1
|
Liu Y, McGann CD, Krebs M, Perkins TA, Fields R, Camplisson CK, Nwizugbo DZ, Hsu C, Avanessian SC, Tsue AF, Kania EE, Shechner DM, Beliveau BJ, Schweppe DK. DNA O-MAP uncovers the molecular neighborhoods associated with specific genomic loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604987. [PMID: 39091817 PMCID: PMC11291153 DOI: 10.1101/2024.07.24.604987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The accuracy of crucial nuclear processes such as transcription, replication, and repair, depends on the local composition of chromatin and the regulatory proteins that reside there. Understanding these DNA-protein interactions at the level of specific genomic loci has remained challenging due to technical limitations. Here, we introduce a method termed "DNA O-MAP", which uses programmable peroxidase-conjugated oligonucleotide probes to biotinylate nearby proteins. We show that DNA O-MAP can be coupled with sample multiplexed quantitative proteomics and next-generation sequencing to quantify DNA-protein and DNA-DNA interactions at specific genomic loci.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Christopher D. McGann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Thomas A. Perkins
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Conor K. Camplisson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - David Z. Nwizugbo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Chris Hsu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Shayan C. Avanessian
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Ashley F. Tsue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Evan E. Kania
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - David M. Shechner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Brian J. Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| |
Collapse
|
2
|
Ma R, Zhang Y, Zhang J, Zhang P, Liu Z, Fan Y, Wang HT, Zhang Z, Zhu B. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 2024; 631:678-685. [PMID: 38961301 DOI: 10.1038/s41586-024-07640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.
Collapse
Affiliation(s)
- Runze Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Pinqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zeqi Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Golas S, Chory EJ. Proximity labeling of endogenous protein interactions enabled by directed evolution. Trends Biotechnol 2023; 41:301-303. [PMID: 36710130 DOI: 10.1016/j.tibtech.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Enhanced ascorbate peroxidase 2 (APEX2) is a protein generated with directed evolution by Lam et al. that has transformed our understanding of subcellular entities and phenomena. The rapid kinetics of this engineered protein highlights the power of directed evolution to expand the molecular toolkit for biologists.
Collapse
Affiliation(s)
- Stefan Golas
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emma J Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Hu LF, Li YX, Wang JZ, Zhao YT, Wang Y. Controlling CRISPR-Cas9 by guide RNA engineering. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1731. [PMID: 35393779 DOI: 10.1002/wrna.1731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 01/31/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a product of million years of evolution by microbes to fight against invading genetic materials. Around 10 years ago, scientists started to repurpose the CRISPR as genetic tools by molecular engineering approaches. The guide RNA provides a versatile and unique platform for the innovation to improve and expand the application of CRISPR-Cas9 system. In this review, we will first introduce the basic sequence and structure of guide RNA and its role during the function of CRISPR-Cas9. We will then summarize recent progress on the development of various guide RNA engineering strategies. These strategies have been dedicated to improve the performance of CRISPR-Cas9, to achieve precise spatiotemporal control of CRISPR-Cas9, and to broaden the application of CRISPR-Cas9. Finally, we will briefly discuss the uniqueness and advantage of guide RNA-engineering based systems versus those with engineered Cas9 proteins and speculate potential future directions in guide RNA engineering. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Lu-Feng Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yu-Xuan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Zhen Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
7
|
Yue S, Xu P, Cao Z, Zhuang M. PUP-IT2 as an alternative strategy for PUP-IT proximity labeling. Front Mol Biosci 2022; 9:1007720. [PMID: 36250004 PMCID: PMC9558124 DOI: 10.3389/fmolb.2022.1007720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
PUP-IT is a proximity labeling method based on the prokaryotic enzyme PafA. PafA mediates the ligation of Pup, a small peptide, to the proximal proteins. It is different from other proximity labeling methods, such as BioID and APEX, in that both the enzyme and the labeling tag are proteins, which allows for potential in vivo applications. All proximity labeling involves the genetic fusion of the proximity labeling enzyme with the bait protein. However, PafA is a 55 kDa enzyme which sometimes interferes with the bait function. In this study, we tested an alternative proximity labeling strategy, PUP-IT2, in which only a small 7 kDa protein is fused to the bait protein. We examined the activity of PUP-IT2 in vitro and in cells. We also compared it with the original PUP-IT. Finally, we applied PUP-IT2 coupled mass spectrometry to map protein-protein interactions. Overall, we established a new way to use PUP-IT2 for proximity labeling, and this method may have a broad application.
Collapse
|
8
|
Mondal S, Ramanathan M, Miao W, Meyers RM, Rao D, Lopez-Pajares V, Siprashvili Z, Reynolds DL, Porter DF, Ferguson I, Neela P, Zhao Y, Meservey LM, Guo M, Yang YY, Li L, Wang Y, Khavari PA. PROBER identifies proteins associated with programmable sequence-specific DNA in living cells. Nat Methods 2022; 19:959-968. [PMID: 35927480 PMCID: PMC10202087 DOI: 10.1038/s41592-022-01552-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
DNA-protein interactions mediate physiologic gene regulation and may be altered by DNA variants linked to polygenic disease. To enhance the speed and signal-to-noise ratio (SNR) in the identification and quantification of proteins associated with specific DNA sequences in living cells, we developed proximal biotinylation by episomal recruitment (PROBER). PROBER uses high-copy episomes to amplify SNR, and proximity proteomics (BioID) to identify the transcription factors and additional gene regulators associated with short DNA sequences of interest. PROBER quantified both constitutive and inducible association of transcription factors and corresponding chromatin regulators to target DNA sequences and binding quantitative trait loci due to single-nucleotide variants. PROBER identified alterations in regulator associations due to cancer hotspot mutations in the hTERT promoter, indicating that these mutations increase promoter association with specific gene activators. PROBER provides an approach to rapidly identify proteins associated with specific DNA sequences and their variants in living cells.
Collapse
Affiliation(s)
- Smarajit Mondal
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | | | - Weili Miao
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Deepti Rao
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | | | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Ian Ferguson
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Poornima Neela
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | | | - Margaret Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Lin Li
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Veterans Affairs, Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Huang Y, Zhai G, Li Y, Han Y, Chen C, Lu C, Zhang K. Deciphering the Interactome of Histone Marks in Living Cells via Genetic Code Expansion Combined with Proximity Labeling. Anal Chem 2022; 94:10705-10714. [PMID: 35862615 DOI: 10.1021/acs.analchem.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deciphering the endogenous interactors of histone post-translational modifications (hPTMs, also called histone marks) is essential to understand the mechanisms of epigenetic regulation. However, most of the analytical methods to determine hPTM interactomes are in vitro settings, lacking interrogating native chromatin. Although lysine crotonylation (Kcr) has recently been considered an important hPTM for the regulation of gene transcription, the interactors of Kcr still remain to be explored. Herein, we present a general approach relying upon a genetic code expansion system, APEX2 (engineered peroxidase)-mediated proximity labeling, and quantitative proteomics to profile interactomes of the selected hPTMs in living cells. We genetically fused APEX2 to the recombinant histone H3 with a crotonyl lysine inserted site specifically to generate APEX2-H3K9cr that incorporated into native chromatin. Upon activation, APEX2 triggered in vivo biotin labeling of H3K9cr interactors that can then be enriched with streptavidin beads and identified by mass spectrometry. Proteomic analysis further revealed the endogenous interactomes of H3K9cr and confirmed the reliability of the method. Moreover, DPF2 was identified as a candidate interactor, and the binding interaction of DPF2 to H3K9c was further characterized and verified. This study provides a novel strategy for the identification of hPTM interactomes in living cells, and we envision that this is key to elucidating epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Yepei Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Micro-environment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yue Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Congcong Lu
- College of Life Sciences, Nankai University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Micro-environment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
PRKDC promotes hepatitis B virus transcription through enhancing the binding of RNA Pol II to cccDNA. Cell Death Dis 2022; 13:404. [PMID: 35468873 PMCID: PMC9038722 DOI: 10.1038/s41419-022-04852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus infection remains a major health problem worldwide due to its high risk of liver failure and hepatocellular carcinoma. Covalently closed circular DNA (cccDNA), which is present as an individual minichromosome, serves as the template for transcription of all viral RNAs and pla ays critical role in viral persistence. Therefore, there is an urgent need to gain broader insight into the transcription regulation of cccDNA. Here, we combined a modified Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) with an engineered ascorbate peroxidase 2 (APEX2) to identify cccDNA associated proteins systematically in living cells. By functional screening, we verified that protein kinase, DNA-activated, catalytic subunit (PRKDC) was an effective activator of HBV cccDNA transcription in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Mechanismly, PRKDC interacted with POLR2A and POLR2B, the two largest subunits of RNA polymerase II (Pol II) and recruited Pol II to HBV cccDNA minichromosome in a kinase-dependent manner. PRKDC knockdown or inhibitor treatment significantly decreased the enrichment of POLR2A and POLR2B on cccDNA, as well as reducing the levels of cccDNA associated Pol II Ser5 and Ser2 phosphorylation, which eventually inhibited the HBV cccDNA activity. Collectively, these findings give us new insights into cccDNA transcription regulation, thus providing new potential targets for HBV treatment in patients.
Collapse
|
11
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
12
|
Shim AR, Huang K, Backman V, Szleifer I. Chromatin as self-returning walks: From population to single cell and back. BIOPHYSICAL REPORTS 2021; 2:100042. [PMID: 36425085 PMCID: PMC9680733 DOI: 10.1016/j.bpr.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P. R. China,Corresponding author
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois,Department of Chemistry, Northwestern University, Evanston, Illinois,Corresponding author
| |
Collapse
|
13
|
Dolgalev G, Poverennaya E. Applications of CRISPR-Cas Technologies to Proteomics. Genes (Basel) 2021; 12:1790. [PMID: 34828396 PMCID: PMC8625504 DOI: 10.3390/genes12111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.
Collapse
|
14
|
Burton AJ, Hamza GM, Zhang AX, Muir TW. Chemical biology approaches to study histone interactors. Biochem Soc Trans 2021; 49:2431-2441. [PMID: 34709376 PMCID: PMC9785950 DOI: 10.1042/bst20210772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022]
Abstract
Protein-protein interactions (PPIs) in the nucleus play key roles in transcriptional regulation and ensure genomic stability. Critical to this are histone-mediated PPI networks, which are further fine-tuned through dynamic post-translational modification. Perturbation to these networks leads to genomic instability and disease, presenting epigenetic proteins as key therapeutic targets. This mini-review will describe progress in mapping the combinatorial histone PTM landscape, and recent chemical biology approaches to map histone interactors. Recent advances in mapping direct interactors of histone PTMs as well as local chromatin interactomes will be highlighted, with a focus on mass-spectrometry based workflows that continue to illuminate histone-mediated PPIs in unprecedented detail.
Collapse
Affiliation(s)
- Antony J. Burton
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451
| | - Ghaith M. Hamza
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Andrew X. Zhang
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451
| | - Tom W. Muir
- Frick Chemistry Laboratory, Princeton, NJ 08544
| |
Collapse
|
15
|
Li X, Zhou J, Zhao W, Wen Q, Wang W, Peng H, Gao Y, Bouchonville KJ, Offer SM, Chan K, Wang Z, Li N, Gan H. Defining Proximity Proteomics of Histone Modifications by Antibody-mediated Protein A-APEX2 Labeling. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:87-100. [PMID: 34555496 PMCID: PMC9510856 DOI: 10.1016/j.gpb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022]
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as APEX2, has emerged as a powerful approach to characterize multiprotein complexes and protein–protein interactions. However, current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins. To address this limitation, we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2 (pA-APEX2) labeling (AMAPEX). In this method, a modified protein is bound in situ by a specific antibody, which then tethers a pA-APEX2 fusion protein. Activation of APEX2 labels the nearby proteins with biotin; the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry. We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3K27me3, H3K9me3, H3K4me3, H4K5ac, and H4K12ac, as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation. Overall, AMAPEX is an efficient method to identify proteins that are proximal to modified histones.
Collapse
Affiliation(s)
- Xinran Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weijie Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Zhiquan Wang
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
16
|
Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence. Mol Psychiatry 2021; 26:4367-4382. [PMID: 31745236 DOI: 10.1038/s41380-019-0588-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.
Collapse
|
17
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
18
|
Yang X, Wen Z, Zhang D, Li Z, Li D, Nagalakshmi U, Dinesh-Kumar SP, Zhang Y. Proximity labeling: an emerging tool for probing in planta molecular interactions. PLANT COMMUNICATIONS 2021; 2:100137. [PMID: 33898976 PMCID: PMC8060727 DOI: 10.1016/j.xplc.2020.100137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 05/13/2023]
Abstract
Protein-protein interaction (PPI) networks are key to nearly all aspects of cellular activity. Therefore, the identification of PPIs is important for understanding a specific biological process in an organism. Compared with conventional methods for probing PPIs, the recently described proximity labeling (PL) approach combined with mass spectrometry (MS)-based quantitative proteomics has emerged as a powerful approach for characterizing PPIs. However, the application of PL in planta remains in its infancy. Here, we summarize recent progress in PL and its potential utilization in plant biology. We specifically summarize advances in PL, including the development and comparison of different PL enzymes and the application of PL for deciphering various molecular interactions in different organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
20
|
Knaupp AS, Mohenska M, Larcombe MR, Ford E, Lim SM, Wong K, Chen J, Firas J, Huang C, Liu X, Nguyen T, Sun YBY, Holmes ML, Tripathi P, Pflueger J, Rossello FJ, Schröder J, Davidson KC, Nefzger CM, Das PP, Haigh JJ, Lister R, Schittenhelm RB, Polo JM. TINC- A Method to Dissect Regulatory Complexes at Single-Locus Resolution- Reveals an Extensive Protein Complex at the Nanog Promoter. Stem Cell Reports 2020; 15:1246-1259. [PMID: 33296673 PMCID: PMC7724517 DOI: 10.1016/j.stemcr.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general. TINC allows the isolation of a specific locus for molecular analyses TINC identified hundreds of proteins at the Nanog promoter RCOR2 is a component of the pluripotency network in embryonic stem cells RCOR2 is required for efficient differentiation
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael R Larcombe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Sue Mei Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kayla Wong
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jaber Firas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Trung Nguyen
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Melissa L Holmes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kathryn C Davidson
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3004, Australia; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
21
|
Witte A, Muñoz-López Á, Metz M, Schweiger MR, Janning P, Summerer D. Encoded, click-reactive DNA-binding domains for programmable capture of specific chromatin segments. Chem Sci 2020; 11:12506-12511. [PMID: 34123231 PMCID: PMC8162481 DOI: 10.1039/d0sc02707c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Enrichment of chromatin segments from specific genomic loci of living cells is an important goal in chromatin biology, since it enables establishing local molecular compositions as the basis of locus function. A central enrichment strategy relies on the expression of DNA-binding domains that selectively interact with a local target sequence followed by fixation and isolation of the associated chromatin segment. The efficiency and selectivity of this approach critically depend on the employed enrichment tag and the strategy used for its introduction into the DNA-binding domain or close-by proteins. We here report chromatin enrichment by expressing programmable transcription-activator-like effectors (TALEs) bearing single strained alkynes or alkenes introduced via genetic code expansion. This enables in situ biotinylation at a defined TALE site via strain-promoted inverse electron demand Diels Alder cycloadditions for single-step, high affinity enrichment. By targeting human pericentromeric SATIII repeats, the origin of nuclear stress bodies, we demonstrate enrichment of SATIII DNA and SATIII-associated proteins, and identify factors enriched during heat stress.
Collapse
Affiliation(s)
- Anna Witte
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Malte Metz
- Max-Planck Institute for Molecular Physiology Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Michal R Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne Weyertal 115b 50931 Köln Germany
- Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Petra Janning
- Max-Planck Institute for Molecular Physiology Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
22
|
Tan B, Peng S, Yatim SMJM, Gunaratne J, Hunziker W, Ludwig A. An Optimized Protocol for Proximity Biotinylation in Confluent Epithelial Cell Cultures Using the Peroxidase APEX2. STAR Protoc 2020; 1:100074. [PMID: 33111110 PMCID: PMC7580243 DOI: 10.1016/j.xpro.2020.100074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The peroxidase APEX2 has been used widely for proximity biotinylation and subsequent proteomics analyses. However, the poor membrane permeability of the biotin phenol substrate and the inhibitory effect of peroxide on the enzyme’s activity has hampered proximity labeling in certain cell culture systems and tissues. Here, we describe an APEX2 protocol that uses alternative peroxide and biotin phenol concentrations. The protocol permits robust proximity biotinylation in confluent epithelial cell cultures and may be applicable to other cell cultures and tissues. For complete details on the use and execution of this protocol, please refer to Tan et al. (2020). APEX2 permits proximity biotinylation in confluent cell cultures Biotin phenol and peroxide concentrations are critical Spatial controls are required to generate specific proximity proteomes
Collapse
Affiliation(s)
- Benedict Tan
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Suat Peng
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Siti Maryam J M Yatim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
23
|
Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e392. [PMID: 32909689 DOI: 10.1002/wdev.392] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiao-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
24
|
George JT, Azhar M, Aich M, Sinha D, Ambi UB, Maiti S, Chakraborty D, Srivatsan SG. Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9. J Am Chem Soc 2020; 142:13954-13965. [PMID: 32658470 PMCID: PMC7611130 DOI: 10.1021/jacs.0c06541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Locus-specific interrogation of target genes employing functional probes such as proteins and small molecules is paramount in decoding the molecular basis of gene function and designing tools to modulate its downstream effects. In this context, CRISPR-based gene editing and targeting technologies have proved tremendously useful, as they can be programmed to target any gene of interest by simply changing the sequence of the single guide RNA (sgRNA). Although these technologies are widely utilized in recruiting genetically encoded functional proteins, display of small molecules using CRISPR system is not well developed due to the lack of adequate techniques. Here, we have devised an innovative technology called sgRNA-Click (sgR-CLK) that harnesses the power of bioorthogonal click chemistry for remodeling guide RNA to display synthetic molecules on target genes. sgR-CLK employs a novel posttranscriptional chemoenzymatic labeling platform wherein a terminal uridylyl transferase (TUTase) was repurposed to generate clickable sgRNA of choice by site-specific tailoring of multiple azide-modified nucleotide analogues at the 3' end. The presence of a minimally invasive azide handle assured that the sgRNAs are indeed functional. Notably, an azide-tailed sgRNA targeting the telomeric repeat served as a Trojan horse on the CRISPR-dCas9 system to guide synthetic tags (biotin) site-specifically on chromatin employing copper-catalyzed or strain-promoted click reactions. Taken together, sgR-CLK presents a significant advancement on the utility of bioorthogonal chemistry, TUTase, and the CRISPR toolbox, which could offer a simplified solution for site-directed display of small molecule probes and diagnostic tools on target genes.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | | | | | | | - Uddhav B Ambi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Souvik Maiti
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| | | | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
25
|
Scott WA, Campos EI. Interactions With Histone H3 & Tools to Study Them. Front Cell Dev Biol 2020; 8:701. [PMID: 32850821 PMCID: PMC7411163 DOI: 10.3389/fcell.2020.00701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Histones are an integral part of chromatin and thereby influence its structure, dynamics, and functions. The effects of histone variants, posttranslational modifications, and binding proteins is therefore of great interest. From the moment that they are deposited on chromatin, nucleosomal histones undergo dynamic changes in function of the cell cycle, and as DNA is transcribed and replicated. In the process, histones are not only modified and bound by various proteins, but also shuffled, evicted, or replaced. Technologies and tools to study such dynamic events continue to evolve and better our understanding of chromatin and of histone proteins proper. Here, we provide an overview of H3.1 and H3.3 histone dynamics throughout the cell cycle, while highlighting some of the tools used to study their protein–protein interactions. We specifically discuss how histones are chaperoned, modified, and bound by various proteins at different stages of the cell cycle. Established and select emerging technologies that furthered (or have a high potential of furthering) our understanding of the dynamic histone–protein interactions are emphasized. This includes experimental tools to investigate spatiotemporal changes on chromatin, the role of histone chaperones, histone posttranslational modifications, and histone-binding effector proteins.
Collapse
Affiliation(s)
- William A Scott
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Liu Z, Liao Z, Chen Y, Han L, Yin Q, Xiao H. Application of Various Delivery Methods for CRISPR/dCas9. Mol Biotechnol 2020; 62:355-363. [PMID: 32583364 DOI: 10.1007/s12033-020-00258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
As gene-editing technology has become more and more popular in the life sciences, CRISPR has brought good news to scientific researchers because of its efficiency, convenience, and wide application. Its wide application has also promoted the development of basic scientific research, agriculture, basic medicine, and clinical treatment. However, how the CRISPR/dCas9 system is effectively delivered to the target organs or cells is still unknown. This paper briefly introduces the CRISPR/dCas9 system and then lists some common delivery methods and their characteristics.
Collapse
Affiliation(s)
- Zhixi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Lizhu Han
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Qinan Yin
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China.
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
27
|
Kunii A, Yamamoto T, Sakuma T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 2020; 56:359-366. [PMID: 32514717 DOI: 10.1007/s11626-020-00469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
CRISPR-Cas9 is a sophisticated tool in which Cas9/sgRNA complexes bind to the programmed target sequences and induce DNA double-strand breaks (DSBs) enabling highly efficient genome editing. Moreover, when nuclease-inactive Cas9 (dCas9) is employed, its specific DNA-binding activity provides a variety of derivative technologies such as transcriptional activation/repression, epigenome editing, and chromosome visualization. In these derivative technologies, particular effector molecules are fused with dCas9 or recruited to the target site. However, there had been room for improvement, because both genome editing and derivative technologies require not only the DNA-binding tools but also the additional components for their efficient and flexible outcomes. For genome editing, DSB repair molecules and knock-in donor templates need to act at the DSB sites. Derivative technologies also require their various effector domains to be gathered onto the target sites. Recently, many groups have developed and utilized inventive platforms to accumulate these additional components to the target sequence by modifying Cas9 protein and/or sgRNA. Here, we summarize the strategies of CRISPR-based effector accumulation and the improved methodologies using these creative platforms.
Collapse
Affiliation(s)
- Atsushi Kunii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
28
|
Fazal FM, Chang HY. Subcellular Spatial Transcriptomes: Emerging Frontier for Understanding Gene Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:31-45. [PMID: 32482897 PMCID: PMC7426137 DOI: 10.1101/sqb.2019.84.040352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNAs are trafficked and localized with exquisite precision inside the cell. Studies of candidate messenger RNAs have shown the vital importance of RNA subcellular location in development and cellular function. New sequencing- and imaging-based methods are providing complementary insights into subcellular localization of RNAs transcriptome-wide. APEX-seq and ribosome profiling as well as proximity-labeling approaches have revealed thousands of transcript isoforms are localized to distinct cytotopic locations, including locations that defy biochemical fractionation and hence were missed by prior studies. Sequences in the 3' and 5' untranslated regions (UTRs) serve as "zip codes" to direct transcripts to particular locales, and it is clear that intronic and retrotransposable sequences within transcripts have been co-opted by cells to control localization. Molecular motors, nuclear-to-cytosol RNA export, liquid-liquid phase separation, RNA modifications, and RNA structure dynamically shape the subcellular transcriptome. Location-based RNA regulation continues to pose new mysteries for the field, yet promises to reveal insights into fundamental cell biology and disease mechanisms.
Collapse
Affiliation(s)
- Furqan M Fazal
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
29
|
Ummethum H, Hamperl S. Proximity Labeling Techniques to Study Chromatin. Front Genet 2020; 11:450. [PMID: 32477404 PMCID: PMC7235407 DOI: 10.3389/fgene.2020.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.
Collapse
Affiliation(s)
- Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
30
|
Purification and enrichment of specific chromatin loci. Nat Methods 2020; 17:380-389. [PMID: 32152500 DOI: 10.1038/s41592-020-0765-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.
Collapse
|
31
|
Sequeira VM, Vermeulen M. Identifying Readers for (hydroxy)methylated DNA Using Quantitative Interaction Proteomics: Advances and Challenges Ahead. J Mol Biol 2020:S0022-2836(19)30714-4. [DOI: 10.1016/j.jmb.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
|
32
|
Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 2020; 10:3118-3137. [PMID: 32194858 PMCID: PMC7053192 DOI: 10.7150/thno.43298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-based genome editing holds immense potential to fix disease-causing mutations, however, must also handle substantial natural genetic variations between individuals. Previous studies have shown that mismatches between the single guide RNA (sgRNA) and genomic DNA may negatively impact sgRNA efficiencies and lead to imprecise specificity prediction. Hence, the genetic variations bring about a great challenge for designing platinum sgRNAs in large human populations. However, they also provide a promising entry for designing allele-specific sgRNAs for the treatment of each individual. The CRISPR system is rather specific, with the potential ability to discriminate between similar alleles, even based on a single nucleotide difference. Genetic variants contribute to the discrimination capabilities, once they generate a novel protospacer adjacent motif (PAM) site or locate in the seed region near an available PAM. Therefore, it can be leveraged to establish allele-specific targeting in numerous dominant human disorders, by selectively ablating the deleterious alleles. So far, allele-specific CRISPR has been increasingly implemented not only in treating dominantly inherited diseases, but also in research areas such as genome imprinting, haploinsufficiency, spatiotemporal loci imaging and immunocompatible manipulations. In this review, we will describe the working principles of allele-specific genome manipulations by virtue of expanding engineering tools of CRISPR. And then we will review new advances in the versatile applications of allele-specific CRISPR targeting in treating human genetic diseases, as well as in a series of other interesting research areas. Lastly, we will discuss their potential therapeutic utilities and considerations in the era of precision medicine.
Collapse
Affiliation(s)
- Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
33
|
Ugur E, Bartoschek MD, Leonhardt H. Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. Methods Mol Biol 2020; 2175:109-121. [PMID: 32681487 DOI: 10.1007/978-1-0716-0763-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biotin proximity labeling has largely extended the toolbox of mass spectrometry-based interactomics. To date, BirA, engineered BirA variants, or other biotinylating enzymes have been widely applied to characterize protein interactions. By implementing chromatin purification-based methods the genome-wide interactome of proteins can be defined. However, acquiring a high-resolution interactome of a single genomic locus preferably by multiplexed measurements of several distinct genomic loci in parallel remains challenging. We recently developed CasID, a novel approach where the catalytically inactive Cas9 (dCas9) is coupled to the promiscuous biotin ligase BirA (BirA∗). With CasID, first the local proteome at repetitive telomeric, major satellite, and minor satellite regions was determined. With more efficient biotin ligases and sensitive mass spectrometry, others have successfully identified the chromatin composition at even smaller genomic, non-repetitive regions of a few hundred base pairs in length. Here, we summarize the most recent developments towards interactomics at a single genomic locus and provide a step-by-step protocol based on the CasID approach.
Collapse
Affiliation(s)
- Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
34
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|