1
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kodali S, Proietti L, Valcarcel G, López-Rubio AV, Pessina P, Eder T, Shi J, Jen A, Lupión-Garcia N, Starner AC, Bartels MD, Cui Y, Sands CM, Planas-Riverola A, Martínez A, Velasco-Hernandez T, Tomás-Daza L, Alber B, Manhart G, Mayer IM, Kollmann K, Fatica A, Menendez P, Shishkova E, Rau RE, Javierre BM, Coon J, Chen Q, Van Nostrand EL, Sardina JL, Grebien F, Di Stefano B. RNA sequestration in P-bodies sustains myeloid leukaemia. Nat Cell Biol 2024; 26:1745-1758. [PMID: 39169219 DOI: 10.1038/s41556-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Animals
- Hematopoiesis/genetics
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gemma Valcarcel
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Patrizia Pessina
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Núria Lupión-Garcia
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mason D Bartels
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Yingzhi Cui
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alba Martínez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | | | - Bernhard Alber
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Maria Mayer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Qi Chen
- Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Badalona, Spain.
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Matera AG, Steiner RE, Mills CA, McMichael BD, Herring LE, Garcia EL. Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. FRONTIERS IN RNA RESEARCH 2024; 2:1448194. [PMID: 39492846 PMCID: PMC11529804 DOI: 10.3389/frnar.2024.1448194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Introduction Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an assembly chaperone and serves as a paradigm for studying how specific RNAs are identified and paired with their client substrate proteins to form RNPs. SMN is the eponymous component of a large complex, required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs), that localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN protein forms the oligomeric core of this complex, and missense mutations in the human SMN1 gene are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known. However, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Methods Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. We carried out affinity purification mass spectrometry (AP-MS) of Drosophila SMN complexes using fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Results Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially associated with SMA-causing alleles of SMN. Discussion Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - C. Allie Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Wang C, He Y, Fang X, Zhang D, Huang J, Zhao S, Li L, Li G. METTL1-modulated LSM14A facilitates proliferation and migration in glioblastoma via the stabilization of DDX5. iScience 2024; 27:110225. [PMID: 39040050 PMCID: PMC11261005 DOI: 10.1016/j.isci.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth, invasiveness, and poor prognosis. Elucidating the molecular mechanisms underlying GBM is crucial. This study explores the role of Sm-like protein 14 homolog A (LSM14A) in GBM. Bioinformatics and clinical tissue samples analysis demonstrated that overexpression of LSM14A in GBM correlates with poorer prognosis. CCK8, EdU, colony formation, and transwell assays revealed that LSM14A promotes proliferation, migration, and invasion in GBM in vitro. In vivo mouse xenograft models confirmed the results of the in vitro experiments. The mechanism of LSM14A modulating GBM cell proliferation was investigated using mass spectrometry, co-immunoprecipitation (coIP), protein half-life, and methylated RNA immunoprecipitation (MeRIP) analyses. The findings indicate that during the G1/S phase, LSM14A stabilizes DDX5 in the cytoplasm, regulating CDK4 and P21 levels. Furthermore, METTL1 modulates LSM14A expression via mRNA m7G methylation. Altogether, our work highlights the METTL1-LSM14A-DDX5 pathway as a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Changyu Wang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yan He
- Department of Laboratory Animal Science, China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Xiang Fang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, People’s Republic of China
| | - Danyang Zhang
- Department of Immunology, College of Basic Medical Sciences of China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Jinhai Huang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Shuxin Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lun Li
- Department of Neurosurgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, China
| | - Guangyu Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| |
Collapse
|
5
|
Wang JY, Liu YJ, Zhang XL, Liu YH, Jiang LL, Hu HY. PolyQ-expanded ataxin-2 aggregation impairs cellular processing-body homeostasis via sequestering the RNA helicase DDX6. J Biol Chem 2024; 300:107413. [PMID: 38810698 PMCID: PMC11254730 DOI: 10.1016/j.jbc.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.
Collapse
Affiliation(s)
- Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yin-Hu Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Zhan W, Li Z, Zhang J, Liu Y, Liu G, Li B, Shen R, Jiang Y, Shang W, Gao S, Wu H, Wang Y, Chen W, Wang Z. Energy stress promotes P-bodies formation via lysine-63-linked polyubiquitination of HAX1. EMBO J 2024; 43:2759-2788. [PMID: 38769438 PMCID: PMC11217408 DOI: 10.1038/s44318-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.
Collapse
Affiliation(s)
- Wanqi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhiyang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yongfeng Liu
- Radiation Medicine Institute, The First Affiliated Hospital, ZhengZhou University, ZhengZhou, Henan, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Bingsong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Jinfeng Laboratory, Chongqing, China
| | - Rong Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ya'nan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
7
|
Ripin N, Macedo de Vasconcelos L, Ugay DA, Parker R. DDX6 modulates P-body and stress granule assembly, composition, and docking. J Cell Biol 2024; 223:e202306022. [PMID: 38536035 PMCID: PMC10978804 DOI: 10.1083/jcb.202306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Daniella A. Ugay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
9
|
Matera AG, Steiner RE, Mills CA, Herring LE, Garcia EL. Chaperoning the chaperones: Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594402. [PMID: 38903116 PMCID: PMC11188114 DOI: 10.1101/2024.05.15.594402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Molecular chaperones and co-chaperones are highly conserved cellular components that perform variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an RNP assembly chaperone and serves as a paradigm for studying how specific small nuclear (sn)RNAs are identified and paired with their client substrate proteins. SMN protein is the eponymous component of a large complex required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs) and localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN forms the oligomeric core of this complex, and missense mutations in its YG box self-interaction domain are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. Here, we carried out affinity purification mass spectrometry (AP-MS) of SMN using stable fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially interacted with SMA-causing alleles of SMN. Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
| | - C. Alison Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| |
Collapse
|
10
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Moriwaki M, Liu L, James ER, Tolley N, O'Connora AM, Emery B, Aston KI, Campbell RA, Welt CK. Heterozygous Eif4nif1 Stop Gain Mice Replicate the Primary Ovarian Insufficiency Phenotype in Women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588694. [PMID: 38645151 PMCID: PMC11030307 DOI: 10.1101/2024.04.09.588694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We created the c.1286C>G stop-gain mutation found in a family with primary ovarian insufficiency (POI) at age 30 years. The Eif4enif1 C57/Bl6 transgenic mouse model contained a floxed exon 10-19 cassette with a conditional knock-in cassette containing the c.1286C>G stop-gain mutation in exon 10. The hybrid offspring of CMV- Cre mice with Eif4enif1 WT/flx mice were designated Eif4enif1 WT/ Δ for simplicity. A subset of female heterozygotes ( Eif4enif1 WT/ Δ ) had no litters. In those with litters, the final litter was earlier (5.4±2.6 vs. 10.5±0.7 months; p=0.02). Heterozygous breeding pair ( Eif4enif1 WT/ Δ x Eif4enif1 WT/ Δ ) litter size was 60% of WT litter size (3.9±2.0 vs. 6.5±3.0 pups/litter; p <0.001). The genotypes were 35% Eif4enif1 WT/flx and 65% Eif4enif1 WT/ Δ , with no homozygotes. Homozygote embryos did not develop beyond the 4-8 cell stage. The number of follicles in ovaries from Eif4enif1 WT/ Δ mice was lower starting at the primordial (499±290 vs. 1445±381) and primary follicle stage (1069±346 vs. 1450±193) on day 10 (p<0.05). The preantral follicle number was lower starting on day 21 (213±86 vs. 522±227; p<0.01). Examination of ribosome protected mRNAs (RPR) demonstrated altered mRNA expression. The Eif4enif1 stop-gain mice replicate the POI phenotype in women. The unique mouse model provides a platform to study regulation of protein translation across oocyte and embryo development in mammals.
Collapse
|
12
|
Salgania HK, Metz J, Jeske M. ReLo is a simple and rapid colocalization assay to identify and characterize direct protein-protein interactions. Nat Commun 2024; 15:2875. [PMID: 38570497 PMCID: PMC10991417 DOI: 10.1038/s41467-024-47233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The characterization of protein-protein interactions (PPIs) is fundamental to the understanding of biochemical processes. Many methods have been established to identify and study direct PPIs; however, screening and investigating PPIs involving large or poorly soluble proteins remains challenging. Here, we introduce ReLo, a simple, rapid, and versatile cell culture-based method for detecting and investigating interactions in a cellular context. Our experiments demonstrate that ReLo specifically detects direct binary PPIs. Furthermore, we show that ReLo bridging experiments can also be used to determine the binding topology of subunits within multiprotein complexes. In addition, ReLo facilitates the identification of protein domains that mediate complex formation, allows screening for interfering point mutations, and it is sensitive to drugs that mediate or disrupt an interaction. In summary, ReLo is a simple and rapid alternative for the study of PPIs, especially when studying structurally complex proteins or when established methods fail.
Collapse
Affiliation(s)
- Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhang H, Zhang T, Wan X, Chen C, Wang S, Qin D, Li L, Yu L, Wu X. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation. J Genet Genomics 2024; 51:48-60. [PMID: 37481122 DOI: 10.1016/j.jgg.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Luping Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210029, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
15
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Shan T, Liu F, Wen M, Chen Z, Li S, Wang Y, Cheng H, Zhou Y. m 6A modification negatively regulates translation by switching mRNA from polysome to P-body via IGF2BP3. Mol Cell 2023; 83:4494-4508.e6. [PMID: 38016476 DOI: 10.1016/j.molcel.2023.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ting Shan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Feiyan Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Miaomiao Wen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Zonggui Chen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Shaopeng Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Institute of Advanced Studies, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Yu L, Kong N, Lin Y, Qiu P, Xu Q, Zhang Y, Zhen X, Yan G, Sun H, Mei J, Cao G. NUSAP1 regulates mouse oocyte meiotic maturation. J Cell Biochem 2023; 124:1931-1947. [PMID: 37992207 DOI: 10.1002/jcb.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Panpan Qiu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
18
|
Ding Y, He Z, Sha Y, Kee K, Li L. Eif4enif1 haploinsufficiency disrupts oocyte mitochondrial dynamics and leads to subfertility. Development 2023; 150:dev202151. [PMID: 38088064 DOI: 10.1242/dev.202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Infertility affects couples worldwide. Premature ovarian insufficiency (POI) refers to loss of ovarian function before 40 years of age and is a contributing factor to infertility. Several case studies have reported dominant-inherited POI symptoms in families with heterozygous EIF4ENIF1 (4E-T) mutations. However, the effects of EIF4ENIF1 haploinsufficiency have rarely been studied in animal models to reveal the underlying molecular changes related to infertility. Here, we demonstrate that Eif4enif1 haploinsufficiency causes mouse subfertility, impairs oocyte maturation and partially arrests early embryonic development. Using dual-omic sequencing, we observed that Eif4enif1 haploinsufficiency significantly altered both transcriptome and translatome in mouse oocytes, by which we further revealed oocyte mitochondrial hyperfusion and mitochondria-associated ribonucleoprotein domain distribution alteration in Eif4enif1-deficient oocytes. This study provides new insights into the molecular mechanisms underlying clinical fertility failure and new avenues to pursue new therapeutic targets to address infertility.
Collapse
Affiliation(s)
- Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zequn He
- School of Life Sciences, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| |
Collapse
|
19
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
20
|
Zuberek J, Warzecha M, Dobrowolski M, Modrak-Wojcik A. An intramolecular disulphide bond in human 4E-T affects its binding to eIF4E1a protein. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:497-510. [PMID: 37798395 PMCID: PMC10618305 DOI: 10.1007/s00249-023-01684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.
Collapse
Affiliation(s)
- Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Marek Warzecha
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mateusz Dobrowolski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Anna Modrak-Wojcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Majerciak V, Zhou T, Kruhlak M, Zheng ZM. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res 2023; 51:9337-9355. [PMID: 37427791 PMCID: PMC10516652 DOI: 10.1093/nar/gkad585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate mRNA translation and are intimately related. In this study, we found that arsenite (ARS)-induced SG formed in a stepwise process is topologically and mechanically linked to PB. Two essential PB components, GW182 and DDX6, are repurposed under stress to play direct but distinguishable roles in SG biogenesis. By providing scaffolding activities, GW182 promotes the aggregation of SG components to form SG bodies. DEAD-box helicase DDX6 is also essential for the proper assembly and separation of PB from SG. DDX6 deficiency results in the formation of irregularly shaped 'hybrid' PB/SG granules with accumulated components of both PB and SG. Wild-type DDX6, but not its helicase mutant E247A, can rescue the separation of PB from SG in DDX6KO cells, indicating a requirement of DDX6 helicase activity for this process. DDX6 activity in biogenesis of both PB and SG in the cells under stress is further modulated by its interaction with two protein partners, CNOT1 and 4E-T, of which knockdown affects the formation of both PB and also SG. Together, these data highlight a new functional paradigm between PB and SG biogenesis during the stress.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tongqing Zhou
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Ang HX, Sutiman N, Deng XL, Liu A, Cerda-Smith CG, Hutchinson HM, Kim H, Bartelt LC, Chen Q, Barrera A, Lin J, Sheng Z, McDowell IC, Reddy TE, Nicchitta CV, Wood KC. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc Natl Acad Sci U S A 2023; 120:e2221448120. [PMID: 37695916 PMCID: PMC10515179 DOI: 10.1073/pnas.2221448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.
Collapse
Affiliation(s)
- Hazel X. Ang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Natalia Sutiman
- Duke-National University of Singapore Medical School,Singapore169857, Singapore
| | - Xinyue L. Deng
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Annie Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
- Department of Surgery, Duke University School of Medicine, Durham, NC22710
| | - Christian G. Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Holly Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Luke C. Bartelt
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC22710
| | - Alejandro Barrera
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Jiaxing Lin
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Zhecheng Sheng
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Ian C. McDowell
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Timothy E. Reddy
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | | | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| |
Collapse
|
23
|
Shan LY, Tian Y, Liu WX, Fan HT, Li FG, Liu WJ, Li A, Shen W, Sun QY, Liu YB, Zhou Y, Zhang T. LSM14B controls oocyte mRNA storage and stability to ensure female fertility. Cell Mol Life Sci 2023; 80:247. [PMID: 37578641 PMCID: PMC10425512 DOI: 10.1007/s00018-023-04898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Controlled mRNA storage and stability is essential for oocyte meiosis and early embryonic development. However, how to regulate mRNA storage and stability in mammalian oogenesis remains elusive. Here we showed that LSM14B, a component of membraneless compartments including P-body-like granules and mitochondria-associated ribonucleoprotein domain (MARDO) in germ cell, is indispensable for female fertility. To reveal loss of LSM14B disrupted primordial follicle assembly and caused mRNA reduction in non-growing oocytes, which was concomitant with the impaired assembly of P-body-like granules. 10× Genomics single-cell RNA-sequencing and immunostaining were performed. Meanwhile, we conducted RNA-seq analysis of GV-stage oocytes and found that Lsm14b deficiency not only impaired the maternal mRNA accumulation but also disrupted the translation in fully grown oocytes, which was closely associated with dissolution of MARDO components. Moreover, Lsm14b-deficient oocytes reassembled a pronucleus containing decondensed chromatin after extrusion of the first polar body, through compromising the activation of maturation promoting factor, while the defects were restored via WEE1/2 inhibitor. Together, our findings reveal that Lsm14b plays a pivotal role in mammalian oogenesis by specifically controlling of oocyte mRNA storage and stability.
Collapse
Affiliation(s)
- Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Feng-Guo Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wen-Juan Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
24
|
Vidal-Cruchez O, Nicolini VJ, Rete T, Jacquet K, Rezzonico R, Lacoux C, Domdom MA, Roméo B, Roux J, Hubstenberger A, Mari B, Mograbi B, Hofman P, Brest P. KRAS and NRAS Translation Is Increased upon MEK Inhibitors-Induced Processing Bodies Dissolution. Cancers (Basel) 2023; 15:3078. [PMID: 37370689 DOI: 10.3390/cancers15123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is a critical driver of many human cancers. However, therapies directly targeting this pathway lead to cancer drug resistance. Resistance has been linked to compensatory RAS overexpression, but the mechanisms underlying this response remain unclear. Here, we find that MEK inhibitors (MEKi) are associated with an increased translation of the KRAS and NRAS oncogenes through a mechanism involving dissolution of processing body (P-body) biocondensates. This effect is seen across different cell types and is extremely dynamic since removal of MEKi and ERK reactivation result in reappearance of P-bodies and reduced RAS-dependent signaling. Moreover, we find that P-body scaffold protein levels negatively impact RAS expression. Overall, we describe a new feedback loop mechanism involving biocondensates such as P-bodies in the translational regulation of RAS proteins and MAPK signaling.
Collapse
Affiliation(s)
- Olivia Vidal-Cruchez
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Victoria J Nicolini
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Tifenn Rete
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Karine Jacquet
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Roger Rezzonico
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS, INSERM, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Caroline Lacoux
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Marie-Angela Domdom
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Barnabé Roméo
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Arnaud Hubstenberger
- Université Côte d'Azur, Institut Biologie Valrose (IBV), CNRS, Inserm, 06108 Nice, France
| | - Bernard Mari
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CHU-Nice, Pasteur Hospital, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), 06001 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| |
Collapse
|
25
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
26
|
The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool. Cell Rep 2023; 42:112242. [PMID: 36924490 DOI: 10.1016/j.celrep.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Collapse
|
27
|
Dhamodharan A, Okada H, Muraoka M, Wright D, Okubo A, Saga Y. P-body dynamics revealed by DDX6 protein knockdown via the auxin-inducible degron system. Dev Growth Differ 2022; 64:537-547. [PMID: 36353942 DOI: 10.1111/dgd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The transcriptome dynamically changes via several transcriptional and post-transcriptional mechanisms. RNA-binding proteins contribute to such mechanisms to regulate the cellular status. DDX6 is one such protein and a core component of processing bodies (P-bodies), membrane-less cytosolic substructures where RNA and proteins localize and are functionally regulated. Despite the importance of DDX6, owing to the lack of tightly controlled methods for protein knockdown, it was difficult to assess in high time resolution how its depletion exactly affects the P-body assembly structure. Therefore, we adopted an advanced protein degradation method, the auxin-induced degron (AID) system, to degrade DDX6 acutely in ES cells. By introducing AID-tagged DDX6 and the E3 ligase subunit of OsTIR1 into ES cells, we successfully degraded DDX6 following auxin analog (indole-3-acetic acid, IAA) treatment. The degradation rate of DDX6 was slower than that of the cytosolic reporter protein EGFP but was enhanced by increasing the OsTIR1 dosage. Lastly, we confirmed that a substantial portion of P-bodies disappears around the time of 1 hr after IAA addition consistent with DDX6 depletion detected by western blot. In accordance with this, we detected transcriptome changes by 6 hr after IAA treatment. Therefore, we demonstrated the applicability of the AID method to gain insight into the function of P-bodies and their protein components.
Collapse
Affiliation(s)
- Adithya Dhamodharan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Masafumi Muraoka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Danelle Wright
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Heim A, Niedermeier ML, Stengel F, Mayer TU. The translation regulator Zar1l controls timing of meiosis in Xenopus oocytes. Development 2022; 149:278465. [DOI: 10.1242/dev.200900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Oocyte maturation and early embryo development occur in vertebrates in the near absence of transcription. Thus, sexual reproduction of vertebrates critically depends on the timely translation of mRNAs already stockpiled in the oocyte. Yet how translational activation of specific mRNAs is temporally coordinated is still incompletely understood. Here, we elucidate the function of Zar1l, a yet uncharacterized member of the Zar RNA-binding protein family, in Xenopus oocytes. Employing TRIM-Away, we demonstrate that loss of Zar1l accelerates hormone-induced meiotic resumption of Xenopus oocytes due to premature accumulation of the M-phase-promoting kinase cMos. We show that Zar1l is a constituent of a large ribonucleoparticle containing the translation repressor 4E-T and the central polyadenylation regulator CPEB1, and that it binds directly to the cMos mRNA. Partial, hormone-induced degradation of Zar1l liberates 4E-T from CPEB1, which weakens translational repression of mRNAs encoding cMos and likely additional M-phase-promoting factors. Thus, our study provides fundamental insights into the mechanisms that ensure temporally regulated translation of key cell cycle regulators during oocyte maturation, which is essential for sexual reproductivity.
Collapse
Affiliation(s)
- Andreas Heim
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
| | - Marie L. Niedermeier
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Florian Stengel
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Thomas U. Mayer
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| |
Collapse
|
29
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
30
|
Maciej VD, Mateva N, Schwarz J, Dittmers T, Mallick M, Urlaub H, Chakrabarti S. Intrinsically disordered regions of tristetraprolin and DCP2 directly interact to mediate decay of ARE-mRNA. Nucleic Acids Res 2022; 50:10665-10679. [PMID: 36130271 PMCID: PMC9561381 DOI: 10.1093/nar/gkac797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) is a potent activator of mRNA decay, specifically for transcripts bearing AU-rich elements (AREs) in their 3′-untranslated regions. TTP functions as a mediator for mRNA decay by interacting with the decay machinery and recruiting it to the target ARE-mRNA. In this study, we report a weak, but direct interaction between TTP and the human decapping enzyme DCP2, which impacts the stability of ARE transcripts. The TTP–DCP2 interaction is unusual as it involves intrinsically disordered regions (IDRs) of both binding partners. We show that the IDR of DCP2 has a propensity for oligomerization and liquid–liquid phase separation in vitro. Binding of TTP to DCP2 leads to its partitioning into phase-separated droplets formed by DCP2, suggesting that molecular crowding might facilitate the weak interaction between the two proteins and enable assembly of a decapping-competent mRNA–protein complex on TTP-bound transcripts in cells. Our studies underline the role of weak interactions in the cellular interaction network and their contribution towards cellular functionality.
Collapse
Affiliation(s)
- Vincent D Maciej
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Nevena Mateva
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Theresa Dittmers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| |
Collapse
|
31
|
Kedia S, Aghanoori MR, Burns KML, Subha M, Williams L, Wen P, Kopp D, Erickson SL, Harvey EM, Chen X, Hua M, Perez JU, Ishraque F, Yang G. Ubiquitination and deubiquitination of 4E-T regulate neural progenitor cell maintenance and neurogenesis by controlling P-body formation. Cell Rep 2022; 40:111070. [PMID: 35830814 DOI: 10.1016/j.celrep.2022.111070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.
Collapse
Affiliation(s)
- Shreeya Kedia
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Mohamad-Reza Aghanoori
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kaylan M L Burns
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Maneesha Subha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Laura Williams
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pengqiang Wen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Drayden Kopp
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Sarah L Erickson
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Emily M Harvey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Xin Chen
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michelle Hua
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jose Uriel Perez
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Fatin Ishraque
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Guang Yang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Owerko Centre, ACHRI, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
32
|
The Role of MicroRNA in the Regulation of Tumor Epithelial–Mesenchymal Transition. Cells 2022; 11:cells11131981. [PMID: 35805066 PMCID: PMC9265548 DOI: 10.3390/cells11131981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Consistently, the high metastasis of cancer cells is the bottleneck in the process of tumor treatment. In this process of metastasis, a pivotal role is executed by epithelial–mesenchymal transition (EMT). The epithelial-to-mesenchymal transformation was first proposed to occur during embryonic development. Later, its important role in explaining embryonic developmental processes was widely reported. Recently, EMT and its intermediate state were also identified as crucial drivers in tumor progression with the gradual deepening of research. To gain insights into the potential mechanism, increasing attention has been focused on the EMT-related transcription factors. Correspondingly, miRNAs target transcription factors to control the EMT process of tumor cells in different types of cancers, while there are still many exciting and challenging questions about the phenomenon of microRNA regulation of cancer EMT. We describe the relevant mechanisms of miRNAs regulating EMT, and trace the regulatory roles and functions of major EMT-related transcription factors, including Snail, Twist, zinc finger E-box-binding homeobox (ZEB), and other families. In addition, on the basis of the complex regulatory network, we hope that the exploration of the regulatory relationship of non-transcription factors will provide a better understanding of EMT and cancer metastasis. The identification of the mechanism leading to the activation of EMT programs during diverse disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Here, we summarize the recent progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
|
33
|
A novel mRNA decay inhibitor abolishes pathophysiological cellular transition. Cell Death Dis 2022; 8:278. [PMID: 35672286 PMCID: PMC9174231 DOI: 10.1038/s41420-022-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In cells, mRNA synthesis and decay are influenced by each other, and their balance is altered by either external or internal cues, resulting in changes in cell dynamics. We previously reported that it is important that an array of mRNAs that shape a phenotype are degraded before cellular transitions, such as cellular reprogramming and differentiation. In adipogenesis, the interaction between DDX6 and 4E-T had a definitive impact on the pathway in the processing body (PB). We screened a library of α-helix analogs with an alkaloid-like backbone to identify compounds that inhibit the binding between DDX6 and 4E-T proteins, which occurs between the α-helix of structured and internally disordered proteins. IAMC-00192 was identified as a lead compound. This compound directly inhibited the interaction between DDX6 and 4E-T. IAMC-00192 inhibited the temporal increase in PB formation that occurs during adipogenesis and epithelial-mesenchymal transition (EMT) and significantly suppressed these cellular transitions. In the EMT model, the half-life of preexisting mRNAs in PBs was extended twofold by the compound. The novel inhibitor of RNA decay not only represents a potentially useful tool to analyze in detail the pathological conditions affected by RNA decay and how it regulates the pathological state. The identification of this inhibitor may lead to the discovery of a first-in-class RNA decay inhibitor drug. ![]()
Collapse
|
34
|
Guénolé A, Velilla F, Chartier A, Rich A, Carvunis AR, Sardet C, Simonelig M, Sobhian B. RNF219 regulates CCR4-NOT function in mRNA translation and deadenylation. Sci Rep 2022; 12:9288. [PMID: 35660762 PMCID: PMC9166816 DOI: 10.1038/s41598-022-13309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional regulatory mechanisms play a role in many biological contexts through the control of mRNA degradation, translation and localization. Here, we show that the RING finger protein RNF219 co-purifies with the CCR4-NOT complex, the major mRNA deadenylase in eukaryotes, which mediates translational repression in both a deadenylase activity-dependent and -independent manner. Strikingly, RNF219 both inhibits the deadenylase activity of CCR4-NOT and enhances its capacity to repress translation of a target mRNA. We propose that the interaction of RNF219 with the CCR4-NOT complex directs the translational repressive activity of CCR4-NOT to a deadenylation-independent mechanism.
Collapse
Affiliation(s)
- Aude Guénolé
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.
| | - Fabien Velilla
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Aymeric Chartier
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - April Rich
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Martine Simonelig
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Bijan Sobhian
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France. .,Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France.
| |
Collapse
|
35
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
37
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
38
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
39
|
Shah A, Bhandari R. IP6K1 upregulates the formation of processing bodies by influencing protein-protein interactions on the mRNA cap. J Cell Sci 2021; 134:273758. [PMID: 34841428 DOI: 10.1242/jcs.259117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independently of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localise to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2 and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5' mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T (also known as EIF4ENIF1) and the cap-binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
40
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
41
|
Schneider-Lunitz V, Ruiz-Orera J, Hubner N, van Heesch S. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes. PLoS Comput Biol 2021; 17:e1009658. [PMID: 34879078 PMCID: PMC8687540 DOI: 10.1371/journal.pcbi.1009658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8—all identified as multifunctional RBPs by our analysis—selectively influence target translation rates depending on 5’ UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression. The lifecycle of an RNA molecule is controlled by hundreds of proteins that can bind RNA, also known as RNA-binding proteins (RBPs). These proteins recognize landing sites within the RNA and guide the RNA’s transcription from DNA, its processing into a mature messenger RNA, its translation into protein, or its degradation once the RNA is no longer needed. Although we now mechanistically understand how certain RBPs regulate these processes, for many RBP-target interactions the consequences imposed by RNA binding are not well understood. For 143 RBPs with known RNA binding positions, the authors of the current study investigated how RNA molecules responded to fluctuations in the expression levels of these RBPs, across each of 80 human hearts. Using statistical approaches, they could show that many RBPs influenced stages of the RNA lifecycle that they were not known to be involved in. Some RBPs turned out to be true "all-rounders" of RNA metabolism: they controlled the RNA transcript levels of some genes, whereas they influenced the translation rates of others. This unexpected multifunctionality unveiled previously hidden aspects of the everyday RNA-binding protein working life.
Collapse
Affiliation(s)
- Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- * E-mail: (NH); (SvH)
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail: (NH); (SvH)
| |
Collapse
|
42
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
43
|
Ruiz GP, Camara H, Fazolini NPB, Mori MA. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radic Biol Med 2021; 173:170-187. [PMID: 33965563 DOI: 10.1016/j.freeradbiomed.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.
Collapse
Affiliation(s)
- Gabriel Palermo Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Narayana P B Fazolini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
44
|
Abstract
Several viruses were proved to inhibit the formation of RNA processing bodies (P-bodies); however, knowledge regarding whether enterovirus blocks P-body formation remains unclear, and the detailed molecular mechanisms and functions of picornavirus regulation of P-bodies are limited. Here we show the crucial role of 2A protease in inhibiting P-bodies to promote viral replication during enterovirus 71 infection. Moreover, we found that the activity of 2A protease is essential to inhibit P-body formation, which was proved by the result that infection of EV71-2AC110S, the 2A protease activity-inactivated recombinant virus, failed to block the formation of P-bodies. Furthermore, we showed DDX6, a scaffolding protein of P-bodies, interacted with viral RNA to facilitate viral replication rather than viral translation, by using a Renilla luciferase mRNA reporter system and capturing the nascent RNA assay. Altogether, our data firstly demonstrate that the 2A protease of enterovirus inhibits P-body formation to facilitate viral RNA synthesis by recruiting the P-body components to viral RNA. IMPORTANCE Processing bodies (P-bodies) are constitutively present in eukaryotic cells and play an important role in the mRNA cycle, including regulating gene expression and mRNA degradation. P-bodies are the structure that viruses to manipulate to facilitate their survival. Here, we show that the 2A protease alone was efficient to block P-body formation during enterovirus 71 infection and its activity was essential. When the assembly of P-bodies was blocked by 2A, DDX6 and 4E-T which were required for P-body formation bound to viral RNA to facilitate viral RNA synthesis. We propose a model revealing that EV71 manipulates P-body formation to generate an environment that is conducive to viral replication by facilitating viral RNA synthesis: 2A protease blocked P-body assembly to make it possible for virus to take advantage of P-body components.
Collapse
|
45
|
Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Cells 2021; 10:cells10071711. [PMID: 34359885 PMCID: PMC8306974 DOI: 10.3390/cells10071711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is tightly regulated at each step of translation. In particular, the formation of the basic cap-binding complex, eukaryotic initiation factor 4F (eIF4F) complex, on the 5' cap structure of mRNA is positioned as the rate-limiting step, and various cis-elements on mRNA contribute to fine-tune spatiotemporal protein expression. The cis-element on mRNAs is recognized and bound to the trans-acting factors, which enable the regulation of the translation rate or mRNA stability. In this review, we focus on the molecular mechanism of how the assembly of the eIF4F complex is regulated on the cap structure of mRNAs. We also summarize the fine-tuned regulation of translation initiation by various trans-acting factors through cis-elements on mRNAs.
Collapse
|
46
|
Kakumani PK, Guitart T, Houle F, Harvey LM, Goyer B, Germain L, Gebauer F, Simard MJ. CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma. Oncogene 2021; 40:3231-3244. [PMID: 33833398 DOI: 10.1038/s41388-021-01767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs and RNA-binding proteins (RBPs) primarily target the 3' UTR of mRNAs to control their translation and stability. However, their co-regulatory effects on specific mRNAs in physiology and disease are yet to be fully explored. CSDE1 is an RBP that promotes metastasis in melanoma and mechanisms underlying its oncogenic activities need to be completely defined. Here we report that CSDE1 interacts with specific miRNA-induced silencing complexes (miRISC) in melanoma. We find an association of CSDE1 with AGO2, the essential component of miRISC, which is facilitated by target mRNAs and depends on the first cold shock domain of CSDE1. Both CSDE1 and AGO2 bind to 3' UTR of PMEPA1. CSDE1 counters AGO2 binding, leading to an increase of PMEPA1 expression. We also identify a miRNA, miR-129-5p, that represses PMEPA1 expression in melanoma. Collectively, our results show that PMEPA1 promotes tumorigenic traits and that CSDE1 along with miR-129-5p/AGO2 miRISC act antagonistically to fine-tune PMEPA1 expression toward the progression of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francois Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Louis-Mathieu Harvey
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| |
Collapse
|
47
|
Enwerem III, Elrod ND, Chang CT, Lin A, Ji P, Bohn JA, Levdansky Y, Wagner EJ, Valkov E, Goldstrohm AC. Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. RNA (NEW YORK, N.Y.) 2021; 27:445-464. [PMID: 33397688 PMCID: PMC7962487 DOI: 10.1261/rna.078436.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 05/13/2023]
Abstract
Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.
Collapse
Affiliation(s)
- Isioma I I Enwerem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Inagaki H, Hosoda N, Hoshino SI. DDX6 is a positive regulator of Ataxin-2/PAPD4 cytoplasmic polyadenylation machinery. Biochem Biophys Res Commun 2021; 553:9-16. [PMID: 33756349 DOI: 10.1016/j.bbrc.2021.03.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
The RNA-binding protein Ataxin-2 regulates translation and mRNA stability through cytoplasmic polyadenylation of the targets. Here we newly identified DDX6 as a positive regulator of the cytoplasmic polyadenylation. Analysis of Ataxin-2 interactome using LC-MS/MS revealed prominent interaction with the DEAD-box RNA helicase DDX6. DDX6 interacted with components of the Ataxin-2 polyadenylation machinery; Ataxin-2, PABPC1 and PAPD4. As in the case for Ataxin-2 downregulation, DDX6 downregulation led to an increase in Ataxin-2 target mRNAs with short poly(A) tails as well as a reduction in their protein expression. In contrast, Ataxin-2 target mRNAs with short poly(A) tails were decreased by the overexpression of Ataxin-2, which was compromised by the DDX6 downregulation. However, polyadenylation induced by Ataxin-2 tethering was not affected by the DDX6 downregulation. Taken together, these results suggest that DDX6 positively regulates Ataxin-2-induced cytoplasmic polyadenylation to maintain poly(A) tail length of the Ataxin-2 targets provably through accelerating binding of Ataxin-2 to the target mRNAs.
Collapse
Affiliation(s)
- Hiroto Inagaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
49
|
Maeda R, Kami D, Shikuma A, Suzuki Y, Taya T, Matoba S, Gojo S. RNA decay in processing bodies is indispensable for adipogenesis. Cell Death Dis 2021; 12:285. [PMID: 33731683 PMCID: PMC7969960 DOI: 10.1038/s41419-021-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
The RNA decay pathway plays key regulatory roles in cell identities and differentiation processes. Although adipogenesis is transcriptionally and epigenetically regulated and has been thoroughly investigated, how RNA metabolism that contributes to the stability of phenotype-shaping transcriptomes participates in differentiation remains elusive. In this study, we investigated Ddx6, an essential component of processing bodies (PBs) that executes RNA decay and translational repression in the cytoplasm and participates in the cellular transition of reprogramming. Upon adipogenic induction, Ddx6 dynamically accumulated to form PBs with a binding partner, 4E-T, at the early phase prior to emergence of intracellular lipid droplets. In contrast, preadipocytes with Ddx6 knockout (KO) or 4E-T knockdown (KD) failed to generate PBs, resulting in significant suppression of adipogenesis. Transcription factors related to preadipocytes and negative regulators of adipogenesis that were not expressed under adipogenic stimulation were maintained in Ddx6-KO and 4E-T-KD preadipocytes under adipogenic induction. Elimination of Dlk1, a major negative regulator of adipogenesis, in 3T3L1 Ddx6-KO cells did not restore adipogenic differentiation capacity to any extent. Similar to murine cells, human primary mesenchymal stem cells, which can differentiate into adipocytes upon stimulation with adipogenic cocktails, required DDX6 to maturate into adipocytes. Therefore, RNA decay of the entire parental transcriptome, rather than removal of a strong negative regulator, could be indispensable for adipogenesis.
Collapse
Affiliation(s)
- Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Shikuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
50
|
Guduric-Fuchs J, Pedrini E, Lechner J, Chambers SE, O’Neill CL, Mendes Lopes de Melo J, Pathak V, Church RH, McKeown S, Bojdo J, Mcloughlin KJ, Stitt AW, Medina RJ. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:968-981. [PMID: 33614244 PMCID: PMC7869000 DOI: 10.1016/j.omtn.2021.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edoardo Pedrini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Sarah E.J. Chambers
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Christina L. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Joana Mendes Lopes de Melo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Varun Pathak
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rachel H. Church
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Stuart McKeown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Kiran J. Mcloughlin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|