1
|
Kramberger K, Bezek Kranjc K, Jenko Pražnikar Z, Barlič-Maganja D, Kenig S. Protective Capacity of Helichrysum italicum Infusion Against Intestinal Barrier Disruption and Translocation of Salmonella Infantis. Pharmaceuticals (Basel) 2024; 17:1398. [PMID: 39459037 PMCID: PMC11510356 DOI: 10.3390/ph17101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Helichrysum italicum is a Mediterranean plant with well-known anti-inflammatory activity, but our previous whole transcriptome analysis has found that H. italicum infusion (HII) can also affect cytoskeletal rearrangement and tight junctions. The goal of the present study was to determine if HII improves the intestinal barrier (IB) dysfunction and by what mechanism. METHODS Caco-2 cells on Transwell inserts were used as a model of IB permeability. Heat-killed (HKB) or live Salmonella Infantis bacteria were used to induce IB integrity disruption upon three different testing conditions: pre-, co-, and post-treatment with 0.2 v/v% HII. Transepithelial electrical resistance values were used as an indicator of monolayer integrity before and after all treatments, and RT-PCR was used to assess the expression of tight junction proteins (TJPs) and inflammatory cytokines known to regulate intestinal permeability. RESULTS We found that all three treatments with HII improved the HKB-induced integrity disruption and decreased the down-regulation of TJP1, OCLN, and CLDN1, with the greatest effect observed in the pre-treated cells. Treatment with HII also decreased the up-regulation of CLDN2, TNF-α, IL-1β, and IL-6. In addition, pre-treatment of Caco-2 cells with HII prevented translocation of S. Infantis but did not prevent adhesion and invasion. CONCLUSION This study showed that HII can improve inflammation-disrupted IB function by indirect modulation of mRNA expression of TJPs, especially in a preventive manner.
Collapse
Affiliation(s)
| | | | | | | | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.K.); (K.B.K.); (Z.J.P.); (D.B.-M.)
| |
Collapse
|
2
|
Lv B, Dion WA, Yang H, Xun J, Kim DH, Zhu B, Tan JX. A TBK1-independent primordial function of STING in lysosomal biogenesis. Mol Cell 2024; 84:3979-3996.e9. [PMID: 39423796 PMCID: PMC11490688 DOI: 10.1016/j.molcel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/21/2024]
Abstract
Stimulator of interferon genes (STING) is activated in many pathophysiological conditions, leading to TBK1-dependent interferon production in higher organisms. However, primordial functions of STING independent of TBK1 are poorly understood. Here, through proteomics and bioinformatics approaches, we identify lysosomal biogenesis as an unexpected function of STING. Transcription factor EB (TFEB), an evolutionarily conserved regulator of lysosomal biogenesis and host defense, is activated by STING from multiple species, including humans, mice, and frogs. STING-mediated TFEB activation is independent of TBK1, but it requires STING trafficking and its conserved proton channel. GABARAP lipidation, stimulated by the channel of STING, is key for STING-dependent TFEB activation. STING stimulates global upregulation of TFEB-target genes, mediating lysosomal biogenesis and autophagy. TFEB supports cell survival during chronic sterile STING activation, a common condition in aging and age-related diseases. These results reveal a primordial function of STING in the biogenesis of lysosomes, essential organelles in immunity and cellular stress resistance.
Collapse
Affiliation(s)
- Bo Lv
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - William A Dion
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jinrui Xun
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bokai Zhu
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Bułdak Ł, Bołdys A, Skudrzyk E, Machnik G, Okopień B. Liraglutide Therapy in Obese Patients Alters Macrophage Phenotype and Decreases Their Tumor Necrosis Factor Alpha Release and Oxidative Stress Markers-A Pilot Study. Metabolites 2024; 14:554. [PMID: 39452935 PMCID: PMC11509483 DOI: 10.3390/metabo14100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: Obesity is one of the major healthcare challenges. It affects one in eight people around the world and leads to several comorbidities, including type 2 diabetes, hyperlipidemia, and arterial hypertension. GLP-1 analogs have become major players in the therapy of obesity, leading to significant weight loss in patients. However, benefits resulting from their usage seem to be greater than simple appetite reduction and glucose-lowering potential. Recent data show better cardiovascular outcomes, which are connected with the improvements in the course of atherosclerosis. Macrophages are crucial cells in the forming and progression of atherosclerotic lesions. Previously, it was shown that in vitro treatment with GLP-1 analogs can affect macrophage phenotype, but there is a paucity of in vivo data. Objective: To evaluate the influence of in vivo treatment with liraglutide on basic phenotypic and functional markers of macrophages. Methods: Basic phenotypic features were assessed (including inducible nitric oxide synthase, arginase 1 and mannose receptors), proinflammatory cytokine (IL-1β, TNFα) release, and oxidative stress markers (reactive oxygen species, malondialdehyde) in macrophages obtained prior and after 3-month therapy with liraglutide in patients with obesity. Results: Three-month treatment with subcutaneous liraglutide resulted in the alteration of macrophage phenotype toward alternative activation (M2) with accompanying reduction in the TNFα release and diminished oxidative stress markers. Conclusions: Our results show that macrophages in patients treated with GLP-1 can alter their phenotype and function. Those findings may at least partly explain the pleiotropic beneficial cardiovascular effects seen in subjects treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
4
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. FASEB J 2024; 38:e70059. [PMID: 39331575 DOI: 10.1096/fj.202400689rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.
Collapse
Affiliation(s)
- Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Candice Kent
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fulin Ma
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myriam Fornage
- Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Cervantes Recalde MF, Schmidt J, Girardi C, Massironi M, Rechl ML, Hans J, Stuhlmann D, Somoza V, Lieder B. Capsaicin attenuates the effect of inflammatory cytokines in a HaCaT cell model for basal keratinocytes. Front Pharmacol 2024; 15:1474898. [PMID: 39469627 PMCID: PMC11513304 DOI: 10.3389/fphar.2024.1474898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction The resolution of the skin's inflammatory response is only possible if its barrier function is restored. TRPV1 channel activation plays an important role during inflammation but the effect of this activation on the skin barrier under inflammatory conditions has not been clarified. We hypothesize that it could potentially aid the keratinocyte barrier by reducing inflammatory cytokine release and promoting tight junction development. Methods To explore the role of TRPV1 activation in inflammation, we designed and optimized an in vitro model of keratinocytes with basal epidermal layer characteristics using HaCaT cells and TNFα to induce inflammation. Results TNFα increased the gene expression of tight junction protein claudin 1 (CLDN1) by at least 2.60 ± 0.16-fold, in a concentration-dependent manner, over a 48 h period. The administration of a capsaicin pre-treatment reduced the CLDN1 expression to 1.51 ± 0.16-fold during the first 6 h after TNFα induction, whereas IL-8 cytokine release was reduced 0.64 ± 0.17-fold. After 48 h, CLDN1 protein levels increased by a factor of 6.57 ± 1.39 compared to cells only treated with TNFα. Discussion These results suggest that activation of TRPV1 by capsaicin can potentiate the increase in CLDN1 expression and CLDN1 protein synthesis induced by TNFα in cultured keratinocytes, while reducing the release of IL-8.
Collapse
Affiliation(s)
- Maria Fernanda Cervantes Recalde
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Jana Schmidt
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Markus Leo Rechl
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Veronika Somoza
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Leibniz Institute of Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Norton CE, Kim HJ, Sivasankaran SK, Li M, Castorena-Gonzalez JA, Drumm BT, Davis MJ. Characterization of the cellular components of mouse collecting lymphatic vessels reveals that lymphatic muscle cells are the innate pacemaker cells regulating lymphatic contractions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554619. [PMID: 37662284 PMCID: PMC10473772 DOI: 10.1101/2023.08.24.554619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Collecting lymphatic vessels (cLVs) exhibit spontaneous contractions with a pressure-dependent frequency, but the identity of the lymphatic pacemaker cell is still debated. By analogy to pacemakers in the GI and lower urinary tracts, proposed cLV pacemaker cells include interstitial cells of Cajal like cells (ICLC) or the lymphatic muscle (LMCs) cells themselves. Here we combined immunofluorescence and scRNAseq analyses with electrophysiological methods to examine the cellular constituents of the mouse cLV wall and assess whether any cell type exhibited morphological and functional processes characteristic of pacemaker cells: a continuous if not contiguous network integrated into the electrical syncytium; spontaneous Ca2+ transients; and depolarization-induced propagated contractions. We employed inducible Cre (iCre) mouse models routinely used to target these specific cell populations including: c-kitCreER T2 to target ICLC; PdgfrβCreER T2 to target pericyte-like cells; PdgfrαCreER ™ to target CD34+ adventitial cells and ICLC; and Myh11CreER T2 to target LMCs directly. These specific inducible Cre lines were crossed to the fluorescent reporter ROSA26mT/mG, the genetically encoded Ca2+ sensor GCaMP6f, and the light-activated cation channel rhodopsin2 (ChR2). c-KitCreER T2 labeled both a sparse population of LECs and round adventitial cells that responded to the mast cell activator compound 48-80. PdgfrβCreER T2 drove recombination in both adventitial cells and LMCs, limiting its power to discriminate a pericyte-specific population. PdgfrαCreER ™ labeled a large population of interconnected, oak leaf-shaped cells primarily along the adventitial surface of the vessel. Of these cells, only LMCs consistently, but heterogeneously, displayed spontaneous Ca2+ events during the diastolic period of the contraction cycle, and whose frequency was modulated in a pressure-dependent manner. Optogenetic depolarization through the expression of ChR2 under control of Myh11CreER T2 , but not PdgfrαCreER ™ or c-KitCreER T2 , resulted in propagated contractions upon photo-stimulation. Membrane potential recordings in LMCs demonstrated that the rate of diastolic depolarization significantly correlated with contraction frequency. These findings support the conclusion that LMCs, or a subset of LMCs, are responsible for mouse cLV pacemaking.
Collapse
Affiliation(s)
- S D Zawieja
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - G A Pea
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - S E Broyhill
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - A Patro
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - K H Bromert
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - C E Norton
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - H J Kim
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - S K Sivasankaran
- Bioinformatics and Analytics Core, Division of Research, Innovation and Impact, University of Missouri, Columbia, Missouri
| | - M Li
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | | | - B T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, A91 K584, Ireland
| | - M J Davis
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Raftery AL, O'Brien CA, Shad A, L'Estrange-Stranieri E, Hsu AT, Jacobsen EA, Harris NL, Tsantikos E, Hibbs ML. Activated eosinophils in early life impair lung development and promote long-term lung damage. Mucosal Immunol 2024; 17:871-891. [PMID: 38901764 DOI: 10.1016/j.mucimm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Exaggeration of type 2 immune responses promotes lung inflammation and altered lung development; however, eosinophils, despite expansion in the postnatal lung, have not been specifically assessed in the context of neonatal lung disease. Furthermore, early life factors including prematurity and respiratory infection predispose infants to chronic obstructive pulmonary disease later in life. To assess eosinophils in the developing lung and how they may contribute to chronic lung disease, we generated mice harboring eosinophil-specific deletion of the negative regulatory enzyme SH2 domain-containing inositol 5' phosphatase-1. This increased the activity and number of pulmonary eosinophils in the developing lung, which was associated with impaired lung development, expansion of activated alveolar macrophages (AMφ), multinucleated giant cell formation, enlargement of airspaces, and fibrosis. Despite regression of eosinophils following completion of lung development, AMφ-dominated inflammation persisted, alongside lung damage. Bone marrow chimera studies showed that SH2 domain-containing inositol 5' phosphatase-1-deficient eosinophils were not sufficient to drive inflammatory lung disease in adult steady-state mice but once inflammation and damage were present, it could not be resolved. Depletion of eosinophils during alveolarization alleviated pulmonary inflammation and lung pathology, demonstrating an eosinophil-intrinsic effect. These results show that the presence of activated eosinophils during alveolarization aggravates AMφs and promotes sustained inflammation and long-lasting lung pathology.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Caitlin A O'Brien
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ali Shad
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elan L'Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Amy T Hsu
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Aldor NL, Jadaa NA, Miller SY, Alla I, Richardson S, Kitaev V, Poynter SJ. Cationic Polystyrene Latex Nanocarriers for Immunostimulatory Long Double-Stranded RNA Delivery to Ovarian Cancer Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35487. [PMID: 39318330 DOI: 10.1002/jbm.b.35487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Long double-stranded (ds)RNA, a potent stimulator of type I interferon and the innate immune response. In the present study, we demonstrated, for the first time, the efficacy of cationic polystyrene latex nanostructures (clNPs) as a dsRNA carrier, improving cellular delivery and robustly potentiating the immunostimulatory capacity of dsRNA in the ovarian cancer cell line SKOV3. The clNPs complexed with an in vitro transcribed dsRNA molecule, were bound by SKOV3 cells, and had increased cellular association compared to uncomplexed clNPs. clNPs complexed with dsRNA induced a more robust innate immune response compared to dsRNA alone. Transcript expression of two interferon-stimulated genes, were increased 47- and 108-fold over dsRNA and induced a significant antiviral state against vesicular-stomatitis virus, resulting in a 3.3-fold improvement on the efficacy of dsRNA. These data highlight the potential of polystyrene latex nanostructures as dsRNA carriers for anticancer immunotherapies, improving the uptake and efficacy of the nucleic acid.
Collapse
Affiliation(s)
- N L Aldor
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - N A Jadaa
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Y Miller
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - I Alla
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Richardson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - V Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S J Poynter
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Razim A, Zabłocka A, Schmid A, Thaler M, Černý V, Weinmayer T, Whitehead B, Martens A, Skalska M, Morandi M, Schmidt K, Wysmołek ME, Végvári A, Srutkova D, Schwarzer M, Neuninger L, Nejsum P, Hrdý J, Palmfeldt J, Brucale M, Valle F, Górska S, Wisgrill L, Inic‐Kanada A, Wiedermann U, Schabussova I. Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells. J Extracell Vesicles 2024; 13:e70004. [PMID: 39429019 PMCID: PMC11491762 DOI: 10.1002/jev2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Agnieszka Razim
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Agnieszka Zabłocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Michael Thaler
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Viktor Černý
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Tamara Weinmayer
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Bradley Whitehead
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anke Martens
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Magdalena Skalska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of PhysicsAstronomy and Applied Computer Science, Jagiellonian UniversityKrakowPoland
| | - Mattia Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencePragueCzech Republic
| | - Katy Schmidt
- Research Support Facilities, Imaging Unit CIUS, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Magdalena E. Wysmołek
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Akos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Dagmar Srutkova
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Martin Schwarzer
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Lukas Neuninger
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Peter Nejsum
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jiri Hrdý
- Institute of Immunology and Microbiology, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Marco Brucale
- Institute of Nanostructured MaterialsCNR‐ISMNBolognaItaly
| | | | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Lukas Wisgrill
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Aleksandra Inic‐Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| |
Collapse
|
10
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Zhu S, Huo S, Wang Z, Huang C, Li C, Song H, Yang X, He R, Ding C, Qiu M, Zhu XJ. Follistatin controls the number of murine teeth by limiting TGF-β signaling. iScience 2024; 27:110785. [PMID: 39286503 PMCID: PMC11403059 DOI: 10.1016/j.isci.2024.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor β (TGF-β) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-β signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-β/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-β signaling.
Collapse
Affiliation(s)
- Shicheng Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suman Huo
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhongzheng Wang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Caiyan Huang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuanxu Li
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Cheng Ding
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
12
|
Wang S, Xiao G, Tang M, Bi X, Xing C, Liu A, Zhao AZ, Li F. FKBP38 deletion exacerbates ConA-induced hepatitis by promoting the immune response through the MCP-1/p38 pathway. Int Immunopharmacol 2024; 138:112659. [PMID: 38996665 DOI: 10.1016/j.intimp.2024.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Gengmiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Minyi Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Xinyun Bi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chaofeng Xing
- Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Aolu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| |
Collapse
|
13
|
Meena JK, Wang JH, Neill NJ, Keough D, Putluri N, Katsonis P, Koire AM, Lee H, Bowling EA, Tyagi S, Orellana M, Dominguez-Vidaña R, Li H, Eagle K, Danan C, Chung HC, Yang AD, Wu W, Kurley SJ, Ho BM, Zoeller JR, Olson CM, Meerbrey KL, Lichtarge O, Sreekumar A, Dacso CC, Guddat LW, Rejman D, Hocková D, Janeba Z, Simon LM, Lin CY, Pillon MC, Westbrook TF. MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer. Cancer Discov 2024; 14:1699-1716. [PMID: 39193992 PMCID: PMC11372365 DOI: 10.1158/2159-8290.cd-22-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
Collapse
Affiliation(s)
- Jitendra K. Meena
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Jarey H. Wang
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Nicholas J. Neill
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Dianne Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Amanda M. Koire
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Elizabeth A. Bowling
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Siddhartha Tyagi
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Mayra Orellana
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Rocio Dominguez-Vidaña
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Heyuan Li
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kenneth Eagle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Charles Danan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hsiang-Ching Chung
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Andrew D. Yang
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - William Wu
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Sarah J. Kurley
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Brian M. Ho
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Joseph R. Zoeller
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Calla M. Olson
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kristen L. Meerbrey
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Luke W. Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Dana Hocková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Lukas M. Simon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
| | - Charles Y. Lin
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| | - Monica C. Pillon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Thomas F. Westbrook
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
14
|
Schönberger T, Jakobs M, Friedel AL, Hörbelt-Grünheidt T, Tebbe B, Witzke O, Schedlowski M, Fandrey J. Exposure to normobaric hypoxia shapes the acute inflammatory response in human whole blood cells in vivo. Pflugers Arch 2024; 476:1369-1381. [PMID: 38714572 PMCID: PMC11310243 DOI: 10.1007/s00424-024-02969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.
Collapse
Affiliation(s)
- Tina Schönberger
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Anna-Lena Friedel
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Bastian Tebbe
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nephrology, University Hospital Essen, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
15
|
Rupa D, Chuang H, Hu C, Su W, Wu S, Lee H, Yuan T. ACSL4 upregulates IFI44 and IFI44L expression and promotes the proliferation and invasiveness of head and neck squamous cell carcinoma cells. Cancer Sci 2024; 115:3026-3040. [PMID: 38989827 PMCID: PMC11462949 DOI: 10.1111/cas.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
Reprogramming of cellular energy metabolism, including deregulated lipid metabolism, is a hallmark of head and neck squamous cell carcinoma (HNSCC). However, the underlying molecular mechanisms remain unclear. Long-chain acyl-CoA synthetase 4 (ACSL4), which catalyzes fatty acids to form fatty acyl-CoAs, is critical for synthesizing phospholipids or triglycerides. Despite the differing roles of ACSL4 in cancers, our data showed that ACSL4 was highly expressed in HNSCC tissues, positively correlating with poor survival rates in patients. Knockdown of ACSL4 in HNSCC cells led to reduced cell proliferation and invasiveness. RNA sequencing analyses identified interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), encoded by two interferon-stimulated genes, as potential effectors of ACSL4. Silencing IFI44 or IFI44L expression in HNSCC cells decreased cell proliferation and invasiveness. Manipulating ACSL4 expression or activity modulated the expression levels of JAK1, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1 (STAT1), interferon α (IFNα), IFNβ, and interferon regulatory factor 1 (IRF1), which regulate IFI44 and IFI44L expression. Knockdown of IRF1 reduced the expression of JAK1, TYK2, IFNα, IFNβ, IFI44, or IFI44L and diminished cell proliferation and invasiveness. Our results suggest that ACSL4 upregulates interferon signaling, enhancing IFI44 and IFI44L expression and promoting HNSCC cell proliferation and invasiveness. Thus, ACSL4 could serve as a novel therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Darius Rupa
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
- Present address:
Department of Biology EducationBorneo Tarakan UniversityIndonesia
| | - Hao‐Wen Chuang
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Chung‐En Hu
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| | - Wen‐Min Su
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| | - Shiou‐Rong Wu
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Herng‐Sheng Lee
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Ta‐Chun Yuan
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| |
Collapse
|
16
|
Dipali SS, Gowett MQ, Kamat P, Converse A, Zaniker EJ, Fennell A, Chou T, Pritchard MT, Zelinski M, Phillip JM, Duncan FE. Self-organizing ovarian somatic organoids preserve cellular heterogeneity and reveal cellular contributions to ovarian aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607456. [PMID: 39211064 PMCID: PMC11360955 DOI: 10.1101/2024.08.10.607456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ovarian somatic cells are essential for reproductive function, but no existing ex vivo models recapitulate the cellular heterogeneity or interactions within this compartment. We engineered a novel ovarian somatic organoid model by culturing a stroma-enriched fraction of mouse ovaries in scaffold-free agarose micromolds. Ovarian somatic organoids self-organized, maintained diverse cell populations, produced extracellular matrix, and secreted hormones. Organoids generated from reproductively old mice exhibited reduced aggregation and growth compared to young counterparts, as well as differences in cellular composition. Interestingly, matrix fibroblasts from old mice demonstrated upregulation of pathways associated with the actin cytoskeleton and downregulation of cell adhesion pathways, indicative of increased cellular stiffness which may impair organoid aggregation. Cellular morphology, which is regulated by the cytoskeleton, significantly changed with age and in response to actin depolymerization. Moreover, actin depolymerization rescued age-associated organoid aggregation deficiency. Overall, ovarian somatic organoids have advanced fundamental knowledge of cellular contributions to ovarian aging.
Collapse
|
17
|
Wang Z, Zhao N, Zhang S, Wang D, Wang S, Liu N. YEATS domain-containing protein GAS41 regulates nuclear shape by working in concert with BRD2 and the mediator complex in colorectal cancer. Pharmacol Res 2024; 206:107283. [PMID: 38964523 DOI: 10.1016/j.phrs.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The maintenance of nuclear shape is essential for cellular homeostasis and disruptions in this process have been linked to various pathological conditions, including cancer, laminopathies, and aging. Despite the significance of nuclear shape, the precise molecular mechanisms controlling it are not fully understood. In this study, we have identified the YEATS domain-containing protein 4 (GAS41) as a previously unidentified factor involved in regulating nuclear morphology. Genetic ablation of GAS41 in colorectal cancer cells resulted in significant abnormalities in nuclear shape and inhibited cancer cell proliferation both in vitro and in vivo. Restoration experiments revealed that wild-type GAS41, but not a YEATS domain mutant devoid of histone H3 lysine 27 acetylation or crotonylation (H3K27ac/cr) binding, rescued the aberrant nuclear phenotypes in GAS41-deficient cells, highlighting the importance of GAS41's binding to H3K27ac/cr in nuclear shape regulation. Further experiments showed that GAS41 interacts with H3K27ac/cr to regulate the expression of key nuclear shape regulators, including LMNB1, LMNB2, SYNE4, and LEMD2. Mechanistically, GAS41 recruited BRD2 and the Mediator complex to gene loci of these regulators, promoting their transcriptional activation. Disruption of GAS41-H3K27ac/cr binding caused BRD2, MED14 and MED23 to dissociate from gene loci, leading to nuclear shape abnormalities. Overall, our findings demonstrate that GAS41 collaborates with BRD2 and the Mediator complex to control the expression of crucial nuclear shape regulators.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. Brain Behav Immun 2024; 120:471-487. [PMID: 38925417 DOI: 10.1016/j.bbi.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Activity-induced muscle pain increases interleukin-1β (IL-1β) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1β in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1β activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1β in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1β applied to cultured DRG significantly induced BDNF expression, suggesting IL-1β is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1β, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA; Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joseph B Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Yue C, Lu W, Fan S, Huang Z, Yang J, Dong H, Zhang X, Shang Y, Lai W, Li D, Dong T, Yuan A, Wu J, Kang L, Hu Y. Nanoparticles for inducing Gaucher disease-like damage in cancer cells. NATURE NANOTECHNOLOGY 2024; 19:1203-1215. [PMID: 38740934 DOI: 10.1038/s41565-024-01668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.
Collapse
Affiliation(s)
- Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Shuxin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jiaying Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Xiaojun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuxin Shang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Yeo XY, Tam D, Jo Y, Kim JE, Ryu D, Chan JP, Jung S. Polar Lipids Supplementation Enhances Basal Excitatory Synaptic Transmission in Primary Cortical Neuron. Mol Nutr Food Res 2024; 68:e2300883. [PMID: 38984736 DOI: 10.1002/mnfr.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/28/2024] [Indexed: 07/11/2024]
Abstract
SCOPE Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore, 119228, Republic of Singapore
| | - Dao Tam
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, S14 Level 6, Science Drive 2, Singapore, 117542, Republic of Singapore
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jia Pei Chan
- Research and Development Department, Abbott Nutrition, 3300 Stelzer Road, RP3-2, Columbus, Ohio, 43219, USA
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
- Department of Medical Science, College of Medicine, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| |
Collapse
|
21
|
Hughes D, Evans A, Go S, Eyres M, Pan L, Mukherjee S, Soonawalla Z, Willenbrock F, O’Neill E. Development of human pancreatic cancer avatars as a model for dynamic immune landscape profiling and personalized therapy. SCIENCE ADVANCES 2024; 10:eadm9071. [PMID: 38968363 PMCID: PMC11225792 DOI: 10.1126/sciadv.adm9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer, a disease with dismal overall survival. Advances in treatment are hindered by a lack of preclinical models. Here, we show how a personalized organotypic "avatar" created from resected tissue allows spatial and temporal reporting on a complete in situ tumor microenvironment and mirrors clinical responses. Our perfusion culture method extends tumor slice viability, maintaining stable tumor content, metabolism, stromal composition, and immune cell populations for 12 days. Using multiplexed immunofluorescence and spatial transcriptomics, we identify immune neighborhoods and potential for immunotherapy. We used avatars to assess the impact of a preclinically validated metabolic therapy and show recovery of stromal and immune phenotypes and tumor redifferentiation. To determine clinical relevance, we monitored avatar response to gemcitabine treatment and identify a patient avatar-predictable response from clinical follow-up. Thus, avatars provide valuable information for syngeneic testing of therapeutics and a truly personalized therapeutic assessment platform for patients.
Collapse
Affiliation(s)
- Daniel Hughes
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alice Evans
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simei Go
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Eyres
- Medicines Discovery Catapult, Alderley Park SK10 4ZF, UK
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, USA
| | | | - Zahir Soonawalla
- Department of HPB surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7DQ, UK
| | | | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
22
|
Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR. Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson's disease mouse model. Exp Neurol 2024; 377:114780. [PMID: 38649091 DOI: 10.1016/j.expneurol.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3β/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.
Collapse
Affiliation(s)
- Ana Flavia F Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Zhang Z, Ren J, Ren L, Zhang L, Ai Q, Long H, Ren Y, Yang K, Feng H, Li S, Li X. MiPRIME: an integrated and intelligent platform for mining primer and probe sequences of microbial species. Bioinformatics 2024; 40:btae429. [PMID: 38954836 PMCID: PMC11246166 DOI: 10.1093/bioinformatics/btae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
MOTIVATION Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION The web is available at {{https://www.ai-bt.com}}.
Collapse
Affiliation(s)
- Zhiming Zhang
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Jing Ren
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Lili Ren
- Equipment technology research institute, Science and Technology Research Center of China Customs, Tianshuiyuan street No. 6, Chaoyang District, Beijing, 100026, China
| | - Lanying Zhang
- Research and Development Department, Coyote Diagnostics Lab (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 100095, China
| | - Qubo Ai
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Haixin Long
- Research and Development Department, Coyote Diagnostics Lab (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 100095, China
| | - Yi Ren
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Kun Yang
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Huiying Feng
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Sabrina Li
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Xu Li
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| |
Collapse
|
24
|
Stevenson LK, Page AJ, Dowson M, ElBadry SK, Barnieh FM, Falconer RA, El-Khamisy SF. The DNA repair kinase ATM regulates CD13 expression and cell migration. Front Cell Dev Biol 2024; 12:1359105. [PMID: 38933336 PMCID: PMC11199385 DOI: 10.3389/fcell.2024.1359105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Classically, ATM is known for its role in sensing double-strand DNA breaks, and subsequently signaling for their repair. Non-canonical roles of ATM include transcriptional silencing, ferroptosis, autophagy and angiogenesis. Angiogenesis mediated by ATM signaling has been shown to be VEGF-independent via p38 signaling. Independently, p38 signaling has been shown to upregulate metalloproteinase expression, including MMP-2 and MMP-9, though it is unclear if this is linked to ATM. Here, we demonstrate ATM regulates aminopeptidase-N (CD13/APN/ANPEP) at the protein level. Positive correlation was seen between ATM activity and CD13 protein expression using both "wildtype" (WT) and knockout (KO) ataxia telangiectasia (AT) cells through western blotting; with the same effect shown when treating neuroblastoma cancer cell line SH-SY5Y, as well as AT-WT cells, with ATM inhibitor (ATMi; KU55933). However, qPCR along with publically available RNAseq data from Hu et al. (J. Clin. Invest., 2021, 131, e139333), demonstrated no change in mRNA levels of CD13, suggesting that ATM regulates CD13 levels via controlling protein degradation. This is further supported by the observation that incubation with proteasome inhibitors led to restoration of CD13 protein levels in cells treated with ATMi. Migration assays showed ATM and CD13 inhibition impairs migration, with no additional effect observed when combined. This suggests an epistatic effect, and that both proteins may be acting in the same signaling pathway that influences cell migration. This work indicates a novel functional interaction between ATM and CD13, suggesting ATM may negatively regulate the degradation of CD13, and subsequently cell migration.
Collapse
Affiliation(s)
- Louise K. Stevenson
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Amy J. Page
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Dowson
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Sameh K. ElBadry
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Sherif F. El-Khamisy
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
25
|
Petronio Petronio G, Di Naro M, Venditti N, Guarnieri A, Cutuli MA, Magnifico I, Medoro A, Foderà E, Passarella D, Nicolosi D, Di Marco R. Targeting S. aureus Extracellular Vesicles: A New Putative Strategy to Counteract Their Pathogenic Potential. Pharmaceutics 2024; 16:789. [PMID: 38931910 PMCID: PMC11207539 DOI: 10.3390/pharmaceutics16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Long-term inflammatory skin disease atopic dermatitis is characterized by dry skin, itching, and eczematous lesions. During inflammation skin barrier protein impairment promotes S. aureus colonisation in the inflamed skin, worsening AD patient's clinical condition. Proteomic analysis revealed the presence of several immune evasion proteins and virulence factors in S. aureus extracellular vesicles (EVs), suggesting a possible role for these proteins in the pathophysiology of atopic dermatitis. The objective of this study is to assess the efficacy of a wall fragment obtained from a patented strain of C. acnes DSM28251 (c40) and its combination with a mucopolysaccharide carrier (HAc40) in counteract the pathogenic potential of EVs produced by S. aureus ATCC 14458. Results obtained from in vitro studies on HaCaT keratinocyte cells showed that HAc40 and c40 treatment significantly altered the size and pathogenicity of S. aureus EVs. Specifically, EVs grew larger, potentially reducing their ability to interact with the target cells and decreasing cytotoxicity. Additionally, the overexpression of the tight junctions mRNA zona occludens 1 (ZO1) and claudin 1 (CLDN1) following EVs exposure was decreased by HAc40 and c40 treatment, indicating a protective effect on the epidermal barrier's function. These findings demonstrate how Hac40 and c40 may mitigate the harmful effects of S. aureus EVs. Further investigation is needed to elucidate the exact mechanisms underlying this interaction and explore the potential clinical utility of c40 and its mucopolysaccharide carrier conjugate HAc40 in managing atopic dermatitis.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy
| | - Noemi Venditti
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
- UO Laboratorio Analisi, Responsible Research Hospital, 86100 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | | | | | - Alessandro Medoro
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Emanuele Foderà
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Daniela Passarella
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| |
Collapse
|
26
|
Barnett AM, Dawkins L, Zou J, McNair E, Nikolova VD, Moy SS, Sutherland GT, Stevens J, Colie M, Katemboh K, Kellner H, Damian C, DeCastro S, Vetreno RP, Coleman LG. Loss of neuronal lysosomal acid lipase drives amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.596693. [PMID: 38915509 PMCID: PMC11195138 DOI: 10.1101/2024.06.09.596693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Underlying drivers of late-onset Alzheimer's disease (LOAD) pathology remain unknown. However, multiple biologically diverse risk factors share a common pathological progression. To identify convergent molecular abnormalities that drive LOAD pathogenesis we compared two common midlife risk factors for LOAD, heavy alcohol use and obesity. This revealed that disrupted lipophagy is an underlying cause of LOAD pathogenesis. Both exposures reduced lysosomal flux, with a loss of neuronal lysosomal acid lipase (LAL). This resulted in neuronal lysosomal lipid (NLL) accumulation, which opposed Aβ localization to lysosomes. Neuronal LAL loss both preceded (with aging) and promoted (targeted knockdown) Aβ pathology and cognitive deficits in AD mice. The addition of recombinant LAL ex vivo and neuronal LAL overexpression in vivo prevented amyloid increases and improved cognition. In WT mice, neuronal LAL declined with aging and correlated negatively with entorhinal Aβ. In healthy human brain, LAL also declined with age, suggesting this contributes to the age-related vulnerability for AD. In human LOAD LAL was further reduced, correlated negatively with Aβ1-42, and occurred with polymerase pausing at the LAL gene. Together, this finds that the loss of neuronal LAL promotes NLL accumulation to impede degradation of Aβ in neuronal lysosomes to drive AD amyloid pathology.
Collapse
Affiliation(s)
- Alexandra M Barnett
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Lamar Dawkins
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Jian Zou
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Elizabeth McNair
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Viktoriya D Nikolova
- University of North Carolina at Chapel Hill School of Medicine, Department of Psychiatry, Chapel Hill, NC
- University of North Carolina at Chapel Hill, Carolina Institute for Developmental Disabilities, Chapel Hill, NC
| | - Sheryl S Moy
- University of North Carolina at Chapel Hill School of Medicine, Department of Psychiatry, Chapel Hill, NC
- University of North Carolina at Chapel Hill, Carolina Institute for Developmental Disabilities, Chapel Hill, NC
| | - Greg T Sutherland
- New South Wales Brain Tissue Resource Centre and Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdon, Australia
| | - Julia Stevens
- New South Wales Brain Tissue Resource Centre and Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdon, Australia
| | - Meagan Colie
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
| | - Kemi Katemboh
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
| | - Hope Kellner
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
| | - Corina Damian
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
| | - Sagan DeCastro
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina at Chapel Hill School of Medicine, Department of Psychiatry, Chapel Hill, NC
| | - Leon G Coleman
- University of North Carolina at Chapel Hill School of Medicine, Department of Pharmacology, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
27
|
Kodali MC, Salim C, Ismael S, Lebovitz SG, Lin G, Liao FF. Characterization of exosome-mediated propagation of systemic inflammatory responses into the Central Nervous System. RESEARCH SQUARE 2024:rs.3.rs-4423565. [PMID: 38883721 PMCID: PMC11177953 DOI: 10.21203/rs.3.rs-4423565/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The mechanisms through which systemic inflammation exerts its effect on the CNS are still not completely understood. Exosomes are small (30 to 100 nanometers) membrane-bound extracellular vesicles released by most of the mammalian cells. Exosomes play a vital role in cell-to-cell communication. This includes regulation of inflammatory responses by shuttling mRNAs, miRNAs, and cytokines both locally and systemically to the neighboring as well as distant cells to further modulate their transcriptional and/or translational states and affect the functional phenotype of those cells that have taken up these exosomes. The role of circulating blood exosomes leading to neuroinflammation during systemic inflammatory conditions was further characterized. Serum-derived exosomes from LPS-challenged mice (SDEL) were freshly isolated from the sera of the mice that were earlier treated with LPS and used to study SDEL effects on neuroinflammation. Exosomes isolated from the sera of the mice injected with saline were used as a control. In-vitro studies showed that the SDEL upregulate pro-inflammatory cytokine gene expression in the murine cell lines of microglia (BV-2), astrocytes (C8-D1A), and cerebral microvascular endothelial cells (bEnd.3). To further study their effects in-vivo, SDEL were intravenously injected into normal adult mice. Elevated mRNA expression of pro-inflammatory cytokines was observed in the brains of SDEL recipient mice. Proteomic analysis of the SDEL confirmed the increased expression of inflammatory cytokines in them. Together, these results further demonstrate and strengthen the novel role of peripheral circulating exosomes in causing neuroinflammation during systemic inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | - Sarah Grace Lebovitz
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| | - Geng Lin
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| | - Francesca-Fang Liao
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| |
Collapse
|
28
|
Zhou W, Huang Y, Liu J, Liu Y, Liu Y, Yu C. Identification of ANKRD13D as a potential target in renal cell carcinomas. Int J Biol Markers 2024; 39:149-157. [PMID: 38449090 DOI: 10.1177/03936155241236498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND The correlation of the expression of ankyrin repeat domain (ANKRD) family members with renal cell carcinoma prognosis was investigated. METHODS The GEPIA2, GEO2R, UALCAN, GDC, OncoLnc, TIMER, PanglaoDB, CancerSEA, and Tabula Muris databases were used. Twelve ANKRD family members were identified as having overexpressed renal cell carcinoma samples. The ANKRD13D was identified as a renal cell carcinoma-specific target by cross-referencing the multiple survival databases. To clarify the role of ANKRD13D, the expression of NAKRD13D was analyzed at the single-cell level. RESULTS ANKRD13D was mainly expressed in immune cells and positively correlated with Treg cell infiltration. The expression of ANKRD13D was also positively correlated with PDCD1, CTLA4, LAG3, TNFSF14, and ISG20. The overexpression of ANKRD13D in Treg was confirmed using reverse transcription-quantitative polymerase chain reaction. The structure of ANKRD13D was predicted using AlphaFold. CONCLUSION In conclusion, we identified ANKRD13D as a key immune regulator, and targeting ANKRD13D with immune checkpoints blockade may be a promoting strategy for renal cell carcinoma immunotherapy.
Collapse
Affiliation(s)
- Wenqian Zhou
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiguo Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Cho H, Yoo M, Pongkulapa T, Rabie H, Muotri AR, Yin PT, Choi J, Lee K. Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306432. [PMID: 38647391 PMCID: PMC11200027 DOI: 10.1002/advs.202306432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas9 technology has the potential to revolutionize the treatment of various diseases, including Rett syndrome, by enabling the correction of genes or mutations in human patient cells. However, several challenges need to be addressed before its widespread clinical application. These challenges include the low delivery efficiencies to target cells, the actual efficiency of the genome-editing process, and the precision with which the CRISPR-Cas system operates. Herein, the study presents a Magnetic Nanoparticle-Assisted Genome Editing (MAGE) platform, which significantly improves the transfection efficiency, biocompatibility, and genome-editing accuracy of CRISPR-Cas9 technology. To demonstrate the feasibility of the developed technology, MAGE is applied to correct the mutated MeCP2 gene in induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) from a Rett syndrome patient. By combining magnetofection and magnetic-activated cell sorting, MAGE achieves higher multi-plasmid delivery (99.3%) and repairing efficiencies (42.95%) with significantly shorter incubation times than conventional transfection agents without size limitations on plasmids. The repaired iPSC-NPCs showed similar characteristics as wild-type neurons when they differentiated into neurons, further validating MAGE and its potential for future clinical applications. In short, the developed nanobio-combined CRISPR-Cas9 technology offers the potential for various clinical applications, particularly in stem cell therapies targeting different genetic diseases.
Collapse
Affiliation(s)
- Hyeon‐Yeol Cho
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
- Department of Bio and Fermentation Convergence TechnologyKookmin UniversitySeoul02707South Korea
| | - Myungsik Yoo
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Hudifah Rabie
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Alysson R. Muotri
- School of MedicineDepartment of Pediatrics/Rady Children's Hospital San DiegoDepartment of Cellular and Molecular MedicineStem Cell ProgramLa JollaCA92093USA
| | - Perry T. Yin
- Department of Biomedical EngineeringRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
30
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
31
|
Lu J, Li F, Ye M. PANoptosis and Autophagy-Related Molecular Signature and Immune Landscape in Ulcerative Colitis: Integrated Analysis and Experimental Validation. J Inflamm Res 2024; 17:3225-3245. [PMID: 38800594 PMCID: PMC11122227 DOI: 10.2147/jir.s455862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Ulcerative colitis (UC) is an autoimmune inflammatory disorder of the gastrointestinal tract. Programmed cell death (PCD), including PANoptosis and autophagy, plays roles in inflammation and immunity. This study aimed to investigate the molecular signature and immune landscape of the PANoptosis- and autophagy-related differentially expressed genes (DEGs) in UC. Methods Analyzing UC dataset GSE206285 yielded DEGs. Differentially expressed PANoptosis- and autophagy-related genes were identified using DEGs and relevant gene collections. Functional and pathway enrichment analyses were conducted. A protein-protein interaction (PPI) network was established to identify hub genes. TRRUST database predicted transcription factors (TFs), pivotal miRNAs, and drugs interacting with hub genes. Immune infiltration analysis, UC-associated single-cell sequencing data analysis, and construction of a competing endogenous RNA (ceRNA) network for hub genes were conducted. Machine learning identified key candidate genes, evaluated for diagnostic value via receiver operating characteristic (ROC) curves. A UC mice model verified expression of key candidate genes. Results Identifying ten PANoptosis-related hub DEGs and four autophagy-related hub DEGs associated them with cell chemotaxis, wound healing and positive MAPK cascade regulation. Immune infiltration analysis revealed increased immunocyte infiltration in UC patients, with hub genes closely linked to various immune cell infiltrations. Machine learning identified five key candidate genes, TIMP1, TIMP2, TIMP3, IL6, and CCL2, with strong diagnostic performance. At the single-cell level, these genes exhibited high expression in inflammatory fibroblasts (IAFs). They showed significant expression differences in the colon mucosa of both UC patients and UC mice model. Conclusion This study identified and validated novel molecular signatures associated with PANoptosis and autophagy in UC, potentially influencing immune dysregulation and wound healing, thus opening avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Jiali Lu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Fei Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
32
|
Wang M, Zhang L, Yang H, Lu H. Translatome and transcriptome profiling of neonatal mice hippocampus exposed to sevoflurane anesthesia. Heliyon 2024; 10:e28876. [PMID: 38707353 PMCID: PMC11066607 DOI: 10.1016/j.heliyon.2024.e28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Exposure to anesthesia in early life may cause severe damage to the brain and lead to cognitive impairment. The underlying mechanisms, which have only been investigated in a limited scale, remains largely elusive. We performed translatome and transcriptome sequencing together for the first time in hippocampus of neonatal mice that were exposed to sevoflurane. We treated a group of neonatal mice with 2.5 % sevoflurane for 2 h on day 6, 7, 8, 9 and treated another group on day 6, 7. We performed behavioral study after day 30 for both groups and the control to evaluate the cognitive impairment. On day 36, we collected translatome and transcriptome from the hippocampus in the two groups, compared the gene expression levels between the groups and the control, and validated the results with RT-qPCR. We identified 1750 differentially expressed genes (DEGs) from translatome comparison and 1109 DEGs from transcriptome comparison. As expected, translatome-based DEGs significantly overlapped with transcriptome-based DEGs, and functional enrichment analysis generated similar enriched cognition-related GO terms and KEGG pathways. However, for many genes like Hspa5, their alterations in translatome differed remarkably from those in transcriptome, and Western blot results were largely concordant with the former, suggesting that translational regulation plays a significant role in cellular response to sevoflurane. Our study revealed global alterations in translatome and transcriptome of mice hippocampus after neonatal exposure to sevoflurane anesthesia and highlighted the importance of translatome analysis in understanding the mechanisms responsible for anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hecheng Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
33
|
Funes S, Jung J, Gadd DH, Mosqueda M, Zhong J, Shankaracharya, Unger M, Stallworth K, Cameron D, Rotunno MS, Dawes P, Fowler-Magaw M, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Nickerson JA, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. Nat Commun 2024; 15:2497. [PMID: 38509062 PMCID: PMC10954694 DOI: 10.1038/s41467-024-46695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Salome Funes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan Jung
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Del Hayden Gadd
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michelle Mosqueda
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Matthew Unger
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karly Stallworth
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Debra Cameron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Melissa S Rotunno
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Megan Fowler-Magaw
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Sivakumar Boopathy
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Worcester, MA, 01605, USA
| | - Cathleen Lutz
- The Jackson Laboratory Center for Precision Genetics, Rare Disease Translational Center, Bar Harbor, ME, 04609, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Elaine T Lim
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P Schafer
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
34
|
Treven P, Paveljšek D, Kostanjšek R, Golob M, Bogovič Matijašič B, Mohar Lorbeg P. In vitro model of human mammary gland microbial colonization (MAGIC) demonstrates distinctive cytokine response to imbalanced human milk microbiota. Microbiol Spectr 2024; 12:e0236923. [PMID: 38289112 PMCID: PMC10913382 DOI: 10.1128/spectrum.02369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024] Open
Abstract
Despite the established concept of the human mammary gland (MG) as a habitat with its own microbiota, the exact mechanism of MG colonization is still elusive and a well-characterized in vitro model would reinforce studies of the MG microbiota development. We aimed to establish and characterize an in vitro cell model for studying MAmmary Gland mIcrobial Colonization (MAGIC) model. We used the immortalized cell line MCF10A, which expresses the strong polarized phenotype similar to MG ductal epithelium when cultured on a permeable support (Transwell). We analyzed the surface properties of the MAGIC model by gene expression analysis of E-cadherin, tight junction proteins, and mucins and by scanning electron microscopy. To demonstrate the applicability of the model, we tested the adhesion capability of the whole human milk (HM) microbial community and the cellular response of the model when challenged directly with raw HM samples. MCF10A on permeable supports differentiated and formed a tight barrier, by upregulation of CLDN8, MUC1, MUC4, and MUC20 genes. The surface of the model was covered with mucins and morphologically diverse with at least two cell types and two types of microvilli. Cells in the MAGIC model withstood the challenge with heat-treated HM samples and responded differently to the imbalanced HM microbiota by distinctive cytokine response. The microbial profile of the bacteria adhered on the MAGIC model reflected the microbiological profile of the input HM samples. The well-studied MAGIC model could be useful for studies of bacterial attachment to the MG and for in vitro studies of biofilm formation and microbiota development.IMPORTANCEThe MAGIC model may be particularly useful for studies of bacterial attachment to the surface of the mammary ducts and for in vitro studies of biofilm formation and the development of the human mammary gland (MG) microbiota. The model is also useful for immunological studies of the interaction between bacteria and MG cells. We obtained pioneering information on which of the bacteria present in the raw human milk (HM) were able to attach to the epithelium treated directly with raw HM, as well as on the effects of bacteria on the MG epithelial cells. The MAGIC cell model also offers new opportunities for research in other areas of MG physiology, such as the effects of bioactive milk components on microbial colonization of the MG, mastitis prevention, and studies of probiotic development. Since resident MG bacteria may be an important factor in breast cancer development, the MAGIC in vitro tool also offers new opportunities for cancer research.
Collapse
Affiliation(s)
- Primož Treven
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Diana Paveljšek
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Biotechnical Faculty, Chair of Zoology, Ljubljana, Slovenia
| | - Majda Golob
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Bojana Bogovič Matijašič
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
35
|
Li M, Wang P, Huo ST, Qiu H, Li C, Lin S, Guo L, Ji Y, Zhu Y, Liu J, Guo J, Na J, Hu Y. Human Pluripotent Stem Cells Derived Endothelial Cells Repair Choroidal Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302940. [PMID: 38115754 PMCID: PMC10916649 DOI: 10.1002/advs.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Indexed: 12/21/2023]
Abstract
Choroidal atrophy is a common fundus pathological change closely related to the development of age-related macular degeneration (AMD), retinitis pigmentosa, and pathological myopia. Studies suggest that choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first cells lost in choroidal atrophy. It is found that endothelial cells derived from human pluripotent stem cells (hPSC-ECs) through the MESP1+ mesodermal progenitor stage express CECs-specific markers and can integrate into choriocapillaris. Single-cell RNA-seq (scRNA-seq) studies show that hPSC-ECs upregulate angiogenesis and immune-modulatory and neural protective genes after interacting with ex vivo ischemic choroid. In a rat model of choroidal ischemia (CI), transplantation of hPSC-ECs into the suprachoroidal space increases choroid thickness and vasculature density. Close-up examination shows that engrafted hPSC-ECs integrate with all layers of rat choroidal vessels and last 90 days. Remarkably, EC transplantation improves the visual function of CI rats. The work demonstrates that hPSC-ECs can be used to repair choroidal ischemia in the animal model, which may lead to a new therapy to alleviate choroidal atrophy implicated in dry AMD, pathological myopia, and other ocular diseases.
Collapse
Affiliation(s)
- Mengda Li
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Peiliang Wang
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Si Tong Huo
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Hui Qiu
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Chendi Li
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Siyong Lin
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Libin Guo
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Yicong Ji
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Yonglin Zhu
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jinyang Liu
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jianying Guo
- Center for Reproductive MedicineDepartment of Obstetrics and GynaecologyPeking University Third HospitalBeijing100191China
| | - Jie Na
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Yuntao Hu
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| |
Collapse
|
36
|
Chojnacka-Puchta L, Sawicka D, Zapor L, Miranowicz-Dzierzawska K. Assessing cytotoxicity and endoplasmic reticulum stress in human blood-brain barrier cells due to silver and copper oxide nanoparticles. J Appl Genet 2024:10.1007/s13353-024-00833-8. [PMID: 38332387 DOI: 10.1007/s13353-024-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In recent years, it has been generally accepted that metal-based nanoparticles (NPs) may induce stress in the endoplasmic reticulum (ER), a key organelle where protein folding occurs. We examined ER stress in immortalized human cerebral microvascular cells (hCMEC/D3) after exposure to silver-NPs (Ag-NPs)- and copper oxide-NPs (CuO-NPs) induced toxicity at < 10 nm and < 40 nm or < 50 nm diameters, respectively. In cytotoxicity assessments, cells were exposed to different CuO-NPs (5-400 µg/mL) or Ag-NPs (1-10 µg/mL) concentration ranges for 24 h and 72 h, and tetrazole salt reduction assays (EZ4U) were performed. Also, Ag-NP or CuO-NP effects on cell proliferation, apoptosis (caspase 3/7 assays), and ER stress and cell morphology were evaluated. In ER stress assessments, RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1a), and others stress factor mRNA levels were determined after 24 h treatment using Real-Time PCR. Increased stress sensors (IRE1a, PERK, and ATF6) mRNA levels were observed after exposure to Ag-NPs (< 10 and < 40 nm) or CuO-NPs (< 50 nm). We investigated the expression of tight junction (TJ) proteins (barrier junctions) and showed that both types of NP reduced of OCLN gene expression. Morphological changes were observed after Ag-NP or CuO-NP exposure using holotomographic microscopy. Our data suggest that Ag- and CuO-NPs should undergo future in vitro and in vivo toxicology studies, especially for downstream biomedical application and occupational risk assessments.
Collapse
Affiliation(s)
- Luiza Chojnacka-Puchta
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland.
| | - Dorota Sawicka
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | - Lidia Zapor
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | | |
Collapse
|
37
|
Beirow K, Schmidt C, Jürgen B, Schlüter R, Schweder T, Bednarski PJ. Investigation of TGF-α-overexpressing mouse hepatocytes (TAMH) cultured as spheroids for use in hepatotoxicity screening of drug candidates. J Appl Toxicol 2024; 44:272-286. [PMID: 37655636 DOI: 10.1002/jat.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
The immortalized mouse liver cell line TAMH has been described as a valuable tool for studying hepatotoxic mechanisms, but until now, it has only been reported to grow as a monolayer in culture. However, culturing hepatocytes as three-dimensional (3D) spheroids has been shown to result in improved liver-specific functions (e.g., metabolic capacity) by better mimicking the in vivo environment. This approach may lead to more reliable detection of drug-induced liver injury (DILI) in the early phase of drug discovery, preventing post-marketing drug withdrawals. Here, we investigated the cultivation of TAMH as 3D spheroids, characterizing them with optical and transmission electron microscopy as well as analyzing their gene expression at mRNA level (especially drug-metabolizing enzymes) compared to TAMH monolayer. In addition, comparisons were made with spheroids grown from the human hepatoblastoma cell line HepG2, another current spheroid model. The results indicate that TAMH spheroids express hepatic structures and show elevated levels of some of the key phase I and II drug-metabolizing enzymes, in contrast to TAMH monolayer. The in vitro hepatotoxic potencies of the drugs acetaminophen and flupirtine maleate were found to be very similar between TAMH spheroidal and the monolayer cultures. Both the advantages and disadvantages of TAMH spheroids as an in vitro hepatotoxicity model compared to monolayer model are discussed.
Collapse
Affiliation(s)
- Kristin Beirow
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Christian Schmidt
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Britta Jürgen
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Wang Z, Chao Z, Wang Q, Zou F, Song T, Xu L, Ning J, Cheng F. EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J Transl Med 2024; 22:104. [PMID: 38279172 PMCID: PMC10811948 DOI: 10.1186/s12967-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors affecting the male genitourinary system. However, there is currently a lack of effective treatments for patients with advanced prostate cancer, which significantly impacts men's overall health. Exonuclease 1 (EXO1), a protein with mismatch repair and recombination functions, has been found to play a vital role in various diseases. In our study, we discovered that EXO1 acts as a novel biomarker of PCa, which promotes prostate cancer progression by regulating lipid metabolism reprogramming in prostate cancer cells. Mechanistically, EXO1 promotes the expression of SREBP1 by inhibiting the P53 signaling pathway. In summary, our findings suggest that EXO1 regulated intracellular lipid reprogramming through the P53/SREBP1 axis, thus promoting PCa progression. The result could potentially lead to new insights and therapeutic targets for diagnosing and treating PCa.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lizhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
39
|
Zhu H, Lu J, Fu M, Chen P, Yu Y, Chen M, Zhao Q, Wu M, Ye M. YAP represses intestinal inflammation through epigenetic silencing of JMJD3. Clin Epigenetics 2024; 16:14. [PMID: 38245781 PMCID: PMC10800074 DOI: 10.1186/s13148-024-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Epigenetics plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Some studies have reported that YAP is involved in inflammatory response and can regulate target genes through epigenetic modifications. JMJD3, a histone H3K27me3 demethylase, is associated with some inflammatory diseases. In this study, we investigated the role of YAP in the development of IBD and the underlying epigenetic mechanisms. RESULTS YAP expression was significantly increased in both in vitro and in vivo colitis models as well as in patients with IBD. Epithelial-specific knockout of YAP aggravates disease progression in dextran sodium sulfate (DSS)-induced murine colitis. In the TNF-α-activated cellular inflammation model, YAP knockdown significantly increased JMJD3 expression. Coimmunoprecipitation experiments showed that YAP and EZH2 bind to each other, and chromatin immunoprecipitation-PCR (ChIP-PCR) assay indicated that silencing of YAP or EZH2 decreases H3K27me3 enrichment on the promoter of JMJD3. Finally, administration of the JMJD3 pharmacological inhibitor GSK-J4 alleviated the progression of DSS-induced murine colitis. CONCLUSION Our findings elucidate an epigenetic mechanism by which YAP inhibits the inflammatory response in colitis through epigenetic silencing of JMJD3 by recruiting EZH2.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - MingYue Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
40
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.566359. [PMID: 38187529 PMCID: PMC10769267 DOI: 10.1101/2023.12.18.566359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.
Collapse
|
41
|
Hagen KM, Gordon P, Frederick A, Palmer AL, Edalat P, Zonta YR, Scott L, Flancia M, Reid JK, Joel M, Ousman SS. CRYAB plays a role in terminating the presence of pro-inflammatory macrophages in the older, injured mouse peripheral nervous system. Neurobiol Aging 2024; 133:1-15. [PMID: 38381471 DOI: 10.1016/j.neurobiolaging.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 02/22/2024]
Abstract
Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.
Collapse
Affiliation(s)
- Kathleen Margaret Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Louise Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yohan Ricci Zonta
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Scott
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Flancia
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Kelsey Reid
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Joel
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shalina Sheryl Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
42
|
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X, He M. Increased hsa-miR-100-5p Expression Improves Hepatocellular Carcinoma Prognosis in the Asian Population with PLK1 Variant rs27770A>G. Cancers (Basel) 2023; 16:129. [PMID: 38201556 PMCID: PMC10778516 DOI: 10.3390/cancers16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has the highest incidence and mortality in the Asian population, and race is an independent risk factor affecting survival time in liver cancer. Micro RNAs (miRNAs) are remarkably dysregulated in HCC and closely associated with HCC prognosis. Recent studies show that genetic variability between ethnic groups may result in differences in the specificity of HCC miRNA biomarkers. Here, we reveal a high expression level of hsa-miR-100-5p, an HCC prognosis-related miRNA, which improves HCC prognosis in the Asian Population with Polo-like kinase 1 (PLK1) variant rs27770A>G. In this study, we discovered that hsa-miR-100-5p was downregulated in various HCC cell lines. While mimics transient transfection and mouse liver cancer model confirmed the interaction between hsa-miR-100-5p and PLK1, a stratified analysis based on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data suggest both low hsa-miR-100-5p expression level and high PLK1 expression level associated with poor HCC prognosis, especially in the Asian population. According to the 1000 Genomes Project database, the SNP rs27770 located in 3'UTR of PLK1 had a significantly higher G allele frequency in the East Asian population. Bioinformatics analysis suggested that rs27770 A>G affects PLK1 mRNA secondary structure and alters the hsa-miR-100-5p/PLK1 interaction by forming an additional seedless binding site. This racial variation caused PLK1 to be more vulnerable to hsa-miR-100-5p inhibition, resulting in hsa-miR-100-5p being more favorable for HCC prognosis in the Asian population.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Wanling Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Zhenyu Song
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
43
|
Cremin M, Tay EXY, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. PLoS Pathog 2023; 19:e1011576. [PMID: 38109366 PMCID: PMC10758261 DOI: 10.1371/journal.ppat.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
44
|
Browne DJ, Kelly AM, Brady J, Proietti C, Sarathkumara YD, Pattinson DJ, Doolan DL. Evaluating the stability of host-reference gene expression and simultaneously quantifying parasite burden and host immune responses in murine malaria. Sci Rep 2023; 13:21071. [PMID: 38030676 PMCID: PMC10687243 DOI: 10.1038/s41598-023-48066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
The efficacy of pre-erythrocytic stage malaria antigens or vaccine platforms is routinely assessed in murine models challenged with Plasmodium sporozoites. Relative liver-stage parasite burden is quantified using reverse transcription quantitative PCR (RTqPCR), which relies on constitutively expressed endogenous control reference genes. However, the stability of host-reference gene expression for RTqPCR analysis following Plasmodium challenge and immunization has not been systematically evaluated. Herein, we evaluated the stability of expression of twelve common RTqPCR reference genes in a murine model of Plasmodium yoelii sporozoite challenge and DNA-adenovirus IV 'Prime-Target' immunization. Significant changes in expression for six of twelve reference genes were shown by one-way ANOVA, when comparing gene expression levels among challenge, immunized, and naïve mice groups. These changes were attributed to parasite challenge or immunization when comparing group means using post-hoc Bonferroni corrected multiple comparison testing. Succinate dehydrogenase (SDHA) and TATA-binding protein (TBP) were identified as stable host-reference genes suitable for relative RTqPCR data normalisation, using the RefFinder package. We defined a robust threshold of 'partial-protection' with these genes and developed a strategy to simultaneously quantify matched host parasite burden and cytokine responses following immunisation or challenge. This is the first report systematically identifying reliable host reference genes for RTqPCR analysis following Plasmodium sporozoite challenge. A robust RTqPCR protocol incorporating reliable reference genes which enables simultaneous analysis of host whole-liver cytokine responses and parasite burden will significantly standardise and enhance results between international malaria vaccine efficacy studies.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Jamie Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Carla Proietti
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - David J Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
| |
Collapse
|
45
|
Li J, Xiong M, Fu XH, Fan Y, Dong C, Sun X, Zheng F, Wang SW, Liu L, Xu M, Wang C, Ping J, Che S, Wang Q, Yang K, Zuo Y, Lu X, Zheng Z, Lan T, Wang S, Ma S, Sun S, Zhang B, Chen CS, Cheng KY, Ye J, Qu J, Xue Y, Yang YG, Zhang F, Zhang W, Liu GH. Determining a multimodal aging clock in a cohort of Chinese women. MED 2023; 4:825-848.e13. [PMID: 37516104 DOI: 10.1016/j.medj.2023.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Translating aging rejuvenation strategies into clinical practice has the potential to address the unmet needs of the global aging population. However, to successfully do so requires precise quantification of aging and its reversal in a way that encompasses the complexity and variation of aging. METHODS Here, in a cohort of 113 healthy women, tiled in age from young to old, we identified a repertoire of known and previously unknown markers associated with age based on multimodal measurements, including transcripts, proteins, metabolites, microbes, and clinical laboratory values, based on which an integrative aging clock and a suite of customized aging clocks were developed. FINDINGS A unified analysis of aging-associated traits defined four aging modalities with distinct biological functions (chronic inflammation, lipid metabolism, hormone regulation, and tissue fitness), and depicted waves of changes in distinct biological pathways peak around the third and fifth decades of life. We also demonstrated that the developed aging clocks could measure biological age and assess partial aging deceleration by hormone replacement therapy, a prevalent treatment designed to correct hormonal imbalances. CONCLUSIONS We established aging metrics that capture systemic physiological dysregulation, a valuable framework for monitoring the aging process and informing clinical development of aging rejuvenation strategies. FUNDING This work was supported by the National Natural Science Foundation of China (32121001), the National Key Research and Development Program of China (2022YFA1103700 and 2020YFA0804000), the National Natural Science Foundation of China (81502304), and the Quzhou Technology Projects (2022K46).
Collapse
Affiliation(s)
- Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Hong Fu
- Center for Reproductive Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chen Dong
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zheng
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Si-Wei Wang
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Lixiao Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Che
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zikai Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Lan
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Si Wang
- Aging Biomarker Consortium, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- Aging Biomarker Consortium, Beijing 100101, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chen-Shui Chen
- Department of Respiratory and Critical Care Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Ke-Yun Cheng
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Jinlin Ye
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yongbiao Xue
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Zhang
- Center for Reproductive Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; The Joint Innovation Center for Engineering in Medicine, Quzhou People's Hospital, Quzhou 324000, China; Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China.
| | - Guang-Hui Liu
- Aging Biomarker Consortium, Beijing 100101, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
46
|
Fernandes HB, de Oliveira IM, Postler TS, Lima SQ, Santos CAC, Oliveira MS, Leão FB, Ghosh S, Souza MC, Andrade W, Silva AM. Transcriptomic analysis reveals that RasGEF1b deletion alters basal and LPS-induced expression of genes involved in chemotaxis and cytokine responses in macrophages. Sci Rep 2023; 13:19614. [PMID: 37950057 PMCID: PMC10638313 DOI: 10.1038/s41598-023-47040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Ras guanine nucleotide exchange factor member 1b (RasGEF1b) of the RasGEF/CDC25 domain-containing family is preferentially expressed by macrophages. However, information is lacking about its role in macrophage function. In this study, we generated mice with ubiquitous deletion of Rasgef1b and used RNA-seq-based transcriptomics to compare the global gene expression in wild-type and knock-out primary bone-marrow-derived macrophages under basal conditions and after lipopolysaccharide (LPS) treatment. Transcriptional filtering identified several genes with significantly different transcript levels between wild-type and knock-out macrophages. In total, 49 and 37 differentially expressed genes were identified at baseline and in LPS-activated macrophages, respectively. Distinct biological processes were significantly linked to down-regulated genes at the basal condition only, and largely included chemotaxis, response to cytokines, and positive regulation of GTPase activity. Importantly, validation by RT-qPCR revealed that the expression of genes identified as down-regulated after LPS stimulation was also decreased in the knock-out cells under basal conditions. We used a luciferase-based reporter assay to showcase the capability of RasGEF1b in activating the Serpinb2 promoter. Notably, knockdown of RasGEF1b in RAW264.7 macrophages resulted in impaired transcriptional activation of the Serpinb2 promoter, both in constitutive and LPS-stimulated conditions. This study provides a small collection of genes that shows relative expression changes effected by the absence of RasGEF1b in macrophages. Thus, we present the first evidence that RasGEF1b mediates the regulation of both steady-state and signal-dependent expression of genes and propose that this GEF plays a role in the maintenance of the basal transcriptional level in macrophages.
Collapse
Affiliation(s)
- Heliana B Fernandes
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Isadora Mafra de Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Design and Development Laboratory, International AIDS Vaccine Initiative, Brooklyn, NY, USA
| | - Sérgio Q Lima
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Cícera A C Santos
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO), Guajará-Mirim, RO, Brazil
| | - Michaelle S Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe B Leão
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria C Souza
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Warrison Andrade
- Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
47
|
Young CM, Beziaud L, Dessen P, Madurga Alonso A, Santamaria-Martínez A, Huelsken J. Metabolic dependencies of metastasis-initiating cells in female breast cancer. Nat Commun 2023; 14:7076. [PMID: 37925484 PMCID: PMC10625534 DOI: 10.1038/s41467-023-42748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Understanding the mechanisms that enable cancer cells to metastasize is essential in preventing cancer progression. Here we examine the metabolic adaptations of metastasis-initiating cells (MICs) in female breast cancer and how those shape their metastatic phenotype. We find that endogenous MICs depend on the oxidative tricarboxylic acid cycle and fatty acid usage. Sorting tumor cells based upon solely mitochondrial membrane potential or lipid storage is sufficient at identifying MICs. We further identify that mitochondrially-generated citrate is exported to the cytoplasm to yield acetyl-CoA, and this is crucial to maintaining heightened levels of H3K27ac in MICs. Blocking acetyl-CoA generating pathways or H3K27ac-specific epigenetic writers and readers reduces expression of epithelial-to-mesenchymal related genes, MIC frequency, and metastatic potential. Exogenous supplementation of a short chain carboxylic acid, acetate, increases MIC frequency and metastasis. In patient cohorts, we observe that higher expression of oxidative phosphorylation related genes is associated with reduced distant relapse-free survival. These data demonstrate that MICs specifically and precisely alter their metabolism to efficiently colonize distant organs.
Collapse
Affiliation(s)
- C Megan Young
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Laurent Beziaud
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pierre Dessen
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Angela Madurga Alonso
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
48
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565022. [PMID: 37961342 PMCID: PMC10635076 DOI: 10.1101/2023.10.31.565022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Activity-induced muscle pain increases release of interleukin-1β (IL-1β) in muscle macrophages and the development of pain is prevented by blockade of IL-1β. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesized that metabolites released during fatiguing muscle contractions activate macrophages to release IL-1β, which subsequently activate sensory neurons to secrete BDNF. To test this hypothesis, we used an animal model of activity-induced pain induced by repeated intramuscular acidic saline injections combined with fatiguing muscle contractions. Intrathecal or intramuscular injection of inhibitors of BDNF-Tropomyosin receptor kinase B (TrkB) signaling, ANA-12 or TrkB-Fc, reduced the decrease in muscle withdrawal thresholds in male, but not in female, mice when given before or 24hr after, but not 1 week after induction of the model. BDNF messenger ribonucleic acid (mRNA) was significantly increased in L4-L6 dorsal root ganglion (DRG), but not the spinal dorsal horn or gastrocnemius muscle, 24hr after induction of the model in either male or female mice. No changes in TrkB mRNA or p75 neurotrophin receptor mRNA were observed. BDNF protein expression via immunohistochemistry was significantly increased in L4-L6 spinal dorsal horn and retrogradely labelled muscle afferent DRG neurons, at 24hr after induction of the model in both sexes. In cultured DRG, fatigue metabolites combined with IL-1β significantly increased BDNF expression in both sexes. In summary, fatigue metabolites release, combined with IL-1β, BDNF from primary DRG neurons and contribute to activity-induced muscle pain only in males, while there were no sex differences in the changes in expression observed in BDNF.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J. Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F. Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K. Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
49
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
50
|
Zhu ZA, Li YY, Xu J, Xue H, Feng X, Zhu YC, Xiong ZQ. CDKL5 deficiency in adult glutamatergic neurons alters synaptic activity and causes spontaneous seizures via TrkB signaling. Cell Rep 2023; 42:113202. [PMID: 37777961 DOI: 10.1016/j.celrep.2023.113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe epileptic encephalopathy resulting from pathological mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. Despite significant progress in understanding the neuronal function of CDKL5, the molecular mechanisms underlying CDD-associated epileptogenesis are unknown. Here, we report that acute ablation of CDKL5 from adult forebrain glutamatergic neurons leads to elevated neural network activity in the dentate gyrus and the occurrence of early-onset spontaneous seizures via tropomyosin-related kinase B (TrkB) signaling. We observe increased expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of its receptor TrkB in the hippocampus of Cdkl5-deficient mice prior to the onset of behavioral seizures. Moreover, reducing TrkB signaling in these mice rescues the altered synaptic activity and suppresses recurrent seizures. These results suggest that TrkB signaling mediates epileptogenesis in a mouse model of CDD and that targeting this pathway might be effective for treating epilepsy in patients affected by CDKL5 mutations.
Collapse
Affiliation(s)
- Zi-Ai Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Yan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Hui Xue
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Yong-Chuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|