lobe) from 83 Europeans, sampled at autopsy. Minor allele frequencies (MAF) at heteroplasmic sites were significantly correlated between the two liver samples from an individual, with significantly more sharing of heteroplasmic sites in the control region than in the non-control region. We show that this increased sharing for the control region cannot be explained by recent mutations at just a few specific heteroplasmic sites or by the possible presence of 7S DNA. Moreover, we carried out simulations to show that there is significantly more sharing than would be predicted from random genetic drift from a common progenitor cell. We also observe a significant excess of non-synonymous vs. synonymous heteroplasmies in the protein-coding region, but significantly more sharing of synonymous heteroplasmies. These contrasting patterns for the control vs. the non-control region, and for non-synonymous vs. synonymous heteroplasmies, suggest that selection plays a role in heteroplasmy sharing.
Collapse
Affiliation(s)
- Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Manja Wachsmuth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Anna Maria Eis-Hübinger
- Institut für Virologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Burkhard Madea
- Institut für Rechtsmedizin, Universitätsklinikum Bonn, Stiftsplatz 12, D-53111, Bonn, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| |
Collapse
|
11
|
Novel Lines of Evidence for the Asymmetric Strand Displacement Model of Mitochondrial DNA Replication. Mol Cell Biol 2019; 39:MCB.00406-18. [PMID: 30397074 DOI: 10.1128/mcb.00406-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/20/2018] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome, which consists of 16,569 bp of DNA with a cytosine-rich light (L) strand and a heavy (H) strand, exists as a multicopy closed circular genome within the mitochondrial matrix. The machinery for replication of the mammalian mitochondrial genome is distinct from that for replication of the nuclear genome. Three models have been proposed for mitochondrial DNA (mtDNA) replication, and one of the key differences among them is whether extensive single-stranded regions exist on the H strand. Here, three different methods that can detect single-stranded DNA (ssDNA) are utilized to identify the presence, location, and abundance of ssDNA on mtDNA. Importantly, none of these newly described methods involve the complication of prior mtDNA fractionation. The H strand was found to have extensive single-stranded regions with a profile consistent with the strand displacement model of mtDNA replication, whereas single strandedness was predominantly absent on the L strand. These findings are consistent with the in vivo occupancy of mitochondrial single-stranded DNA binding protein reported previously and provide strong new qualitative and quantitative evidence for the asymmetric strand displacement model of mtDNA replication.
Collapse
|
12
|
Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun 2018; 9:1202. [PMID: 29572490 PMCID: PMC5865154 DOI: 10.1038/s41467-018-03552-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary dramatically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. It has been debated whether premature ageing in mitochondrial DNA mutator mice is driven by point mutations or deletions of mtDNA. Matic et al generate Mgme1 knockout mice and show here that these mice have tissue-specific replication stalling and accumulate deleted mtDNA, without developing progeria.
Collapse
|
13
|
Lunetti P, Romano A, Carrisi C, Antonucci D, Verri T, De Benedetto GE, Dolce V, Fanizzi FP, Benedetti M, Capobianco L. Platinated Nucleotides are Substrates for the Human Mitochondrial Deoxynucleotide Carrier (DNC) and DNA Polymerase γ: Relevance for the Development of New Platinum-Based Drugs. ChemistrySelect 2016. [DOI: 10.1002/slct.201600961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Alessandro Romano
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience; IRCCS San Raffaele Scientific Institute; Via Olgettina 60 20132 Milan Italy
| | - Chiara Carrisi
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Daniela Antonucci
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Giuseppe E. De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage; University of Salento; 73100 Lecce Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; 87036 Arcavacata di Rende Cosenza) Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| |
Collapse
|
14
|
Kühl I, Miranda M, Posse V, Milenkovic D, Mourier A, Siira SJ, Bonekamp NA, Neumann U, Filipovska A, Polosa PL, Gustafsson CM, Larsson NG. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. SCIENCE ADVANCES 2016; 2:e1600963. [PMID: 27532055 PMCID: PMC4975551 DOI: 10.1126/sciadv.1600963] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 05/27/2023]
Abstract
Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression.
Collapse
Affiliation(s)
- Inge Kühl
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Viktor Posse
- Department of Medical Biochemistry and Cell Biology, Göteborgs Universitet, 40530 Göteborg, Sweden
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth 6009, Australia
| | - Nina A. Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth 6009, Australia
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, Göteborgs Universitet, 40530 Göteborg, Sweden
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
15
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
16
|
Abstract
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the relative simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein-the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research.
Collapse
Affiliation(s)
- G L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States
| | - M T Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - L S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
17
|
Grünewald A, Rygiel KA, Hepplewhite PD, Morris CM, Picard M, Turnbull DM. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol 2016; 79:366-78. [PMID: 26605748 PMCID: PMC4819690 DOI: 10.1002/ana.24571] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378
Collapse
Affiliation(s)
- Anne Grünewald
- Wellcome Trust Centre for Mitochondrial Research and Medical Research Council/Biotechnology and Biological Sciences Research Council Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Molecular and Functional Neurobiology Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Campus Belval, Belvaux, Luxembourg
| | - Karolina A Rygiel
- Wellcome Trust Centre for Mitochondrial Research and Medical Research Council/Biotechnology and Biological Sciences Research Council Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philippa D Hepplewhite
- Wellcome Trust Centre for Mitochondrial Research and Medical Research Council/Biotechnology and Biological Sciences Research Council Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry and Department of Neurology, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, New York, NY
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research and Medical Research Council/Biotechnology and Biological Sciences Research Council Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis. Methods Mol Biol 2016; 1351:95-113. [PMID: 26530677 DOI: 10.1007/978-1-4939-3040-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.
Collapse
|
19
|
Quiñones-Lombraña A, Blanco JG. Chromosome 21-derived hsa-miR-155-5p regulates mitochondrial biogenesis by targeting Mitochondrial Transcription Factor A (TFAM). Biochim Biophys Acta Mol Basis Dis 2015; 1852:1420-7. [PMID: 25869329 DOI: 10.1016/j.bbadis.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The regulation of mitochondrial biogenesis is under the control of nuclear genes including the master Mitochondrial Transcription Factor A (TFAM). Recent evidence suggests that the expression of TFAM is regulated by microRNAs (miRNAs) in various cellular contexts. Here, we show that hsa-miR-155-5p, a prominent miRNA encoded in chromosome 21, controls the expression of TFAM at the post-transcriptional level. In human fibroblasts derived from a diploid donor, downregulation of TFAM by hsa-miR-155-5p decreased mitochondrial DNA (mtDNA) content. In contrast, downregulation of TFAM by hsa-miR-155-5p did not decrease mtDNA content in fibroblasts derived from a donor with Down syndrome (DS, trisomy 21). In line, downregulation of mitochondrial TFAM levels through hsa-miR-155-5p decreased mitochondrial mass in diploid fibroblasts but not in trisomic cells. Due to the prevalence of mitochondrial dysfunction and cardiac abnormalities in subjects with DS, we examined the presence of potential associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. There were significant negative associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. These results suggest that regulation of TFAM by hsa-miR-155-5p impacts mitochondrial biogenesis in the diploid setting but not in the DS setting.
Collapse
Affiliation(s)
- Adolfo Quiñones-Lombraña
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, USA
| | - Javier G Blanco
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, USA.
| |
Collapse
|
20
|
In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 2014; 56:175-81. [PMID: 24709344 DOI: 10.1016/j.exger.2014.03.027] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/23/2022]
Abstract
Given the tiny size of the mammalian mitochondrial genome, at only 16.5 kb, it is often surprising how little we know about some of its molecular features, and the molecular mechanisms governing its maintenance. One such conundrum is the biogenesis and function of the mitochondrial displacement loop (D-loop). The mitochondrial D-loop is a triple-stranded region found in the major non-coding region (NCR) of many mitochondrial genomes, and is formed by stable incorporation of a third, short DNA strand known as 7S DNA. In this article we review the current affairs regarding the main features of the D-loop structure, the diverse frequency of D-loops in the mtDNAs of various species and tissues, and also the mechanisms of its synthesis and turnover. This is followed by an account of the possible functions of the mitochondrial D-loop that have been proposed over the last four decades. In the last section, we discuss the potential links of the D-loop with mammalian ageing.
Collapse
|
21
|
Seibenhener ML, Zhao T, Du Y, Calderilla-Barbosa L, Yan J, Jiang J, Wooten MW, Wooten MC. Behavioral effects of SQSTM1/p62 overexpression in mice: support for a mitochondrial role in depression and anxiety. Behav Brain Res 2013; 248:94-103. [PMID: 23591541 DOI: 10.1016/j.bbr.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 11/18/2022]
Abstract
Affective spectrum and anxiety disorders have come to be recognized as the most prevalently diagnosed psychiatric disorders. Among a suite of potential causes, changes in mitochondrial energy metabolism and function have been associated with such disorders. Thus, proteins that specifically change mitochondrial functionality could be identified as molecular targets for drugs related to treatment for affective spectrum disorders. Here, we report generation of transgenic mice overexpressing the scaffolding and mitophagy related protein Sequestosome1 (SQSTM1/p62) or a single point mutant (P392L) in the UBA domain of SQSTM1/p62. We show that overexpression of SQSTM1/p62 increases mitochondrial energy output and improves transcription factor import into the mitochondrial matrix. These elevated levels of mitochondrial functionality correlate directly with discernible improvements in mouse behaviors related to affective spectrum and anxiety disorders. We also describe how overexpression of SQSTM1/p62 improves spatial learning and long term memory formation in these transgenic mice. These results suggest that SQSTM1/p62 provides an attractive target for therapeutic agents potentially suitable for the treatment of anxiety and affective spectrum disorders.
Collapse
Affiliation(s)
- M Lamar Seibenhener
- Dept. Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36832, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Szczesny RJ, Hejnowicz MS, Steczkiewicz K, Muszewska A, Borowski LS, Ginalski K, Dziembowski A. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res 2013; 41:3144-61. [PMID: 23358826 PMCID: PMC3597694 DOI: 10.1093/nar/gkt029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3'-5' direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA-DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Seibenhener ML, Du Y, Diaz-Meco MT, Moscat J, Wooten MC, Wooten MW. A role for sequestosome 1/p62 in mitochondrial dynamics, import and genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:452-9. [PMID: 23147249 DOI: 10.1016/j.bbamcr.2012.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/12/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
As a signaling scaffold, p62/sequestosome (p62/SQSTM1) plays important roles in cell signaling and degradation of misfolded proteins. While localization of p62 to mitochondria has been reported, a description of its function once there, remains unclear. Here, we report that p62 is localized to mitochondria in non-stressed situations and demonstrate that deficiency in p62 exacerbates defects in mitochondrial membrane potential and energetics leading to mitochondrial dysfunction. We report on the relationship between mitochondrial protein import and p62. In a p62 null background, mitochondrial import of the mitochondrial transcription factor TFAM is disrupted. When p62 is returned, mitochondrial function is restored to more normal levels. We identify for the first time that p62 localization plays a role in regulating mitochondrial morphology, genome integrity and mitochondrial import of a key transcription factor. We present evidence that these responses to the presence of p62 extend beyond the protein's immediate influence on membrane potential.
Collapse
Affiliation(s)
- M Lamar Seibenhener
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
24
|
Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:921-9. [DOI: 10.1016/j.bbagrm.2012.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
25
|
Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012; 7:e40879. [PMID: 22911714 PMCID: PMC3401193 DOI: 10.1371/journal.pone.0040879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Sarita Ghanem
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Françoise Braut
- INSERM U773, CRB3, Equipe El-Benna, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Laura Gavrilescu
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Nathalie Pilard
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Abdellah Mansouri
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Florence Reyl-Desmars
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Müeller H, Graves GR, Fleischer RC, Wright TF. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 2012; 64:342-56. [PMID: 22543055 DOI: 10.1016/j.ympev.2012.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 04/08/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F, Del Nido P, Tian R. Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 2011; 4:707-13. [PMID: 21840936 DOI: 10.1161/circheartfailure.111.961474] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The outcome of the surgical repair in congenital heart disease correlates with the degree of myocardial damage. In this study, we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. METHODS AND RESULTS RV samples obtained from 31 patients undergoing cardiac surgery were compared with 5 RV samples from nonfailing hearts (control). Patients were divided into compensated hypertrophy and failure groups, based on preoperative echocardiography, catheterization, and/or MRI data. Mitochondrial enzyme activities (citrate synthase and succinate dehydrogenase) were maintained during hypertrophy and decreased by ≈40% (P<0.05 versus control) at the stage of failure. In contrast, mtDNA content was progressively decreased in the hypertrophied RV through failure (by 28±8% and 67±11%, respectively, P<0.05 for both), whereas mtDNA-encoded gene expression was sustained by increased transcriptional activity during compensated hypertrophy but not in failure. Mitochondrial DNA depletion was attributed to reduced mtDNA replication in both hypertrophied and failing RV, and it was independent of PGC-1 downregulation but was accompanied by reduced expression of proteins constituting the mtDNA replication fork. Decreased mtDNA content in compensated hypertrophy was also associated with pathological changes of mitochondria ultrastructure. CONCLUSIONS Impaired mtDNA replication causes early and progressive depletion of mtDNA in the RV of the patients with congenital heart disease during the transition from hypertrophy to failure. Decreased mtDNA content probably is a sensitive marker of mitochondrial injury in this patient population.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
28
|
Antes A, Tappin I, Chung S, Lim R, Lu B, Parrott AM, Hill HZ, Suzuki CK, Lee CG. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res 2010; 38:6466-76. [PMID: 20530535 PMCID: PMC2965228 DOI: 10.1093/nar/gkq493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition. With this assay system, we demonstrate that the replication capacity of mitochondria correlates with endogenous copy numbers of mtDNA and 7S DNA. Our study also shows that higher nucleotide concentrations increasingly promote 7S DNA synthesis but not mtDNA synthesis. Consistently, the mitochondrial capacity to synthesize 7S DNA but not mtDNA noticeably varied along the cell cycle, reaching its highest level in S phase. These findings suggest that syntheses of mtDNA and 7S DNA proceed independently and that the mitochondrial capacity to synthesize 7S DNA dynamically changes not only with cell-cycle progression but also in response to varying nucleotide concentrations.
Collapse
Affiliation(s)
- Anita Antes
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 2010; 106:1541-8. [PMID: 20339121 DOI: 10.1161/circresaha.109.212753] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE Mitochondrial dysfunction plays a pivotal role in the development of heart failure. Animal studies suggest that impaired mitochondrial biogenesis attributable to downregulation of the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1 transcriptional pathway is integral of mitochondrial dysfunction in heart failure. OBJECTIVE The study sought to define mechanisms underlying the impaired mitochondrial biogenesis and function in human heart failure. METHODS AND RESULTS We collected left ventricular tissue from end-stage heart failure patients and from nonfailing hearts (n=23, and 19, respectively). The mitochondrial DNA (mtDNA) content was decreased by >40% in the failing hearts, after normalization for a moderate decrease in citrate synthase activity (P<0.05). This was accompanied by reductions in mtDNA-encoded proteins (by 25% to 80%) at both mRNA and protein level (P<0.05). The mRNA levels of PGC-1alpha/beta and PRC (PGC-1-related coactivator) were unchanged, whereas PGC-1alpha protein increased by 58% in the failing hearts. Among the PGC-1 coactivating targets, the expression of estrogen-related receptor alpha and its downstream genes decreased by up to 50% (P<0.05), whereas peroxisome proliferator-activated receptor alpha and its downstream gene expression were unchanged in the failing hearts. The formation of D-loop in the mtDNA was normal but D-loop extension, which dictates the replication process of mtDNA, was decreased by 75% in the failing hearts. Furthermore, DNA oxidative damage was increased by 50% in the failing hearts. CONCLUSIONS Mitochondrial biogenesis is severely impaired as evidenced by reduced mtDNA replication and depletion of mtDNA in the human failing heart. These defects are independent of the downregulation of the PGC-1 expression suggesting novel mechanisms for mitochondrial dysfunction in heart failure.
Collapse
|
30
|
Isolation of mitochondria for biogenetical studies: An update. Mitochondrion 2009; 10:253-62. [PMID: 20034597 DOI: 10.1016/j.mito.2009.12.148] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/11/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The use of good quality preparations of isolated mitochondria is necessary when studying the mitochondrial biogenetical activities. This article explains a fast and simple method for the purification of mammalian mitochondria from different tissues and cultured cells, that is suitable for the analysis of many aspects of the organelle's biogenesis. The mitochondria isolated following the protocol described here, are highly active and capable of DNA, RNA and protein synthesis. Mitochondrial tRNA aminoacylation, mtDNA-protein interactions and specific import of added proteins into the organelles, can also be studied using this kind of preparations.
Collapse
|
31
|
Kienhöfer J, Häussler DJF, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Bürkle A, Bachschmid MM. Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 2009; 23:2034-44. [PMID: 19228881 DOI: 10.1096/fj.08-113571] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial DNA (mtDNA) is organized in protein-DNA macrocomplexes called nucleoids. Average nucleoids contain 2-8 mtDNA molecules, which are organized by the histone-like mitochondrial transcription factor A. Besides well-characterized constituents, such as single-stranded binding protein or polymerase gamma (Pol gamma), various other proteins with ill-defined functions have been identified. We report for the first time that mammalian nucleoids contain essential enzymes of an integral antioxidant system. Intact nucleoids were isolated with sucrose density gradients from rat and bovine heart as well as human Jurkat cells. Manganese superoxide dismutase (SOD2) was detected by Western blot in the nucleoid fractions. DNA, mitochondrial glutathione peroxidase (GPx1), and Pol gamma were coimmunoprecipitated with SOD2 from nucleoid fractions, which suggests that an antioxidant system composed of SOD2 and GPx1 are integral constituents of nucleoids. Interestingly, in cultured bovine endothelial cells the association of SOD2 with mtDNA was absent. Using a sandwich filter-binding assay, direct association of SOD2 by salt-sensitive ionic forces with a chemically synthesized mtDNA fragment was demonstrated. Increasing salt concentrations during nucleoid isolation on sucrose density gradients disrupted the association of SOD2 with mitochondrial nucleoids. Our biochemical data reveal that nucleoids contain an integral antioxidant system that may protect mtDNA from superoxide-induced oxidative damage.
Collapse
|
32
|
Ferreira CR, Meirelles FV, Yamazaki W, Chiaratti MR, Méo SC, Perecin F, Smith LC, Garcia JM. The kinetics of donor cell mtDNA in embryonic and somatic donor cell-derived bovine embryos. CLONING AND STEM CELLS 2008; 9:618-29. [PMID: 18154521 DOI: 10.1089/clo.2006.0082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms controlling the outcome of donor cell-derived mitochondrial DNA (mtDNA) in cloned animals remain largely unknown. This research was designed to investigate the kinetics of somatic and embryonic mtDNA in reconstructed bovine embryos during preimplantation development, as well as in cloned animals. The experiment involved two different procedures of embryo reconstruction and their evaluation at five distinct phases of embryo development to measure the proportion of donor cell mtDNA (Bos indicus), as well as the segregation of this mtDNA during cleavage. The ratio of donor cell (B. indicus) to host oocyte (B. taurus) mtDNA (heteroplasmy) from blastomere(NT-B) and fibroblast(NT-F) reconstructed embryos was estimated using an allele-specific PCR with fluorochrome-stained specific primers in each sampled blastomere, in whole blastocysts, and in the tissues of a fibroblast-derived newborn clone. NT-B zygotes and blastocysts show similar levels of heteroplasmy (11.0% and 14.0%, respectively), despite a significant decrease at the 9-16 cell stage (5.8%; p<0.05). Heteroplasmy levels in NT-F reconstructed zygotes, however, increased from an initial low level (4.7%), to 12.9% (p<0.05) at the 9-16 cell stage. The NT-F blastocysts contained low levels of heteroplasmy (2.2%) and no somatic-derived mtDNA was detected in the gametes or the tissues of the newborn calf cloned. These results suggest that, in contrast to the mtDNA of blastomeres, that of somatic cells either undergoes replication or escapes degradation during cleavage, although it is degraded later after the blastocyst stage or lost during somatic development, as revealed by the lack of donor cell mtDNA at birth.
Collapse
|
33
|
Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 2007; 24:813-25. [PMID: 17189185 DOI: 10.1016/j.molcel.2006.11.024] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria contain their own DNA (mtDNA) that is expressed and replicated by nucleus-encoded factors imported into the organelle. Recently, the core human mitochondrial transcription machinery has been defined, comprising a bacteriophage-related mtRNA polymerase (POLRMT), an HMG-box transcription factor (h-mtTFA), and two transcription factors (h-mtTFB1 and h-mtTFB2) that also serve as rRNA methyltransferases. Here, we describe these transcription components as well as recent insights into the mechanism of human mitochondrial transcription initiation and its regulation. We also discuss novel roles for the mitochondrial transcription machinery beyond transcription initiation, including priming of mtDNA replication, packaging of mtDNA, coordination of ribosome biogenesis, and coupling of transcription to translation.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
34
|
Wiesner RJ, Zsurka G, Kunz WS. Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res 2007; 40:1284-94. [PMID: 17090418 DOI: 10.1080/10715760600913168] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded molecule organized in nucleoids and covered by the histone-like protein mitochondrial transcription factor A (TFAM). Even though mtDNA repair capacity appears to be adequate the accumulation of mtDNA mutations has been shown to be at least one important molecular mechanism of human aging. Reactive oxygen species (ROS), which are generated at the FMN moiety of mitochondrial respiratory chain (RC) complex I, should be considered to be important at least for the generation of age-dependent mtDNA deletions. However, the accumulation of acquired mutations to functionally relevant levels in aged tissues seems to be a consequence of clonal expansions of single founder molecules and not of ongoing mutational events.
Collapse
Affiliation(s)
- Rudolf J Wiesner
- Faculty of Medicine, Institute of Vegetative Physiology, University of Köln, Köln, Germany.
| | | | | |
Collapse
|
35
|
Bowles EJ, Campbell KHS, St John JC. Nuclear Transfer: Preservation of a Nuclear Genome at the Expense of Its Associated mtDNA Genome(s). Curr Top Dev Biol 2007; 77:251-90. [PMID: 17222707 DOI: 10.1016/s0070-2153(06)77010-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nuclear transfer technology has uses across theoretical and applied applications, but advances are restricted by continued poor success rates and health problems associated with live offspring. Development of reconstructed embryos is dependent upon numerous interlinking factors relating both to the donor cell and the recipient oocyte. For example, abnormalities in gene expression following somatic cell nuclear transfer (SCNT) have been linked with an inability of the oocyte cytoplasm to sufficiently epigenetically reprogram the nucleus. Furthermore, influences on the propagation of mitochondria and mitochondrial DNA (mtDNA) could be of great importance in determining the early developmental potential of NT embryos and contributing to their genetic identity. mtDNA encodes some of the subunits of the electron transfer chain, responsible for cellular ATP production. The remaining subunits and those factors required for mtDNA replication, transcription and translation are encoded by the nucleus, necessitating precise intergenomic communication. Additionally, regulation of mtDNA copy number, via the processes of mtDNA transcription and replication, is essential for normal preimplantation embryo development and differentiation. Unimaternal transmission following natural fertilization usually results in the presence of a single identical population of mtDNA, homoplasmy. Heteroplasmy can result if mixed populations of mtDNA genomes co-exist. Many abnormalities observed in NT embryos, fetuses, and offspring may be caused by deficiencies in OXPHOS, perhaps resulting in part from heteroplasmic mtDNA populations. Additionally, incompatibilities between the somatic nucleus and the cytoplast may be exacerbated by increased genetic divergence between the two genomes. It is important to ensure that the nucleus is capable of sufficiently regulating mtDNA, requiring a level of compatibility between the two genomes, which may be a function of evolutionary distance. We suggest that abnormal expression of factors such as TFAM and POLG in NT embryos will prematurely drive mtDNA replication, hence impacting on early development.
Collapse
Affiliation(s)
- Emma J Bowles
- The Mitochondrial and Reproductive Genetics Group, The Division of Medical Sciences, The Medical School, The University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
36
|
Pohjoismäki JLO, Wanrooij S, Hyvärinen AK, Goffart S, Holt IJ, Spelbrink JN, Jacobs HT. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res 2006; 34:5815-28. [PMID: 17062618 PMCID: PMC1635303 DOI: 10.1093/nar/gkl703] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial transcription factor A (TFAM) is an abundant mitochondrial protein of the HMG superfamily, with various putative roles in mitochondrial DNA (mtDNA) metabolism. In this study we have investigated the effects on mtDNA replication of manipulating TFAM expression in cultured human cells. Mammalian mtDNA replication intermediates (RIs) fall into two classes, whose mechanistic relationship is not properly understood. One class is characterized by extensive RNA incorporation on the lagging strand, whereas the other has the structure of products of conventional, strand-coupled replication. TFAM overexpression increased the overall abundance of RIs and shifted them substantially towards those of the conventional, strand-coupled type. The shift was most pronounced in the rDNA region and at various replication pause sites and was accompanied by a drop in the relative amount of replication-termination intermediates, a substantial reduction in mitochondrial transcripts, mtDNA decatenation and progressive copy number depletion. TFAM overexpression could be partially phenocopied by treatment of cells with dideoxycytidine, suggesting that its effects are partially attributable to a decreased rate of fork progression. TFAM knockdown also resulted in mtDNA depletion, but RIs remained mainly of the ribosubstituted type, although termination intermediates were enhanced. We propose that TFAM influences the mode of mtDNA replication via its combined effects on different aspects of mtDNA metabolism.
Collapse
Affiliation(s)
- Jaakko L. O. Pohjoismäki
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
| | - Sjoerd Wanrooij
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
| | - Anne K. Hyvärinen
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
| | - Steffi Goffart
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
| | - Ian J. Holt
- MRC-Dunn Human Nutrition Unit, Hill RoadCambridge CB2 2XY, England, UK
| | - Johannes N. Spelbrink
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
| | - Howard T. Jacobs
- Institute of Medical Technology and Tampere University HospitalFI-33014 University of Tampere, Finland
- IBLS Division of Molecular Genetics, University of GlasgowGlasgow G12 8QQ, Scotland, UK
- To whom correspondence should be addressed. Tel: +358 33 55 17 731; Fax: +358 32 15 77 10;
| |
Collapse
|
37
|
Montoya J, López-Pérez MJ, Ruiz-Pesini E. Mitochondrial DNA transcription and diseases: past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1179-89. [PMID: 16697348 DOI: 10.1016/j.bbabio.2006.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
The transcription of mitochondrial DNA has been studied for 30 years. However, many of the earlier observations are still unsolved. In this review we will recall the basis of mitochondrial DNA transcription, established more than twenty years ago, will include some of the recent progress in the understanding of this process and will suggest hypotheses for some of the unexplained topics. Moreover, we will show some examples of mitochondrial pathology due to altered transcription and RNA metabolism.
Collapse
Affiliation(s)
- Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-Instituto Aragonés de Ciencias de la Salud, Miguel Servet 177, 50013-Zaragoza, Spain.
| | | | | |
Collapse
|
38
|
Noack H, Bednarek T, Heidler J, Ladig R, Holtz J, Szibor M. TFAM-dependent and independent dynamics of mtDNA levels in C2C12 myoblasts caused by redox stress. Biochim Biophys Acta Gen Subj 2006; 1760:141-50. [PMID: 16439064 DOI: 10.1016/j.bbagen.2005.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 11/11/2005] [Accepted: 12/07/2005] [Indexed: 11/29/2022]
Abstract
TFAM is an essential protein factor for the initiation of transcription of the mtDNA. It also functions as a packaging factor, which stabilizes the mtDNA pool. To investigate the regulatory role of TFAM for regeneration and proliferation of the mtDNA pool, we exposed the muscle cell line C2C12 to a severe redox stress (H2O2) or to a moderate redox stress (GSH depletion), determined the dynamics of the mtDNA levels and correlated this with the TFAM protein levels. H2O2 caused a concentration-dependent loss of mtDNA molecules. The mtDNA levels recovered slowly within 3 days after H2O2 stress. The TFAM protein was less degraded than the mtDNA indicating an accumulation of TFAM protein per mtDNA after H2O2 stress. Overexpression of TFAM did not protect against the mtDNA loss after H2O2 stress but shortened the recovery time. GSH depletion led to a proliferation of the mtDNA pool. Although the mtDNA levels increased the TFAM protein levels were unaffected by the GSH depletion. We conclude that the accumulation of the TFAM protein after H2O2 stress contributes to the regeneration of the mtDNA pool but that other mechanisms, independent from the TFAM protein amount have to be postulated to explain the proliferation of the mtDNA pool after GSH depletion.
Collapse
Affiliation(s)
- Heiko Noack
- Institute of Pathophysiology, Martin-Luther-University Halle-Wittenberg, ZAMED, Heinrich-Damerow-Str. 1, 06097 Halle, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Several questions in our understanding of mitochondria are unanswered. These include how the ratio of mitochondrial (mt)DNA to mitochondria is maintained, how the accumulation of defective, rapidly replicating mitochondrial DNA is avoided, how the ratio of mitochondria to cells is adjusted to fit cellular needs, and why any proteins are synthesized in mitochondria rather than simply imported. In bacteria, large hyperstructures or assemblies of proteins, mRNA, lipids and ions have been proposed to constitute a level of organization intermediate between macromolecules and whole cells. Here, we suggest how the concept of hyperstructures together with other concepts developed for bacteria such as transcriptional sensing and spontaneous segregation may provide answers to mitochondrial problems. In doing this, we show how the problem of the very existence of mtDNA brings its own solution.
Collapse
Affiliation(s)
- Mirella Trinei
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | |
Collapse
|
40
|
Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 2004; 32:6015-27. [PMID: 15547250 PMCID: PMC534614 DOI: 10.1093/nar/gkh921] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) stimulates transcription from mitochondrial DNA (mtDNA) promoters in vitro and in organello. To investigate whether changes of TFAM levels also modulate transcription and replication in situ, the protein was transiently overexpressed in cultured cells. Mitochondrial mRNAs were significantly elevated at early time points, when no expansion of the TFAM pool was yet observed, but were decreased when TFAM levels had doubled, resemb-ling in vitro results. HEK cells contain about 35 molecules of TFAM per mtDNA. High levels of TFAM were not associated with increases of full-length mtDNA, but nucleic acid species sensitive to RNAse H increased. Stimulation of transcription was more evident when TFAM was transiently overexpressed in cells pre-treated with ethidium bromide (EBr) having lowered mtDNA, TFAM and mitochondrial transcript levels. EBr rapidly inhibited mtDNA transcription, while decay of mtDNA was delayed and preferentially slowly migrating, relaxed mtDNA species were depleted. In conclusion, we show that transcription of mtDNA is submaximal in cultured cells and that a subtle increase of TFAM within the matrix is sufficient to stimulate mitochondrial transcription. Thus, this protein meets all criteria for being a key factor regulating mitochondrial transcription in vivo, but other factors are necessary for increasing mtDNA copy number, at least in cultured cells.
Collapse
Affiliation(s)
- Katharina Maniura-Weber
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Robert-Koch-Strasse 39, D-50931 Köln, FRG
| | | | | | | | | |
Collapse
|
41
|
Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N, Poulton J, Jalanko A, Spelbrink JN, Holt IJ, Suomalainen A. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 2004; 13:3219-27. [PMID: 15509589 DOI: 10.1093/hmg/ddh342] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanisms of mitochondrial DNA (mtDNA) maintenance have recently gained wide interest owing to their role in inherited diseases as well as in aging. Twinkle is a new mitochondrial 5'-3' DNA helicase, defects of which we have previously shown to underlie a mitochondrial disease, progressive external ophthalmoplegia with multiple mtDNA deletions. Mouse Twinkle is highly similar to the human counterpart, suggesting conserved function. Here, we have characterized the mouse Twinkle gene and expression profile and report that the expression patterns are not conserved between human and mouse, but are synchronized with the adjacent gene MrpL43, suggesting a shared promoter. To elucidate the in vivo role of Twinkle in mtDNA maintenance, we generated two transgenic mouse lines overexpressing wild-type Twinkle. We could demonstrate for the first time that increased expression of Twinkle in muscle and heart increases mtDNA copy number up to 3-fold higher than controls, more than any other factor reported to date. Additionally, we utilized cultured human cells and observed that reduced expression of Twinkle by RNA interference mediated a rapid drop in mtDNA copy number, further supporting the in vivo results. These data demonstrate that Twinkle helicase is essential for mtDNA maintenance, and that it may be a key regulator of mtDNA copy number in mammals.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Department of Neurology and Programme of Neurosciences, University of Helsinki, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Depping R, Hägele S, Wagner KF, Wiesner RJ, Camenisch G, Wenger RH, Katschinski DM. A Dominant-Negative Isoform of Hypoxia-Inducible Factor-1α Specifically Expressed in Human Testis1. Biol Reprod 2004; 71:331-9. [PMID: 15031145 DOI: 10.1095/biolreprod.104.027797] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Spermatogenesis in the seminiferous tubuli of the testis occurs under a high proliferation rate, suggesting considerable oxygen consumption. Because of the lack of blood vessels, the oxygen partial pressure in the lumen of these tubuli is very low. We previously identified a testis isoform of the hypoxia-inducible factor (HIF)-1alpha in the mouse, termed mHIF-1alphaI.1. Here, we demonstrate that expression of mHIF-1alphaI.1 increases during puberty, further demonstrating its gene induction in postmeiotic germ cells. Using 5'-rapid amplification of cDNA ends, we identified a novel HIF-1alpha isoform in the human testis, called hHIF-1alphaTe. Like mHIF-1alphaI.1, hHIF-1alphaTe mRNA is derived from an alternative promoter-first exon combination, but with a different genomic organization and a different nucleotide sequence. Reverse transcription-polymerase chain reaction analysis confirmed that hHIF-1alphaTe is exclusively expressed in the testis. As determined by immunofluorescence of ejaculated sperm cells, HIF-1alpha protein is mainly localized in the postacrosomal head and in the midpiece of spermatozoa. Though overlapping with mitochondrial localization in human and mouse spermatozoa, neither hHIF-1alphaTe nor hHIF-1alpha associated with mitochondria. In contrast with the ubiquitously expressed HIF-1alpha protein and the mouse testis-specific mHIF-1alphaI.1 isoform, the hHIF-1alphaTe mRNA sequence predicts a protein with an N-terminal truncation of the DNA-binding domain. As shown by yeast two-hybrid assays, hHIF-1alphaTe still formed heterodimeric complexes with HIF-1beta. However, hHIF-1alphaTe was incapable of forming a DNA-binding HIF-1 complex. Overexpression of exogenous hHIF-1alphaTe resulted in the inhibition of the endogenous HIF-1 transcriptional activity, demonstrating that the testis-specific hHIF-1alphaTe isoform is a dominant-negative regulator of normal HIF-1 activity.
Collapse
|
43
|
Choi YS, Lee KU, Pak YK. Regulation of mitochondrial transcription factor A expression by high glucose. Ann N Y Acad Sci 2004; 1011:69-77. [PMID: 15126285 DOI: 10.1007/978-3-662-41088-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial transcription factor A (Tfam, previously mtTFA) is a key regulator of mitochondrial DNA (mtDNA) transcription and replication. We have reported that overexpression of nuclear respiratory factor-1 (NRF-1) and high concentration (50 mM) of glucose increased the promoter activity of the rat Tfam in L6 rat skeletal muscle cells. In this study, we investigated the mechanism of high glucose-induced Tfam transactivation. The addition of 50 mM glucose for 24 h increased Tfam promoter activity up to twofold. The glucose-induced Tfam expression was dose-dependent and cell-type specific. Glucose increased the Tfam promoter-driven transactivity in L6 (skeletal muscle), HIT (pancreatic beta-cell), and CHO (ovary) cells, but not in HepG2 (hepatoma), HeLa, and CV1 (kidney) cells. Among various monosaccharides, only glucose and fructose increased the Tfam promoter activity. Oxidative stress might not be involved in glucose-induced Tfam expression since treatment with antioxidants such as vitamin C, vitamin E, probucol, or alpha-lipoic acid did not suppress the induction. None of the inhibitors of protein kinase C, MAP kinase, and PI3 kinase altered the glucose-induced Tfam promoter activity, suggesting that general phosphorylation is involved in its signaling. However, a dominant negative mutant of NRF-1, in which 200 amino acids of C-terminus were truncated, completely suppressed the glucose-induced Tfam induction. It was concluded that high glucose-induced Tfam transcription in L6 cells might be mediated by NRF-1.
Collapse
Affiliation(s)
- Yon Sik Choi
- Asan Institute for Life Sciences, University of Ulsan, Seoul 138-736, Korea
| | | | | |
Collapse
|
44
|
CHOI YONSIK, LEE KIUP, PAK YOUNGMIKIM. Regulation of Mitochondrial Transcription Factor A Expression by High Glucose. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Garstka HL, Schmitt WE, Schultz J, Sogl B, Silakowski B, Pérez-Martos A, Montoya J, Wiesner RJ. Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 2003; 31:5039-47. [PMID: 12930954 PMCID: PMC212813 DOI: 10.1093/nar/gkg717] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) has been shown to stimulate transcription from mitochondrial DNA promoters in vitro. In order to determine whether changes in TFAM levels also regulate RNA synthesis in situ, recombinant human precursor proteins were imported into the matrix of rat liver mitochondria. After uptake of wt-TFAM, incorporation of [alpha-32P]UTP into mitochondrial mRNAs as well as rRNAs was increased 2-fold (P < 0.05), whereas import of truncated TFAM lacking 25 amino acids at the C-terminus had no effect. Import of wt-TFAM into liver mitochondria from hypothyroid rats stimulated RNA synthesis up to 4-fold. We conclude that the rate of transcription is submaximal in freshly isolated rat liver mitochondria and that increasing intra-mitochondrial TFAM levels is sufficient for stimulation. The low transcription rate associated with the hypothyroid state observed in vivo as well as in organello seems to be a result of low TFAM levels, which can be recovered by treating animals with T3 in vivo or by importing TFAM in organello. Thus, this protein meets the criteria for being a key factor in regulating mitochondrial gene expression in vivo.
Collapse
Affiliation(s)
- Heike L Garstka
- Department of Physiology II, University of Heidelberg, Im Neuenheimer Feld, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Seidel-Rogol BL, Shadel GS. Modulation of mitochondrial transcription in response to mtDNA depletion and repletion in HeLa cells. Nucleic Acids Res 2002; 30:1929-34. [PMID: 11972329 PMCID: PMC113853 DOI: 10.1093/nar/30.9.1929] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The steady-state amounts of mitochondrial transcripts and transcription proteins were analyzed during mtDNA depletion and subsequent repletion to gain insight into the regulation of human mitochondrial gene expression. As documented previously, HeLa cells depleted of mtDNA via treatment with ethidium bromide (EB) were found to contain reduced steady-state levels of the mitochondrial transcription factor h-mtTFA. When partially mtDNA-depleted cells were cultured in the absence of EB, h-mtTFA recovered to normal levels at a significantly slower rate than mtDNA. Human mtRNA polymerase exhibited a similar depletion-repletion profile, suggesting that the mitochondrial transcription machinery is coordinately regulated in response to changes in mtDNA copy number. Newly synthesized mitochondrial transcripts were detected early in the recovery phase, despite the fact that mtDNA, h-mtTFA and h-mtRNA polymerase were simultaneously depleted. Although delayed relative to mtDNA, the amounts of h-mtTFA and h-mtRNA polymerase sharply increased during the later stages of the recovery phase, which was accompanied by accelerated rates of transcription and mtDNA replication. Altogether, these data indicate that when mtDNA copy number is low, it is beneficial to prevent accumulation of mitochondrial transcription proteins. In addition, h-mtTFA and h-mtRNA polymerase are either normally present in excess of the amount required for transcription or their activity is up-regulated to ensure continued expression and transcription-dependent replication of the mitochondrial genome during mtDNA-depleted states.
Collapse
Affiliation(s)
- Bonnie L Seidel-Rogol
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
47
|
Brown TA, Clayton DA. Release of replication termination controls mitochondrial DNA copy number after depletion with 2',3'-dideoxycytidine. Nucleic Acids Res 2002; 30:2004-10. [PMID: 11972339 PMCID: PMC113833 DOI: 10.1093/nar/30.9.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although cellular mitochondrial DNA (mtDNA) copy number varies widely among cell lines and tissues, little is known about the mechanism of mtDNA copy number control. Most nascent replication strands from the leading, heavy-strand origin (O(H)) are prematurely terminated, defining the 3' boundary of the displacement loop (D-loop). We have depleted mouse LA9 cell mtDNA to approximately 20% of normal levels by treating with 2',3'-dideoxycytidine (ddC) and subsequently allowed recovery to normal levels of mtDNA. A quantitative ligation-mediated PCR assay was used to determine the levels of both terminated and extended nascent O(H) strands during mtDNA depletion and repopulation. Depleting mtDNA leads to a release of replication termination until mtDNA copy number approaches a normal level. Detectable total nascent strands per mtDNA genome remain below normal. Therefore, it is likely that the level of replication termination plays a significant role in copy number regulation in this system. However, termination of D-loop strand synthesis is persistent, indicating formation of the D-loop structure has a purpose that is required under conditions of rapid recovery of depleted mtDNA.
Collapse
Affiliation(s)
- Timothy A Brown
- Howard Hughes Medical Institute, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5323, USA
| | | |
Collapse
|