1
|
Lin X, Chen Z, Wu G, Jiang H, Liu Z. Correlation between the miR-618 rs2682818 C>A polymorphism and venous malformation susceptibility. Biotechnol Appl Biochem 2024; 71:1164-1169. [PMID: 38804038 DOI: 10.1002/bab.2618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Venous malformations are the most common congenital vascular malformations, and the incidence rate is high. Previous studies have confirmed that a variety of polymorphisms within the miRNA functional region are associated with tumor susceptibility. We examined the correlation between miR-618 rs2682818 C>A and risk of developing venous malformation in a southern Chinese population (1113 patients and 1158 controls). TaqMan genotyping of miR-618 rs2682818 C>A was conducted utilizing real-time fluorescent quantitative PCR. The miR-618 rs2682818 polymorphism was not correlated with susceptibility to venous malformation (CA/AA vs. CC: adjusted odds ratio [AOR] = 1.00, 95% confidence interval [CI] = 0.81-1.25, p = 0.994; AA vs. CC/CA: AOR = 1.10, 95% CI = 0.73-1.65, p = 0.646). Stratified analysis of different subtypes of venous malformation revealed that there was no significant difference in the rs2682818 C>A polymorphism genotypes across these subtypes. Our results indicate that miR-618 rs2682818 C>A polymorphism is not correlated with the susceptibility to venous malformation.
Collapse
Affiliation(s)
- Xi Lin
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zijian Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guitao Wu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenyin Liu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Gao G, Sun X, Xu J, Yu J, Wang Y. miR-19-3p/GRSF1/COX1 axis attenuates early brain injury via maintaining mitochondrial function after subarachnoid haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003099. [PMID: 39266212 DOI: 10.1136/svn-2024-003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein, which is eventually localised to mitochondria and promotes the translation of cytochrome C oxidase 1 (COX1) mRNA. However, the role of the miR-19-3p/GRSF1/COX1 axis has not been investigated in an experimental subarachnoid haemorrhage (SAH) model. Thus, we investigated the role of the miR-19-3p/GRSF1/COX1 axis in a SAH-induced early brain injury (EBI) course. METHODS Primary neurons were treated with oxyhaemoglobin (OxyHb) to simulate in vitro SAH. The rat SAH model was established by injecting autologous arterial blood into the optic chiasma cisterna. The GRSF1 level was downregulated or upregulated by treating the rats and neurons with lentivirus-GRSF1 shRNA (Lenti-GRSF1 shRNA) or lentivirus-GRSF1 (Lenti-GRSF1). RESULTS The miR-19-3p level was upregulated and the protein levels of GRSF1 and COX1 were both downregulated in SAH brain tissue. GRSF1 silence decreased and GRSF1 overexpression increased the protein levels of GRSF1 and COX1 in primary neurons and brain tissue, respectively. Lenti-GRSF1 shRNA aggravated, but Lenti-GRSF1 alleviated, the indicators of neuronal injury and neurological impairment in both in vitro and in vivo SAH conditions. In addition, miR-19-3p mimic reduced the protein levels of GRSF1 and COX1 in cultured neurons while miR-19-3p inhibitor increased them. More importantly, Lenti-GRSF1 significantly relieved mitochondrial damage of neurons exposed to OxyHb or induced by SAH and was beneficial to maintaining mitochondrial integrity. Lenti-GRSF1 shRNA treatment, conversely, aggravated mitochondrial damage in neurons. CONCLUSION The miR-19-3p/GRSF1/COX1 axis may serve as an underlying target for inhibiting SAH-induced EBI by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Sun
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Wagner AO, Turk A, Kunej T. Towards a Multi-Omics of Male Infertility. World J Mens Health 2023; 41:272-288. [PMID: 36649926 PMCID: PMC10042660 DOI: 10.5534/wjmh.220186] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023] Open
Abstract
Infertility is a common problem affecting one in six couples and in 30% of infertile couples, the male factor is a major cause. A large number of genes are involved in spermatogenesis and a significant proportion of male infertility phenotypes are of genetic origin. Studies on infertility have so far primarily focused on chromosomal abnormalities and sequence variants in protein-coding genes and have identified a large number of disease-associated genes. However, it has been shown that a multitude of factors across various omics levels also contribute to infertility phenotypes. The complexity of male infertility has led to the understanding that an integrated, multi-omics analysis may be optimal for unravelling this disease. While there is a vast array of different factors across omics levels associated with infertility, the present review focuses on known factors from the genomics, epigenomics, transcriptomics, proteomics, metabolomics, glycomics, lipidomics, miRNomics, and integrated omics levels. These include: repeat expansions in AR, POLG, ATXN1, DMPK, and SHBG, multiple SNPs, copy number variants in the AZF region, disregulated miRNAs, altered H3K9 methylation, differential MTHFR, MEG3, PEG1, and LIT1 methylation, altered protamine ratios and protein hypo/hyperphosphorylation. This integrative review presents a step towards a multi-omics approach to understanding the complex etiology of male infertility. Currently only a few genetic factors, namely chromosomal abnormalities and Y chromosome microdeletions, are routinely tested in infertile men undergoing intracytoplasmic sperm injection. A multi-omics approach to understanding infertility phenotypes may yield a more holistic view of the disease and contribute to the development of improved screening methods and treatment options. Therefore, beside discovering as of yet unknown genetic causes of infertility, integrating multiple fields of study could yield valuable contributions to the understanding of disease development. Future multi-omics studies will enable to synthesise fragmented information and facilitate biomarker discovery and treatments in male infertility.
Collapse
Affiliation(s)
- Ana Ogrinc Wagner
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Aleksander Turk
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia.
| |
Collapse
|
4
|
Johnsson P, Ziegenhain C, Hartmanis L, Hendriks GJ, Hagemann-Jensen M, Reinius B, Sandberg R. Transcriptional kinetics and molecular functions of long noncoding RNAs. Nat Genet 2022; 54:306-317. [PMID: 35241826 PMCID: PMC8920890 DOI: 10.1038/s41588-022-01014-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have experimentally confirmed functions, yet little is known about their transcriptional dynamics and it is challenging to determine their regulatory effects. Here, we used allele-sensitive single-cell RNA sequencing to demonstrate that, compared to messenger RNAs, lncRNAs have twice as long duration between two transcriptional bursts. Additionally, we observed increased cell-to-cell variability in lncRNA expression due to lower frequency bursting producing larger numbers of RNA molecules. Exploiting heterogeneity in asynchronously growing cells, we identified and experimentally validated lncRNAs with cell state-specific functions involved in cell cycle progression and apoptosis. Finally, we identified cis-functioning lncRNAs and showed that knockdown of these lncRNAs modulated the nearby protein-coding gene’s transcriptional burst frequency or size. In summary, we identified distinct transcriptional regulation of lncRNAs and demonstrated a role for lncRNAs in the regulation of mRNA transcriptional bursting. Allele-sensitive single-cell RNA sequencing analysis of long noncoding RNA (lncRNA) transcriptional kinetics shows that their lower expression compared to mRNA is due to lower burst frequencies and highlights cell-state-specific functions for several lncRNAs.
Collapse
Affiliation(s)
- Per Johnsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gert-Jan Hendriks
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Ganguly P, Roy D, Das T, Kundu A, Cartieaux F, Ghosh Z, DasGupta M. The Natural Antisense Transcript DONE40 Derived from the lncRNA ENOD40 Locus Interacts with SET Domain Protein ASHR3 During Inception of Symbiosis in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1057-1070. [PMID: 33934615 DOI: 10.1094/mpmi-12-20-0357-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipan Roy
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Fabienne Cartieaux
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
6
|
Krappinger JC, Bonstingl L, Pansy K, Sallinger K, Wreglesworth NI, Grinninger L, Deutsch A, El-Heliebi A, Kroneis T, Mcfarlane RJ, Sensen CW, Feichtinger J. Non-coding Natural Antisense Transcripts: Analysis and Application. J Biotechnol 2021; 340:75-101. [PMID: 34371054 DOI: 10.1016/j.jbiotec.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Non-coding natural antisense transcripts (ncNATs) are regulatory RNA sequences that are transcribed in the opposite direction to protein-coding or non-coding transcripts. These transcripts are implicated in a broad variety of biological and pathological processes, including tumorigenesis and oncogenic progression. With this complex field still in its infancy, annotations, expression profiling and functional characterisations of ncNATs are far less comprehensive than those for protein-coding genes, pointing out substantial gaps in the analysis and characterisation of these regulatory transcripts. In this review, we discuss ncNATs from an analysis perspective, in particular regarding the use of high-throughput sequencing strategies, such as RNA-sequencing, and summarize the unique challenges of investigating the antisense transcriptome. Finally, we elaborate on their potential as biomarkers and future targets for treatment, focusing on cancer.
Collapse
Affiliation(s)
- Julian C Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Katrin Pansy
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Nick I Wreglesworth
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Lukas Grinninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Austrian Biotech University of Applied Sciences, Konrad Lorenz-Straße 10, 3430 Tulln an der Donau, Austria
| | - Alexander Deutsch
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Ramsay J Mcfarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Christoph W Sensen
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria; HCEMM Kft., Római blvd. 21, 6723 Szeged, Hungary
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
7
|
MicroRNA Profiling in Paired Left and Right Eyes, Lungs, and Testes of Normal Mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2020; 21:687-695. [PMID: 32769059 PMCID: PMC7347495 DOI: 10.1016/j.omtn.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Abstract
Physiological and pathophysiological differences widely exist in paired organ systems. However, the molecular basis for these differences remains largely unknown. We previously reported that there exist differentially expressed miRNAs (DEMs) in the left and right kidneys of normal mice. Here, we identified the DEMs in the left and right eyes, lungs, and testes of normal mice via RNA sequencing. As a result, we identified 26 DEMs in eyes, with 23 higher and 3 lower in the left eyes compared with right eyes; 21 DEMs in lungs, with 15 higher and 6 lower in the left lungs compared with right lungs; and 54 DEMs in testes, with 6 higher and 48 lower in the left testes compared with right testes. Ten microRNAs (miRNAs) were further examined by quantitative PCR assays, and seven of these were confirmed. In addition, correlation analysis was performed between paired organ miRNA expressions and diverse body fluid miRNA expressions. Finally, we explored the functions and networks of DEMs and performed biological process and pathway enrichment analysis of target genes for DEMs, providing insights into the physiological and pathophysiological differences between the two entities of paired organs.
Collapse
|
8
|
Xu H, Wang X, Wang Z, Li J, Xu Z, Miao M, Chen G, Lei X, Wu J, Shi H, Wang K, Zhang T, Sun X. MicroRNA expression profile analysis in sperm reveals hsa-mir-191 as an auspicious omen of in vitro fertilization. BMC Genomics 2020; 21:165. [PMID: 32066367 PMCID: PMC7027243 DOI: 10.1186/s12864-020-6570-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. RESULTS In this study, RNA-seq data collected from sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were analyzed for the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER). The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p < 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. CONCLUSIONS These findings suggest that high hsa-mir-191-5p expression in sperm is associated with early human embryonic quality and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).
Collapse
Affiliation(s)
- Hua Xu
- Shanghai JiAi Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No.588 Fangxie Road, Shanghai, 200011, China
| | - Xin Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Zhikai Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Jianhui Li
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Zhiming Xu
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Public School, Fudan University, Shanghai, China
| | - Guowu Chen
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangdong Lei
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Wu
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Huijuan Shi
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Ke Wang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China
| | - Tiancheng Zhang
- NHC Key Lab. of Reproduction Regulation(Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, No.2140 xietu road, xuhui district, Shanghai, People's Republic of China.
| | - Xiaoxi Sun
- Shanghai JiAi Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No.588 Fangxie Road, Shanghai, 200011, China. .,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
9
|
Kuznetsov VA, Bondarenko V, Wongsurawat T, Yenamandra SP, Jenjaroenpun P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res 2019; 46:7566-7585. [PMID: 29945198 PMCID: PMC6125637 DOI: 10.1093/nar/gky554] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladyslav Bondarenko
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Thidathip Wongsurawat
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surya P Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
10
|
Jurjević I, Miyajima M, Ogino I, Akiba C, Nakajima M, Kondo A, Kikkawa M, Kanai M, Hattori N, Arai H. Decreased Expression of hsa-miR-4274 in Cerebrospinal Fluid of Normal Pressure Hydrocephalus Mimics with Parkinsonian Syndromes. J Alzheimers Dis 2018; 56:317-325. [PMID: 27911315 PMCID: PMC5240577 DOI: 10.3233/jad-160848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Patients presenting with the classical idiopathic normal pressure hydrocephalus (iNPH) triad often show additional parkinsonian spectrum signs. Accurate differential diagnosis strongly influences the long-term outcome of cerebrospinal fluid (CSF) shunting. Objective: The aim of this study was to find potential CSF microRNA (miRNA) biomarkers for NPH mimics with parkinsonian syndromes that can reliably distinguish them from iNPH patients. Methods: Two cohorts of 81 patients (cohort 1, n = 55; cohort 2, n = 26) with possible iNPH who were treated in two centers between January 2011 and May 2014 were studied. In both cohorts, CSF samples were obtained from patients clinically diagnosed with iNPH (n = 21 and n = 10, respectively), possible iNPH with parkinsonian spectrum (PS) (n = 18, n = 10, respectively), possible iNPH with Alzheimer’s disease (AD) (n = 16), and non-affected elderly individuals (NC) (n = 6). A three-step qRT-PCR analysis of the CSF samples was performed to detect miRNAs that were differentially expressed in the groups. Results: The expression of hsa-miR-4274 in CSF was decreased in both cohorts of PS group patients (cohort 1: p < 0.0001, cohort 2: p < 0.0001), and was able to distinguish PS from iNPH with high accuracy (area under the curve = 0.908). The CSF concentration of hsa-miR-4274 also correlated with the specific binding ratio of ioflupane (123I) dopamine transporter scan (r = –0.494, p = 0.044). By contrast, the level of hsa-miR-4274 was significantly increased in the PS group after CSF diversion. Conclusion: Levels of CSF hsa-miR-4274 can differentiate PS from patients with iNPH, AD, and NC. This may be clinically useful for diagnostic purposes and predicting shunt treatment responses.
Collapse
Affiliation(s)
- Ivana Jurjević
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Pharmacology and Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mika Kikkawa
- Division of Proteomics and Bio Molecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyasu Kanai
- Department of Neurology, Takasaki General Medical Center, Gunma, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, Kim J, Kim H, Kim DS. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 2018; 111:159-166. [PMID: 29366860 DOI: 10.1016/j.ygeno.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minah Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeongkil Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - HyeRan Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Plant Systems Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Guéant JL, Chéry C, Oussalah A, Nadaf J, Coelho D, Josse T, Flayac J, Robert A, Koscinski I, Gastin I, Filhine-Tresarrieu P, Pupavac M, Brebner A, Watkins D, Pastinen T, Montpetit A, Hariri F, Tregouët D, Raby BA, Chung WK, Morange PE, Froese DS, Baumgartner MR, Benoist JF, Ficicioglu C, Marchand V, Motorin Y, Bonnemains C, Feillet F, Majewski J, Rosenblatt DS. APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun 2018; 9:67. [PMID: 29302025 PMCID: PMC5754367 DOI: 10.1038/s41467-017-02306-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
To date, epimutations reported in man have been somatic and erased in germlines. Here, we identify a cause of the autosomal recessive cblC class of inborn errors of vitamin B12 metabolism that we name “epi-cblC”. The subjects are compound heterozygotes for a genetic mutation and for a promoter epimutation, detected in blood, fibroblasts, and sperm, at the MMACHC locus; 5-azacytidine restores the expression of MMACHC in fibroblasts. MMACHC is flanked by CCDC163P and PRDX1, which are in the opposite orientation. The epimutation is present in three generations and results from PRDX1 mutations that force antisense transcription of MMACHC thereby possibly generating a H3K36me3 mark. The silencing of PRDX1 transcription leads to partial hypomethylation of the epiallele and restores the expression of MMACHC. This example of epi-cblC demonstrates the need to search for compound epigenetic-genetic heterozygosity in patients with typical disease manifestation and genetic heterozygosity in disease-causing genes located in other gene trios. Inborn errors of vitamin B12 metabolism of the cblC class are caused by mutations in the MMACHC gene. Here, Guéant et al. report epi-cblC, a class of cblC in which patients are compound heterozygous for a genetic mutation and a secondary epimutation at the MMACHC locus.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France.
| | - Céline Chéry
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Abderrahim Oussalah
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Javad Nadaf
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - David Coelho
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Thomas Josse
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Justine Flayac
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Aurélie Robert
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Isabelle Koscinski
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Isabelle Gastin
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Pierre Filhine-Tresarrieu
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Alison Brebner
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - David Watkins
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - David Tregouët
- Sorbonne Universités, UPMC University Paris 06, Institut National pour la Santé et la Recherche Médicale (INSERM), ICAN Institute for Cardiometabolism and Nutrition, Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States of America
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, 10032, United States of America
| | - Pierre-Emmanuel Morange
- INSERM, UMR_S1062, Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, 13005, Marseille, France
| | - D Sean Froese
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital, CH-8032, Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital, CH-8032, Zürich, Switzerland
| | | | - Can Ficicioglu
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Virginie Marchand
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS - Université de Lorraine and FR3209 CNRS- Université de Lorraine, 54505, Nancy, France
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS - Université de Lorraine and FR3209 CNRS- Université de Lorraine, 54505, Nancy, France
| | - Chrystèle Bonnemains
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - François Feillet
- INSERM, UMR_S954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), 54505, Nancy, France
| | - Jacek Majewski
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| |
Collapse
|
13
|
Wenric S, ElGuendi S, Caberg JH, Bezzaou W, Fasquelle C, Charloteaux B, Karim L, Hennuy B, Frères P, Collignon J, Boukerroucha M, Schroeder H, Olivier F, Jossa V, Jerusalem G, Josse C, Bours V. Transcriptome-wide analysis of natural antisense transcripts shows their potential role in breast cancer. Sci Rep 2017; 7:17452. [PMID: 29234122 PMCID: PMC5727077 DOI: 10.1038/s41598-017-17811-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Non-coding RNAs (ncRNA) represent 1/5 of the mammalian transcript number, and 90% of the genome length is transcribed. Many ncRNAs play a role in cancer. Among them, non-coding natural antisense transcripts (ncNAT) are RNA sequences that are complementary and overlapping to those of either protein-coding (PCT) or non-coding transcripts. Several ncNATs were described as regulating protein coding gene expression on the same loci, and they are expected to act more frequently in cis compared to other ncRNAs that commonly function in trans. In this work, 22 breast cancers expressing estrogen receptors and their paired adjacent non-malignant tissues were analyzed by strand-specific RNA sequencing. To highlight ncNATs potentially playing a role in protein coding gene regulations that occur in breast cancer, three different data analysis methods were used: differential expression analysis of ncNATs between tumor and non-malignant tissues, differential correlation analysis of paired ncNAT/PCT between tumor and non-malignant tissues, and ncNAT/PCT read count ratio variation between tumor and non-malignant tissues. Each of these methods yielded lists of ncNAT/PCT pairs that were enriched in survival-associated genes. This work highlights ncNAT lists that display potential to affect the expression of protein-coding genes involved in breast cancer pathology.
Collapse
Affiliation(s)
- Stephane Wenric
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium.,University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | - Sonia ElGuendi
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium
| | | | - Warda Bezzaou
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium
| | - Corinne Fasquelle
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium
| | | | - Latifa Karim
- University of Liège, GIGA-Genomics Platform, Liege, Belgium
| | - Benoit Hennuy
- University of Liège, GIGA-Genomics Platform, Liege, Belgium
| | - Pierre Frères
- University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | - Joëlle Collignon
- University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | | | - Hélène Schroeder
- University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | - Fabrice Olivier
- University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | - Véronique Jossa
- Clinique Saint-Vincent (CHC), Department of Pathology, Liege, Belgium
| | - Guy Jerusalem
- University Hospital (CHU), Department of Medical Oncology, Liege, Belgium
| | - Claire Josse
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium. .,University Hospital (CHU), Department of Medical Oncology, Liege, Belgium.
| | - Vincent Bours
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liege, Belgium.,University Hospital (CHU), Center of Genetics, Liege, Belgium
| |
Collapse
|
14
|
van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li-Gao R, Pistis G, Shah N, Brody JA, Müller-Nurasyid M, Lin H, Mei H, Smith AV, Lyytikäinen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kähönen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orrú M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Völker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimäki T, Gudnason V, Wilson J, Lubitz SA, Kääb S, Sotoodehnia N, Caulfield MJ, Palmer CNA, Sanna S, Mook-Kanamori DO, Deloukas P, Pedersen O, Rotter JI, Dörr M, O'Donnell CJ, Hayward C, Arking DE, Kooperberg C, van der Harst P, Eijgelsheim M, Stricker BH, Munroe PB. Discovery of novel heart rate-associated loci using the Exome Chip. Hum Mol Genet 2017; 26:2346-2363. [PMID: 28379579 PMCID: PMC5458336 DOI: 10.1093/hmg/ddx113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/18/2017] [Indexed: 01/06/2023] Open
Abstract
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.
Collapse
Affiliation(s)
- Marten E van den Berg
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Niek Verweij
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Borbala Mifsud
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nathan A Bihlmeyer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205
| | - Yi-Ping Fu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA.,Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nabi Shah
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1 9SY, UK.,Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MI, USA
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D339, P.O. Box 100, FI-33014 Tampere, Finland
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands.,Department of Gerontology and Geriatrics, Leiden university Medical Center, Leiden, the Netherlands
| | - Bram P Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10 1SA.,Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Dept. of Biochemistry, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, NL
| | - Farid Radmanesh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Aiman Entwistle
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jan A Kors
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Claudia T Silva
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL.,Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia.,GENIUROS Group, Genetics and Genomics Research Center CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Rudolf de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex S F Doney
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ruben N Eppinga
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Stephan B Felix
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Yanick Hagemeijer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, 1730 Minor Ave, Suite 1600, Seattle, WA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI, NIH, Bethesda MD, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Finn-Medi 1, 3th floor, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Man Li
- Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84109, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simin Liu
- Brown University School of Public Health, Providence, Rhode Island 02912, USA
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen AB25?2ZD, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Marco Orrú
- Unita Operativa Complessa di Cardiologia, Presidio Ospedaliero Oncologico Armando Businco Cagliari , Azienda Ospedaliera Brotzu Cagliari, Caglliari, Italy
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12 8TA, UK
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4?2XU, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, W2?1PG, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Health Services, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Lihong Qi
- University of California Davis, One Shields Ave Ms1c 145, Davis, CA 95616 USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Fernando Rivadeneira
- Human Genomics Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Carolina Roselli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12?8TA, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, W2?1PG, UK
| | - Moritz F Sinner
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Kathleen E Stirrups
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,Departments of Pediatrics, Medicine, and Human Genetics, UCLA, Los Angeles, CA, USA
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester LE1?7RH, UK
| | - André Uitterlinden
- Human Genotyping Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - Arno W Hoes
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter van der Meer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhijun Xie
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | | | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Yalda Jamshidi
- Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17?0RE, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10?1SA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D338, P.O. Box 100, FI-33014 Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - James Wilson
- Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stefan Kääb
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Colin N A Palmer
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Panos Deloukas
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Marcus Dörr
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | | | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205 and
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
15
|
Babenko VN, Gubanova NV, Bragin AO, Chadaeva IV, Vasiliev GV, Medvedeva IV, Gaytan AS, Krivoshapkin AL, Orlov YL. Computer Analysis of Glioma Transcriptome Profiling: Alternative Splicing Events. J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2017-0022/jib-2017-0022.xml. [PMID: 28918420 PMCID: PMC6042819 DOI: 10.1515/jib-2017-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Here we present the analysis of alternative splicing events on an example of glioblastoma cell culture samples using a set of computer tools in combination with database integration. The gene expression profiles of glioblastoma were obtained from cell culture samples of primary glioblastoma which were isolated and processed for RNA extraction. Transcriptome profiling of normal brain samples and glioblastoma were done by Illumina sequencing. The significant differentially expressed exon-level probes and their corresponding genes were identified using a combination of the splicing index method. Previous studies indicated that tumor-specific alternative splicing is important in the regulation of gene expression and corresponding protein functions during cancer development. Multiple alternative splicing transcripts have been identified as progression markers, including generalized splicing abnormalities and tumor- and stage-specific events. We used a set of computer tools which were recently applied to analysis of gene expression in laboratory animals to study differential splicing events. We found 69 transcripts that are differentially alternatively spliced. Three cancer-associated genes were considered in detail, in particular: APP (amyloid beta precursor protein), CASC4 (cancer susceptibility candidate 4) and TP53. Such alternative splicing opens new perspectives for cancer research.
Collapse
|
16
|
Patel S, Rani A, Goyal A. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling. Comput Biol Chem 2017; 70:31-39. [PMID: 28780227 DOI: 10.1016/j.compbiolchem.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
Abstract
Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Aruna Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Altered miRNA expression network in locus coeruleus of depressed suicide subjects. Sci Rep 2017; 7:4387. [PMID: 28663595 PMCID: PMC5491496 DOI: 10.1038/s41598-017-04300-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022] Open
Abstract
Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior.
Collapse
|
18
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
19
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, F-Fernández S, Garrido N, Anton E. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 2015; 104:591-601. [DOI: 10.1016/j.fertnstert.2015.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
21
|
Schyth BD, Bela-ong DB, Jalali SAH, Kristensen LBJ, Einer-Jensen K, Pedersen FS, Lorenzen N. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans. PLoS One 2015; 10:e0132434. [PMID: 26207374 PMCID: PMC4514678 DOI: 10.1371/journal.pone.0132434] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are ~22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response in rainbow trout (Oncorhynchus mykiss) following inoculation with the virulent fish rhabdovirus Viral hemorrhagic septicaemia virus. Two clustered miRNAs, miR-462 and miR-731 (herein referred to as miR-462 cluster), described only in teleost fishes, were found to be strongly upregulated, indicating their involvement in fish-virus interactions. We searched for homologues of the two teleost miRNAs in other vertebrate species and investigated whether findings related to ours have been reported for these homologues. Gene synteny analysis along with gene sequence conservation suggested that the teleost fish miR-462 and miR-731 had evolved from the ancestral miR-191 and miR-425 (herein called miR-191 cluster), respectively. Whereas the miR-462 cluster locus is found between two protein-coding genes (intergenic) in teleost fish genomes, the miR-191 cluster locus is found within an intron of a protein-coding gene (intragenic) in the human genome. Interferon (IFN)-inducible and immune-related promoter elements found upstream of the teleost miR-462 cluster locus suggested roles in immune responses to viral pathogens in fish, while in humans, the miR-191 cluster functionally associated with cell cycle regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted in different regulation and presumably also different functional roles of these orthologous miRNA clusters in different vertebrate lineages.
Collapse
Affiliation(s)
- Brian Dall Schyth
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Dennis Berbulla Bela-ong
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- Fish Health Section, Department of Animal Science, Aarhus University, Aarhus N, Denmark
| | | | - Lasse Bøgelund Juel Kristensen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus C, Denmark
| | | | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus C, Denmark
| | - Niels Lorenzen
- Fish Health Section, Department of Animal Science, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
22
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
23
|
Ignatieva EV, Podkolodnaya OA, Orlov YL, Vasiliev GV, Kolchanov NA. Regulatory genomics: Combined experimental and computational approaches. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Werner A, Piatek MJ, Mattick JS. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann N Y Acad Sci 2014; 1341:156-63. [PMID: 25557795 PMCID: PMC4390386 DOI: 10.1111/nyas.12608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complex organisms, particularly mammals, have long generation times and produce small numbers of progeny that undergo increasingly entangled developmental programs. This reduces the ability of such organisms to explore evolutionary space, and, consequently, strategies that mitigate this problem likely have a strategic advantage. Here, we suggest that animals exploit the controlled shuffling of transposons to enhance genomic variability in conjunction with a molecular screening mechanism to exclude deleterious events. Accordingly, the removal of repressive DNA-methylation marks during male germ cell development is an evolved function that exploits the mutagenic potential of transposable elements. A wave of transcription during the meiotic phase of spermatogenesis produces the most complex transcriptome of all mammalian cells, including genic and noncoding sense-antisense RNA pairs that enable a genome-wide quality-control mechanism. Cells that fail the genomic quality test are excluded from further development, eventually resulting in a positively selected mature sperm population. We suggest that these processes, enhanced variability and stringent molecular quality control, compensate for the apparent reduced potential of complex animals to adapt and evolve.
Collapse
Affiliation(s)
- Andreas Werner
- RNA Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | | | | |
Collapse
|
25
|
Alam T, Medvedeva YA, Jia H, Brown JB, Lipovich L, Bajic VB. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes. PLoS One 2014; 9:e109443. [PMID: 25275320 PMCID: PMC4183604 DOI: 10.1371/journal.pone.0109443] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.
Collapse
Affiliation(s)
- Tanvir Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
| | - Yulia A. Medvedeva
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
| | - Hui Jia
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - James B. Brown
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (LL); (VB)
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
- * E-mail: (LL); (VB)
| |
Collapse
|
26
|
Johnsson P, Lipovich L, Grandér D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1063-71. [PMID: 24184936 PMCID: PMC3909678 DOI: 10.1016/j.bbagen.2013.10.035] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent advances in genomewide studies have revealed the abundance of long non-coding RNAs (lncRNAs) in mammalian transcriptomes. The ENCODE Consortium has elucidated the prevalence of human lncRNA genes, which are as numerous as protein-coding genes. Surprisingly, many lncRNAs do not show the same pattern of high interspecies conservation as protein-coding genes. The absence of functional studies and the frequent lack of sequence conservation therefore make functional interpretation of these newly discovered transcripts challenging. Many investigators have suggested the presence and importance of secondary structural elements within lncRNAs, but mammalian lncRNA secondary structure remains poorly understood. It is intriguing to speculate that in this group of genes, RNA secondary structures might be preserved throughout evolution and that this might explain the lack of sequence conservation among many lncRNAs. SCOPE OF REVIEW Here, we review the extent of interspecies conservation among different lncRNAs, with a focus on a subset of lncRNAs that have been functionally investigated. The function of lncRNAs is widespread and we investigate whether different forms of functionalities may be conserved. MAJOR CONCLUSIONS Lack of conservation does not imbue a lack of function. We highlight several examples of lncRNAs where RNA structure appears to be the main functional unit and evolutionary constraint. We survey existing genomewide studies of mammalian lncRNA conservation and summarize their limitations. We further review specific human lncRNAs which lack evolutionary conservation beyond primates but have proven to be both functional and therapeutically relevant. GENERAL SIGNIFICANCE Pioneering studies highlight a role in lncRNAs for secondary structures, and possibly the presence of functional "modules", which are interspersed with longer and less conserved stretches of nucleotide sequences. Taken together, high-throughput analysis of conservation and functional composition of the still-mysterious lncRNA genes is only now becoming feasible.
Collapse
Affiliation(s)
- Per Johnsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detriot, MI, USA
| | - Dan Grandér
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin V Morris
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Romero R, Tarca AL, Chaemsaithong P, Miranda J, Chaiworapongsa T, Jia H, Hassan SS, Kalita CA, Cai J, Yeo L, Lipovich L. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term. J Matern Fetal Neonatal Med 2014; 27:1397-408. [PMID: 24168098 DOI: 10.3109/14767058.2013.860963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. MATERIALS AND METHODS Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. RESULTS We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. CONCLUSIONS We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH , Bethesda, MD and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Batagov AO, Yarmishyn AA, Jenjaroenpun P, Tan JZ, Nishida Y, Kurochkin IV. Role of genomic architecture in the expression dynamics of long noncoding RNAs during differentiation of human neuroblastoma cells. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 3:S11. [PMID: 24555823 PMCID: PMC3852107 DOI: 10.1186/1752-0509-7-s3-s11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mammalian genomes are extensively transcribed producing thousands of long non-protein-coding RNAs (lncRNAs). The biological significance and function of the vast majority of lncRNAs remain unclear. Recent studies have implicated several lncRNAs as playing important roles in embryonic development and cancer progression. LncRNAs are characterized with different genomic architectures in relationship with their associated protein-coding genes. Our study aimed at bridging lncRNA architecture with dynamical patterns of their expression using differentiating human neuroblastoma cells model. RESULTS LncRNA expression was studied in a 120-hours timecourse of differentiation of human neuroblastoma SH-SY5Y cells into neurons upon treatment with retinoic acid (RA), the compound used for the treatment of neuroblastoma. A custom microarray chip was utilized to interrogate expression levels of 9,267 lncRNAs in the course of differentiation. We categorized lncRNAs into 19 architecture classes according to their position relatively to protein-coding genes. For each architecture class, dynamics of expression of lncRNAs was studied in association with their protein-coding partners. It allowed us to demonstrate positive correlation of lncRNAs with their associated protein-coding genes at bidirectional promoters and for sense-antisense transcript pairs. In contrast, lncRNAs located in the introns and downstream of the protein-coding genes were characterized with negative correlation modes. We further classified the lncRNAs by the temporal patterns of their expression dynamics. We found that intronic and bidirectional promoter architectures are associated with rapid RA-dependent induction or repression of the corresponding lncRNAs, followed by their constant expression. At the same time, lncRNAs expressed downstream of protein-coding genes are characterized by rapid induction, followed by transcriptional repression. Quantitative RT-PCR analysis confirmed the discovered functional modes for several selected lncRNAs associated with proteins involved in cancer and embryonic development. CONCLUSIONS This is the first report detailing dynamical changes of multiple lncRNAs during RA-induced neuroblastoma differentiation. Integration of genomic and transcriptomic levels of information allowed us to demonstrate specific behavior of lncRNAs organized in different genomic architectures. This study also provides a list of lncRNAs with possible roles in neuroblastoma.
Collapse
|
29
|
Wood EJ, Chin-Inmanu K, Jia H, Lipovich L. Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Front Genet 2013; 4:183. [PMID: 24133500 PMCID: PMC3783845 DOI: 10.3389/fgene.2013.00183] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/29/2013] [Indexed: 01/25/2023] Open
Abstract
Previous efforts to characterize conservation between the human and mouse genomes focused largely on sequence comparisons. These studies are inherently limited because they don't account for gene structure differences, which may exist despite genomic sequence conservation. Recent high-throughput transcriptome studies have revealed widespread and extensive overlaps between genes, and transcripts, encoded on both strands of the genomic sequence. This overlapping gene organization, which produces sense-antisense (SAS) gene pairs, is capable of effecting regulatory cascades through established mechanisms. We present an evolutionary conservation assessment of SAS pairs, on three levels: genomic, transcriptomic, and structural. From a genome-wide dataset of human SAS pairs, we first identified orthologous loci in the mouse genome, then assessed their transcription in the mouse, and finally compared the genomic structures of SAS pairs expressed in both species. We found that approximately half of human SAS loci have single orthologous locations in the mouse genome; however, only half of those orthologous locations have SAS transcriptional activity in the mouse. This suggests that high human-mouse gene conservation overlooks widespread distinctions in SAS pair incidence and expression. We compared gene structures at orthologous SAS loci, finding frequent differences in gene structure between human and orthologous mouse SAS pair members. Our categorization of human SAS pairs with respect to mouse conservation of expression as well as structure points to limitations of mouse models. Gene structure differences, including at SAS loci, may account for some of the phenotypic distinctions between primates and rodents. Genes in non-conserved SAS pairs may contribute to evolutionary lineage-specific regulatory outcomes.
Collapse
Affiliation(s)
- Emily J Wood
- Center for Molecular Medicine and Genetics, Wayne State University Detroit, MI, USA
| | | | | | | |
Collapse
|
30
|
Yuan C, Liu Y, Yang M, Liao DJ. New methods as alternative or corrective measures for the pitfalls and artifacts of reverse transcription and polymerase chain reactions (RT-PCR) in cloning chimeric or antisense-accompanied RNA. RNA Biol 2013; 10:958-67. [PMID: 23618925 PMCID: PMC4111735 DOI: 10.4161/rna.24570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We established new methods for cloning cDNA ends that start with reverse transcription (RT) and soon proceed with the synthesis of the second cDNA strand, avoiding manipulations of fragile RNA. Our 3′-end cloning method does not involve poly-dT primers and polymerase chain reactions (PCR), is low in efficiency but high in fidelity and can clone those RNAs without a poly-A tail. We also established a cDNA protection assay to supersede RNA protection assay. The protected cDNA can be amplified, cloned and sequenced, enhancing sensitivity and fidelity. We report that RT product using gene-specific primer (GSP) cannot be gene- or strand-specific because RNA sample contains endogenous random primers (ERP). The gene-specificity may be improved by adding a linker sequence at the 5′-end of the GSP to prime RT and using the linker as a primer in the ensuing PCR. The strand-specificity may be improved by using strand-specific DNA oligos in our protection assay. The CDK4 mRNA and TSPAN31 mRNA are transcribed from the opposite DNA strands and overlap at their 3′ ends. Using this relationship as a model, we found that the overlapped sequence might serve as a primer with its antisense as the template to create a wrong-template extension in RT or PCR. We infer that two unrelated RNAs or cDNAs overlapping at the 5′- or 3′-end might create a spurious chimera in this way, and many chimeras with a homologous sequence may be such artifacts. The ERP and overlapping antisense together set complex pitfalls, which one should be aware of.
Collapse
Affiliation(s)
- Chengfu Yuan
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | | | | |
Collapse
|
31
|
Zhu Y, Skogerbø G, Ning Q, Wang Z, Li B, Yang S, Sun H, Li Y. Evolutionary relationships between miRNA genes and their activity. BMC Genomics 2012; 13:718. [PMID: 23259970 PMCID: PMC3544654 DOI: 10.1186/1471-2164-13-718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. Results In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Conclusions Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 2012; 5:577-622. [PMID: 22155605 PMCID: PMC3525251 DOI: 10.1186/1479-7364-5-6-577] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.
Collapse
Affiliation(s)
- Nasheen Naidoo
- Centre for Molecular Epidemiology, Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
33
|
Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R, Slaby O. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 2012; 10:55. [PMID: 22440013 PMCID: PMC3340316 DOI: 10.1186/1479-5876-10-55] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/22/2012] [Indexed: 12/18/2022] Open
Abstract
Background There is no standard serum biomarker used for diagnosis or early detection of recurrence for renal cell carcinoma (RCC) patients. MicroRNAs (miRNAs) are abundant and highly stable in blood serum, and have been recently described as powerful circulating biomarkers in a wide range of solid cancers. Our aim was to identify miRNA signature that can distinguish the blood serum of RCC patients and matched healthy controls and validate identified miRNAs as potential biomarkers for RCC. Methods In the screening phase of the study, blood serum of 15 RCC patients and 12 matched healthy controls were analyzed by use of the TaqMan Low-Density Arrays enabling parallel identification of expression levels of 667 miRNAs through qRT-PCR-based approach. In the validation phase, identified miRNAs were further evaluated on the independent group of 90 RCC patients and 35 matched healthy controls by use of individual qRT-PCR assays and statistically evaluated. Results We identified 30 miRNAs differentially expressed between serum of RCC patients and healthy controls: 19 miRNAs were up-regulated and 11 miRNAs were down-regulated in RCC patients. MiR-378, miR-451 and miR-150 were further evaluated in the independent group of patients, and two of them were successfully validated: levels of miR-378 were increased (p = 0.0003, AUC = 0.71), miR-451 levels were decreased (p < 0.0001, AUC = 0.77) in serum of RCC patients. Combination of miR-378 and miR-451 enable identification of RCC serum with the sensitivity of 81%, specificity 83% and AUC = 0.86. Conclusions Circulating miRNAs in serum are promising biomarkers in RCC.
Collapse
Affiliation(s)
- Martina Redova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, Quintanar-Jurado V, Maffuz-Aziz A, Jimenez-Sanchez G, Bautista-Piña V, Arellano-Llamas R, Hidalgo-Miranda A. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One 2012; 7:e31904. [PMID: 22438871 PMCID: PMC3306365 DOI: 10.1371/journal.pone.0031904] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/15/2012] [Indexed: 11/23/2022] Open
Abstract
microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.
Collapse
Affiliation(s)
- Sandra Romero-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | | | - Rosa Rebollar-Vega
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | - Valeria Quintanar-Jurado
- Unidad de Validación de Biomarcadores, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | | | - Gerardo Jimenez-Sanchez
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | | | - Rocio Arellano-Llamas
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico
- * E-mail:
| |
Collapse
|
35
|
Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 2012; 13:841-53. [PMID: 21969817 DOI: 10.1593/neo.11698] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/21/2022] Open
Abstract
hsa-miR-191 is highly expressed in hepatocellular carcinoma (HCC), but the factors regulating this elevated expression are unknown. This study aimed to investigate the epigenetic mechanisms of increased hsa-miR-191 expression by analyzing the relationship between the DNA methylation status of hsa-miR-191 and miR-191 expression. Methylation-specific polymerase chain reaction (PCR), bisulfite sequencing PCR, Northern blot, and quantitative real-time PCR were performed to examine hsa-miR-191 methylation and expression levels. Western blot, transwell, and scratch assays were performed to examine the function and molecular mechanisms of hsa-miR-191. Approximately 58.9% of hsa-miR-191 expression was higher in HCC tissues than in adjacent noncancerous tissues; this high expression was associated with poor prognosis. The hypomethylation observed in some HCC cell lines and HCC tissues was correlated with the hsa-miR-191 expression level. This correlation was validated by treatment with the 5-aza-DAC demethylation agent. The level of hypomethylation was 63.0% in 73 clinical HCC tissue samples and was associated with increased (2.1-fold) hsa-miR-191 expression. The elevated expression of hsa-miR-191 in the SMMC-771 HCC cell line induced the cells to transition into mesenchymal-like cells; they exhibited characteristics such as loss of adhesion, down-regulation of epithelial cell markers, up-regulation of mesenchymal cell markers, and increased cell migration and invasion. Inhibiting hsa-miR-191 expression in the SMMC-7721 cell line reversed this process (as assessed by cell morphology and cell markers). Furthermore, hsa-miR-191 probably exerted its function by directly targeting TIMP metallopeptidase inhibitor 3 and inhibiting TIMP3 protein expression. Our results suggest that hsa-miR-191 locus hypomethylation causes an increase in hsa-miR-191 expression in HCC clinical tissues and that this expression induces HCC cells to transition into mesenchymal-like cells.
Collapse
|
36
|
Abstract
We determined the genome-wide digital gene expression (DGE) profiles of primary acute lymphoblastic leukemia (ALL) cells from 21 patients taking advantage of ‘second-generation' sequencing technology. Patients included in this study represent four cytogenetically distinct subtypes of B-cell precursor (BCP) ALL and T-cell lineage ALL (T-ALL). The robustness of DGE combined with supervised classification by nearest shrunken centroids (NSC) was validated experimentally and by comparison with published expression data for large sets of ALL samples. Genes that were differentially expressed between BCP ALL subtypes were enriched to distinct signaling pathways with dic(9;20) enriched to TP53 signaling, t(9;22) to interferon signaling, as well as high hyperdiploidy and t(12;21) to apoptosis signaling. We also observed antisense tags expressed from the non-coding strand of ∼50% of annotated genes, many of which were expressed in a subtype-specific pattern. Antisense tags from 17 gene regions unambiguously discriminated between the BCP ALL and T-ALL subtypes, and antisense tags from 76 gene regions discriminated between the 4 BCP subtypes. We observed a significant overlap of gene regions with alternative polyadenylation and antisense transcription (P<1 × 10−15). Our study using DGE profiling provided new insights into the RNA expression patterns in ALL cells.
Collapse
|
37
|
McIver S, Roman S, Nixon B, McLaughlin E. miRNA and mammalian male germ cells. Hum Reprod Update 2011; 18:44-59. [DOI: 10.1093/humupd/dmr041] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Qureshi IA, Mehler MF. Epigenetics, nervous system tumors, and cancer stem cells. Cancers (Basel) 2011; 3:3525-56. [PMID: 24212967 PMCID: PMC3759209 DOI: 10.3390/cancers3033525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/01/2011] [Accepted: 09/08/2011] [Indexed: 12/11/2022] Open
Abstract
Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; E-Mail:
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; E-Mail:
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3543; Fax: +1-718-918-7505
| |
Collapse
|
39
|
Okamoto M, Seki M. Expression profile and 5'-terminal structure of Arabidopsis antisense transcripts expressed in seeds. PLANT SIGNALING & BEHAVIOR 2011; 6:691-3. [PMID: 21448002 PMCID: PMC3172838 DOI: 10.4161/psb.6.5.14976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Advanced transcriptome analyses have revealed the existence of various RNA species. In our previous study, a large number of non-protein-coding RNAs including antisense transcripts were identified using an Arabidopsis tiling array. Most of the antisense transcripts exhibited co-expression with sense transcripts during stress treatments or seed imbibition. Here, we report that antisense transcripts exhibit differential expression patterns to sense transcripts in distinct developmental tissues. In addition, RNA ligase-mediated RACE analysis identified the existence of 5'-capped and -uncapped antisense transcripts. These observations provide additional insight into antisense transcripts.
Collapse
Affiliation(s)
- Masanori Okamoto
- RIKEN Plant Science Center; Yokohama, Kanagawa Japan
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | - Motoaki Seki
- RIKEN Plant Science Center; Yokohama, Kanagawa Japan
- Kihara Institute for Biological Research; Yokohama City University; Totsuka-ku, Yokohama, Japan
| |
Collapse
|
40
|
MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2011; 108:6573-8. [PMID: 21460253 DOI: 10.1073/pnas.1019557108] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Early cancer detection and disease stratification or classification are critical to successful treatment. Accessible, reliable, and informative cancer biomarkers can be medically valuable and can provide some relevant insights into cancer biology. Recent studies have suggested improvements in detecting malignancies by the use of specific extracellular microRNAs (miRNAs) in plasma. In chronic lymphocytic leukemia (CLL), an incurable hematologic disorder, sensitive, early, and noninvasive diagnosis and better disease classification would be very useful for more effective therapies. We show here that circulating miRNAs can be sensitive biomarkers for CLL, because certain extracellular miRNAs are present in CLL patient plasma at levels significantly different from healthy controls and from patients affected by other hematologic malignancies. The levels of several of these circulating miRNAs also displayed significant differences between zeta-associated protein 70 (ZAP-70)(+) and ZAP-70(-) CLL. We also determined that the level of circulating miR-20a correlates reliably with diagnosis-to-treatment time. Network analysis of our data, suggests a regulatory network associated with BCL2 and ZAP-70 expression in CLL. This hypothesis suggests the possibility of using the levels of specific miRNAs in plasma to detect CLL and to determine the ZAP-70 status.
Collapse
|
41
|
Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 2010; 5:e13735. [PMID: 21060830 PMCID: PMC2966402 DOI: 10.1371/journal.pone.0013735] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/08/2010] [Indexed: 12/19/2022] Open
Abstract
Background To date, there are no highly sensitive and specific minimally invasive biomarkers for detection of breast cancer at an early stage. The occurrence of circulating microRNAs (miRNAs) in blood components (including serum and plasma) has been repeatedly observed in cancer patients as well as healthy controls. Because of the significance of miRNA in carcinogenesis, circulating miRNAs in blood may be unique biomarkers for early and minimally invasive diagnosis of human cancers. The objective of this pilot study was to discover a panel of circulating miRNAs as potential novel breast cancer biomarkers. Methodology/Principal Findings Using microarray-based expression profiling followed by Real-Time quantitative Polymerase Cycle Reaction (RT-qPCR) validation, we compared the levels of circulating miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American (CA) and 10 African American (AA)) and 20 matched healthy controls (10 CAs and 10 AAs). Using the significance level of p<0.05 constrained by at least two-fold expression change as selection criteria, we found that 31 miRNAs were differentially expressed in CA study subjects (17 up and 14 down) and 18 miRNAs were differentially expressed in AA study subjects (9 up and 9 down). Interestingly, only 2 differentially expressed miRNAs overlapped between CA and AA study subjects. Using receiver operational curve (ROC) analysis, we show that not only up-regulated but also down-regulated miRNAs can discriminate patients with breast cancer from healthy controls with reasonable sensitivity and specificity. To further explore the potential roles of these circulating miRNAs in breast carcinogenesis, we applied pathway-based bioinformatics exploratory analysis and predicted a number of significantly enriched pathways which are predicted to be regulated by these circulating miRNAs, most of which are involved in critical cell functions, cancer development and progression. Conclusions Our observations from this pilot study suggest that the altered levels of circulating miRNAs might have great potential to serve as novel, noninvasive biomarkers for early detection of breast cancer.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Cancer Prevention and Controls, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail: (HZ); (SL)
| | - Jie Shen
- Department of Cancer Prevention and Controls, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Leonard Medico
- Department of Cancer Prevention and Controls, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Dan Wang
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Controls, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail: (HZ); (SL)
| |
Collapse
|
42
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Richardson CR, Luo QJ, Gontcharova V, Jiang YW, Samanta M, Youn E, Rock CD. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes. PLoS One 2010; 5:e10710. [PMID: 20520764 PMCID: PMC2877095 DOI: 10.1371/journal.pone.0010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/26/2010] [Indexed: 11/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Casey R. Richardson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Qing-Jun Luo
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Viktoria Gontcharova
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Ying-Wen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Manoj Samanta
- Systemix Institute, Redmond, Washington, United States of America
| | - Eunseog Youn
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010; 1338:20-35. [PMID: 20380817 DOI: 10.1016/j.brainres.2010.03.110] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) development, homeostasis, stress responses, and plasticity are all mediated by epigenetic mechanisms that modulate gene expression and promote selective deployment of functional gene networks in response to complex profiles of interoceptive and environmental signals. Thus, not surprisingly, disruptions of these epigenetic processes are implicated in the pathogenesis of a spectrum of neurological and psychiatric diseases. Epigenetic mechanisms involve chromatin remodeling by relatively generic complexes that catalyze DNA methylation and various types of histone modifications. There is increasing evidence that these complexes are directed to their sites of action by long non-protein-coding RNAs (lncRNAs), of which there are tens if not hundreds of thousands specified in the genome. LncRNAs are transcribed in complex intergenic, overlapping and antisense patterns relative to adjacent protein-coding genes, suggesting that many lncRNAs regulate the expression of these genes. LncRNAs also participate in a wide array of subcellular processes, including the formation and function of cellular organelles. Most lncRNAs are transcribed in a developmentally regulated and cell type specific manner, particularly in the CNS, wherein over half of all lncRNAs are expressed. While the numerous biological functions of lncRNAs are yet to be characterized fully, a number of recent studies suggest that lnRNAs are important for mediating cell identity. This function seems to be especially important for generating the enormous array of regional neuronal and glial cell subtypes that are present in the CNS. Further studies have also begun to elucidate additional roles played by lncRNAs in CNS processes, including homeostasis, stress responses and plasticity. Herein, we review emerging evidence that highlights the expression and function of lncRNAs in the CNS and suggests that lncRNA deregulation is an important factor in various CNS pathologies including neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|