1
|
Culina S, Commère PH, Turc E, Jouy A, Pellegrini S, Roux T, Hasan M, Monot M, Michel F. MicroRNA signatures of CD4 + T cell subsets in healthy and multiple sclerosis subjects determined by small RNA-sequencing. J Neuroimmunol 2025; 401:578531. [PMID: 40010156 DOI: 10.1016/j.jneuroim.2025.578531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/28/2025]
Abstract
Diverse CD4+ T cell subsets with specialized functions operate at different phases of the immune response. Among these are phenotypically and functionally characterized naïve, central memory (CM), effector memory (EM), and regulatory (Treg) cells. Using small RNA-sequencing, we have profiled miRNAs in these cell subsets from healthy subjects and untreated patients with relapsing-remitting multiple sclerosis (RRMS). MiRNA genomic clustering and abundance were also investigated. From the 60 most differentially expressed miRNAs, broad and highly selective core signatures were determined for naïve and memory cells at homeostasis, while miR-146a-5p was strongly upregulated in Treg cells. In line with other studies, a 5-miRNA core was identified for naïve cells (miR-125b-5p, miR-99a-5p, miR-365a-3p, miR-365b-3p, miR-193b-3p). In memory cells, a number of identical miRNAs were more expressed in EM than CM cells, supporting the progressive T cell differentiation model. This was particularly the case for an 8-miRNA core (members from miR-23a∼27a∼24-2, miR-23b∼27b∼24-1, miR-221∼222 clusters, miR-22-3p, miR-181c-5p) and for the large ChrXq27.3 miR-506∼514 cluster. Interestingly, most of these miRNAs were reported to negatively regulate cell proliferation and survival. Finally, we found that the miRNA core signatures of naïve and memory CD4+ T cells were conserved in RRMS patients. Only few miRNAs were quantitatively modified and, among these, miR-1248 was validated to be downregulated in EM cells. Overall, this study expands and provides novel insights into miRNA profiling of CD4+ T cell subsets that may be useful for further investigations.
Collapse
Affiliation(s)
- Slobodan Culina
- Single Cell Biomarkers UTechS, Paris Cité University, Institut Pasteur, Paris, France
| | | | - Elodie Turc
- Biomics Technological Platform, Paris Cité University, Institut Pasteur, Paris, France
| | - Axel Jouy
- Paris Saclay University, Saclay, France; T cell activation and function DIO3 team, Department of Immunology, Paris Cité University, Institut Pasteur, Paris, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Inserm U1224, Paris Cité University, Institut Pasteur, Paris, France
| | - Thomas Roux
- CRC-SEP, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Milena Hasan
- Single Cell Biomarkers UTechS, Paris Cité University, Institut Pasteur, Paris, France
| | - Marc Monot
- Biomics Technological Platform, Paris Cité University, Institut Pasteur, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Inserm U1224, Paris Cité University, Institut Pasteur, Paris, France; T cell activation and function DIO3 team, Department of Immunology, Paris Cité University, Institut Pasteur, Paris, France.
| |
Collapse
|
2
|
Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard JF, Voloudakis G, Girdhar K, Roussos P, Rigoutsos I. Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630254. [PMID: 39763727 PMCID: PMC11703252 DOI: 10.1101/2024.12.24.630254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in critical processes, including synaptic signaling, neurogenesis, memory, behavior, and cognition.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iliza Nazeraj
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Wagner V, Meese E, Keller A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet 2024; 40:784-796. [PMID: 38862304 DOI: 10.1016/j.tig.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate gene expression via complementary base-pair binding to messenger RNAs (mRNAs). The partially evolutionarily conserved isomiR sequence variations are differentially expressed among tissues, populations, and genders, and between healthy and diseased states. Aiming towards the clinical use of isomiRs as diagnostic biomarkers and for therapeutic purposes, several challenges need to be addressed, including (i) clarification of isomiR definition, (ii) improved annotation in databases with new standardization (such as the mirGFF3 format), and (iii) improved methods of isomiR detection, functional verification, and in silico analysis. In this review we discuss the respective challenges, and highlight the opportunities for clinical use of isomiRs, especially in the light of increasing amounts of next-generation sequencing (NGS) data.
Collapse
Affiliation(s)
- Viktoria Wagner
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
4
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
5
|
Makarenkov N, Yoel U, Haim Y, Pincu Y, Bhandarkar NS, Shalev A, Shelef I, Liberty IF, Ben-Arie G, Yardeni D, Rudich A, Etzion O, Veksler-Lublinsky I. Circulating isomiRs May Be Superior Biomarkers Compared to Their Corresponding miRNAs: A Pilot Biomarker Study of Using isomiR-Ome to Detect Coronary Calcium-Based Cardiovascular Risk in Patients with NAFLD. Int J Mol Sci 2024; 25:890. [PMID: 38255963 PMCID: PMC10815227 DOI: 10.3390/ijms25020890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS). Liver fat content was measured with magnetic-resonance spectrometry (MRS); CV risk was determined, beyond using traditional biomarkers, by a CT-based measurement of coronary artery calcium (CAC) score and the calculation of a CAC score-based CV-risk percentile (CAC-CV%). This pilot study included n = 13 patients, age > 45 years, with an MRS-measured liver fat content of ≥5% (wt/wt), and free of overt CVD. NGS identified 1103 miRNAs and 404,022 different isomiRs, of which 280 (25%) and 1418 (0.35%), respectively, passed an abundance threshold. Eighteen (sixteen/two) circulating miRNAs correlated positively/negatively, respectively, with CAC-CV%, nine of which also significantly discriminated between high/low CV risk through ROC-AUC analysis. IsomiR-ome analyses uncovered 67 isomiRs highly correlated (R ≥ 0.55) with CAC-CV%. Specific isomiRs of miRNAs 101-3p, 144-3p, 421, and 484 exhibited stronger associations with CAC-CV% compared to their corresponding miRNA. Additionally, while miRNAs 140-3p, 223-3p, 30e-5p, and 342-3p did not correlate with CAC-CV%, specific isomiRs with altered seed sequences exhibited a strong correlation with coronary atherosclerosis burden. Their predicted isomiRs-specific targets were uniquely enriched (compared to their canonical miRNA sequence) in CV Disease (CVD)-related pathways. Two of the isomiRs exhibited discriminative ROC-AUC, and another two showed a correlation with reverse cholesterol transport from cholesterol-loaded macrophages to ApoB-depleted plasma. In summary, we propose a pipeline for exploring circulating isomiR-ome as an approach to uncover novel and strong CVD biomarkers.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- The Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Nikhil S. Bhandarkar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Aryeh Shalev
- Cardiology Department, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Idit F. Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel;
| | - Gal Ben-Arie
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
6
|
Wong LL, Fadzil AB, Chen Q, Rademaker MT, Charles CJ, Richards AM, Wang P. Interrogating the Role of miR-125b and Its 3'isomiRs in Protection against Hypoxia. Int J Mol Sci 2023; 24:16015. [PMID: 37958999 PMCID: PMC10650460 DOI: 10.3390/ijms242116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Azizah Binti Fadzil
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Qiying Chen
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Christopher J. Charles
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
7
|
Nersisyan S, Montenont E, Loher P, Middleton EA, Campbell R, Bray P, Rigoutsos I. Characterization of all small RNAs in and comparisons across cultured megakaryocytes and platelets of healthy individuals and COVID-19 patients. J Thromb Haemost 2023; 21:3252-3267. [PMID: 37558133 DOI: 10.1016/j.jtha.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The small noncoding RNAs (sncRNAs) in megakaryocytes (MKs) and platelets are not well characterized. Neither is the impact of SARS-CoV-2 infection on the sncRNAs of platelets. OBJECTIVES To investigate the sorting of MK sncRNAs into platelets, and the differences in the platelet sncRNAomes of healthy donors (HDs) and COVID-19 patients. METHODS We comprehensively profiled sncRNAs from MKs cultured from cord blood-derived CD34+ cells, platelets from HDs, and platelets from patients with moderate and severe SARS-CoV-2 infection. We also comprehensively profiled Argonaute (AGO)-bound sncRNAs from the cultured MKs. RESULTS We characterized the sncRNAs in MKs and platelets and can account for ∼95% of all sequenced reads. We found that MKs primarily comprise microRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), rRNA-derived fragments (rRFs), and Y RNA-derived fragments (yRFs) in comparable abundances. The platelets of HDs showed a skewed distribution by comparison: 56.7% of all sncRNAs are yRFs, 34.4% are isomiRs, and <2.0% are tRFs and rRFs. Most isomiRs in MKs and platelets are either noncanonical, nontemplated, or both. When comparing MKs and platelets from HDs, we found numerous isomiRs, tRFs, rRFs, and yRFs showing opposite enrichments or depletions, including molecules from the same parental miRNA arm, tRNA, rRNA, or Y RNA. The sncRNAome of platelets from patients with COVID-19 is skewed compared to that of HDs with only 19.8% of all sncRNAs now being yRFs, isomiRs increasing to 63.6%, and tRFs and rRFs more than tripling their presence to 6.1%. CONCLUSION The sncRNAomes of MKs and platelets are very rich and more complex than it has been believed. The evidence suggests complex mechanisms that sort MK sncRNAs into platelets. SARS-CoV-2 infection acutely alters the contents of platelets by changing the relative proportions of their sncRNAs.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Middleton
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert Campbell
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Paul Bray
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Ferre A, Santiago L, Sánchez-Herrero JF, López-Rodrigo O, Sánchez-Curbelo J, Sumoy L, Bassas L, Larriba S. 3'IsomiR Species Composition Affects Reliable Quantification of miRNA/isomiR Variants by Poly(A) RT-qPCR: Impact on Small RNA-Seq Profiling Validation. Int J Mol Sci 2023; 24:15436. [PMID: 37895116 PMCID: PMC10607168 DOI: 10.3390/ijms242015436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Small RNA-sequencing (small RNA-seq) has revealed the presence of small RNA-naturally occurring variants such as microRNA (miRNA) isoforms or isomiRs. Due to their small size and the sequence similarity among miRNA isoforms, their validation by RT-qPCR is challenging. We previously identified two miR-31-5p isomiRs-the canonical and a 3'isomiR variant (3' G addition)-which were differentially expressed between individuals with azoospermia of different origin. Here, we sought to determine the discriminatory capacity between these two closely-related miRNA isoforms of three alternative poly(A) based-RT-qPCR strategies in both synthetic and real biological context. We found that these poly(A) RT-qPCR strategies exhibit a significant cross-reactivity between these miR-31-5p isomiRs which differ by a single nucleotide, compromising the reliable quantification of individual miRNA isoforms. Fortunately, in the biological context, given that the two miRNA variants show changes in the same direction, RT-qPCR results were consistent with the findings of small RNA-seq study. We suggest that miRNA selection for RT-qPCR validation should be performed with care, prioritizing those canonical miRNAs that, in small RNA-seq, show parallel/homogeneous expression behavior with their most prevalent isomiRs, to avoid confounding RT-qPCR-based results. This is suggested as the current best strategy for robust biomarker selection to develop clinically useful tests.
Collapse
Affiliation(s)
- Adriana Ferre
- Human Molecular Genetics Group—Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (A.F.); (L.S.)
| | - Lucía Santiago
- Human Molecular Genetics Group—Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (A.F.); (L.S.)
| | - José Francisco Sánchez-Herrero
- High Content Genomics and Bioinformatics (HCGB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (J.F.S.-H.); (L.S.)
| | - Olga López-Rodrigo
- Laboratory of Andrology and Sperm Bank, Andrology Service-Puigvert Foundation, 08025 Barcelona, Spain; (O.L.-R.); (J.S.-C.); (L.B.)
| | - Josvany Sánchez-Curbelo
- Laboratory of Andrology and Sperm Bank, Andrology Service-Puigvert Foundation, 08025 Barcelona, Spain; (O.L.-R.); (J.S.-C.); (L.B.)
| | - Lauro Sumoy
- High Content Genomics and Bioinformatics (HCGB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (J.F.S.-H.); (L.S.)
| | - Lluís Bassas
- Laboratory of Andrology and Sperm Bank, Andrology Service-Puigvert Foundation, 08025 Barcelona, Spain; (O.L.-R.); (J.S.-C.); (L.B.)
| | - Sara Larriba
- Human Molecular Genetics Group—Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (A.F.); (L.S.)
| |
Collapse
|
9
|
Velle A, Pesenti C, Grassi T, Beltrame L, Martini P, Jaconi M, Agostinis F, Calura E, Katsaros D, Borella F, Fruscio R, D'Incalci M, Marchini S, Romualdi C. A comprehensive investigation of histotype-specific microRNA and their variants in Stage I epithelial ovarian cancers. Int J Cancer 2023; 152:1989-2001. [PMID: 36541726 DOI: 10.1002/ijc.34408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
isomiRs, the sequence-variants of microRNA, are known to be tissue and cell type specific but their physiological role is largely unknown. In our study, we explored for the first time the expression of isomiRs across different Stage I epithelial ovarian cancer (EOC) histological subtypes, in order to shed new light on their biological role in tumor growth and progression. In a multicentric retrospective cohort of tumor biopsies (n = 215) we sequenced small RNAs finding 971 expressed miRNAs, 64% of which are isomiRs. Among them, 42 isomiRs showed a clear histotype specific pattern, confirming our previously identified miRNA markers (miR192/194 and miR30a-3p/5p for mucinous and clear cell subtypes, respectively) and uncovering new biomarkers for all the five subtypes. Using integrative models, we found that the 38% of these miRNA expression alterations is the result of copy number variations while the 17% of differential transcriptional activities. Our work represents the first attempt to characterize isomiRs expression in Stage I EOC within and across subtypes and to contextualize their alterations in the framework of the large genomic heterogeneity of this tumor.
Collapse
Affiliation(s)
- Angelo Velle
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Pesenti
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Milan, Italy.,Medical Genetics Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Tommaso Grassi
- Department of Obstetrics and Gynaecology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Luca Beltrame
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Jaconi
- Department of Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | | | - Enrica Calura
- Department of Biology, University of Padova, Padova, Italy
| | - Dionyssios Katsaros
- Azienda Ospedaliero-Universitaria Città della Salute, Presidio S Anna and Department of Surgical Science, Gynecology, University of Torino, Torino, Italy
| | - Fulvio Borella
- Gynaecology and Obstetrics 1, Department of Surgical Sciences, St Anna Hospital and University of Torino, Turin, Italy
| | - Robert Fruscio
- Department of Obstetrics and Gynaecology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Maurizio D'Incalci
- Cancer Pharmacology, IRCCS Humanitas Research Hospital, Italy.,Department of Biomedical Sciences, Humanitas University, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | | |
Collapse
|
10
|
Smith MD, Leemaqz SY, Jankovic-Karasoulos T, McCullough D, McAninch D, Arthurs AL, Breen J, Roberts CT, Pillman KA. DraculR: A Web-Based Application for In Silico Haemolysis Detection in High-Throughput microRNA Sequencing Data. Genes (Basel) 2023; 14:448. [PMID: 36833375 PMCID: PMC9957079 DOI: 10.3390/genes14020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The search for novel microRNA (miRNA) biomarkers in plasma is hampered by haemolysis, the lysis and subsequent release of red blood cell contents, including miRNAs, into surrounding fluid. The biomarker potential of miRNAs comes in part from their multicompartment origin and the long-lived nature of miRNA transcripts in plasma, giving researchers a functional window for tissues that are otherwise difficult or disadvantageous to sample. The inclusion of red-blood-cell-derived miRNA transcripts in downstream analysis introduces a source of error that is difficult to identify posthoc and may lead to spurious results. Where access to a physical specimen is not possible, our tool will provide an in silico approach to haemolysis prediction. We present DraculR, an interactive Shiny/R application that enables a user to upload miRNA expression data from a short-read sequencing of human plasma as a raw read counts table and interactively calculate a metric that indicates the degree of haemolysis contamination. The code, DraculR web tool and its tutorial are freely available as detailed herein.
Collapse
Affiliation(s)
- Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shalem Y. Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia
- College of Health & Medicine, Australian National University, Canberra, ACT 2600, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Katherine A. Pillman
- Centre for Cancer Biology, an Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Abu-Halima M, Keller A, Becker LS, Fischer U, Engel A, Ludwig N, Kern F, Rounge TB, Langseth H, Meese E, Keller V. Dynamic and static circulating cancer microRNA biomarkers - a validation study. RNA Biol 2023; 20:1-9. [PMID: 36511578 PMCID: PMC9754110 DOI: 10.1080/15476286.2022.2154470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
For cancers and other pathologies, early diagnosis remains the most promising path to survival. Profiling of longitudinal cohorts facilitates insights into trajectories of biomarkers. We measured microRNA expression in 240 serum samples from patients with colon, lung, and breast cancer and from cancer-free controls. Each patient provided at least two serum samples, one prior to diagnosis and one following diagnosis. The median time interval between the samples was 11.6 years. Using computational models, we evaluated the circulating profiles of 21 microRNAs. The analysis yielded two sets of biomarkers, static ones that show an absolute difference between certain cancer types and controls and dynamic ones where the level over time provided higher diagnostic information content. In the first group, miR-99a-5p stands out for all three cancer types. In the second group, miR-155-5p allows to predict lung cancers and colon cancers. Classification in samples from cancer and non-cancer patients using gradient boosted trees reached an average accuracy of 79.9%. The results suggest that individual change over time or an absolute value at one time point may predict a disease with high specificity and sensitivity.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg, Germany
- These authors contributed equally to the study
| | - Andreas Keller
- These authors contributed equally to the study
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saar, Saarbrücken, Germany
| | | | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Annika Engel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Fabian Kern
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saar, Saarbrücken, Germany
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Norway
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Norway
- Department of Internal Medicine, Saarland University, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Verena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Internal Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
12
|
Yan A, Xiong J, Zhu J, Li X, Xu S, Feng X, Ke X, Wang Z, Chen Y, Wang HW, Zhang MQ, Kee K. DAZL regulates proliferation of human primordial germ cells by direct binding to precursor miRNAs and enhances DICER processing activity. Nucleic Acids Res 2022; 50:11255-11272. [DOI: 10.1093/nar/gkac856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Understanding the molecular and cellular mechanisms of human primordial germ cells (hPGCs) is essential in studying infertility and germ cell tumorigenesis. Many RNA-binding proteins (RBPs) and non-coding RNAs are specifically expressed and functional during hPGC developments. However, the roles and regulatory mechanisms of these RBPs and non-coding RNAs, such as microRNAs (miRNAs), in hPGCs remain elusive. In this study, we reported a new regulatory function of DAZL, a germ cell-specific RBP, in miRNA biogenesis and cell proliferation. First, DAZL co-localized with miRNA let-7a in human PGCs and up-regulated the levels of >100 mature miRNAs, including eight out of nine let-7 family, miR21, miR22, miR125, miR10 and miR199. Purified DAZL directly bound to the loops of precursor miRNAs with sequence specificity of GUU. The binding of DAZL to the precursor miRNA increased the maturation of miRNA by enhancing the cleavage activity of DICER. Furthermore, cell proliferation assay and cell cycle analysis confirmed that DAZL inhibited the proliferation of in vitro PGCs by promoting the maturation of these miRNAs. Evidently, the mature miRNAs up-regulated by DAZL silenced cell proliferation regulators including TRIM71. Moreover, DAZL inhibited germline tumor cell proliferation and teratoma formation. These results demonstrate that DAZL regulates hPGC proliferation by enhancing miRNA processing.
Collapse
Affiliation(s)
- An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Jie Xiong
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jiadong Zhu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University , Beijing 100044 , China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Shuting Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xin Ke
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11, Richardson , TX 75080-3021, USA
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| |
Collapse
|
13
|
Nersisyan S, Gorbonos A, Makhonin A, Zhiyanov A, Shkurnikov M, Tonevitsky A. isomiRTar: a comprehensive portal of pan-cancer 5'-isomiR targeting. PeerJ 2022; 10:e14205. [PMID: 36275459 PMCID: PMC9583861 DOI: 10.7717/peerj.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Inaccurate cleavage of pri- and pre-miRNA hairpins by Drosha and Dicer results in the generation of miRNA isoforms known as isomiRs. isomiRs with 5'-end variations (5'-isomiRs) create a new dimension in miRNA research since they have different seed regions and distinct targetomes. We developed isomiRTar (https://isomirtar.hse.ru)-a comprehensive portal that allows one to analyze expression profiles and targeting activity of 5'-isomiRs in cancer. Using the Cancer Genome Atlas sequencing data, we compiled the list of 1022 5'-isomiRs expressed in 9282 tumor samples across 31 cancer types. Sequences of these isomiRs were used to predict target genes with miRDB and TargetScan. The putative interactions were then subjected to the co-expression analysis in each cancer type to identify isomiR-target pairs supported by significant negative correlations. Downstream analysis of the data deposited in isomiRTar revealed both cancer-specific and cancer-conserved 5'-isomiR expression landscapes. Pairs of isomiRs differing in one nucleotide shift from 5'-end had poorly overlapping targetomes with the median Jaccard index of 0.06. The analysis of colorectal cancer 5'-isomiR-mediated regulatory networks revealed promising candidate tumor suppressor isomiRs: hsa-miR-203a-3p-+1, hsa-miR-192-5p-+1 and hsa-miR-148a-3p-0. In summary, we believe that isomiRTar will help researchers find novel mechanisms of isomiR-mediated gene silencing in different types of cancer.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Anton Zhiyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
14
|
Yang A, Bofill-De Ros X, Stanton R, Shao TJ, Villanueva P, Gu S. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat Commun 2022; 13:5260. [PMID: 36071058 PMCID: PMC9452540 DOI: 10.1038/s41467-022-32969-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ryan Stanton
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
15
|
Xu J, Sang N, Zhao J, He W, Zhang N, Li X. Knockdown of circ_0067934 inhibits gastric cancer cell proliferation, migration and invasion via the miR‑1301‑3p/KIF23 axis. Mol Med Rep 2022; 25:202. [PMID: 35475447 PMCID: PMC9073844 DOI: 10.3892/mmr.2022.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, circular RNAs (circRNAs/circs) have attracted significant attention due to their potentially important functions in a variety of human cancer types. circ_0067934 is a newly identified circRNA, the role of which in gastric cancer (GC) has yet to be reported, to the best of our knowledge. In the present study, the expression levels of circ_0067934, microRNA (miR)‑1301‑3p and kinesin family member 23 (KIF23) in GC cells were detected via reverse transcription‑quantitative PCR. Cell proliferation was measured using Cell Counting Kit‑8 assays and EdU staining. Wound healing and Transwell assays were performed to assess cell migration and invasion, respectively. Western blotting was performed to measure the protein expression levels of Ki67, proliferating cell nuclear antigen, MMP2, MMP9 and KIF23. The starBase database and luciferase reporter assays were used to predict and verify the binding between circ_0067934 and miR‑1301‑3p, as well as KIF23, in GC cells. The results demonstrated that circ_0067934 expression was upregulated in GC cells, and circ_0067934 silencing significantly inhibited GC cell proliferation, migration and invasion. In addition, miR‑1301‑3p was regulated by circ_0067934, and miR‑1301‑3p overexpression suppressed GC cell migration, invasion and proliferation. miR‑1301‑3p was found to target KIF23, and KIF23 overexpression reversed the effects of circ_0067934 silencing and miR‑1301‑3p overexpression on cell proliferation, migration and invasion. In conclusion, circ_0067934 may regulate the proliferation, invasion and migration of GC cells via the miR‑1301‑3p/KIF23 signaling axis, which may represent a novel therapeutic target for GC metastasis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Sang
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Junning Zhao
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Wei He
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Nannan Zhang
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Xueliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Alsop E, Meechoovet B, Kitchen R, Sweeney T, Beach TG, Serrano GE, Hutchins E, Ghiran I, Reiman R, Syring M, Hsieh M, Courtright-Lim A, Valkov N, Whitsett TG, Rakela J, Pockros P, Rozowsky J, Gallego J, Huentelman MJ, Shah R, Nakaji P, Kalani MYS, Laurent L, Das S, Van Keuren-Jensen K. A Novel Tissue Atlas and Online Tool for the Interrogation of Small RNA Expression in Human Tissues and Biofluids. Front Cell Dev Biol 2022; 10:804164. [PMID: 35317387 PMCID: PMC8934391 DOI: 10.3389/fcell.2022.804164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.
Collapse
Affiliation(s)
- Eric Alsop
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Bessie Meechoovet
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thadryan Sweeney
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Rebecca Reiman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Syring
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Hsieh
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Amanda Courtright-Lim
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Timothy G. Whitsett
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | | | - Paul Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, United States
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Juan Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health, Phoenix, AZ, United States
| | - M. Yashar S. Kalani
- Department of Neurosurgery, St. John Medical Center, Tulsa, OK, United States
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, San Diego, CA, United States
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
17
|
A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation. Sci Rep 2022; 12:2834. [PMID: 35181712 PMCID: PMC8857176 DOI: 10.1038/s41598-022-06876-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called isomiRs, which may have alternative regulatory functions. Despite the recent development of several single cell small RNA sequencing protocols, these methods have not been leveraged to investigate isomiR expression and regulation to better understand their role on a single cell level. Here we integrate sequencing data from three independent studies and find substantial differences in isomiR composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also find evidence of altered regulatory functions of different classes of isomiRs, when compared to their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are expressed.
Collapse
|
18
|
Panzade G, Li L, Hebbar S, Veksler-Lublinsky I, Zinovyeva A. Global profiling and annotation of templated isomiRs dynamics across Caenorhabditis elegans development. RNA Biol 2022; 19:928-942. [PMID: 35848953 PMCID: PMC9298154 DOI: 10.1080/15476286.2022.2099646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through translational repression and mRNA destabilization. During canonical miRNA biogenesis, several miRNA isoforms, or isomiRs, are produced from a single precursor miRNA. Templated isomiRs are generated through Drosha or Dicer cleavage at alternate positions on either the primary or the precursor miRNAs, generating truncated or extended 5' and/or 3' miRNA ends. As changes to the mature miRNA sequence can alter miRNA gene target repertoire, we investigated the extent of templated isomiR prevalence, providing a profiling map for templated isomiRs across stages of C. elegans development. While most miRNA loci did not produce abundant templated isomiRs, a substantial number of miRNA loci produced isomiRs were just as, or more, abundant than their annotated canonical mature miRNAs. 3' end miRNA alterations were more frequent than the seed-altering 5' end extensions or truncations. However, we identified several miRNA loci that produced a considerable amount of isomiRs with 5' end alterations, predicted to target new, distinct sets of genes. Overall, the presented annotation of templated isomiR dynamics across C. elegans developmental stages provides a basis for further studies into miRNA biogenesis and the intriguing potential of functional miRNA diversification through isomiR production.
Collapse
Affiliation(s)
- Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Li Li
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-sheva, Israel
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
19
|
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11:8771-8796. [PMID: 34522211 PMCID: PMC8419061 DOI: 10.7150/thno.62642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.
Collapse
Affiliation(s)
- Peipei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Yue Zhou
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Arthur M. Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand
| |
Collapse
|
20
|
Zhang X, Ping P, Hutvagner G, Blumenstein M, Li J. Aberration-corrected ultrafine analysis of miRNA reads at single-base resolution: a k-mer lattice approach. Nucleic Acids Res 2021; 49:e106. [PMID: 34291293 PMCID: PMC8631080 DOI: 10.1093/nar/gkab610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Raw sequencing reads of miRNAs contain machine-made substitution errors, or even insertions and deletions (indels). Although the error rate can be low at 0.1%, precise rectification of these errors is critically important because isoform variation analysis at single-base resolution such as novel isomiR discovery, editing events understanding, differential expression analysis, or tissue-specific isoform identification is very sensitive to base positions and copy counts of the reads. Existing error correction methods do not work for miRNA sequencing data attributed to miRNAs’ length and per-read-coverage properties distinct from DNA or mRNA sequencing reads. We present a novel lattice structure combining kmers, (k – 1)mers and (k + 1)mers to address this problem. The method is particularly effective for the correction of indel errors. Extensive tests on datasets having known ground truth of errors demonstrate that the method is able to remove almost all of the errors, without introducing any new error, to improve the data quality from every-50-reads containing one error to every-1300-reads containing one error. Studies on experimental miRNA sequencing datasets show that the errors are often rectified at the 5′ ends and the seed regions of the reads, and that there are remarkable changes after the correction in miRNA isoform abundance, volume of singleton reads, overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA quantities.
Collapse
Affiliation(s)
- Xuan Zhang
- Data Science Institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Pengyao Ping
- Data Science Institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Michael Blumenstein
- Faculty of Engineering and IT, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Jinyan Li
- To whom correspondence should be addressed. Tel: +61 295149264; Fax: +61 295149264;
| |
Collapse
|
21
|
Morsiani C, Terlecki‐Zaniewicz L, Skalicky S, Bacalini MG, Collura S, Conte M, Sevini F, Garagnani P, Salvioli S, Hackl M, Grillari J, Franceschi C, Capri M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell 2021; 20:e13409. [PMID: 34160893 PMCID: PMC8282272 DOI: 10.1111/acel.13409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Blood circulating microRNAs (c-miRs) are potential biomarkers to trace aging and longevity trajectories to identify molecular targets for anti-aging therapies. Based on a cross-sectional study, a discovery phase was performed on 12 donors divided into four groups: young, old, healthy, and unhealthy centenarians. The identification of healthy and unhealthy phenotype was based on cognitive performance and capabilities to perform daily activities. Small RNA sequencing identified 79 differentially expressed c-miRs when comparing young, old, healthy centenarians, and unhealthy centenarians. Two miRs, that is, miR-19a-3p and miR-19b-3p, were found increased at old age but decreased at extreme age, as confirmed by RT-qPCR in 49 donors of validation phase. The significant decrease of those miR levels in healthy compared to unhealthy centenarians appears to be due to the presence of isomiRs, not detectable with RT-qPCR, but only with a high-resolution technique such as deep sequencing. Bioinformatically, three main common targets of miR-19a/b-3p were identified, that is, SMAD4, PTEN, and BCL2L11, converging into the FoxO signaling pathway, known to have a significant role in aging mechanisms. For the first time, this study shows the age-related increase of plasma miR-19a/b-3p in old subjects but a decrease in centenarians. This decrease is more pronounced in healthy centenarians and was confirmed by the modified pattern of isomiRs comparing healthy and unhealthy centenarians. Thus, our study paves the way for functional studies using c-miRs and isomiRs as additional parameter to track the onset of aging and age-related diseases using new potential biomarkers.
Collapse
Affiliation(s)
- Cristina Morsiani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Lucia Terlecki‐Zaniewicz
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
| | | | | | - Salvatore Collura
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Maria Conte
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | - Federica Sevini
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paolo Garagnani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Applied Biomedical Research Center (CRBA) S. Orsola‐Malpighi Polyclinic Bologna Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli‐Sforza" – Unit of Bologna Bologna Italy
- Department of Laboratory Medicine Clinical Chemistry Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Stefano Salvioli
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | | | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna Austria
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics Lobachevsky University Nizhny Novgorod Russia
| | - Miriam Capri
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| |
Collapse
|
22
|
Tomasello L, Distefano R, Nigita G, Croce CM. The MicroRNA Family Gets Wider: The IsomiRs Classification and Role. Front Cell Dev Biol 2021; 9:668648. [PMID: 34178993 PMCID: PMC8220208 DOI: 10.3389/fcell.2021.668648] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are the most characterized class of non-coding RNAs and are engaged in many cellular processes, including cell differentiation, development, and homeostasis. MicroRNA dysregulation was observed in several diseases, cancer included. Epitranscriptomics is a branch of epigenomics that embraces all RNA modifications occurring after DNA transcription and RNA synthesis and involving coding and non-coding RNAs. The development of new high-throughput technologies, especially deep RNA sequencing, has facilitated the discovery of miRNA isoforms (named isomiRs) resulting from RNA modifications mediated by enzymes, such as deaminases and exonucleases, and differing from the canonical ones in length, sequence, or both. In this review, we summarize the distinct classes of isomiRs, their regulation and biogenesis, and the active role of these newly discovered molecules in cancer and other diseases.
Collapse
Affiliation(s)
- Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | | | | | | |
Collapse
|
23
|
Zhang Q, Dou W, Song ZH, Jin TJ, Yuan GR, De Schutter K, Smagghe G, Wang JJ. Identification and profiling of Bactrocera dorsalis microRNAs and their potential roles in regulating the developmental transitions of egg hatching, molting, pupation and adult eclosion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103475. [PMID: 33059019 DOI: 10.1016/j.ibmb.2020.103475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs (18-25 nt) that are involved in many physiological processes including development, cancer, immunity, apoptosis and host-microbe interactions through post-transcriptional regulation of gene expression. In this study, we measured the profile of small RNAs over the developmental transitions of the oriental fruit fly Bactrocera dorsalis from egg hatching, molting, and pupation to adult eclosion. We identified 250 miRNAs, including 83 known and 167 novel miRNAs, and 47 isomiRNAs. In addition, we identified the miRNAs differentially expressed over the developmental transitions. Interestingly, the miR-309 cluster, the miR-2 cluster/family and the let-7 cluster were among these differentially expressed miRNAs, suggesting a role in the regulation of egg hatching, molting and pupation/adult eclosion, respectively. Moreover, a detailed analysis of the temporal expression patterns of 14 highly expressed miRNAs in the pupal stage revealed three types of expression profiles. Furthermore, injection of a miR-100 mimic in the 3rd instar larvae resulted in a significant decrease in pupation and adult eclosion rates, whereas injection of a miR-317 antagomir resulted in a significant decrease in the pupation rate and a decrease in the pupation time, indicating that miR-100 and miR-317 are involved in the process of pupation. Finally, injection of a miR-100/miR-285 mimic or antagomir in pupae resulted in a significant decrease in the eclosion rate and a significant increase in the prevalence of a partial eclosion phenotype, implying the involvement of miR-100 and miR-285 in the process of adult eclosion. This study identified critical miRNAs involved in the transitions of this important holometabolic model and pest insect B. dorsalis from egg hatching to adult eclosion, thus providing a useful resource for exploring the regulatory role of miRNAs during insect post-embryonic development.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Zhong-Hao Song
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Tong-Jun Jin
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Kristof De Schutter
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China.
| |
Collapse
|
24
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
25
|
Insufficiently complex unique-molecular identifiers (UMIs) distort small RNA sequencing. Sci Rep 2020; 10:14593. [PMID: 32884024 PMCID: PMC7471316 DOI: 10.1038/s41598-020-71323-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
The attachment of unique molecular identifiers (UMIs) to RNA molecules prior to PCR amplification and sequencing, makes it possible to amplify libraries to a level that is sufficient to identify rare molecules, whilst simultaneously eliminating PCR bias through the identification of duplicated reads. Accurate de-duplication is dependent upon a sufficiently complex pool of UMIs to allow unique labelling. In applications dealing with complex libraries, such as total RNA-seq, only a limited variety of UMIs are required as the variation in molecules to be sequenced is enormous. However, when sequencing a less complex library, such as small RNAs for which there is a more limited range of possible sequences, we find increased variation in UMIs are required, even beyond that provided in a commercial kit specifically designed for the preparation of small RNA libraries for sequencing. We show that a pool of UMIs randomly varying across eight nucleotides is not of sufficient depth to uniquely tag the microRNAs to be sequenced. This results in over de-duplication of reads and the marked under-estimation of expression of the more abundant microRNAs. Whilst still arguing for the utility of UMIs, this work demonstrates the importance of their considered design to avoid errors in the estimation of gene expression in libraries derived from select regions of the transcriptome or small genomes.
Collapse
|
26
|
Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Rotival M, Siddle KJ, Silvert M, Pothlichet J, Quach H, Quintana-Murci L. Population variation in miRNAs and isomiRs and their impact on human immunity to infection. Genome Biol 2020; 21:187. [PMID: 32731901 PMCID: PMC7391576 DOI: 10.1186/s13059-020-02098-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of the immune system, yet their variation and contribution to intra- and inter-population differences in immune responses is poorly characterized. RESULTS We generate 977 miRNA-sequencing profiles from primary monocytes from individuals of African and European ancestry following activation of three TLR pathways (TLR4, TLR1/2, and TLR7/8) or infection with influenza A virus. We find that immune activation leads to important modifications in the miRNA and isomiR repertoire, particularly in response to viral challenges. These changes are much weaker than those observed for protein-coding genes, suggesting stronger selective constraints on the miRNA response to stimulation. This is supported by the limited genetic control of miRNA expression variability (miR-QTLs) and the lower occurrence of gene-environment interactions, in stark contrast with eQTLs that are largely context-dependent. We also detect marked differences in miRNA expression between populations, which are mostly driven by non-genetic factors. On average, miR-QTLs explain approximately 60% of population differences in expression of their cognate miRNAs and, in some cases, evolve adaptively, as shown in Europeans for a miRNA-rich cluster on chromosome 14. Finally, integrating miRNA and mRNA data from the same individuals, we provide evidence that the canonical model of miRNA-driven transcript degradation has a minor impact on miRNA-mRNA correlations, which are, in our setting, mainly driven by co-transcription. CONCLUSION Together, our results shed new light onto the factors driving miRNA and isomiR diversity at the population level and constitute a useful resource for evaluating their role in host differences of immunity to infection.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Martin Silvert
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Sorbonne Universités, École Doctorale Complexité du Vivant, 75005 Paris, France
| | - Julien Pothlichet
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Present Address: DIACCURATE, Institut Pasteur, 75015 Paris, France
| | - Hélène Quach
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Present Address: UMR7206, Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Chair Human Genomics and Evolution, Collège de France, 75005 Paris, France
| |
Collapse
|
28
|
Avendaño-Vázquez SE, Flores-Jasso CF. Stumbling on elusive cargo: how isomiRs challenge microRNA detection and quantification, the case of extracellular vesicles. J Extracell Vesicles 2020; 9:1784617. [PMID: 32944171 PMCID: PMC7480573 DOI: 10.1080/20013078.2020.1784617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Eréndira Avendaño-Vázquez
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| | - C Fabián Flores-Jasso
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| |
Collapse
|
29
|
Koi Y, Tsutani Y, Nishiyama Y, Ueda D, Ibuki Y, Sasada S, Akita T, Masumoto N, Kadoya T, Yamamoto Y, Takahashi RU, Tanaka J, Okada M, Tahara H. Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles. Cancer Sci 2020; 111:2104-2115. [PMID: 32215990 PMCID: PMC7293081 DOI: 10.1111/cas.14393] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence indicates that small RNAs, including microRNAs (miRNAs) and their isoforms (isomiRs), and transfer RNA fragments (tRFs), are differently expressed in breast cancer (BC) and can be detected in blood circulation. Circulating small RNAs and small RNAs in extracellular vesicles (EVs) have emerged as ideal markers in small RNA‐based applications for cancer detection. In this study, we first undertook small RNA sequencing to assess the expression of circulating small RNAs in the serum of BC patients and cancer‐free individuals (controls). Expression of 3 small RNAs, namely isomiR of miR‐21‐5p (3′ addition C), miR‐23a‐3p and tRF‐Lys (TTT), was significantly higher in BC samples and was validated by small RNA sequencing in an independent cohort. Our constructed model using 3 small RNAs showed high diagnostic accuracy with an area under the receiver operating characteristic curve of 0.92 and discriminated early‐stage BCs at stage 0 from control. To test the possibility that these small RNAs are released from cancer cells, we next examined EVs from the serum of BC patients and controls. Two of the 3 candidate small RNAs were identified, and shown to be abundant in EVs of BC patients. Interestingly, these 2 small RNAs are also more abundantly detected in culture media of breast cancer cell lines (MCF‐7 and MDA‐MB‐231). The same tendency in selective elevation seen in total serum, serum EV, and EV derived from cell culture media could indicate the efficiency of this model using total serum of patients. These findings indicate that small RNAs serve as significant biomarkers for BC detection.
Collapse
Affiliation(s)
- Yumiko Koi
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukie Nishiyama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Ueda
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuta Ibuki
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Collaborative laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Ibuki Y, Nishiyama Y, Tsutani Y, Emi M, Hamai Y, Okada M, Tahara H. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLoS One 2020; 15:e0231116. [PMID: 32251457 PMCID: PMC7135252 DOI: 10.1371/journal.pone.0231116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNA (miR)s are promising diagnostic biomarkers of cancer. Recent next generation sequencer (NGS) studies have found that isoforms of micro RNA (isomiR) circulate in the bloodstream similarly to mature micro RNA (miR). We hypothesized that combination of circulating miR and isomiRs detected by NGS are potentially powerful cancer biomarker. The present study aimed to investigate their application in esophageal cancer. METHODS Serum samples from patients with esophageal squamous cell carcinoma (ESCC) and age and sex matched healthy control (HC) individuals were investigated for the expression of miR/isomiRs using NGS. Candidate miR/isomiRs which met the criteria in the 1st group (ESCC = 18 and HC = 12) were validated in the 2nd group (ESCC = 30 and HC = 30). A diagnostic panel was generated using miR/isomiRs that were consistently confirmed in the 1st and 2nd groups. Accuracy of the panel was tested then in the 3rd group (ESCC = 18 and HC = 18). Their use was also investigated in 22 paired samples obtained pre- and post-treatment, and in patients with esophageal adenocarcinoma (EAD) and high-grade dysplasia (HGD). RESULTS Twenty-four miR/isomiRs met the criteria for diagnostic biomarker in the 1st and 2nd group. A multiple regression model selected one mature miR (miR-30a-5p) and two isomiRs (isoform of miR-574-3p and miR-205-5p). The index calculated from the diagnostic panel was significantly higher in ESCC patients than in the HCs (13.3±8.9 vs. 3.1±1.3, p<0.001). The area under the receiver operating characteristics (ROC) curves of the panel index was 0.95. Sensitivity and specificity were 93.8%, and 81% in the 1st and 2nd groups, and 88.9% and 72.3% in the 3rd group, respectively. The panel index was significantly lower in patients with EAD (6.2±4.5) and HGD (4.2±1.7) than in those with ESCC and was significantly decreased at post-treatment compared with pre-treatment (6.2±5.6 vs 11.6±11.5, p = 0.03). CONCLUSION Our diagnostic panel had high accuracy in the diagnosis of ESCC. MiR/isomiRs detected by NGS could serve as novel biomarkers of ESCC.
Collapse
Affiliation(s)
- Yuta Ibuki
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukie Nishiyama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Manabu Emi
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoichi Hamai
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Collaborative laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- The Research Center for Drug Development and Biomarker Discovery, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Bofill-De Ros X, Yang A, Gu S. IsomiRs: Expanding the miRNA repression toolbox beyond the seed. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194373. [PMID: 30953728 PMCID: PMC6776719 DOI: 10.1016/j.bbagrm.2019.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play increasingly appreciated roles in gene regulation. In animals, miRNAs silence gene expression by binding to partially complementary sequences within target mRNAs. It is well-established that miRNAs recognize canonical target sites by base-pairing in the 5'region. However, the development of biochemical methods has identified many novel, non-canonical target sites, suggesting additional modes of miRNA-target association. Here, we review the current knowledge of miRNA-target recognition and how new evidence supports or challenges existing models. We also review the process by which microRNA isoforms achieve functional diversification via modulation of target recognition.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
32
|
Rojas E, Martinez-Pacheco M, Rodriguez-Sastre MA, Ramos-Espinosa P, Valverde M. Post-transcriptional regulation of Rad51c by miR-222 contributes cellular transformation. PLoS One 2020; 15:e0221681. [PMID: 31923208 PMCID: PMC6953820 DOI: 10.1371/journal.pone.0221681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
DNA repair inhibition has been described as an essential event leading to the initiation of carcinogenesis. In a previous study, we observed that the exposure to metal mixture induces changes in the miR-nome of the cells that was correlated with the sub-expression of mRNA involved in processes and diseases associated with metal exposure. From this analysis, one of the miRNAs that shows changes in its expression is miR-222, which is overexpressed in various cancers associated with exposure to metals. In silico studies showed that a possible target for the microRNA-222 could be Rad 51c, a gene involved in the double-stranded DNA repair. We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. A luciferase assay was performed to validate Rad51c as miR-222 target. Neutral comet assay was performed in order to evaluate DNA double-strand breaks under experimental conditions. Here, we demonstrate that miR-222 up-regulation, directly regulates Rad51c expression negatively, and impairs homologous recombination of double-strand break DNA repair during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.
Collapse
Affiliation(s)
- Emilio Rojas
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | | | - Maria Alexandra Rodriguez-Sastre
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | - Paulina Ramos-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | - Mahara Valverde
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| |
Collapse
|
33
|
Wang J, Bing T, Zhang N, Liu X, Shangguan D. FnCas12a/crRNA assisted dumbbell-PCR detection of IsomiRs with terminal and inner sequence variants. Chem Commun (Camb) 2020; 56:10038-10041. [DOI: 10.1039/d0cc04348f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new FnCas12a/crRNA assisted Dumbbell-PCR (Cas-Db-PCR) method is developed for the detection of isomiR heterogeneity in length and/or sequence variants with high specificity and sensitivity.
Collapse
Affiliation(s)
- Junyan Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS, Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS, Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS, Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS, Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS, Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
34
|
|
35
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
36
|
Role of miR-221/222 in Tumor Development and the Underlying Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:7252013. [PMID: 31929798 PMCID: PMC6942871 DOI: 10.1155/2019/7252013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022]
Abstract
MicroRNA-221/222 (miRNA-221/222, miR-221/222) is a noncoding microRNA which is widely distributed in eukaryotic organisms and deeply involved in the posttranscriptional regulation of gene expressions. According to recent studies, abnormal expressions of miR-221/222 are closely related to the occurrence and development of various kinds of malignant tumors. The role of miR-221/222 in tumor development and their potential molecular mechanism in various cancers, including liver cancer, colorectal cancer, cervical cancer, ovarian cancer, and endometrial carcinoma, are summarized and reviewed in this paper. Moreover, the potential translational biomarker role of abnormal miR-221/222 level in tumor or blood circulation for tumor diagnosis is also discussed.
Collapse
|
37
|
Mármol-Sánchez E, Cirera S, Quintanilla R, Pla A, Amills M. Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics 2019; 112:2107-2118. [PMID: 31816430 DOI: 10.1016/j.ygeno.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the yet poorly annotated porcine genome and demonstrated the usefulness of implementing a motif search positional refinement strategy for the accurate determination of precursor miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we selected the human miRNA annotation for a homology-based search of porcine miRNAs with orthologous genes in the human genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were also detected by homology-based search using the human miRNA annotation. The existence of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work allowed us to expand the catalogue of porcine miRNAs and showed better performance than other commonly used miRNA prediction approaches. More importantly, the flexibility of our pipeline makes possible its application in other yet poorly annotated non-model species.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 2nd Floor, 1870 Frederiksberg C, Denmark
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Albert Pla
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
MicroRNAs in Daphnia magna identified and characterized by deep sequencing, genome mapping and manual curation. Sci Rep 2019; 9:15945. [PMID: 31685896 PMCID: PMC6828783 DOI: 10.1038/s41598-019-52387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression in most organisms. The water flea, Daphnia magna is a key model to study phenotypic, physiological and genomic responses to environmental cues and miRNAs can potentially mediate these responses. By using deep sequencing, genome mapping and manual curations, we have characterised the miRNAome of D. magna. We identified 66 conserved miRNAs and 13 novel miRNAs; all of these were found in the three studied life stages of D. magna (juveniles, subadults, adults), but with variation in expression levels between stages. Forty-one of the miRNAs were clustered into 13 genome clusters also present in the D. pulex genome. Most miRNAs contained sequence variants (isomiRs). The highest expressed isomiRs were 3′ template variants with one nucleotide deletion or 3′ non-template variants with addition of A or U at the 3′ end. We also identified offset RNAs (moRs) and loop RNAs (loRs). Our work extends the base for further work on all species (miRNA, isomiRs, moRNAs, loRNAs) of the miRNAome of Daphnia as biomarkers in response to chemical substances and environment cues, and underline age dependency.
Collapse
|
39
|
Benmoussa A, Laugier J, Beauparlant CJ, Lambert M, Droit A, Provost P. Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J Dairy Sci 2019; 103:16-29. [PMID: 31677838 DOI: 10.3168/jds.2019-16880] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small gene-regulatory noncoding RNA that are highly enriched in cow milk. They are encapsulated in different extracellular vesicle (EV) subsets that protect them from the extracellular milieu and the harsh conditions of the gastrointestinal tract during digestion. Here, we isolated pellets enriched in 4 different EV subsets, via differential ultracentrifugation of commercial cow milk: 12,000 × g (P12K), 35,000 × g (P35K), 70,000 × g (P70K), and 100,000 × g (P100K). Small RNA sequencing (sRNA-Seq) analyses revealed an unprecedented level of diversity in the complete miRNA repertoire and features of unfractionated cow milk and derived EV subsets. Although 5 miRNA sequences represented more than 50% of all miRNAs, milk EV exhibited heterogeneous content of miRNAs and isomeric variants (termed isomiR): P100K EV were enriched in reference miRNA sequences, and P12K and P35K EV in related isomiR. Incubation of milk EV with human cultured HeLa cells led to cellular enrichment in miRNA miR-223, which was concomitant with decreased expression of a reporter gene placed under the control of miR-223, thereby demonstrating the functionality of miR-223. These results suggest that cow milk EV may transfer their miRNAs to human cells and regulate recipient cell gene expression programming in a manner as complex as that of their miRNA transcriptome. The biological activity and relevance of the different milk EV subsets and bioactive mediators, including small noncoding RNA, in health and disease, warrants further investigation.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Jonathan Laugier
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Charles Joly Beauparlant
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Marine Lambert
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Arnaud Droit
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Patrick Provost
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
40
|
Ndika J, Seemab U, Poon WL, Fortino V, El-Nezami H, Karisola P, Alenius H. Silver, titanium dioxide, and zinc oxide nanoparticles trigger miRNA/isomiR expression changes in THP-1 cells that are proportional to their health hazard potential. Nanotoxicology 2019; 13:1380-1395. [PMID: 31519129 DOI: 10.1080/17435390.2019.1661040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After over a decade of nanosafety research, it is indisputable that the vast majority of nano-sized particles induce a plethora of adverse cellular responses - the severity of which is linked to the material's physicochemical properties. Differentiated THP-1 cells were previously exposed for 6 h and 24 h to silver, titanium dioxide, and zinc oxide nanoparticles at the maximum molar concentration at which no more than 15% cellular cytotoxicity was observed. All three nanoparticles differed in extent of induction of biological pathways corresponding to immune response signaling and metal ion homeostasis. In this study, we integrated gene and miRNA expression profiles from the same cells to propose miRNA biomarkers of adverse exposure to metal-based nanoparticles. We employed RNA sequencing together with a quantitative strategy that also enables analysis of the overlooked repertoire of length and sequence miRNA variants called isomiRs. Whilst only modest changes in expression were observed within the first 6 h of exposure, the miRNA/isomiR (miR) profiles of each nanoparticle were unique. Via canonical correlation and pathway enrichment analyses, we identified a co-regulated miR-mRNA cluster, predicted to be highly relevant for cellular response to metal ion homeostasis. These miRs were annotated to be canonical or variant isoforms of hsa-miR-142-5p, -342-3p, -5100, -6087, -6894-3p, and -7704. Hsa-miR-5100 was differentially expressed in response to each nanoparticle in both the 6 h and 24 h exposures. Taken together, this co-regulated miR-mRNA cluster could represent potential biomarkers of sub-toxic metal-based nanoparticle exposure.
Collapse
Affiliation(s)
- Joseph Ndika
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Umair Seemab
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wing-Lam Poon
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques 2019; 67:192-199. [PMID: 31560239 DOI: 10.2144/btn-2019-0065] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several approaches for miRNA expression analysis have been developed in recent years. In this article, we provide an updated and comprehensive review of available qPCR-based methods for miRNA expression analysis and discuss their advantages and disadvantages. Existing techniques involve the use of stem-loop reverse transcriptase-PCR, polyadenylation of RNAs, ligation of adapters or RT with complex primers, using universal or miRNA-specific qPCR primers and/or probes. Many of these methods are oriented towards the expression analysis of mature miRNAs and few are designed for the study of pre-miRNAs and pri-miRNAs. We also discuss findings from articles that compare results from existing methods. Finally, we suggest key points for the improvement of available techniques and for the future development of additional methods.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis J Castro-Vega
- INSERM, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
42
|
Yang A, Bofill-De Ros X, Shao TJ, Jiang M, Li K, Villanueva P, Dai L, Gu S. 3' Uridylation Confers miRNAs with Non-canonical Target Repertoires. Mol Cell 2019; 75:511-522.e4. [PMID: 31178353 PMCID: PMC6688926 DOI: 10.1016/j.molcel.2019.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/14/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
Many microRNAs (miRNAs) exist alongside abundant miRNA isoforms (isomiRs), most of which arise from post-maturation sequence modifications such as 3' uridylation. However, the ways in which these sequence modifications affect miRNA function remain poorly understood. Here, using human miR-27a in cell lines as a model, we discovered that a nonfunctional target site unable to base-pair extensively with the miRNA seed sequence can regain function when an upstream adenosine is able to base-pair with a post-transcriptionally added uridine in the miR-27a tail. This tail-U-mediated repression (TUMR) is abolished in cells lacking the uridylation enzymes TUT4 and TUT7, indicating that uridylation alters miRNA function by modulating target recognition. We identified a set of non-canonical targets in human cells that are specifically regulated by uridylated miR-27a. We provide evidence that TUMR expands the targets of other endogenous miRNAs. Our study reveals a function of uridylated isomiRs in regulating non-canonical miRNA targets.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minjie Jiang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Katherine Li
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Sheu‐Gruttadauria J, Xiao Y, Gebert LFR, MacRae IJ. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J 2019; 38:e101153. [PMID: 31268608 PMCID: PMC6600645 DOI: 10.15252/embj.2018101153] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 11/09/2022] Open
Abstract
microRNAs (miRNAs) guide Argonaute proteins to mRNAs targeted for repression. Target recognition occurs primarily through the miRNA seed region, composed of guide (g) nucleotides g2-g8. However, nucleotides beyond the seed are also important for some known miRNA-target interactions. Here, we report the structure of human Argonaute2 (Ago2) engaged with a target RNA recognized through both miRNA seed and supplementary (g13-g16) regions. Ago2 creates a "supplementary chamber" that accommodates up to five miRNA-target base pairs. Seed and supplementary chambers are adjacent to each other and can be bridged by an unstructured target loop of 1-15 nucleotides. Opening of the supplementary chamber may be constrained by tension in the miRNA 3' tail, as increases in miRNA length stabilize supplementary interactions. Contrary to previous reports, we demonstrate that optimal supplementary interactions can increase target affinity > 20-fold. These results provide a mechanism for extended miRNA targeting, suggest a function for 3' isomiRs in tuning miRNA targeting specificity, and indicate that supplementary interactions may contribute more to target recognition than is widely appreciated.
Collapse
Affiliation(s)
- Jessica Sheu‐Gruttadauria
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCAUSA
- Present address:
Department of Cellular and Molecular PharmacologyHoward Hughes Medical InstituteUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Yao Xiao
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Luca FR Gebert
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Ian J MacRae
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCAUSA
| |
Collapse
|
44
|
Wright C, Rajpurohit A, Burke EE, Williams C, Collado-Torres L, Kimos M, Brandon NJ, Cross AJ, Jaffe AE, Weinberger DR, Shin JH. Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genomics 2019; 20:513. [PMID: 31226924 PMCID: PMC6588940 DOI: 10.1186/s12864-019-5870-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA sequencing offers advantages over other quantification methods for microRNA (miRNA), yet numerous biases make reliable quantification challenging. Previous evaluations of these biases have focused on adapter ligation bias with limited evaluation of reverse transcription bias or amplification bias. Furthermore, evaluations of the quantification of isomiRs (miRNA isoforms) or the influence of starting amount on performance have been very limited. No study had yet evaluated the quantification of isomiRs of altered length or compared the consistency of results derived from multiple moderate starting inputs. We therefore evaluated quantifications of miRNA and isomiRs using four library preparation kits, with various starting amounts, as well as quantifications following removal of duplicate reads using unique molecular identifiers (UMIs) to mitigate reverse transcription and amplification biases. RESULTS All methods resulted in false isomiR detection; however, the adapter-free method tested was especially prone to false isomiR detection. We demonstrate that using UMIs improves accuracy and we provide a guide for input amounts to improve consistency. CONCLUSIONS Our data show differences and limitations of current methods, thus raising concerns about the validity of quantification of miRNA and isomiRs across studies. We advocate for the use of UMIs to improve accuracy and reliability of miRNA quantifications.
Collapse
Affiliation(s)
- Carrie Wright
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,AstraZeneca Postdoc Program, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Martha Kimos
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
45
|
Rotival M. Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility. HLA 2019; 94:275-284. [PMID: 31115186 DOI: 10.1111/tan.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Over the last 10 years, genome-wide association studies (GWAS) have identified hundreds of susceptibility loci for autoimmune diseases. However, despite increasing power for the detection of both common and rare coding variants affecting disease susceptibility, a large fraction of disease heritability has remained unexplained. In addition, a majority of the identified loci are located in noncoding regions, and translation of disease-associated loci into new biological insights on the etiology of immune disorders has been lagging. This highlights the need for a better understanding of noncoding variation and new strategies to identify causal genes at disease loci. In this review, I will first detail the molecular basis of gene expression and review the various mechanisms that contribute to alter gene activity at the transcriptional and post-transcriptional level. I will then review the findings from 10 years of functional genomics studies regarding the genetics on gene expression, in particular in the context of infection. Finally, I will discuss the extent to which genetic variants that modulate gene expression at transcriptional and post-transcriptional level contribute to disease susceptibility and present strategies to leverage this information for the identification of causal mechanisms at disease loci in the era of whole genome sequencing.
Collapse
Affiliation(s)
- Maxime Rotival
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| |
Collapse
|
46
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
47
|
Lee D, Park D, Park JH, Kim JH, Shin C. Poly(A)-specific ribonuclease sculpts the 3' ends of microRNAs. RNA (NEW YORK, N.Y.) 2019; 25:388-405. [PMID: 30591540 PMCID: PMC6380276 DOI: 10.1261/rna.069633.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
The 3' ends of metazoan microRNAs (miRNAs) are initially defined by the RNase III enzymes during maturation, but subsequently experience extensive modifications by several enzymatic activities. For example, terminal nucleotidyltransferases (TENTs) elongate miRNAs by adding one or a few nucleotides to their 3' ends, which occasionally leads to differential regulation of miRNA stability or function. However, the catalytic entities that shorten miRNAs and the molecular consequences of such shortening are less well understood, especially in vertebrates. Here, we report that poly(A)-specific ribonuclease (PARN) sculpts the 3' ends of miRNAs in human cells. By generating PARN knockout cells and characterizing their miRNAome, we demonstrate that PARN digests the 3' extensions of miRNAs that are derived from the genome or attached by TENTs, thereby effectively reducing the length of miRNAs. Surprisingly, PARN-mediated shortening has little impact on miRNA stability, suggesting that this process likely operates to finalize miRNA maturation, rather than to initiate miRNA decay. PARN-mediated shortening is pervasive across most miRNAs and appears to be a conserved mechanism contributing to the 3' end formation of vertebrate miRNAs. Our findings add miRNAs to the expanding list of noncoding RNAs whose 3' end formation depends on PARN.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Daechan Park
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Pillman KA, Goodall GJ, Bracken CP, Gantier MP. miRNA length variation during macrophage stimulation confounds the interpretation of results: implications for miRNA quantification by RT-qPCR. RNA (NEW YORK, N.Y.) 2019; 25:232-238. [PMID: 30487268 PMCID: PMC6348984 DOI: 10.1261/rna.069047.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Most microRNAs (miRNAs) are expressed as a mix of length isoforms (referred to as isomiRs). IsomiR stoichiometry can be differentially impacted upon cell stimulation, as recently evidenced by our group in the context of immune responses induced by type-I interferon (IFN). Here, we revisit published RNA-seq data sets of human and mouse macrophages stimulated with bacterial products at the isomiR level. We demonstrate that for several miRNAs, macrophage stimulation induces changes in isomiR stoichiometry. Critically, we find that changes in miRNA expression can be misinterpreted when miRNAs are quantified by RT-qPCR, as primers directed against canonical miRNA sequences may not equally target the different isomiRs that are regulated endogenously. Beyond the case of phagocyte stimulation, our analyses reinforce the concept that analysis of miRNA expression at the isoform level should become standard practice.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
49
|
Abstract
Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.
Collapse
Affiliation(s)
- Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
50
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives. Endocrine 2018; 62:281-291. [PMID: 30054866 DOI: 10.1007/s12020-018-1688-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes, which further lead to heartfailure. It is known that diabetes-induced cardiac fibrosis is a key pathogenic factor contributing topathological changes in DCM. However, pathogenetic mechanisms underlying diabetes cardiac fibrosis arestill elusive. Recent studies have indicated that noncoding RNAs (ncRNAs) play a key role in diabetescardiac fibrosis. The increasing complexity of epigenetic regulator poses great challenges to ourconventional conceptions regarding how ncRNAs regulate diabetes cardiac fibrosis. METHODS We searched PubMed, Web of Science, and Scopus for manuscripts published prior to April 2018 using keywords "Diabetic cardiomyopathy" AND " diabetes cardiac fibrosis " OR " noncoding RNAs " OR " longnoncoding RNAs " OR " microRNAs " OR "epigenetic". Manuscripts were collated, studied and carriedforward for discussion where appropriate. RESULTS Based on the view that during diabetic cardiac fibrosis, ncRNAs are able to regulate diabetic cardiac fibrosisby targeting genes involved in epigenetic pathways. Many studies have focused on ncRNAs, an epigeneticregulator deregulating protein-coding genes in diabetic cardiac fibrosis, to identify potential therapeutictargets. Recent advances and new perspectives have found that long noncoding RNAs and microRNAs,exert their own effects on the progression of diabetic cardiac fibrosis. CONCLUSION We firstly examine the growing role of ncRNAs characteristics and ncRNAs-regulated genes involved indiabetic cardiac fibrosis. Then, we provide several possible therapeutic strategies and highlight the potentialof molecular mechanisms in which targeting epigenetic regulators are considered as an effective means of treating diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Zheng-Yu Song
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China.
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, Nanjing, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| |
Collapse
|