1
|
Ribeiro DM, Sacarrão-Birrento L, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The effect of high-level dietary Laminaria digitata on the muscle proteome and metabolome of weaned piglets. Res Vet Sci 2025; 189:105646. [PMID: 40199047 DOI: 10.1016/j.rvsc.2025.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The brown seaweed Laminaria digitata, known for its prebiotic qualities, and alginate lyase supplementation, may improve the growth and development of piglets during the critical post-weaning phase. The purpose of this study was to ascertain the effects of 10 % L. digitata and 0.01 % alginate lyase on the proteome and metabolome of the longissimus lumborum muscle in weaned piglets. Findings suggest that the enzyme supplement has a marginal effect on muscle proteome compared to the seaweed diet alone when compared to the control. L. digitata increased the prevalence of proteins related to muscle contraction and structure (such as ACTBL2), while it decreased the presence of glycolytic proteins (like GPI and ALDOC). It also increased the abundance of proteins related to the negative regulation of insulin receptor pathways, such as RABGAP1 and TSC2. Conversely, alginate lyase increased the abundance of proteins associated with fatty acid oxidation (ALOXE3) and calcium balance (WFS1), reflecting the impacts of dietary n-3 polyunsaturated fatty acids and lower calcium in the diet. As for the muscle metabolome, it remained mostly unchanged by dietary treatments, except for mannitol and threonine, which were enriched as a consequence of seaweed inclusion.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Laura Sacarrão-Birrento
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal.
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
2
|
Guo S, Wang P, Wei S, Wang Y. Chemoproteomic Approach for Identifying Nuclear Arsenite-Binding Proteins. Chem Res Toxicol 2025; 38:954-961. [PMID: 40289526 DOI: 10.1021/acs.chemrestox.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Trivalent arsenic, i.e., As(III), is the main form of arsenic species in the environment. Prolonged exposure to arsenicals through ingesting contaminated food and water has been implicated in the development of cancer and diabetes as well as cardiovascular and neurodegenerative diseases. A number of studies have been conducted to examine the mechanisms underlying the toxic effects of arsenite exposure, where As(III) was shown to displace Zn(II) and impair the functions of zinc-binding proteins. Considering that many zinc-binding proteins can bind to nucleic acids, we reason that systematic identification of arsenite-binding proteins in the nucleus may provide additional insights into the molecular targets of arsenite, thereby improving our understanding of the mechanisms of arsenic toxicity. Here, we conducted a quantitative proteomics experiment relying on affinity pull-down from nuclear protein lysate with a biotin-As(III) probe to identify nuclear arsenite-binding proteins. We uncovered a number of candidate As(III)-binding proteins that are involved in mRNA splicing, DNA repair, and replication. We also found that As(III) could bind to splicing factor 1 (SF1) and that this binding perturbs mRNA splicing in human cells. Together, our work provided insights into the mechanisms of As(III) toxicity by revealing new nuclear protein targets of As(III).
Collapse
|
3
|
Bittremieux W, Bouyssié D, Dorfer V, Locard-Paulet M, Perez-Riverol Y, Schwämmle V, Uszkoreit J, Van Den Bossche T. The European Bioinformatics Community for Mass Spectrometry (EuBIC-MS): an open community for bioinformatics training and research. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39 Suppl 1:e9087. [PMID: 33861485 DOI: 10.1002/rcm.9087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The European Bioinformatics Community for Mass Spectrometry (EuBIC-MS; eubic-ms.org) was founded in 2014 to unite European computational mass spectrometry researchers and proteomics bioinformaticians working in academia and industry. EuBIC-MS maintains educational resources (proteomics-academy.org) and organises workshops at national and international conferences on proteomics and mass spectrometry. Furthermore, EuBIC-MS is actively involved in several community initiatives such as the Human Proteome Organization's Proteomics Standards Initiative (HUPO-PSI). Apart from these collaborations, EuBIC-MS has organised two Winter Schools and two Developers' Meetings that have contributed to the strengthening of the European mass spectrometry network and fostered international collaboration in this field, even beyond Europe. Moreover, EuBIC-MS is currently actively developing a community-driven standard dedicated to mass spectrometry data annotation (SDRF-Proteomics) that will facilitate data reuse and collaboration. This manuscript highlights what EuBIC-MS is, what it does, and what it already has achieved. A warm invitation is extended to new researchers at all career stages to join the EuBIC-MS community on its Slack channel (eubic.slack.com).
Collapse
Affiliation(s)
- Wout Bittremieux
- European Bioinformatics Community for Mass Spectrometry, Belgium
- University of California San Diego, La Jolla, CA, USA
- University of Antwerp, Antwerp, Belgium
| | - David Bouyssié
- European Bioinformatics Community for Mass Spectrometry, Belgium
- IPBS, University of Toulouse, CNRS, UPS, Toulouse, France
| | - Viktoria Dorfer
- European Bioinformatics Community for Mass Spectrometry, Belgium
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | - Marie Locard-Paulet
- European Bioinformatics Community for Mass Spectrometry, Belgium
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Yasset Perez-Riverol
- European Bioinformatics Community for Mass Spectrometry, Belgium
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Veit Schwämmle
- European Bioinformatics Community for Mass Spectrometry, Belgium
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Julian Uszkoreit
- European Bioinformatics Community for Mass Spectrometry, Belgium
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr University Bochum, Bochum, Germany
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Tim Van Den Bossche
- European Bioinformatics Community for Mass Spectrometry, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Katerji M, Bergman KL, Lindberg E, Rubin MR, Afifi M, Funk AL, Woodroofe CC, Nyswaner K, Karpińska K, Serwa R, Cappell SD, Marusiak A, Swenson RE, Brognard JF. Discovery of potent and selective PROTACs for the protein kinase LZK for the treatment of head and neck cancer. J Biol Chem 2025; 301:108452. [PMID: 40157536 PMCID: PMC12135360 DOI: 10.1016/j.jbc.2025.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Leucine zipper-bearing kinase (LZK) is overexpressed in 20% of head and neck squamous cell carcinoma (HNSCC) cases and has emerged as a promising therapeutic target in this cancer subtype. LZK promotes HNSCC survival and proliferation by stabilizing c-MYC and GOF-p53 in kinase-dependent and -independent manners, respectively. Herein, we developed a new series of LZK degraders utilizing proteolysis-targeting chimera (PROTAC) technology by modulating the linker region or LZK warhead of LZK-targeting PROTAC-21A, previously developed by our laboratory. Among the 27 PROTACs synthesized and tested, PROTAC 17 was found to be the most potent, degrading LZK at 250 nM and suppressing HNSCC viability at 500 nM. In summary, our lead PROTAC effectively targeted LZK for proteasomal degradation and inhibited oncogenic activity in HNSCC cell lines with amplified LZK.
Collapse
Affiliation(s)
- Meghri Katerji
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Knickole L Bergman
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Maxine R Rubin
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Marwa Afifi
- Laboratory of Cancer Genetics and Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Amy L Funk
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Carolyn C Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz Serwa
- Proteomic Core Facility, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Steven D Cappell
- Laboratory of Cancer Genetics and Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA.
| | - John F Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
5
|
Hagen JT, Montgomery MM, Aruleba RT, Chrest BR, Krassovskaia P, Green TD, Pacheco EA, Kassai M, Zeczycki TN, Schmidt CA, Bhowmick D, Tan SF, Feith DJ, Chalfant CE, Loughran TP, Liles D, Minden MD, Schimmer AD, Shakil MS, McBride MJ, Cabot MC, McClung JM, Fisher-Wellman KH. Acute myeloid leukemia mitochondria hydrolyze ATP to support oxidative metabolism and resist chemotherapy. SCIENCE ADVANCES 2025; 11:eadu5511. [PMID: 40203117 PMCID: PMC11980858 DOI: 10.1126/sciadv.adu5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
OxPhos inhibitors have struggled to show a clinical benefit because of their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to acute myeloid leukemia (AML) mitochondria. Unlike healthy cells that couple respiration to ATP synthesis, AML mitochondria support inner-membrane polarization by consuming ATP. Matrix ATP consumption allows cells to survive bioenergetic stress. Thus, we hypothesized AML cells may resist chemotherapy-induced cell death by reversing the ATP synthase reaction. In support, BCL-2 inhibition with venetoclax abolished OxPhos flux without affecting mitochondrial polarization. In surviving AML cells, sustained mitochondrial polarization depended on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to down-regulations in the endogenous F1-ATPase inhibitor ATP5IF1. Knockdown of ATP5IF1 conferred venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. These data identify matrix ATP consumption as a cancer cell-intrinsic bioenergetic vulnerability actionable in the context of BCL-2 targeted chemotherapy.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Adenosine Triphosphate/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Drug Resistance, Neoplasm
- Oxidative Phosphorylation/drug effects
- Cell Line, Tumor
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Mitochondrial Proton-Translocating ATPases/metabolism
- Antineoplastic Agents/pharmacology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Energy Metabolism/drug effects
Collapse
Affiliation(s)
- James T. Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - McLane M. Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Raphael T. Aruleba
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brett R. Chrest
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Polina Krassovskaia
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas D. Green
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Emely A. Pacheco
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Cameron A. Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Debajit Bhowmick
- Brody School of Medicine at East Carolina University, Flow Cytometry Core, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Md Salman Shakil
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ, USA
| | - Matthew J. McBride
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Joseph M. McClung
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kelsey H. Fisher-Wellman
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
de Oliveira Santos T, Teixeira do Amaral Junior A, Batista Pinto V, Barboza Bispo R, Campostrini E, Glowacka K, Rohem Simão B, de Paula Bernardo W, Nicácio Viana F, Silveira V, Apolinário de Souza Filho G. Morphophysiological and proteomic profiling unveiling mechanisms underlying nitrogen use efficiency in popcorn (Zea mays var. everta). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109581. [PMID: 40007371 DOI: 10.1016/j.plaphy.2025.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
In this study we hypothesize that the contrasting nitrogen use efficiency (NUE) between popcorn (Zea mays var. everta) inbred lines P2 (high NUE) and L80 (low NUE) is driven by distinct morphophysiological responses and proteomic profiles found in leaves and roots. To elucidate the mechanisms involved, plants were cultivated in a greenhouse under high (100% N) and low (10% N) nitrogen conditions, in a randomized complete block design with two factorial treatment arrangements and seven blocks. Morphological and physiological traits such as photochemical and non-photochemical quenching, quantum yield of photosystem II, and potential photosynthesis were evaluated. Compared to L80, under low N, P2 exhibited 25.9% greater leaf area, 22.4% taller plants, 21.7% thicker stems and 113% higher shoot dry mass, as well as higher values of photochemical and non-photochemical quenching and quantum yield of photosystem II that drove to a maximum photosynthesis 16.5% higher than L80. Comparative proteomic analysis of the leaves identified 215 differentially accumulated proteins (DAPs) in P2 and 168 DAPs in L80, while in roots, 127 DAPs were observed in P2 and 172 in L80. Notably, in leaves, the response to oxidative stress, energy metabolism, and photosynthesis represented the main differences between P2 and L80. In roots, the nitrate transport, ammonium assimilation, and amino acid metabolism appear to have contributed to the improved NUE in P2. Consequently, this study provides valuable insights into the molecular mechanisms underlying NUE and opens avenues for molecular breeding aimed at selecting superior genotypes for the development of a more sustainable agriculture.
Collapse
Affiliation(s)
- Talles de Oliveira Santos
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Antônio Teixeira do Amaral Junior
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosimeire Barboza Bispo
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Eliemar Campostrini
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Bruna Rohem Simão
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Wallace de Paula Bernardo
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Flávia Nicácio Viana
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Biotechnology Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | |
Collapse
|
7
|
Knott SJ, Tucholski T, Josyer H, Inman D, Friedl A, Zhu Y, Ge Y, Ponik SM. Deciphering Proteoform Landscape of Mammary Carcinoma by Top-Down Proteomics. J Proteome Res 2025; 24:1425-1438. [PMID: 39936522 PMCID: PMC12006981 DOI: 10.1021/acs.jproteome.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Defining the proteoform landscape of breast cancer can provide unique insights into the signaling pathways driving disease progression. While bottom-up proteomics has been utilized to profile breast cancer, it lacks the ability to capture intact proteoforms that may underpin the disease. Top-down proteomics is ideally suited to characterize intact proteoforms; however, most top-down proteomics studies have been limited to low molecular weight (MW) proteins (<50 kDa). Herein, we employed a two-dimensional (2D) liquid chromatography combining size exclusion chromatography (SEC) with reverse phase chromatography (RPC) followed by high-resolution mass spectrometry (MS) to expand the coverage for high MW proteoforms. Using this 2D-SEC-RPC-MS approach, we observed a 5-fold increase in the detection of high MW proteoforms (>50 kDa) compared to the conventional 1D-RPC-MS. SEC separation significantly enhanced the detection of high MW proteoforms (>104 kDa), including intermediate filament proteins, vimentin and keratins. Based on accurate mass measurements and MS/MS data, we identified 775 proteoforms from both TFA and HEPES extracts and detected PTMs, such as acetylation, glutathionylation, and myristoylation. Pathway analysis uncovered many proteoforms involved in processes dysregulated in cancer progression. Overall, our findings illustrate the power of top-down proteomics in defining the proteoform landscape of breast carcinoma.
Collapse
Affiliation(s)
- Samantha J. Knott
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave., Madison, Wisconsin 53705, USA
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| |
Collapse
|
8
|
Zhang J, Duan J, Li W, Wang X, Ren S, Ye L, Liu F, Tian X, Xie Y, Huang Y, Sun Y, Song N, Li T, Cai X, Liu Z, Zhou H, Huang C, Li Y, Zhu S, Guo F. An antidepressant mechanism underlying the allosteric inhibition of GluN2D-incorporated NMDA receptors at GABAergic interneurons. SCIENCE ADVANCES 2025; 11:eadq0444. [PMID: 40043126 PMCID: PMC11881904 DOI: 10.1126/sciadv.adq0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
N-methyl-d-aspartate receptors (NMDARs), key excitatory ion channels, have gained attention as anti-depression targets. NMDARs consist of two GluN1 and two GluN2 subunits (2A-2D), which determine their pharmacological properties. Few compounds selectively targeting GluN2 subunits with antidepressant effects have been identified. Here, we present YY-23, a compound that selectively inhibits GluN2C- or GluN2D-containing NMDARs. Cryo-EM analysis revealed that YY-23 binds to the transmembrane domain of the GluN2D subunit. YY-23 primarily affects GluN2D-containing NMDARs on GABAergic interneurons in the prefrontal cortex, suppressing GABAergic neurotransmission and enhancing excitatory transmission. Behavioral assays demonstrate YY-23's rapid antidepressant effects in both stress-naïve and stress-exposed models, which are lost in mice with global or selective knockout of the grin2d gene in parvalbumin-positive interneurons. These findings highlight GluN2D-containing NMDARs on GABAergic interneurons as potential depression treatment targets.
Collapse
Affiliation(s)
- Jilin Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jinjin Duan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Shimin Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Luyu Ye
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoting Tian
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Xie
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianyu Li
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Cai
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiqiang Liu
- Gynecology Hospital of Fudan University, No. 128, Shenyang Rd, Yangpu District, Shanghai 200082, China
| | - Hu Zhou
- Gynecology Hospital of Fudan University, No. 128, Shenyang Rd, Yangpu District, Shanghai 200082, China
| | - Chenggang Huang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Gynecology Hospital of Fudan University, No. 128, Shenyang Rd, Yangpu District, Shanghai 200082, China
| |
Collapse
|
9
|
Chu F, Jenson SC, Barente AS, Heller NC, Merkley ED, Jarman KH. MARLOWE: An Untargeted Proteomics, Statistical Approach to Taxonomic Classification for Forensics. J Proteome Res 2025; 24:995-1007. [PMID: 39898467 DOI: 10.1021/acs.jproteome.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
General proteomics research for fundamental science typically addresses laboratory- or patient-derived samples of known origin and composition. However, in a few research areas, such as environmental proteomics, clinical identification of infectious organisms, archeology, art/cultural history, and forensics, attributing the origin of a protein-containing sample to the organisms that produced it is a central focus. A small number of groups have approached this problem and developed software tools for taxonomic characterization and/or identification using bottom-up proteomics. Most such tools identify peptides via database search, and many rely on organism-specific peptides as markers. Our group recently introduced MARLOWE, a software tool for taxonomic characterization of unknown samples based on de novo peptide identification and signal-erosion-resistant strong peptides, which are shared peptides distributed in a taxonomy-dependent manner. In the current work, we further characterize the utility of MARLOWE using publicly available proteomics data from forensically-relevant samples. MARLOWE characterizes samples based on their protein profile, and returns ranked organism lists of potential contributors and taxonomic scores based on shared strong peptides between organisms. Overall, the correct characterization rate ranges between 44 and 100%, depending on the sample type and data acquisition parameters (with lower numbers associated with lower-quality data sets). MARLOWE demonstrates successful characterization of true contributors and close relatives, and provides sufficient specificity to distinguish certain microbial species. MARLOWE demonstrates its ability to provide insight into potential taxonomic sources for a wide range of sample types without prior assumptions about sample contents. This approach can find utility in forensic science and also broadly in bioanalytical applications that utilize proteomics approaches for taxonomic characterization.
Collapse
Affiliation(s)
- Fanny Chu
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah C Jenson
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Anthony S Barente
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Natalie C Heller
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D Merkley
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristin H Jarman
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
10
|
Lust B, Matthews JL, Oakley CA, Lewis RE, Mendis H, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiont Identity on the Proteomic and Metabolomic Responses of the Model Cnidarian Aiptasia to Thermal Stress. Environ Microbiol 2025; 27:e70073. [PMID: 40056008 PMCID: PMC11889536 DOI: 10.1111/1462-2920.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
We examined the effects of symbiont identity and heat stress on the host metabolome and proteome in the cnidarian-dinoflagellate symbiosis. Exaiptasia diaphana ('Aiptasia') was inoculated with its homologous (i.e., native) symbiont Breviolum minutum or a heterologous (i.e., non-native) symbiont (Symbiodinium microadriaticum; Durusdinium trenchii) and thermally stressed. Integrated metabolome and proteome analyses characterised host thermal responses between symbioses, with clear evidence of enhanced nutritional deprivation and cellular stress in hosts harbouring heterologous symbionts following temperature stress. Host metabolomes were partially distinct at the control temperature; however, thermal stress caused metabolomes of anemones containing the two heterologous symbionts to become more alike and more distinct from those containing B. minutum. While these patterns could be partly explained by innate symbiont-specific differences, they may also reflect differences in symbiont density, as under control conditions D. trenchii attained 60% and S. microadriaticum 15% of the density attained by B. minutum, and at elevated temperature only D. trenchii-colonised anemones bleached (60% loss). Our findings add to a growing literature that highlights the physiological limits of partner switching as a means of adaptation to global warming. However, we also provide tentative evidence for improved metabolic functioning with a heterologous symbiont (D. trenchii) after sustained symbiosis.
Collapse
Affiliation(s)
- Bobby Lust
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Jennifer L. Matthews
- Climate Change ClusterUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Clinton A. Oakley
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Robert E. Lewis
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Himasha Mendis
- Metabolomics Australia, School of BotanyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lifeng Peng
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Arthur R. Grossman
- Department of Biosphere Science and EngineeringThe Carnegie Institution for Science, Stanford UniversityStanfordCaliforniaUSA
| | - Virginia M. Weis
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Simon K. Davy
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
11
|
Bia R, Mitchell G, Javan H, Nickel I, Pierce J, Selzman CH, Franklin S. Proteomic Characterization of Cardioprotective Human Acellular Amniotic Fluid. ACS OMEGA 2025; 10:6918-6926. [PMID: 40028051 PMCID: PMC11865990 DOI: 10.1021/acsomega.4c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/05/2025]
Abstract
Amniotic fluid-derived products are a promising resource for cell therapy and tissue engineering due to their anti-inflammatory, angiogenic, and antifibrotic properties. Human amniotic fluid (hAF) has been used in medical applications such as wound healing, skin disorders, and ophthalmic conditions. Recently, we demonstrated that hAF is an effective treatment for myocardial ischemia-reperfusion injury in adult rats. However, the protein composition of full-term acellular hAF has remained poorly characterized. To uncover the biologically active components underlying hAF's cardioprotective effects, we conducted a global proteomic analysis of hAF collected from six patients at full-term cesarean sections. Previously shown to improve cardiac function in ischemic rats, these samples were analyzed by using tandem mass spectrometry. We identified 657 proteins, including 148 unique to the deep learning platform Inferys. Bioinformatic analysis revealed that these proteins are involved in immunity, inflammatory responses, cell adhesion, and apoptotic signaling pathways. In addition, these proteins were highly modified, with methylation and deamidation being the most abundant modifications. This study represents the first mass-spectrometry-based characterization of full-term, acellular hAF, suggesting that hAF offers a wide array of immune-modulating proteins working together to provide robust cardioprotection and a valuable treatment for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ryan Bia
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Grace Mitchell
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Hadi Javan
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Ian Nickel
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Jan Pierce
- Cell
Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Craig H. Selzman
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Sarah Franklin
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Department
of Internal Medicine, Cardiology Division, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Liao S, Huang J, Lupala CS, Li X, Li X, Li N. Identification of the B7-H3 Interaction Partners Using a Proximity Labeling Strategy. Int J Mol Sci 2025; 26:1731. [PMID: 40004194 PMCID: PMC11855656 DOI: 10.3390/ijms26041731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
B7 homolog 3 (B7-H3) has emerged as a promising target for cancer therapy due to its high expression in various types of cancer cells. It not only regulates the activity of immune cells but also modulates the signal transduction and metabolism of cancer cells. However, the specific interaction partners of B7-H3 still remain unclear, limiting a comprehensive understanding of the precise role of B7-H3 in cancer progression. In this study, we report that B7-H3 can bind to resting Raji cells, stimulated THP-1 cells, and even PC3 prostate cancer cells through its IgV domain alone. Furthermore, to identify the potential interaction partners of B7-H3 on these cells, we adopted an ascorbate peroxidase 2 (APEX2)-based proximity labeling strategy, which revealed about 10 key potential interaction partners. Interestingly, our results suggest that CD45 could be a putative receptor for B7-H3 on Raji cells, while the epidermal growth factor receptor (EGFR) could closely interact with B7-H3 on PC3 cells. Based on further computational structure modeling studies, we show that B7-H3 can bind to the epidermal growth factor (EGF) binding pocket of EGFR-surprisingly, with a stronger affinity than EGF itself. Overall, our study provides an effective approach to identifying B7-H3 interaction partners in both immune and cancer cell lines.
Collapse
Affiliation(s)
- Shujie Liao
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cecylia S. Lupala
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xuefei Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| | - Nan Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| |
Collapse
|
13
|
Funk AL, Katerji M, Afifi M, Nyswaner K, Woodroofe CC, Edwards ZC, Lindberg E, Bergman KL, Gough NR, Rubin MR, Karpińska K, Trotter EW, Dash S, Ries AL, James A, Robinson CM, Difilippantonio S, Karim BO, Chang TC, Chen L, Xu X, Doroshow JH, Ahel I, Marusiak AA, Swenson RE, Cappell SD, Brognard J. Targeting c-MYC and gain-of-function p53 through inhibition or degradation of the kinase LZK suppresses the growth of HNSCC tumors. Sci Signal 2025; 18:eado2857. [PMID: 39933019 PMCID: PMC11912006 DOI: 10.1126/scisignal.ado2857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025]
Abstract
The worldwide annual frequency and lethality of head and neck squamous cell carcinoma (HNSCC) is not improving, and thus, new therapeutic approaches are needed. Approximately 70% of HNSCC cases have either amplification or overexpression of MAP3K13, which encodes the kinase LZK. Here, we found that LZK is a therapeutic target in HNSCC and that small-molecule inhibition of its catalytic function decreased the viability of HNSCC cells with amplified MAP3K13. Inhibition of LZK suppressed tumor growth in MAP3K13-amplified xenografts derived from HNSCC patients. LZK stabilized the transcription factor c-MYC through its kinase activity and gain-of-function mutants of p53 in a kinase-independent manner. We designed a proteolysis-targeting chimera (PROTAC) that induced LZK degradation, leading to decreased abundance of both c-MYC and gain-of-function p53, and reduced the viability of HNSCC cells. Our findings demonstrate that LZK-targeted therapeutics, particularly PROTACs, may be effective in treating HNSCCs with MAP3K13 amplification.
Collapse
Affiliation(s)
- Amy L. Funk
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Meghri Katerji
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zoe C. Edwards
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Knickole L. Bergman
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | | | - Maxine R. Rubin
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Eleanor W. Trotter
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sweta Dash
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Amy L. Ries
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Amy James
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xin Xu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford UK, OX1 3RE
| | - Anna A. Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
14
|
Fong-Zazueta R, Krueger J, Alba DM, Aymerich X, Beck RMD, Cappellini E, Carrillo-Martin G, Cirilli O, Clark N, Cornejo OE, Farh KKH, Ferrández-Peral L, Juan D, Kelley JL, Kuderna LFK, Little J, Orkin JD, Paterson RS, Pawar H, Marques-Bonet T, Lizano E. Phylogenetic Signal in Primate Tooth Enamel Proteins and its Relevance for Paleoproteomics. Genome Biol Evol 2025; 17:evaf007. [PMID: 39834226 PMCID: PMC11878541 DOI: 10.1093/gbe/evaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1 to 2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.
Collapse
Affiliation(s)
- Ricardo Fong-Zazueta
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Johanna Krueger
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| | - Xènia Aymerich
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Enrico Cappellini
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Carrillo-Martin
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Omar Cirilli
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Nathan Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Luis Ferrández-Peral
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David Juan
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Jordan Little
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Joseph D Orkin
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Département d’anthropologie, Université de Montréal, Montréal, QC, Canada
| | - Ryan S Paterson
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Harvinder Pawar
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Esther Lizano
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| |
Collapse
|
15
|
Polasky DA, Lu L, Yu F, Li K, Shortreed MR, Smith LM, Nesvizhskii AI. Quantitative proteome-wide O-glycoproteomics analysis with FragPipe. Anal Bioanal Chem 2025; 417:921-930. [PMID: 38877149 PMCID: PMC11648966 DOI: 10.1007/s00216-024-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Lei Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmaceutical Chemistry, University of San Francisco, San Francisco, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Sanz-Martinez P, Berkane R, Stolz A. Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction. Autophagy 2025; 21:480-486. [PMID: 39178915 PMCID: PMC11760280 DOI: 10.1080/15548627.2024.2395725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.Abbreviation: ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.
Collapse
Affiliation(s)
- Pablo Sanz-Martinez
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Rayene Berkane
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Davidson SC, Cagnacci F, Newman P, Dettki H, Urbano F, Desmet P, Bajona L, Bryant E, Carneiro APB, Dias MP, Fujioka E, Gambin D, Hoenner X, Hunter C, Kato A, Kot CY, Kranstauber B, Lam CH, Lepage D, Naik H, Pye JD, Sequeira AMM, Tsontos VM, van Loon E, Vo D, Rutz C. Establishing bio-logging data collections as dynamic archives of animal life on Earth. Nat Ecol Evol 2025; 9:204-213. [PMID: 39753915 DOI: 10.1038/s41559-024-02585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 01/23/2025]
Abstract
Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption. Second, we need to develop integrated data collections on standardized data platforms that support data preservation through public archiving and strategies that ensure long-term access. We outline pathways to reach these goals, highlighting the need for resources to govern community data standards and guide data mobilization efforts. We propose the launch of a community-led coordinating body and provide recommendations for how stakeholders-including government data centres, museums and those who fund, permit and publish bio-logging work-can support these efforts.
Collapse
Affiliation(s)
- Sarah C Davidson
- Department Animal Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Italy.
- National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Peggy Newman
- Atlas of Living Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Holger Dettki
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Wireless Remote Animal Monitoring, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Peter Desmet
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Lenore Bajona
- Ocean Tracking Network, Dalhousie University, Halifax, Nova Scotia, Canada
- Medical Research Development Office, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Edmund Bryant
- Wildlife Computers, Redmond, WA, USA
- Wildtrack Telemetry Systems Ltd, Skipton, UK
| | | | - Maria P Dias
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Ei Fujioka
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Xavier Hoenner
- Australian Ocean Data Network, Integrated Marine Observing System, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, CNRS - La Rochelle Université, Villiers-en-Bois, France
| | - Connie Y Kot
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
- U.S. Integrated Ocean Observing System Program Office, National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, MD, USA
| | - Bart Kranstauber
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Chi Hin Lam
- Large Pelagics Research Center, Gloucester, MA, USA
- Big Fish Intelligence Company Limited, Hong Kong SAR, China
| | | | - Hemal Naik
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre of the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
| | - Jonathan D Pye
- Ocean Tracking Network, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ana M M Sequeira
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vardis M Tsontos
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Danny Vo
- Wildlife Computers, Redmond, WA, USA
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
18
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
19
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
21
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
22
|
Sharma V, Singh SB, Bandyopadhyay S, Sikka K, Kakkar A, Hariprasad G. Label-based comparative proteomics of oral mucosal tissue to understand progression of precancerous lesions to oral squamous cell carcinoma. Biochem Biophys Rep 2024; 40:101842. [PMID: 39483176 PMCID: PMC11525462 DOI: 10.1016/j.bbrep.2024.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Oral squamous cell carcinomas typically arise from precancerous lesions such as leukoplakia and erythroplakia. These lesions exhibit a range of histological changes from hyperplasia to dysplasia and carcinoma in situ, during their transformation to malignancy. The molecular mechanisms driving this multistage transition remain incompletely understood. To bridge this knowledge gap, our current study utilizes label based comparative proteomics to compare protein expression profiles across different histopathological grades of leukoplakia, erythroplakia, and oral squamous cell carcinoma samples, aiming to elucidate the molecular changes underlying lesion evolution. Methodology An 8-plex iTRAQ proteomics of 4 biological replicates from 8 clinical phenotypes of leukoplakia and erythroplakia, with hyperplasia, mild dysplasia, moderate dysplasia; along with phenotypes of well differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma was carried out using the Orbitrap Fusion Lumos mass spectrometer. Raw files were processed with Maxquant, and statistical analysis across groups was conducted using MetaboAnalyst. Statistical tools such as ANOVA, PLS-DA VIP scoring, and correlation analysis were employed to identify differentially expressed proteins that had a linear expression variation across phenotypes of hyperplasia to cancer. Validation was done using Bioinformatic tools such as ClueGO + Cluepedia plugin in Cytoscape to extract functional annotations from gene ontology and pathway databases. Results and discussion A total of 2685 protein groups and 12,397 unique peptides were identified, and 61 proteins consistently exhibited valid reporter ion corrected intensities across all samples. Of these, 6 proteins showed linear varying expression across the analysed sample phenotypes. Collagen type VI alpha 2 chain (COL6A2), Fibrinogen β chain (FGB), and Vimentin (VIM) were found to have increased linear expression across pre-cancer phenotypes of leukoplakia to cancer, while Annexin A7 (ANXA7) was seen to be having a linear decreasing expression. Collagen type VI alpha 2 chain (COL6A2) and Annexin A2 (ANXA2) had increased linear expression across precancer phenotypes of erythroplakia to cancer. The mass spectrometry proteomics data have been deposited to the ProteomeXchanger Consortium via the PRIDE partner repository with the data set identifier PXD054190. These differentially expressed proteins mediate cancer progression mainly through extracellular exosome; collagen-containing extracellular matrix, hemostasis, platelet aggregation, and cell adhesion molecule binding. Conclusion Label-based proteomics is an ideal platform to study oral cancer progression. The differentially expressed proteins provide insights into the molecular mechanisms underlying the progression of oral premalignant lesions to malignant phenotypes. The study has translational value for early detection, risk stratification, and potential therapeutic targeting of oral premalignant lesions and in its prevention to malignant forms.
Collapse
Affiliation(s)
- Vipra Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sabyasachi Bandyopadhyay
- Proteomics Sub-facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
23
|
Funk AL, Katerji M, Afifi M, Nyswaner K, Woodroofe CC, Edwards ZC, Lindberg E, Bergman KL, Gough NR, Rubin MR, Karpińska K, Trotter EW, Dash S, Ries AL, James A, Robinson CM, Difilippantonio S, Karim BO, Chang TC, Chen L, Xu X, Doroshow JH, Ahel I, Marusiak AA, Swenson RE, Cappell SD, Brognard J. Targeting GOF p53 and c-MYC through LZK Inhibition or Degradation Suppresses Head and Neck Tumor Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623840. [PMID: 39605563 PMCID: PMC11601640 DOI: 10.1101/2024.11.19.623840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The worldwide frequency of head and neck squamous cell carcinoma (HNSCC) is approximately 800,000 new cases, with 430,000 deaths annually. We determined that LZK (encoded by MAP3K13) is a therapeutic target in HNSCC and showed that inhibition with small molecule inhibitors decreases the viability of HNSCC cells with amplified MAP3K13. A drug-resistant mutant of LZK blocks decreases in cell viability due to LZK inhibition, indicating on-target activity by two separate small molecules. Inhibition of LZK catalytic activity suppressed tumor growth in HNSCC PDX models with amplified MAP3K13. We found that the kinase activity of LZK stabilized c-MYC and that LZK stabilized gain-of-function (GOF) p53 through a kinase-independent mechanism. Therefore, we designed proteolysis-targeting chimeras (PROTACs) and demonstrate that our lead PROTAC promotes LZK degradation and suppresses expression of GOF p53 and c-MYC leading to impaired viability of HNSCC cell lines. This research provides a strong basis for development of therapeutics targeting LZK in HNSCCs with amplification of the gene.
Collapse
Affiliation(s)
- Amy L. Funk
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Meghri Katerji
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zoe C. Edwards
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Knickole L. Bergman
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | | | - Maxine R. Rubin
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Eleanor W. Trotter
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sweta Dash
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Amy L. Ries
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Amy James
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xin Xu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford UK, OX1 3RE
| | - Anna A. Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
24
|
Hagen JT, Montgomery MM, Aruleba RT, Chrest BR, Green TD, Kassai M, Zeczycki TN, Schmidt CA, Bhowmick D, Tan SF, Feith DJ, Chalfant CE, Loughran TP, Liles D, Minden MD, Schimmer AD, Cabot MC, Mclung JM, Fisher-Wellman KH. Acute myeloid leukemia mitochondria hydrolyze ATP to resist chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589110. [PMID: 38659944 PMCID: PMC11042215 DOI: 10.1101/2024.04.12.589110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F1-ATPase inhibitor ATP5IF1. In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.
Collapse
Affiliation(s)
- James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Mclane M Montgomery
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Raphael T Aruleba
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Brett R Chrest
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Thomas D Green
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biology, East Carolina University, Greenville, NC
| | - Debajit Bhowmick
- Flow Cytometry Core Facility, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David J Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Charles E Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
- Department of Cell Biology, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Thomas P Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Joseph M Mclung
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kelsey H Fisher-Wellman
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
25
|
Al Shboul S, Singh A, Kobetic R, Goodlett DR, Brennan PM, Hupp T, Dapic I. Mass Spectrometry Advances in Analysis of Glioblastoma. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39529217 DOI: 10.1002/mas.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Some cancers such as glioblastoma (GBM), show minimal response to medical interventions, often only capable of mitigating tumor growth or alleviating symptoms. High metabolic activity in the tumor microenvironment marked by immune responses and hypoxia, is a crucial factor driving tumor progression. The many developments in mass spectrometry (MS) over the last decades have provided a pivotal tool for studying proteins, along with their posttranslational modifications. It is known that the proteomic landscape of GBM comprises a wide range of proteins involved in cell proliferation, survival, migration, and immune evasion. Combination of MS imaging and microscopy has potential to reveal the spatial and molecular characteristics of pathological tissue sections. Moreover, integration of MS in the surgical process in form of techniques such as DESI-MS or rapid evaporative ionization MS has been shown as an effective tool for rapid measurement of metabolite profiles, providing detailed information within seconds. In immunotherapy-related research, MS plays an indispensable role in detection and targeting of cancer antigens which serve as a base for antigen-specific therapies. In this review, we aim to provide detailed information on molecular profile in GBM and to discuss recent MS advances and their clinical benefits for targeting this aggressive disease.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
26
|
Xiao C, Mo F, Lu Y, Xiao Q, Yao C, Li T, Qi J, Liu X, Chen JY, Zhang L, Guo T, Hu B, An NA, Li CY. Reply to: Identification of old coding regions disproves the hominoid de novo status of genes. Nat Ecol Evol 2024; 8:1831-1834. [PMID: 39187608 DOI: 10.1038/s41559-024-02515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfei Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Xiao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chao Yao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
27
|
Miller KL, Liu X, McSwain MG, Jauregui EJ, Langlais PR, Craig ZR. Quantitative label-free proteomic analysis of mouse ovarian antral follicles following oral exposure to a human-relevant mixture of three phthalates. Toxicol Sci 2024; 201:226-239. [PMID: 38995844 PMCID: PMC11424887 DOI: 10.1093/toxsci/kfae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and benzyl butyl phthalate (BBP) are used in personal and medical care products. In the ovary, antral follicles are essential for steroidogenesis and ovulation. DBP, BBP, and DEHP are known to inhibit mouse antral follicle growth and ovulation in vitro, and associate with decreased antral follicle counts in women. Given that the in vivo effects of a three-phthalate mixture on antral follicles are unknown, we evaluated the effects of a human-relevant mixture of DBP, BBP, and DEHP on ovarian follicles through proteome profiling analysis. Adult CD-1 female mice were fed corn oil (vehicle), or two dose levels of a phthalate mixture based on estimated exposures in general (32 µg/kg/d; PHT 32) and occupationally exposed (500 µg/kg/d; PHT 500) populations for 10 d. Antral follicles (>250 µm) were isolated and subjected to proteome profiling via label-free tandem mass spectrometry. A total of 5,417 antral follicle proteins were detected, of which 194 were differentially abundant between vehicle and PHT 32, and 136 between vehicle and PHT 500. Bioinformatic analysis revealed significantly different responses between the two phthalate doses. Protein abundance differences in the PHT 32 exposure mapped to cytoplasm, mitochondria, and lipid metabolism; whereas those in the PHT 500 exposure mapped to cytoplasm, nucleus, and phosphorylation. When both doses altered proteins mapped to common processes, the associated predicted transcription factors were different. These findings provide novel mechanistic insight into phthalate-associated, ovary-driven reproductive outcomes in women.
Collapse
Affiliation(s)
- Kara L Miller
- Department of Pharmacology & Toxicology, The University of Arizona, Tucson, AZ 85721, United States
| | - Xiaosong Liu
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Maile G McSwain
- Environmental Health Transformative Research Undergraduate Experience, The University of Arizona, Tucson, AZ 85721, United States
| | - Estela J Jauregui
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Paul R Langlais
- Department of Medicine, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Zelieann R Craig
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
28
|
Molitor A, Lederle A, Radosavljevic M, Sapuru V, Zavorka Thomas ME, Yang J, Shirin M, Collin-Bund V, Jerabkova-Roda K, Miao Z, Bernard A, Rolli V, Grenot P, Castro CN, Rosenzwajg M, Lewis EG, Person R, Esperón-Moldes US, Kaare M, Nokelainen PT, Batzir NA, Hoffer GZ, Paul N, Stemmelen T, Naegely L, Hanauer A, Bibi-Triki S, Grün S, Jung S, Busnelli I, Tripolszki K, Al-Ali R, Ordonez N, Bauer P, Song E, Zajo K, Partida-Sanchez S, Robledo-Avila F, Kumanovics A, Louzoun Y, Hirschler A, Pichot A, Toker O, Mejía CAM, Parvaneh N, Knapp E, Hersh JH, Kenney H, Delmonte OM, Notarangelo LD, Goetz JG, Kahwash SB, Carapito C, Bajwa RPS, Thomas C, Ehl S, Isidor B, Carapito R, Abraham RS, Hite RK, Marcus N, Bertoli-Avella A, Bahram S. A pleiotropic recurrent dominant ITPR3 variant causes a complex multisystemic disease. SCIENCE ADVANCES 2024; 10:eado5545. [PMID: 39270020 PMCID: PMC11397499 DOI: 10.1126/sciadv.ado5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (ITPR1), 2 (ITPR2), and 3 (ITPR3) encode the IP3 receptor (IP3R), a key player in intracellular calcium release. In four unrelated patients, we report that an identical ITPR3 de novo variant-NM_002224.3:c.7570C>T, p.Arg2524Cys-causes, through a dominant-negative effect, a complex multisystemic disorder with immunodeficiency. This leads to defective calcium homeostasis, mitochondrial malfunction, CD4+ lymphopenia, a quasi-absence of naïve CD4+ and CD8+ cells, an increase in memory cells, and a distinct TCR repertoire. The calcium defect was recapitulated in Jurkat knock-in. Site-directed mutagenesis displayed the exquisite sensitivity of Arg2524 to any amino acid change. Despite the fact that all patients had severe immunodeficiency, they also displayed variable multisystemic involvements, including ectodermal dysplasia, Charcot-Marie-Tooth disease, short stature, and bone marrow failure. In conclusion, unlike previously reported ITPR1-3 deficiencies leading to narrow, mainly neurological phenotypes, a recurrent dominant ITPR3 variant leads to a multisystemic disease, defining a unique role for IP3R3 in the tetrameric IP3R complex.
Collapse
Affiliation(s)
- Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Alexandre Lederle
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Megan E. Zavorka Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jianying Yang
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mahsa Shirin
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Virginie Collin-Bund
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Katerina Jerabkova-Roda
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Zhichao Miao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Alice Bernard
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Grenot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Elyssa G. Lewis
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Milja Kaare
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Gal Zaks Hoffer
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Nicodème Paul
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lydie Naegely
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Antoine Hanauer
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sabrina Bibi-Triki
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sarah Grün
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sophie Jung
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Centre de Référence des maladies rares orales et dentaires (O-Rares), Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ignacio Busnelli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | | | | | | | - Eunkyung Song
- Division of Infectious Diseases and Host Defense, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kristin Zajo
- Institute of Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ori Toker
- Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine Hebrew university, Jerusalem, Israel
| | | | - Nima Parvaneh
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Esther Knapp
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph H. Hersh
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jacky G. Goetz
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Samir B. Kahwash
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Rajinder P. S. Bajwa
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Hôpital Enfant-Adolescent, CHU Nantes, Nantes, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nufar Marcus
- Allergy and Immunology Unit, Kipper Institute of Immunology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, USA
| | | | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Karpińska K, Mehlich D, Sabbasani VR, Łomiak M, Torres-Ayuso P, Wróbel K, Truong VNP, Serwa R, Swenson RE, Brognard J, Marusiak AA. Selective Degradation of MLK3 by a Novel CEP1347-VHL-02 PROTAC Compound Limits the Oncogenic Potential of TNBC. J Med Chem 2024; 67:15012-15028. [PMID: 39207123 PMCID: PMC11403673 DOI: 10.1021/acs.jmedchem.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Dawid Mehlich
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michał Łomiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Katarzyna Wróbel
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Vi Nguyen-Phuong Truong
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Remigiusz Serwa
- Proteomic Core Facility, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| |
Collapse
|
30
|
Vallat B, Webb BM, Westbrook JD, Goddard TD, Hanke CA, Graziadei A, Peisach E, Zalevsky A, Sagendorf J, Tangmunarunkit H, Voinea S, Sekharan M, Yu J, Bonvin AAMJJ, DiMaio F, Hummer G, Meiler J, Tajkhorshid E, Ferrin TE, Lawson CL, Leitner A, Rappsilber J, Seidel CAM, Jeffries CM, Burley SK, Hoch JC, Kurisu G, Morris K, Patwardhan A, Velankar S, Schwede T, Trewhella J, Kesselman C, Berman HM, Sali A. IHMCIF: An Extension of the PDBx/mmCIF Data Standard for Integrative Structure Determination Methods. J Mol Biol 2024; 436:168546. [PMID: 38508301 PMCID: PMC11377171 DOI: 10.1016/j.jmb.2024.168546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.
Collapse
Affiliation(s)
- Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Benjamin M Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; Human Technopole, 20157 Milan, Italy
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - Jared Sagendorf
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - Hongsuda Tangmunarunkit
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Serban Voinea
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jian Yu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexander A M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| | - Emad Tajkhorshid
- NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, University of Connecticut, Farmington, CT 06030-3305, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyle Morris
- Electron Microscopy Data Bank, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ardan Patwardhan
- Electron Microscopy Data Bank, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland; Computational Structural Biology & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Helen M Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles CA 90089, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| |
Collapse
|
31
|
Rondón-Ortiz AN, Zhang L, Ash PEA, Basu A, Puri S, van der Spek SJF, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. J Biol Chem 2024; 300:107621. [PMID: 39098523 PMCID: PMC11401034 DOI: 10.1016/j.jbc.2024.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates the degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA, and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and the relationship between the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N Rondón-Ortiz
- Department of Biology, Boston University, Boston, Massachusetts, USA; Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Peter E A Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA.
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA; Center for Neurophotonics, Boston University, Boston, Massachusetts, USA; Department of Neurology, Boston University, Boston, Massachusetts, USA; Department of Pharmacology, Physiology and Biophysics, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
32
|
Rodriguez JM, Abascal F, Cerdán-Vélez D, Gómez LM, Vázquez J, Tress ML. Evidence for widespread translation of 5' untranslated regions. Nucleic Acids Res 2024; 52:8112-8126. [PMID: 38953162 DOI: 10.1093/nar/gkae571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Ribosome profiling experiments support the translation of a range of novel human open reading frames. By contrast, most peptides from large-scale proteomics experiments derive from just one source, 5' untranslated regions. Across the human genome we find evidence for 192 translated upstream regions, most of which would produce protein isoforms with extended N-terminal ends. Almost all of these N-terminal extensions are from highly abundant genes, which suggests that the novel regions we detect are just the tip of the iceberg. These upstream regions have characteristics that are not typical of coding exons. Their GC-content is remarkably high, even higher than 5' regions in other genes, and a large majority have non-canonical start codons. Although some novel upstream regions have cross-species conservation - five have orthologues in invertebrates for example - the reading frames of two thirds are not conserved beyond simians. These non-conserved regions also have no evidence of purifying selection, which suggests that much of this translation is not functional. In addition, non-conserved upstream regions have significantly more peptides in cancer cell lines than would be expected, a strong indication that an aberrant or noisy translation initiation process may play an important role in translation from upstream regions.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA. UK
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Laura Martínez Gómez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
33
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Sanz-Martinez P, Tascher G, Cano-Franco S, Cabrerizo-Poveda P, Münch C, Homan EJ, Stolz A. GPCR Function in Autophagy Control: A Systematic Approach of Chemical Intervention. J Mol Biol 2024; 436:168643. [PMID: 38848865 DOI: 10.1016/j.jmb.2024.168643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Autophagy facilitates the degradation of cellular content via the lysosome and is involved in cellular homeostasis and stress response pathways. As such, malfunction of autophagy is linked to a variety of diseases ranging from organ-specific illnesses like cardiomyopathy to systemic illnesses such as cancer or metabolic syndromes. Given the variety of autophagic functions within a cell and tissue, regulation of autophagy is complex and contains numerous positive and negative feedback loops. While our knowledge of mechanisms for cargo selectivity has significantly improved over the last decade, our understanding of signaling routes activating individual autophagy pathways remains rather sparse. In this resource study, we report on a well-characterized chemical library containing 77 GPCR-targeting ligands that was used to systematically analyze LC3B-based autophagy as well as ER-phagy flux upon compound treatment. Upon others, compounds TC-G 1004, BAY 60-6583, PSNCBAM-1, TC-G 1008, LPA2 Antagonist 1, ML-154, JTC-801 and ML-290 targeting adenosine receptor A2a (ADORA2A), adenosine receptor A2b (ADORA2B), cannabinoid receptor 1 (CNR1), G-protein coupled receptor 39 (GPR39), lysophosphatidic acid receptor 2 (LPAR2), neuropeptide S receptor 1 (NPSR1), opioid related nociceptin receptor 1 (OPRL1), and relaxin receptor 1 (RXFP1), respectively, were hit compounds for general autophagy flux. From these compounds, only JTC-801 markly increased ER-phagy flux. In addition, the global impact of these selected hit compounds were analyzed by TMT-based mass spectrometry and demonstrated the differential impact of targeting GPCRs on autophagy-associated proteins. This chemical screening exercise indicates to a significant cross-talk between GPCR signaling and regulation of autophagy pathways.
Collapse
Affiliation(s)
- Pablo Sanz-Martinez
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Paloma Cabrerizo-Poveda
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden.
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
36
|
Prasad SK, Singh VV, Acharjee A, Acharjee P. Elucidating hippocampal proteome dynamics in moderate hepatic encephalopathy rats: insights from high-resolution mass spectrometry. Exp Brain Res 2024; 242:1659-1679. [PMID: 38787444 DOI: 10.1007/s00221-024-06853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatic encephalopathy (HE) is a debilitating neurological disorder associated with liver failure and characterized by impaired brain function. Decade-long studies have led to significant advances in our understanding of HE; however, effective therapeutic management of HE is lacking, and HE continues to be a significant cause of morbidity and mortality in patients, underscoring the need for continued research into its pathophysiology and treatment. Accordingly, the present study provides a comprehensive overview aimed at elucidating the molecular underpinnings of HE and identifying potential therapeutic targets. A moderate-grade HE model was induced in rats using thioacetamide, which simulates the liver damage observed in patients, and its impact on cognitive function, neuronal arborization, and cellular morphology was also evaluated. We employed label-free LC-MS/MS proteomics to quantitatively profile hippocampal proteins to explore the molecular mechanism of HE pathogenesis; 2175 proteins were identified, 47 of which exhibited significant alterations in moderate-grade HE. The expression of several significantly upregulated proteins, such as FAK1, CD9 and Tspan2, was further validated at the transcript and protein levels, confirming the mass spectrometry results. These proteins have not been previously reported in HE. Utilizing Metascape, a tool for gene annotation and analysis, we further studied the biological pathways integral to brain function, including gliogenesis, the role of erythrocytes in maintaining blood-brain barrier integrity, the modulation of chemical synaptic transmission, astrocyte differentiation, the regulation of organ growth, the response to cAMP, myelination, and synaptic function, which were disrupted during HE. The STRING database further elucidated the protein‒protein interaction patterns among the differentially expressed proteins. This study provides novel insights into the molecular mechanisms driving HE and paves the way for identifying novel therapeutic targets for improved disease management.
Collapse
Affiliation(s)
- Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, 211002, India.
| | - Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
37
|
Ortiz ANR, Zhang L, Ash PE, Basu A, Puri S, van der Spek SJ, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571324. [PMID: 38168279 PMCID: PMC10760047 DOI: 10.1101/2023.12.12.571324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and of the relationship of the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N. Rondón Ortiz
- Department of Biology, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Peter E.A. Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
- Department of Pharmacology, Physiology and Biophysics
| |
Collapse
|
38
|
Çubuk C, Lau R, Cutillas P, Rajeeve V, John CR, Surace AEA, Hands R, Fossati-Jimack L, Lewis MJ, Pitzalis C. Phosphoproteomic profiling of early rheumatoid arthritis synovium reveals active signalling pathways and differentiates inflammatory pathotypes. Arthritis Res Ther 2024; 26:120. [PMID: 38867295 PMCID: PMC11167927 DOI: 10.1186/s13075-024-03351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Kinases are intracellular signalling mediators and key to sustaining the inflammatory process in rheumatoid arthritis (RA). Oral inhibitors of Janus Kinase family (JAKs) are widely used in RA, while inhibitors of other kinase families e.g. phosphoinositide 3-kinase (PI3K) are under development. Most current biomarker platforms quantify mRNA/protein levels, but give no direct information on whether proteins are active/inactive. Phosphoproteome analysis has the potential to measure specific enzyme activation status at tissue level. METHODS We validated the feasibility of phosphoproteome and total proteome analysis on 8 pre-treatment synovial biopsies from treatment-naive RA patients using label-free mass spectrometry, to identify active cell signalling pathways in synovial tissue which might explain failure to respond to RA therapeutics. RESULTS Differential expression analysis and functional enrichment revealed clear separation of phosphoproteome and proteome profiles between lymphoid and myeloid RA pathotypes. Abundance of specific phosphosites was associated with the degree of inflammatory state. The lymphoid pathotype was enriched with lymphoproliferative signalling phosphosites, including Mammalian Target Of Rapamycin (MTOR) signalling, whereas the myeloid pathotype was associated with Mitogen-Activated Protein Kinase (MAPK) and CDK mediated signalling. This analysis also highlighted novel kinases not previously linked to RA, such as Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC) in the myeloid pathotype. Several phosphosites correlated with clinical features, such as Disease-Activity-Score (DAS)-28, suggesting that phosphosite analysis has potential for identifying novel biomarkers at tissue-level of disease severity and prognosis. CONCLUSIONS Specific phosphoproteome/proteome signatures delineate RA pathotypes and may have clinical utility for stratifying patients for personalised medicine in RA.
Collapse
Affiliation(s)
- Cankut Çubuk
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rachel Lau
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher R John
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Anna E A Surace
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
- IRCCS Istituto Clinico Humanitas, Via Manzoni 56, Rozzao, Milan, Italy.
| |
Collapse
|
39
|
Anderson CL, Brown KA, North RJ, Walters JK, Kaska ST, Wolff MR, Kamp TJ, Ge Y, Eckhardt LL. Global Proteomic Analysis Reveals Alterations in Differentially Expressed Proteins between Cardiopathic Lamin A/C Mutations. J Proteome Res 2024; 23:1970-1982. [PMID: 38718259 PMCID: PMC11218822 DOI: 10.1021/acs.jproteome.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.
Collapse
Affiliation(s)
- Corey L. Anderson
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Ryan J. North
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Janay K. Walters
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sara T. Kaska
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mathew R. Wolff
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J. Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
40
|
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, Szibor M. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart. PNAS NEXUS 2024; 3:pgae210. [PMID: 38881840 PMCID: PMC11179111 DOI: 10.1093/pnasnexus/pgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Collapse
Affiliation(s)
- Juliana Heidler
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Jan-Niklas Tomczak
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany
| | - Dirk Henze
- Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
41
|
Hermosilla-Trespaderne M, Hu-Yang MX, Dannoura A, Frey AM, George AL, Trost M, Marín-Rubio JL. Proteomic Analysis Reveals Trilaciclib-Induced Senescence. Mol Cell Proteomics 2024; 23:100778. [PMID: 38679389 PMCID: PMC11141265 DOI: 10.1016/j.mcpro.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.
Collapse
Affiliation(s)
- Marina Hermosilla-Trespaderne
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Mark Xinchen Hu-Yang
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Abeer Dannoura
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Frey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy L George
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| | - José Luis Marín-Rubio
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
42
|
Zang T, Fear MW, Parker TJ, Holland AJA, Martin L, Langley D, Kimble R, Wood FM, Cuttle L. Inflammatory proteins and neutrophil extracellular traps increase in burn blister fluid 24h after burn. Burns 2024; 50:1180-1191. [PMID: 38490838 DOI: 10.1016/j.burns.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Burn wound blister fluid is a valuable matrix for understanding the biological pathways associated with burn injury. In this study, 152 blister fluid samples collected from paediatric burn wounds at three different hospitals were analysed using mass spectrometry proteomic techniques. The protein abundance profile at different days after burn indicated more proteins were associated with cellular damage/repair in the first 24 h, whereas after this point more proteins were associated with antimicrobial defence. The inflammatory proteins persisted at a high level in the blister fluid for more than 7 days. This may indicate that removal of burn blisters prior to two days after burn is optimal to prevent excessive or prolonged inflammation in the wound environment. Additionally, many proteins associated with the neutrophil extracellular trap (NET) pathway were increased after burn, further implicating NETs in the post-burn inflammatory response. NET inhibitors may therefore be a potential treatment to reduce post-burn inflammation and coagulation pathology and enhance burn wound healing outcomes.
Collapse
Affiliation(s)
- Tuo Zang
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Andrew J A Holland
- The Children's Hospital at Westmead Burns Unit, Kids Research Institute, Department of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Lisa Martin
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna Langley
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Roy Kimble
- Children's Health Queensland, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, WA, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
44
|
Joosten SEP, Gregoricchio S, Stelloo S, Yapıcı E, Huang CCF, Yavuz K, Donaldson Collier M, Morova T, Altintaş UB, Kim Y, Canisius S, Moelans CB, van Diest PJ, Korkmaz G, Lack NA, Vermeulen M, Linn SC, Zwart W. Estrogen receptor 1 chromatin profiling in human breast tumors reveals high inter-patient heterogeneity with enrichment of risk SNPs and enhancer activity at most-conserved regions. Genome Res 2024; 34:539-555. [PMID: 38719469 PMCID: PMC11146591 DOI: 10.1101/gr.278680.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/11/2024] [Indexed: 06/05/2024]
Abstract
Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.
Collapse
Affiliation(s)
- Stacey E P Joosten
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Sebastian Gregoricchio
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Suzan Stelloo
- Oncode Institute, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6500HB Nijmegen, The Netherlands
| | - Elif Yapıcı
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Kerim Yavuz
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Maria Donaldson Collier
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Tunç Morova
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Umut Berkay Altintaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Yongsoo Kim
- Department of Pathology, Amsterdam University Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
| | - Gozde Korkmaz
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Nathan A Lack
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Michiel Vermeulen
- Oncode Institute, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6500HB Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
45
|
Gnimpieba E, Diing DM, Ailts J, Cucak A, Gakh O, Isaya G, Vitiello S, Wang S, Pierce P, Cooper A, Roux K, Rogers LK, Vitiello PF. Mapping Novel Frataxin Mitochondrial Networks Through Protein- Protein Interactions. RESEARCH SQUARE 2024:rs.3.rs-4259413. [PMID: 38746130 PMCID: PMC11092868 DOI: 10.21203/rs.3.rs-4259413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Friedreich's Ataxia (FRDA) is a neuromuscular degenerative disorder caused by trinucleotide expansions in the first intron of the frataxin (FXN) gene, resulting in insufficient levels of functional FNX protein. Deficits in FXN involve mitochondrial disruptions including iron-sulfur cluster synthesis and impaired energetics. These studies were to identify unique protein-protein interactions with FXN to better understand its function and design therapeutics. Two complementary approaches were employed, BioID and Co-IP, to identify protein interactions with FXN at the direct binding, indirect binding, and non-proximal levels. Forty-one novel protein interactions were identified by BioID and IP techniques. The FXN protein landscape was further analyzed incorporating both interaction type and functional pathways using a maximum path of 6 proteins with a potential direct interaction between FXN and NFS1. Probing the intersection between FXN-protein landscape and biological pathways associated with FRDA, we identified 41 proteins of interest. Peroxiredoxin 3 (Prdx3) was chosen for further analysis because of its role in mitochondrial oxidative injury. Our data has demonstrated the strengths of employing complementary methods to identify a unique interactome for FXN. Our data provides new insights into FXN function and regulation, a potential direct interaction between FXN and NFS1, and pathway interactions between FXN and Prdx3.
Collapse
Affiliation(s)
| | | | - Jared Ailts
- University of South Dakota Sanford School of Medicine
| | | | | | | | | | | | - Paul Pierce
- University of Oklahoma Health Sciences Center
| | - Alec Cooper
- University of Oklahoma Health Sciences Center
| | | | | | | |
Collapse
|
46
|
Ham D, Inoue A, Xu J, Du Y, Chung KY. Molecular mechanism of muscarinic acetylcholine receptor M3 interaction with Gq. Commun Biol 2024; 7:362. [PMID: 38521872 PMCID: PMC10960872 DOI: 10.1038/s42003-024-06056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Jun Xu
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Shenzhen Futian Biomedical Innovation R&D Center, the Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
47
|
Strauss MT, Bludau I, Zeng WF, Voytik E, Ammar C, Schessner JP, Ilango R, Gill M, Meier F, Willems S, Mann M. AlphaPept: a modern and open framework for MS-based proteomics. Nat Commun 2024; 15:2168. [PMID: 38461149 PMCID: PMC10924963 DOI: 10.1038/s41467-024-46485-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
In common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry. To leverage these advances, we develop AlphaPept, a Python-based open-source framework for efficient processing of large high-resolution MS data sets. Numba for just-in-time compilation on CPU and GPU achieves hundred-fold speed improvements. AlphaPept uses the Python scientific stack of highly optimized packages, reducing the code base to domain-specific tasks while accessing the latest advances. We provide an easy on-ramp for community contributions through the concept of literate programming, implemented in Jupyter Notebooks. Large datasets can rapidly be processed as shown by the analysis of hundreds of proteomes in minutes per file, many-fold faster than acquisition. AlphaPept can be used to build automated processing pipelines with web-serving functionality and compatibility with downstream analysis tools. It provides easy access via one-click installation, a modular Python library for advanced users, and via an open GitHub repository for developers.
Collapse
Affiliation(s)
- Maximilian T Strauss
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wen-Feng Zeng
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eugenia Voytik
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Constantin Ammar
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julia P Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
de Vries T, Novakovic M, Ni Y, Smok I, Inghelram C, Bikaki M, Sarnowski CP, Han Y, Emmanouilidis L, Padroni G, Leitner A, Allain FHT. Specific protein-RNA interactions are mostly preserved in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadm7435. [PMID: 38446881 PMCID: PMC10917357 DOI: 10.1126/sciadv.adm7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.
Collapse
Affiliation(s)
- Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yinan Ni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Clara Inghelram
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chris P. Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yaning Han
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Giacomo Padroni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
49
|
Schmitt KFM, do Amaral Junior AT, Kamphorst SH, Pinto VB, de Lima VJ, de Oliveira UA, Viana FN, Leite JT, Gomes LP, Silva JGDS, Lamêgo DL, Bernado WDP, de Souza GAR, de Almeida FA, de Souza Filho GA, Silveira V, Campostrini E. Decoding the effects of drought stress on popcorn (Zea mays var. everta) flowering combining proteomics and physiological analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108444. [PMID: 38382344 DOI: 10.1016/j.plaphy.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Under conditions of soil water limitation and adequate irrigation, we conducted an investigation into the growth dynamics, gas exchange performance, and proteomic profiles of two inbred popcorn lines-L71, characterized as drought-tolerant, and L61, identified as drought-sensitive. Our goal was to uncover the mechanisms associated with tolerance to soil water limitation during the flowering. The plants were cultivated until grain filling in a substrate composed of perlite and peat within 150cm long lysimeter, subjected to two water conditions (WC): i) irrigated (WW) at lysimeter capacity (LC - 100%), and ii) water-stressed (WS). Under WS conditions, the plants gradually reached 45% of LC and were maintained at this level for 10 days. Irrespective of the WC, L71 exhibited the highest values of dry biomass in both shoot and root systems, signifying its status as the most robust genotype. The imposed water limitation led to early senescence, chlorophyll degradation, and increased anthocyanin levels, with a more pronounced impact observed in L61. Traits related to gas exchange manifested differences between the lines only under WS conditions. A total of 1838 proteins were identified, with 169 differentially accumulated proteins (DAPs) in the tolerant line and 386 DAPs in the sensitive line. Notably, differences in energy metabolism, photosynthesis, oxidative stress response, and protein synthesis pathways were identified as the key distinctions between L71 and L61. Consequently, our findings offer valuable insights into the alterations in proteomic profiles associated with the adaptation to soil water limitation in popcorn.
Collapse
Affiliation(s)
- Katia Fabiane Medeiros Schmitt
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Antônio Teixeira do Amaral Junior
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Samuel Henrique Kamphorst
- Instituto Latino-Americano de Ciências da Vida e da Natureza. Universidade Federal da Integração Latino-Americana.
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB). Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Valter Jário de Lima
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Uéliton Alves de Oliveira
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Flávia Nicácio Viana
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Jhean Torres Leite
- Pesquisador em Ciências agronômicas GDM Seeds, Porto Nacional, TO, 77500-000, Brazil.
| | - Leticia Peixoto Gomes
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - José Gabriel de Souza Silva
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Danielle Leal Lamêgo
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Wallace de Paula Bernado
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Guilherme Augusto Rodrigues de Souza
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Felipe Astolpho de Almeida
- Laboratório de Química e Função de Proteínas e Peptídes, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Vanildo Silveira
- Laboratório de Biotecnologia, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Eliemar Campostrini
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| |
Collapse
|
50
|
Liu X, Xiao C, Xu X, Zhang J, Mo F, Chen JY, Delihas N, Zhang L, An NA, Li CY. Origin of functional de novo genes in humans from "hopeful monsters". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1845. [PMID: 38605485 DOI: 10.1002/wrna.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
For a long time, it was believed that new genes arise only from modifications of preexisting genes, but the discovery of de novo protein-coding genes that originated from noncoding DNA regions demonstrates the existence of a "motherless" origination process for new genes. However, the features, distributions, expression profiles, and origin modes of these genes in humans seem to support the notion that their origin is not a purely "motherless" process; rather, these genes arise preferentially from genomic regions encoding preexisting precursors with gene-like features. In such a case, the gene loci are typically not brand new. In this short review, we will summarize the definition and features of human de novo genes and clarify their process of origination from ancestral non-coding genomic regions. In addition, we define the favored precursors, or "hopeful monsters," for the origin of de novo genes and present a discussion of the functional significance of these young genes in brain development and tumorigenesis in humans. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|