1
|
Guz J, Zarakowska E, Mijewski P, Wasilow A, Lesniewski F, Foksinski M, Brzoszczyk B, Jarzemski P, Gackowski D, Olinski R. Epigenetic DNA modifications and vitamin C in prostate cancer and benign prostatic hyperplasia: Exploring similarities, disparities, and pathogenic implications. Neoplasia 2024; 58:101079. [PMID: 39471555 DOI: 10.1016/j.neo.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES Benign Prostatic Hyperplasia (BPH) and Prostate Cancer (PC) are very common pathologies among aging men. Both disorders involve aberrant cell division and differentiation within the prostate gland. However, the direct link between these two disorders still remains controversial. A plethora of works have demonstrated that inflammation is a major causative factor in both pathologies. Another key factor involved in PC development is DNA methylation and hydroxymethylation. METHODS A broad spectrum of parameters, including epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine, was analyzed by two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry in tissues of BPH, PC, and marginal one, as well as in leukocytes of the patients and the control group. In the same material, the expression of TETs and TDG genes was measured using RT-qPCR. Additionally, vitamin C was quantified in the blood plasma and within cells (leukocytes and prostate tissues). RESULTS Unique patterns of DNA modifications and intracellular vitamin C (iVC) in BPH and PC tissues, as well as in leukocytes, were found in comparison with control samples. The majority of the alterations were more pronounced in leukocytes than in the prostate tissues. CONCLUSIONS Characteristic DNA methylation/hydroxymethylation and iVC profiles have been observed in both PC and BPH, suggesting potential shared molecular pathways between the two conditions. As a fraction of leukocytes may be recruited to the pathological tissues and can migrate back into the circulation/blood, the observed alterations in leukocytes may reflect dynamic changes associated with the PC development, suggesting their potential utility as early markers of prostate cancer development.
Collapse
Affiliation(s)
- Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Pawel Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Aleksandra Wasilow
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Fabian Lesniewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Marek Foksinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, Jan Biziel University Hospital, Bydgoszcz 85-168; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Piotr Jarzemski
- Department of Urology, Jan Biziel University Hospital, Bydgoszcz 85-168; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland.
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland.
| |
Collapse
|
2
|
Zhang S, Zhang H, Li M, Song H, Sun J, Fan C, Xie Y, Wang H, Ge Z. Differentiating Reactive Oxygen Species with DNA Framework Monitors. NANO LETTERS 2024; 24:13438-13446. [PMID: 39382404 DOI: 10.1021/acs.nanolett.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The lifespan, oxidizing properties, bonding behaviors, and reactivity of reactive oxygen species (ROS) produced during photocatalytic activation can vary significantly due to the differences in electron configurations of ROS, which are dependent on their generation mechanisms: energy transfer or charge transfer. Hence, identifying and differentiating ROS of different mechanisms can improve our understanding of redox reactions and related diseases, providing a basis for the prevention and treatment of related diseases. Here, we have developed a DNA framework monitor (DFM) based on dynamic DNA structural changes to effectively distinguish the two types of ROS produced in photocatalytic activation of O2. This DFM provides a visualization tool for observing the reaction kinetics of ROS with DNA, not only distinguishing two types of ROS with different mechanisms but also serving as a universal system for evaluating the efficacy and performance of nanomaterials for ROS regulation.
Collapse
Affiliation(s)
- Shuangye Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairuo Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haitao Song
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, de Cabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. Nat Commun 2024; 15:6357. [PMID: 39069555 PMCID: PMC11284234 DOI: 10.1038/s41467-024-50725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
Affiliation(s)
- James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Marshall S Dawkins
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Showkat Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Julie S Kim
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
6
|
Schrödter M, Wagenknecht HA. Natural Epigenetic DNA Modifications Cause Remote DNA Photodamage. J Am Chem Soc 2024. [PMID: 39037865 DOI: 10.1021/jacs.4c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
5-Formyl-2'-deoxycytidine, an intermediate during the erasure of epigenetic marker 5-methyl-2'-deoxycytidine, and 5-formyl-2'-deoxyuridine, an oxidative lesion of thymidine, are naturally occurring DNA modifications. The carbonyl groups of these DNA modifications are the smallest possible photosensitizers and have the potential to generate cyclobutane pyrimidine dimers upon irradiation with UV light. To evidence this damaging potential, ternary DNA architectures were used, in which the photosensitizer and the damage site were located at well-defined positions in the sequences. The quantitative and time-dependent analysis revealed not only the high photodamaging potential of both natural DNA modifications but also the mechanisms for this new pathway to photodamage. 5-Formyl-2'-deoxycytidine is more efficiently generating cyclobutane pyrimidine dimers than 5-formyl-2'-deoxyuridine because the latter is also photochemically converted to 5-carboxy-2'-deoxyuridine. This demonstrates for the first time that epigenetic DNA modifications regulating gene expression interact with sunlight and can induce DNA photodamages.
Collapse
Affiliation(s)
- Maren Schrödter
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, deCabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528714. [PMID: 36824863 PMCID: PMC9949049 DOI: 10.1101/2023.02.15.528714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
|
8
|
Zhao P, Ma S, Guo L, Jia Y, Zhang R, Chen M, Wang Z, Liu D, Zhao Y, Wang X, Rong M. Inactivation of microorganisms on fabrics using plasma-activated nebulized mist driven by different plasma gases. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134365. [PMID: 38669926 DOI: 10.1016/j.jhazmat.2024.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.
Collapse
Affiliation(s)
- Pengyu Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Sihong Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yikang Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rui Zhang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
9
|
Liu MH, Costa BM, Bianchini EC, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Nunes NM, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 2024; 630:752-761. [PMID: 38867045 PMCID: PMC11216816 DOI: 10.1038/s41586-024-07532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin M Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilia C Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel C Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Lassen
- Cryos International Sperm and Egg Bank, Aarhus, Denmark
| | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Zachary R Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Alanazi M, Yong J, Wu M, Zhang Z, Tian D, Zhang R. Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes. Chem Asian J 2024; 19:e202400105. [PMID: 38447112 DOI: 10.1002/asia.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Hydroxyl radical (•OH), a highly reactive oxygen species (ROS), is assumed as one of the most aggressive free radicals. This radical has a detrimental impact on cells as it can react with different biological substrates leading to pathophysiological disorders, including inflammation, mitochondrion dysfunction, and cancer. Quantification of this free radical in-situ plays critical roles in early diagnosis and treatment monitoring of various disorders, like macrophage polarization and tumor cell development. Luminescence analysis using responsive probes has been an emerging and reliable technique for in-situ detection of various cellular ROS, and some recently developed •OH responsive nanoprobes have confirmed the association with cancer development. This paper aims to summarize the recent advances in the characterization of •OH in living organisms using responsive nanoprobes, covering the production, the sources of •OH, and biological function, especially in the development of related diseases followed by the discussion of luminescence nanoprobes for •OH detection.
Collapse
Affiliation(s)
- Mazen Alanazi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Jiaxi Yong
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
11
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
12
|
El Kamouh M, Brionne A, Sayyari A, Laurent A, Labbé C. Cryopreservation effect on DNA methylation profile in rainbow trout spermatozoa. Sci Rep 2023; 13:19029. [PMID: 37923780 PMCID: PMC10624875 DOI: 10.1038/s41598-023-44803-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Spermatozoa are the cells that are most commonly used for cryopreservation of valuable genetic resources in aquaculture. It is known that fish spermatozoa transmit to the embryo not only their genetic but also their epigenetic profile, especially DNA methylation. Therefore, any alteration of the DNA methylation profile in spermatozoa induces the risk of transmitting epigenetic alterations to the offspring. The aim of this study was to assess the effect of cryopreservation on DNA methylation in rainbow trout spermatozoa. To trigger variable cellular response after freezing-thawing, spermatozoa from mature males were cryopreserved with dimethyl sulfoxide, methanol or glycerol as cryoprotectant. We observed that dimethyl sulfoxide was the best to preserve thawed spermatozoa functions. Methanol only slightly preserved all the cellular parameters, while glycerol failed to protect motility and fertilization ability. The consequences on DNA methylation were assessed using Reduced Representation Bisulfite Sequencing (RRBS). Sperm cryopreservation did not thoroughly impact DNA methylation, although 335-564 differentially methylated cytosines were characterized depending on the cryoprotectant. Very few of them were shared between cryoprotectants, and no correlation with the extent of cellular damage was found. Our study showed that DNA methylation was only slightly altered after sperm cryopreservation, and this may render further analysis of the risk for the progeny very challenging.
Collapse
Affiliation(s)
| | | | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Audrey Laurent
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| | - Catherine Labbé
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| |
Collapse
|
13
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
14
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
15
|
Taghian Dinani H, Naderi N, Tavalaee M, Rabiee F, Nasr-Esfahani MH. Aberrant Expression of TET2 Accounts for DNA Hypomethylation in Varicocele. CELL JOURNAL 2023; 25:706-716. [PMID: 37865879 PMCID: PMC10591265 DOI: 10.22074/cellj.2023.2000170.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE Epigenetic modifications such as DNA methylation play a key role in male infertility etiology. This study aimed to explore the global DNA methylation status in testicular spermatogenic cells of varicocele-induced rats and consider their semen quality, with a focus on key epigenetic marks, namely 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC), as well as the mRNA and proteins of ten-eleven translocation (TET) methylcytosine dioxygenases 1-3. MATERIALS AND METHODS In this experimental study, 24 mature male Wistar rats (8 in each group) were assigned amongst the control, sham, and varicocele groups. Sperm quality was assessed, and DNA methylation patterns of testicular spermatogenic cells were investigated using reverse transcription-polymerase chain reaction (RT-PCR), western blot, and immunofluorescence techniques. RESULTS Sperm parameters, chromatin and DNA integrity were significantly lower, and sperm lipid peroxidation significantly increased in varicocele-induced rats in comparison with control rats. During spermatogenesis in rat testis, 5-mC and 5-hmC epigenetic marks, and TET1-3 mRNA and proteins were expressed. In contrast to the 5-mC fluorescent signal which was presented in all testicular cells, the 5-hmC fluorescent signal was presented exclusively in spermatogonia and a few spermatids. In varicocele-induced rats, the 5-mC signal decreased in all cells within the tubules, whereas a strong signal of 5-hmC was detected in seminiferous tubules compared to the control group. As well, the levels of TET2 mRNA and protein expression were significantly upregulated in varicocele-induced rats in comparison with the control group. Also, our results showed that the varicocele-induced animals exhibited strong fluorescent signals of TET1-3 in testicular cells, whereas weak fluorescent signals were identified in the seminiferous tubules of the control animals. CONCLUSION Consequently, we showed TET2 upregulation and the 5-hmC gain at testicular levels are associated with varicocele and sperm quality decline, and therefore they can be exploited as potential biomarkers of spermatogenesis.
Collapse
Affiliation(s)
- Hengameh Taghian Dinani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
16
|
Fodder K, de Silva R, Warner TT, Bettencourt C. The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration. Acta Neuropathol Commun 2023; 11:106. [PMID: 37386505 PMCID: PMC10311741 DOI: 10.1186/s40478-023-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rohan de Silva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
17
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
18
|
Liu MH, Costa B, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.526140. [PMID: 36824744 PMCID: PMC9949150 DOI: 10.1101/2023.02.19.526140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Benjamin Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Rachel C. Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
| | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Caitlin A. Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Tina K. Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh School of Medicine, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Kansas City, USA
| | - J. Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Canada
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
19
|
Oxidative Stress and Nuclear Reprogramming: A Pilot Study of the Effects of Reactive Oxygen Species on Architectural and Epigenetic Landscapes. Int J Mol Sci 2022; 24:ijms24010153. [PMID: 36613595 PMCID: PMC9820425 DOI: 10.3390/ijms24010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cell genome integrity is continuously threatened by various sources, both endogenous and exogenous. Oxidative stress causes a multitude of damages, severely affecting cell viability, fidelity of genetic information inheritance, and determining profound alterations in gene expression. Epigenetics represents a major form of gene expression modulation, influencing DNA accessibility to transcription factors and the overall nuclear architecture. When assessing the stress-induced epigenome reprogramming, widely diffused biochemical and molecular approaches commonly fail to incorporate analyses such as architectural chromatin alterations and target molecules precise spatial localization. Unveiling the significance of the nuclear response to the oxidative stress, as well as the functional effects over the chromatin organization, may reveal targets and strategies for approaches aiming at limiting the impact on cellular stability. For these reasons, we utilized potassium bromate treatment, a stressor able to induce DNA damages without altering the cellular microenvironment, hence purely modeling nuclear oxidative stress. By means of high-resolution techniques, we described profound alterations in DNA and histone epigenetic modifications and in chromatin organization in response to the reactive oxygen species.
Collapse
|
20
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Kumari B, Huwaidi A, Robert G, Cloutier P, Bass AD, Sanche L, Wagner JR. Shape Resonances in DNA: Nucleobase Release, Reduction, and Dideoxynucleoside Products Induced by 1.3 to 2.3 eV Electrons. J Phys Chem B 2022; 126:5175-5184. [PMID: 35793462 DOI: 10.1021/acs.jpcb.2c01851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the details of DNA damage caused by high-energy particles or photons is complicated by the multitude of reactive species, arising from the ionization and dissociation of H2O, DNA, and protein. In this work, oligonucleotides (ODNs) are irradiated with a beam of low-energy electrons of 1.3 to 2.3 eV, which can only induce damage via the decay of shape resonances into various dissociative electron attachment channels. Using LC-MS/MS analysis, the major products are the release of nonmodified nucleobases (NB; Cyt ≫ Thy ∼ Ade > Gua). Additional damage includes 5,6-dihydropyrimidines (dHT > dHU) and eight nucleosides with modified sugar moieties consisting of 2',3'- and 2',5'-dideoxynucleosides (ddG > ddA ∼ ddC > ddT). The distribution of products is remarkably different in a 16-mer ODN compared to that observed previously with thymidylyl-(3'-5')-thymidine. This difference is explained by electron delocalization occurring within a sufficiently long strand, the DEA theory of O'Malley, and recent time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| |
Collapse
|
22
|
Zhang K, Fu B, Zou G, Yang W, Yan S, Tian T, Zhou X. Determination of 5-formyluracil via oxime-based nucleotide-metal coordination. Chembiochem 2022; 23:e202200355. [PMID: 35849116 DOI: 10.1002/cbic.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Indexed: 11/08/2022]
Abstract
In this article, a small chemical molecule was synthesized, and its ability to regulate activities of DNA polymerase was tested. In addition, we also used isothermal amplification technology to detect the content of 5-formyluracil sites in irradiated genomic DNA, which confirmed its capability for the detection of 5-formyluracil content in general samples. This study presents the first example of the determination of 5fU based on coordination chemistry.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Boshi Fu
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Guangrong Zou
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Wei Yang
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Shen Yan
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Tian Tian
- Wuhan University, College of Chemistry and Molecular Sciences, CHINA
| | - Xiang Zhou
- Wuhan University, College of Chemistry and Molecular Sciences, Luojia Shan, 430072, Wuhan, CHINA
| |
Collapse
|
23
|
Ghazimoradi MM, Ghorbani MH, Ebadian E, Hassani A, Mirzababaei S, Hodjat M, Navaei-Nigjeh M, Abdollahi M. Epigenetic effects of graphene oxide and its derivatives: A mini-review. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503483. [PMID: 35649677 DOI: 10.1016/j.mrgentox.2022.503483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO. Epigenetic toxicity is an important aspect of a material's toxicological profile, since changes in gene expression have been associated with carcinogenicity and disease progression. In this review, we focus on the epigenetic alterations caused by GO, including DNA methylation, histone modification, and altered expression of non-coding RNAs. GO can affect DNA methyltransferase activity and disrupt the methylation of cytosine bases in DNA strands, leading to alteration of genome expression. Modulation of histones by GO, targeting histone deacetylase and demethylase, as well as dysregulation of miRNA and lncRNA expression have been reported. Further studies are required to determine the mechanisms of GO-induced epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Ghorbani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ebadian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
24
|
Epigenetic Marks, DNA Damage Markers, or Both? The Impact of Desiccation and Accelerated Aging on Nucleobase Modifications in Plant Genomic DNA. Cells 2022; 11:cells11111748. [PMID: 35681443 PMCID: PMC9179523 DOI: 10.3390/cells11111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Modifications of DNA nucleobases are present in all forms of life. The purpose of these modifications in eukaryotic cells, however, is not always clear. Although the role of 5-methylcytosine (m5C) in epigenetic regulation and the maintenance of stability in plant genomes is becoming better understood, knowledge pertaining to the origin and function of oxidized nucleobases is still scarce. The formation of 5-hydroxymetylcytosine (hm5C) in plant genomes is especially debatable. DNA modifications, functioning as regulatory factors or serving as DNA injury markers, may have an effect on DNA structure and the interaction of genomic DNA with proteins. Thus, these modifications can influence plant development and adaptation to environmental stress. Here, for the first time, the changes in DNA global levels of m5C, hm5C, and 8-oxo-7,8-dihydroguanine (8-oxoG) measured by ELISA have been documented in recalcitrant embryonic axes subjected to desiccation and accelerated aging. We demonstrated that tissue desiccation induces a similar trend in changes in the global level of hm5C and 8-oxoG, which may suggest that they both originate from the activity of reactive oxygen species (ROS). Our study supports the premise that m5C can serve as a marker of plant tissue viability whereas oxidized nucleobases, although indicating a cellular redox state, cannot.
Collapse
|
25
|
Cadet J, Angelov D, Wagner JR. Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation. Int J Radiat Biol 2022; 98:1-7. [PMID: 35475423 DOI: 10.1080/09553002.2022.2067363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, Turkey
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
26
|
Szychowski KA, Skóra B, Bar M, Piechowiak T. Triclosan (TCS) affects the level of DNA methylation in the human oral squamous cell carcinoma (SCC-15) cell line in a nontoxic concentration. Biomed Pharmacother 2022; 149:112815. [PMID: 35286965 DOI: 10.1016/j.biopha.2022.112815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The oral cancer is presumably caused by genetic factors and exposure to substances derived from cosmetics and disinfectants. Triclosan (TCS) is widely spread in many consumer products and oral care products. Since TCS can affect DNA methylation, which is one of the key mechanisms of gene expression that may lead to cancerogenesis, it is necessary to study this mechanism in oral cell carcinoma. The aim of the present study was to evaluate the impact of TCS on metabolic parameters, oxidative stress, gene expression, and DNA methylation and hydroxymethylation in the SCC-15 cell line. The experiments have shown TCS toxicity to SCC-15 cells only in the highest concentrations of 50 and 100 µM. TCS in a wide range of concentrations increases ROS production and caspase-3 activity. Our experiments have shown that TCS in the nontoxic concentrations of 10 µM exerts an impact on SOD2 mRNA expression and SOD activity in the SCC-15 cell line. Finally, our experiments have demonstrated that 6-h treatment with TCS decreases the mRNA expression of DNMT3A and DNMT3B. After 72-h exposure to TCS, an increased level of 5-methylcytosine and 5-hydroxymethylcytosine was observed in the SCC-15 cell line, but it was abolished by the NAC treatment. However, it is very likely that these results can be an effect of TET enzyme activity, especially in the case of the decrease in 5mC and the increase in 5hmC after the 48-h exposure to TCS, which was accompanied with a decrease in the mRNA expression of DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
27
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
28
|
Qualitative and quantitative detection of aldehydes in DNA with 2-amino benzamidoxime derivative. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Jonasson NSW, Janßen R, Menke A, Zott FL, Zipse H, Daumann LJ. TET-Like Oxidation in 5-Methylcytosine and Derivatives: A Computational and Experimental Study. Chembiochem 2021; 22:3333-3340. [PMID: 34498783 PMCID: PMC9293240 DOI: 10.1002/cbic.202100420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Indexed: 01/05/2023]
Abstract
The epigenetic marker 5-methylcytosine (5mC) is an important factor in DNA modification and epigenetics. It can be modified through a three-step oxidation performed by ten-eleven-translocation (TET) enzymes and we have previously reported that the iron(IV)-oxo complex [Fe(O)(Py5 Me2 H)]2+ (1) can oxidize 5mC. Here, we report the reactivity of this iron(IV)-oxo complex towards a wider scope of methylated cytosine and uracil derivatives relevant for synthetic DNA applications, such as 1-methylcytosine (1mC), 5-methyl-iso-cytosine (5miC) and thymine (T/5mU). The observed kinetic parameters are corroborated by calculation of the C-H bond energies at the reactive sites which was found to be an efficient tool for reaction rate prediction of 1 towards methylated DNA bases. We identified oxidation products of methylated cytosine derivatives using HPLC-MS and GC-MS. Thereby, we shed light on the impact of the methyl group position and resulting C-H bond dissociation energies on reactivity towards TET-like oxidation.
Collapse
Affiliation(s)
- Niko S. W. Jonasson
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Rachel Janßen
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Annika Menke
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Fabian L. Zott
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Lena J. Daumann
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
30
|
Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021; 13:nu13113914. [PMID: 34836171 PMCID: PMC8622959 DOI: 10.3390/nu13113914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The Western-style diet, which is common in developed countries and spreading into developing countries, is unbalanced in many respects. For instance, micronutrients (vitamins A, B complex, C, D, E, and K plus iron, zinc, selenium, and iodine) are generally depleted in Western food (causing what is known as ‘hidden hunger’), whereas some others (such as phosphorus) are added beyond the daily allowance. This imbalance in micronutrients can induce cellular damage that can increase the risk of cancer. Interestingly, there is a large body of evidence suggesting a strong correlation between vitamin intake as well as vitamin blood concentrations with the occurrence of certain types of cancer. The direction of association between the concentration of a given vitamin and cancer risk is tumor specific. The present review summarized the literature regarding vitamins and cancer risk to assess whether these could be used as diagnostic or prognostic markers, thus confirming their potential as biomarkers. Despite many studies that highlight the importance of monitoring vitamin blood or tissue concentrations in cancer patients and demonstrate the link between vitamin intake and cancer risk, there is still an urgent need for more data to assess the effectiveness of vitamins as biomarkers in the context of cancer. Therefore, this review aims to provide a solid basis to support further studies on this promising topic.
Collapse
|
31
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
32
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
33
|
Deshpande SSS, Nemani H, Balasinor NH. High fat diet-induced- and genetically inherited- obesity differential alters DNA demethylation pathways in the germline of adult male rats. Reprod Biol 2021; 21:100532. [PMID: 34246869 DOI: 10.1016/j.repbio.2021.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Obesity is a multifactorial condition with predominantly genetic and environmental causes and is an emerging risk factor for male infertility/subfertility. Epigenetic mechanisms are vulnerable to genetic and environmental changes. Our earlier studies have shown differential effects of genetically inherited (GIO) - and diet-induced- obesity (DIO) on DNA methylation in male germline. Contrary to DNA methylation is DNA demethylation, which also regulates the gene expression by activating transcription. The present study aimed to delineate the effects of obesity on the DNA demethylation pathway using two rat models: GIO (WNIN/Ob) and DIO (high-fat diet). We observed differential alterations in enzymes involved in DNA demethylation by oxidation (Tet1-3) pathway in testis in both groups. An increase in Tets in DIO group and a decrease in GIO group were noted. Analysis of oxidation pathway intermediates (5-hmC, 5-fC, and 5-caC) did not show any effect on testis in DIO group but an increase in 5-hmC and decrease in 5-caC levels in GIO group was observed. Analysis of transcript levels of enzymes related to deamination pathway in testis showed an increase (Gadd45a, Aicda, and Tdg) in DIO group and a decrease (Gadd45a, Aicda, and Tdg) in GIO group. Also, 5-hmC levels were differentially altered in the spermatozoa of both groups without any changes in Tet enzyme levels. These findings highlight differences in effects of GIO and DIO on DNA demethylation mechanisms in male germline, which could be due to differences in endocrine and metabolic profile as well as white fat distribution observed earlier in two groups.
Collapse
Affiliation(s)
- Sharvari S S Deshpande
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Harishankar Nemani
- National Institute of Nutrition Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500 007, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
34
|
Tay EXY, Chia K, Ong DST. Epigenetic plasticity and redox regulation of neural stem cell state and fate. Free Radic Biol Med 2021; 170:116-130. [PMID: 33684459 DOI: 10.1016/j.freeradbiomed.2021.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
The neural stem cells (NSCs) are essential for normal brain development and homeostasis. The cell state (i.e. quiescent versus activated) and fate (i.e. the cell lineage of choice upon differentiation) of NSCs are tightly controlled by various redox and epigenetic regulatory mechanisms. There is an increasing appreciation that redox and epigenetic regulations are intimately linked, but how this redox-epigenetics crosstalk affects NSC activity remains poorly understood. Another unresolved topic is whether the NSCs actually contribute to brain ageing and neurodegenerative diseases. In this review, we aim to 1) distill concepts that underlie redox and epigenetic regulation of NSC state and fate; 2) provide examples of the redox-epigenetics crosstalk in NSC biology; and 3) highlight potential redox- and epigenetic-based therapeutic opportunities to rescue NSC dysfunctions in ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmy Xue Yun Tay
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Kimberly Chia
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore; National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
35
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
36
|
Epigenetic Integrity of Orthodox Seeds Stored under Conventional and Cryogenic Conditions. FORESTS 2021. [DOI: 10.3390/f12030288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The level of 5-methylcytosine (m5C) in DNA has been observed to change in plants in response to biotic and abiotic stress factors. Little information has been reported on alterations in DNA methylation in orthodox tree seeds in response to storage conditions. In the current study, epigenetic integrity was analyzed in seeds of Pyrus communis L. in response to conventional and cryogenic storage. The results indicate that conventional storage under optimal conditions resulted in a significant increase in m5C. In contrast, a decrease in m5C level after cryostorage at high water content (WC) was observed, not only in seeds but also in 3-month-old seedlings which were smaller than seedlings obtained from seeds cryostored at optimal WC. This shows that non-optimal cryostorage conditions increase epigenetic instability in seeds and seedlings. Optimal procedures for germplasm conservation are very important for germplasm banking since they have serious implications for the quality of stored collections. Maintaining epigenetic integrity during WC adjustment and optimal storage is a characteristic feature of orthodox seeds. The current results underline the importance of proper protocols and techniques for conventional storage and particularly cryopreservation as a method for conservation of true-to-type germplasm for long periods.
Collapse
|
37
|
Pomerleau J, Weidmann C, Coutant K, Lowry CM, Veilleux MP, Bérubé J, Wagner JR, Landreville S. Experimental eye research / short communication format characterization of DNA hydroxymethylation in the ocular choroid. Exp Eye Res 2021; 205:108473. [PMID: 33524365 DOI: 10.1016/j.exer.2021.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation and hydroxymethylation represent important epigenetic modifications involved in cell differentiation. DNA hydroxymethylation can be used to classify independent biological samples by tissue type. Relatively little is known regarding the genomic abundance and function of 5-hydroxymethylcytosine (5-hmC) in ocular tissues. The choroid supplies oxygen and nutrients to the outer retina through its dense network of blood vessels. This connective tissue is mainly composed of pigmented melanocytes, and stromal fibroblasts. Since DNA hydroxymethylation level is relatively high in cutaneous melanocytes, we investigated the presence of 5-hmC in choroidal melanocytes, as well as the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) and isocitrate dehydrogenases (IDHs) implicated in this DNA demethylation pathway. Immunofluorescence, DNA slot blots and liquid chromatography coupled to tandem mass spectrometry performed with choroidal tissues and melanocytes within these tissues revealed that they have a relatively high level of 5-hmC. We also examined the expression of TET1/2 and IDH1/2 in choroidal melanocytes by gene expression profiling, qPCR and Western blotting. In addition, we detected decreased levels of 5-hmC when choroidal melanocytes were exposed to a lower concentration of oxygen. Our study therefore demonstrates that DNA hydroxymethylation is present in choroidal melanocytes, and that the abundance of this epigenetic mark is impacted by hypoxia.
Collapse
Affiliation(s)
- Jade Pomerleau
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
| | - Cindy Weidmann
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Kelly Coutant
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Carolyne-Mary Lowry
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Pier Veilleux
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Julie Bérubé
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Solange Landreville
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
38
|
Tsuruta M, Sugitani Y, Sugimoto N, Miyoshi D. Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes. Int J Mol Sci 2021; 22:ijms22020947. [PMID: 33477917 PMCID: PMC7833394 DOI: 10.3390/ijms22020947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.
Collapse
Affiliation(s)
- Mitsuki Tsuruta
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Yui Sugitani
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Naoki Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Correspondence: ; Tel.: +81-(07)-8303-1426
| |
Collapse
|
39
|
Wagner JR, Madugundu GS, Cadet J. Ozone-Induced DNA Damage: A Pandora's Box of Oxidatively Modified DNA Bases. Chem Res Toxicol 2021; 34:80-90. [PMID: 33417438 DOI: 10.1021/acs.chemrestox.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides. The oxidation of 5mC was 2.5-fold more susceptible than C considering the relative mole fraction of 5mC to C in CT-DNA. Other common oxidation products of pyrimidines (e.g., 5,6-dihydroxy-5,6-dihydropyrimidines, the so-called pyrimidine 5,6-glycols) were formed with a lower yield than 5-hydroxyhydantoin derivatives. In addition, several common oxidation products of G were observed (e.g., 8-oxo-7,8-dihydroguanine (8oxoG)) albeit with relatively minor yields. The sum of individual products was notably less than the loss of 2'-deoxyribonucleosides from which they were derived. In a search for additional products, we discovered the formation of pyrimidine ring fragments, predominantly N-formamide and N-urea, which were measured as a dinucleotide next to a nonmodified nucleotide upon partial digestion of oxidized DNA. Interestingly, the latter fragments were also observed in dinucleotides containing 8oxoG, indicating the formation of tandem lesions during ozonolysis of DNA. The oxidation of DNA upon exposure to ozone can be explained by reactions of an intermediate ozonide. These studies underline the complexity of ozone-induced DNA damage and provide valuable information to assess the formation of this damage in cellular DNA.
Collapse
Affiliation(s)
- J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Guru S Madugundu
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
40
|
A theoretical study towards understanding the origin of DNA oxidation products. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front Chem 2020; 8:592688. [PMID: 33330380 PMCID: PMC7732658 DOI: 10.3389/fchem.2020.592688] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) has been the leading cause of death for many decades, highlighting the importance of new research and treatments in the field. The role of hypoxia and subsequent free radical production [reactive oxygen species (ROS)] have become an area of particular interest in CVD. Interestingly, our laboratory and other laboratories have recently reported positive roles of subcellular ROS in modulating endothelial cell (EC) metabolism, proliferation, and angiogenesis. This bidirectional relationship between ROS and EC metabolism, as well as functional changes, continues to be an area of active research. Interestingly, ECs have been shown to rely on anaerobic processes for ATP generation, despite their direct access to oxygen. This paradox has proven to be beneficial as the major reliance on glycolysis produces ATP faster, preserves oxygen, and results in reduced ROS levels in contrast to oxidative phosphorylation. This review will address the relationship between ROS and carbohydrate, lipid, and nitrogen metabolism in ECs, and their effects on EC phenotype such as sprouting angiogenesis.
Collapse
Affiliation(s)
- Raid Alhayaza
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Emaan Haque
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
42
|
Zhou Q, Li K, Yu KK, Li N, Shi L, Chen H, Chen SY, Yu XQ. Aqueous Wittig reaction-mediated fast fluorogenic identification and single-base resolution analysis of 5-formylcytosine in DNA. Chem Commun (Camb) 2020; 56:12158-12161. [PMID: 32909575 DOI: 10.1039/d0cc04950f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly reactive ylide tBuA was introduced, which could react rapidly with the 5-formyl and 4-amino groups of 5-formylcytosine (5fC) under mild conditions without any co-solvent or catalyst in a manner of Wittig olefination and intramolecular nucleophilic substitution to yield a cyclized fluorescent adduct, which meets the demands of both single-base resolution sequencing and fluorescence switch-on detection of 5fC in DNA.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Na Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Centre, Memphis, Tennessee 38163, USA
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
43
|
Tozour J, Hughes F, Carrier A, Vieau D, Delahaye F. Prenatal Hyperglycemia Exposure and Cellular Stress, a Sugar-Coated View of Early Programming of Metabolic Diseases. Biomolecules 2020; 10:E1359. [PMID: 32977673 PMCID: PMC7598660 DOI: 10.3390/biom10101359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Worldwide, the number of people with diabetes has quadrupled since 1980 reaching 422 million in 2014 (World Health Organization). This distressing rise in diabetes also affects pregnant women and thus, in regard to early programming of adult diseases, creates a vicious cycle of metabolic dysfunction passed from one generation to another. Metabolic diseases are complex and caused by the interplay between genetic and environmental factors. High-glucose exposure during in utero development, as observed with gestational diabetes mellitus (GDM), is an established risk factor for metabolic diseases. Despite intense efforts to better understand this phenomenon of early memory little is known about the molecular mechanisms associating early exposure to long-term diseases risk. However, evidence promotes glucose associated oxidative stress as one of the molecular mechanisms able to influence susceptibility to metabolic diseases. Thus, we decided here to further explore the relationship between early glucose exposure and cellular stress in the context of early development, and focus on the concept of glycemic memory, its consequences, and sexual dimorphic and epigenetic aspects.
Collapse
Affiliation(s)
- Jessica Tozour
- Department of Obstetrics and Gynecology, NYU Winthrop Hospital, Mineola, NY 11501, USA;
| | - Francine Hughes
- Obstetrics & Gynecology and Women’s Health, Division of Maternal-Fetal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Arnaud Carrier
- Institut Pasteur de Lille, U1283-UMR 8199 EGID, Université de Lille, Inserm, CNRS, CHU Lille, F-59000 Lille, France;
| | - Didier Vieau
- BiologyDepartment, LilNCog Lille Neurosciences and Cognition U 1172, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Fabien Delahaye
- Institut Pasteur de Lille, U1283-UMR 8199 EGID, Université de Lille, Inserm, CNRS, CHU Lille, F-59000 Lille, France;
| |
Collapse
|
44
|
Bordoni L, Gabbianelli R. Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants? Antioxidants (Basel) 2020; 9:E764. [PMID: 32824558 PMCID: PMC7466149 DOI: 10.3390/antiox9080764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of the mitochondrial function is essential in preventing and counteracting neurodegeneration. In particular, mitochondria of neuronal cells play a pivotal role in sustaining the high energetic metabolism of these cells and are especially prone to oxidative damage. Since overproduction of reactive oxygen species (ROS) is involved in the pathogenesis of neurodegeneration, dietary antioxidants have been suggested to counteract the detrimental effects of ROS and to preserve the mitochondrial function, thus slowing the progression and limiting the extent of neuronal cell loss in neurodegenerative disorders. In addition to their role in the redox-system homeostasis, mitochondria are unique organelles in that they contain their own genome (mtDNA), which acts at the interface between environmental exposures and the molecular triggers of neurodegeneration. Indeed, it has been demonstrated that mtDNA (including both genetics and, from recent evidence, epigenetics) might play relevant roles in modulating the risk for neurodegenerative disorders. This mini-review describes the link between the mitochondrial genome and cellular oxidative status, with a particular focus on neurodegeneration; moreover, it provides an overview on potential beneficial effects of antioxidants in preserving mitochondrial functions through the protection of mtDNA.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | | |
Collapse
|
45
|
New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics. High Blood Press Cardiovasc Prev 2020; 27:363-371. [PMID: 32740853 DOI: 10.1007/s40292-020-00400-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Epigenetic processing takes centre stage in cardiometabolic diseases (obesity, metabolic syndrome, type 2 diabetes, hypertension), where it participates in adiposity, inflammation, endothelial dysfunction, vascular insulin resistance and atherosclerosis. Epigenetic modifications, defined as heritable changes in gene expression that do not entail mutation in the DNA sequence, are mainly induced by environmental stimuli (stress, pollution, cigarette smoking) and are gaining considerable interest due to their causal role in cardiovascular disease, and their amenability to pharmacological intervention. Importantly, epigenetic modifications acquired during life can be transmitted to the offspring and exert their biological effects across multiple generations. Indeed, such transgenerational transmission of epigenetic signals may contribute to anticipating cardiovascular and metabolic disease phenotypes already in children and young adults. A deeper understanding of environmental factors and their effects on the epigenetic machinery and transcriptional programs is warranted to develop effective mechanism-based therapeutic strategies. The clinical application of epigenetic drugs-also known as "epi-drugs"-is currently exploding in the field of cardiovascular disease. The present review describes the main epigenetic networks underlying cardiometabolic alterations and sheds light on specific points of intervention for pharmacological reprogramming in this setting.
Collapse
|
46
|
Yang H, Kuhn C, Kolben T, Ma Z, Lin P, Mahner S, Jeschke U, von Schönfeldt V. Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int J Mol Sci 2020; 21:ijms21155175. [PMID: 32707756 PMCID: PMC7432066 DOI: 10.3390/ijms21155175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Assisted reproductive technology (ART) has rapidly developed and is now widely practised worldwide. Both the characteristics of ART (handling gametes/embryos in vitro) and the infertility backgrounds of ART parents (such as infertility diseases and unfavourable lifestyles or diets) could cause increased oxidative stress (OS) that may exert adverse influences on gametogenesis, fertilisation, and foetation, even causing a long-lasting influence on the offspring. For these reasons, the safety of ART needs to be closely examined. In this review, from an ART safety standpoint, the origins of OS are reviewed, and the long-lasting cardiovascular effects and potential mechanisms of OS on the offspring are discussed.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Peng Lin
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-(0)821-400-165505
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| |
Collapse
|
47
|
Barciszewska AM. Total DNA methylation as a biomarker of DNA damage and tumor malignancy in intracranial meningiomas. BMC Cancer 2020; 20:509. [PMID: 32493231 PMCID: PMC7268775 DOI: 10.1186/s12885-020-06982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background Meningiomas are the most common primary intracranial tumors in adults. They are initially detected with neuroimaging techniques, but definite histological diagnosis requires tumor surgery to collect tumor tissue. Gross total resection is an optimal and final treatment for the majority of patients, followed by radiotherapy in malignant or refractory cases. However, there are a lot of uncertainties about i.a. the need for intervention in incidental cases, estimation of growth kinetics, risk of malignant transformation, or response to radiotherapy. Therefore a new diagnostic approach is needed. It has already been shown that epigenetics plays a crucial role in cancer biology, development, and progression. DNA methylation, the presence of 5-methylcytosine in DNA, is one of the main elements of a broad epigenetic program in a eukaryotic cell, with superior regulatory significance. Therefore, we decided to look at meningioma through changes of 5-methylcytosine. Methods We performed an analysis of the total amount of 5-methylcytosine in DNA isolated from intracranial meningioma tissues and peripheral blood samples of the same patients. The separation and identification of radioactively labeled nucleotides were performed using thin-layer chromatography. Results We found that the 5-methylcytosine level in DNA from intracranial meningiomas is inversely proportional to the malignancy grade. The higher the tumor WHO grade is, the lower the total DNA methylation. The amount of 5-methylcytosine in tumor tissue and peripheral blood is almost identical. Conclusions We conclude that the total DNA methylation can be a useful marker for brain meningioma detection, differentiation, and monitoring. It correlates with tumor WHO grade, and the 5-methylcytosine level in peripheral blood reflects that in tumor tissue. Therefore it’s applicable for liquid biopsy. Our study creates a scope for further research on epigenetic mechanisms in neurooncology and can lead to the development of new diagnostic methods in clinical practice.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland. .,Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355, Poznan, Poland.
| |
Collapse
|
48
|
Mo J, Liang Z, Lu M, Wang H. Protonation-Suppression-Free LC-MS/MS Analysis for Profiling of DNA Cytosine Modifications in Adult Mice. Anal Chem 2020; 92:7430-7436. [PMID: 32353227 DOI: 10.1021/acs.analchem.0c00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA cytosine modifications are important epigenetic marks. To elucidate their roles by a large scale of comparative studies, it is important to quantify the abundance of DNA cytosine modifications accurately. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a golden option. The performance of LC-MS/MS is heavily dependent on the ionization or protonation of target analytes. Initially, we found that two factors, DNA hydrolysate buffer and residual coeluted nucleosides, might greatly suppress the protonation of 5-(hydroxymethyl)-2'-deoxycytidine (5hmdC). Surprisingly, ammonium bicarbonate can eliminate the suppression caused by both factors. Mechanistically, ammonium bicarbonate increases the protonation capacity in the gas phase and facilitates proton transfer to the target nucleosides. Benefiting from these findings, we developed a suppression-free, sensitive, and robust ultrahigh-performance LC-MS/MS assay for massive detection of three DNA cytosine modifications, including 5-methyl-2'-deoxycytidine (5mdC), 5hmdC, and 5-formyl-2'-deoxycytidine (5fdC). In 30 consecutive analyses, the relative standard deviation (RSD) of the 5hmdC and 5fdC peak areas is 2.0% and 3.2%, respectively. In this case, no stable isotope-labeled standard is required for internal calibration. We further performed a comprehensive profiling of DNA cytosine modifications in 26 tissues of age-different C57BL/6N mice. Interestingly, we found that only liver 5hmdC abundance increases with the increasing age of adult mice, suggesting that liver 5hmdC might be a potential indicator of age in adulthood.
Collapse
Affiliation(s)
- Jiezhen Mo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiling Lu
- Greater China Market Division, Agilent Technologies, Beijing 100102, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
49
|
Katsuya-Gaviria K, Caro E, Carrillo-Barral N, Iglesias-Fernández R. Reactive Oxygen Species (ROS) and Nucleic Acid Modifications During Seed Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E679. [PMID: 32471221 PMCID: PMC7356579 DOI: 10.3390/plants9060679] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
The seed is the propagule of higher plants and allows its dissemination and the survival of the species. Seed dormancy prevents premature germination under favourable conditions. Dormant seeds are only able to germinate in a narrow range of conditions. During after-ripening (AR), a mechanism of dormancy release, seeds gradually lose dormancy through a period of dry storage. This review is mainly focused on how chemical modifications of mRNA and genomic DNA, such as oxidation and methylation, affect gene expression during late stages of seed development, especially during dormancy. The oxidation of specific nucleotides produced by reactive oxygen species (ROS) alters the stability of the seed stored mRNAs, being finally degraded or translated into non-functional proteins. DNA methylation is a well-known epigenetic mechanism of controlling gene expression. In Arabidopsis thaliana, while there is a global increase in CHH-context methylation through embryogenesis, global DNA methylation levels remain stable during seed dormancy, decreasing when germination occurs. The biological significance of nucleic acid oxidation and methylation upon seed development is discussed.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Néstor Carrillo-Barral
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad da Coruña (UdC), 15008-A Coruña, Spain;
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| |
Collapse
|
50
|
Herl T, Matysik FM. Investigation of the Electrooxidation of Thymine on Screen-Printed Carbon Electrodes by Hyphenation of Electrochemistry and Mass Spectrometry. Anal Chem 2020; 92:6374-6381. [PMID: 32227929 DOI: 10.1021/acs.analchem.9b05406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The electrooxidation of thymine on screen-printed carbon electrodes was investigated utilizing different complementary instrumental approaches. The potential-dependent product profile was obtained by recording real-time mass voltammograms. Electrochemical flow cells with integrated disposable electrodes were directly coupled with mass spectrometry to facilitate a very fast detection of electrogenerated species. Thymine dimers were found at a potential of about 1.1 V in ammonium acetate (pH 7.0) and 1.25 V in ammonium hydrogen carbonate electrolyte (pH 8.0). Electrochemistry-capillary electrophoresis-mass spectrometry measurements revealed that two isobaric isomers of a dimeric oxidation product were formed. Separations at different time intervals between end of oxidation and start of separation showed that these were hydrated over time. An investigation of the pKa values by changing the separation conditions in electrochemistry-capillary electrophoresis-ultraviolet-visible spectroscopy measurements allowed for further characterization of the primary oxidation products. The results showed that both isomers exhibited two deprotonation steps. The oxidation products were further characterized by high-performance liquid chromatography-tandem mass spectrometry. Based on the obtained data, the main oxidation products of thymine in aqueous solution could most likely be identified as N(1)-C(5') and N(1)-C(6') linked dimer species evolving into the corresponding dimer hydrates over time. The presented methods for online characterization of electrochemically pretreated samples showed that not only mass spectrometric data can be obtained by electrochemistry-mass spectrometry but also further characterizations such as the investigation of product stability and the pH-dependent protonation or deprotonation behavior are possible. This is valid not only for stable oxidation products but also for intermediates, as analysis can be carried out within a short time scale. Thus, a vast amount of valuable experimental data can be acquired, which can help in understanding electrooxidation processes.
Collapse
Affiliation(s)
- Thomas Herl
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Frank-Michael Matysik
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|