1
|
Zhou Z, Xu L, Lv Y, Li L, Yuan H, Hu F. BAX pores facilitate mitochondrial DNA release in wasp sting-induced acute kidney injury. Int Immunopharmacol 2024; 143:113424. [PMID: 39437488 DOI: 10.1016/j.intimp.2024.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
2
|
Ali A, de Almeida IM, Magalhães EP, Guedes JM, Cajazeiras FFM, Marinho MM, Marinho ES, de Menezes RRPPB, Sampaio TL, Santos HSD, da Silva Júnior GB, Martins AMC. Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Biol Chem 2024:hsz-2024-0068. [PMID: 39705087 DOI: 10.1515/hsz-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, in silico studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.
Collapse
Affiliation(s)
- Arif Ali
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Igor Moreira de Almeida
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Jesyka Macedo Guedes
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Marcia Machado Marinho
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Alice Maria Costa Martins
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Huang R, Zhang C, Xiang Z, Lin T, Ling J, Hu H. Role of mitochondria in renal ischemia-reperfusion injury. FEBS J 2024; 291:5365-5378. [PMID: 38567754 DOI: 10.1111/febs.17130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 12/19/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) has a high morbidity and mortality, representing a worldwide problem. The kidney is an essential organ of metabolism that has high blood perfusion and is the second most mitochondria-rich organ after the heart because of the high ATP demands of its essential functions of nutrient reabsorption, acid-base and electrolyte balance, and hemodynamics. Thus, these energy-intensive cells are particularly vulnerable to mitochondrial dysfunction. As the bulk of glomerular ultrafiltrate reabsorption by proximal tubules occurs via active transport, the mitochondria of proximal tubules must be equipped for detecting and responding to fluctuations in energy availability to guarantee efficient basal metabolism. Any insults to mitochondrial quality control mechanisms may lead to biological disruption, blocking the clearance of damaged mitochondria and resulting in morphological change and tissue dysfunction. Extensive research has shown that mitochondria have pivotal roles in acute kidney disease, so in this article, we discuss the role of mitochondria, their dynamics and mitophagy in renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Zhengjie Xiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Tao Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Jian Ling
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
5
|
Wang X, Luo T, Yang Y, Yang L, Liu M, Zou Q, Wang D, Yang C, Xue Q, Liu S, Wan J, He G, Zeng A, Hou J, Ma S, Wang P. TRPA1 protects against contrast-induced renal tubular injury by preserving mitochondrial dynamics via the AMPK/DRP1 pathway. Free Radic Biol Med 2024; 224:521-539. [PMID: 39278575 DOI: 10.1016/j.freeradbiomed.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are involved in the development of contrast-induced acute kidney injury (CI-AKI). The present study aimed to reveal the role of transient receptor potential ankyrin 1 (TRPA1), an oxidative sensor, in CI-AKI. Trpa1PT-/- mice with Trpa1 conditionally knocked out in renal proximal tubular (PT) cells, Trpa1 overexpression mice (Trpa1-OE), and TRPA1 agonists and antagonists were used to study its function in a mouse model of iohexol-induced CI-AKI. We found that TRPA1 was functionally expressed in PT cells. Activation of TRPA1 with cinnamaldehyde or overexpression of Trpa1 remarkably ameliorated renal tubular injury and dysfunction in a mouse model of CI-AKI, while CI-AKI was significantly exacerbated in Trpa1PT-/- mice. Proteomics demonstrated that mouse kidneys with CI-AKI had downregulated proteins involved in mitochondrial dynamics and upregulated mitophagy-associated proteins. The beneficial effects of TRPA1 activation/overexpression on CI-AKI were associated with improved mitochondrial function, decreased mitochondrial fission and oxidative stress, enhanced mitophagy, and less apoptosis of renal tubular cells. TRPA1-induced decreases in mitochondrial fission were linked to upregulated fusion-related proteins (mitofusin 1, mitofusin 2 and optic atrophy 1) and downregulated fission mediator, phosphorylated dynamin-related protein 1 (Drp1). Importantly, inhibition of Drp1 with mitochondrial division inhibitor 1 improved CI-AKI. In addition, the decreased mitochondrial fission was also mediated by inactivation of AMP-activated protein kinase which mediates mitochondrial biogenesis. The findings suggest that TRPA1 plays a protective role in CI-AKI through regulating mitochondrial fission/fusion, biogenesis, and dysfunction. Activating TRPA1 may become novel therapeutic strategies for the prevention of CI-AKI.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Tao Luo
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Yi Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Lun Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Min Liu
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Qingliang Zou
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Dan Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Changqiang Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Qiang Xue
- Department of Cardiology, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
| | - Sen Liu
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Jindong Wan
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Gaomin He
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Anping Zeng
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Jixin Hou
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Shuangtao Ma
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Peijian Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
6
|
Deng XJ, Wang YN, Lv CB, Qiu ZZ, Zhu LX, Shi JH, Sana SRGL. Effect of cuproptosis on acute kidney injury after cardiopulmonary bypass in diabetic patients. World J Diabetes 2024; 15:2123-2134. [PMID: 39493567 PMCID: PMC11525729 DOI: 10.4239/wjd.v15.i10.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is a common procedure in cardiac surgery. CPB is a high-risk factor for acute kidney injury (AKI), and diabetes is also such a factor. Diabetes can lead to copper overload. It is currently unclear whether AKI after CPB in diabetic patients is related to copper overload. AIM To explore whether the occurrence of CPB-AKI in diabetic patients is associated with cuproptosis. METHODS Blood and urine were collected from clinical diabetic and non-diabetic patients before and after CPB. Levels of copper ion, lactate, glucose, heat shock protein-70 (HSP-70), and dihydrolipoamide dehydrogenase (DLAT) were determined. A diabetic rat model was established and CPB was performed. The rats were assessed for the development of CPB-AKI, and for the association of AKI with cuproptosis by detecting copper levels, iron-sulfur cluster proteins and observation of mitochondrial structure by electron microscopy. RESULTS CPB resulted in elevations of copper, lactate, HSP-70 and DLAT in blood and urine in both diabetic and non-diabetic patients. CPB was associated with pathologic and mitochondrial damage in the kidneys of diabetic rats. Cuproptosis-related proteins also appeared to be significantly reduced. CONCLUSION CPB-AKI is associated with cuproptosis. Diabetes mellitus is an important factor aggravating CPB-AKI and cuproptosis.
Collapse
Affiliation(s)
- Xi-Jin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yi-Nan Wang
- Department of The Health Management Service Evaluation Center, The Health Management Service Evaluation Center of Heilongjiang Province, Harbin 150000, Hei-longjiang Province, China
| | - Chuan-Bao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 150001, Guangdong Province, China
| | - Zhong-Zhi Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ling-Xin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing-Hui Shi
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
7
|
Choi DH, Lee SM, Park BN, Lee MH, Yang DE, Son YK, Kim SE, An WS. Omega-3 Fatty Acids Modify Drp1 Expression and Activate the PINK1-Dependent Mitophagy Pathway in the Kidney and Heart of Adenine-Induced Uremic Rats. Biomedicines 2024; 12:2107. [PMID: 39335620 PMCID: PMC11429207 DOI: 10.3390/biomedicines12092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondrial homeostasis is controlled by biogenesis, dynamics, and mitophagy. Mitochondrial dysfunction plays a central role in cardiovascular and renal disease and omega-3 fatty acids (FAs) are beneficial for cardiovascular disease. We investigated whether omega-3 fatty acids (FAs) regulate mitochondrial biogenesis, dynamics, and mitophagy in the kidney and heart of adenine-induced uremic rats. Eighteen male Sprague Dawley rats were divided into normal control, adenine control, and adenine with omega-3 FA groups. Using Western blot analysis, the kidney and heart expression of mitochondrial homeostasis-related molecules, including peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), dynamin-related protein 1 (Drp1), and phosphatase and tensin homolog-induced putative kinase 1 (PINK1) were investigated. Compared to normal, serum creatinine and heart weight/body weight in adenine control were increased and slightly improved in the omega-3 FA group. Compared to the normal controls, the expression of PGC-1α and PINK1 in the kidney and heart of the adenine group was downregulated, which was reversed after omega-3 FA supplementation. Drp1 was upregulated in the kidney but downregulated in the heart in the adenine group. Drp1 expression in the heart recovered in the omega-3 FA group. Mitochondrial DNA (mtDNA) was decreased in the kidney and heart of the adenine control group but the mtDNA of the heart was recovered in the omega-3 FA group. Drp1, which is related to mitochondrial fission, may function oppositely in the uremic kidney and heart. Omega-3 FAs may be beneficial for mitochondrial homeostasis by activating mitochondrial biogenesis and PINK1-dependent mitophagy in the kidney and heart of uremic rats.
Collapse
Affiliation(s)
- Dong Ho Choi
- Department of Internal Medicine, Good Moon Hwa Hospital, Busan 48735, Republic of Korea
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Bin Na Park
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University, Busan 49201, Republic of Korea;
| | - Dong Eun Yang
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
- Medical Science Research Center, Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
8
|
Yamamoto H, Ishida Y, Zhang S, Osako M, Nosaka M, Kuninaka Y, Ishigami A, Iwahashi Y, Aragane M, Matsumoto L, Kimura A, Kondo T. Protective roles of thrombomodulin in cisplatin-induced nephrotoxicity through the inhibition of oxidative and endoplasmic reticulum stress. Sci Rep 2024; 14:14004. [PMID: 38890434 PMCID: PMC11189513 DOI: 10.1038/s41598-024-64619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Cisplatin is an effective chemotherapeutic agent widely used for the treatment of various solid tumors. However, cisplatin has an important limitation in its use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Thrombomodulin (TM) is well known not only for its role as a cofactor in the clinically important natural anticoagulation pathway but also for its anti-inflammatory properties. Here, we investigated the effects of TM in cisplatin-induced AKI. In mice intraperitoneally injected with 15 mg/kg cisplatin, TM (10 mg/kg) or PBS was administered intravenously at 24 h after cisplatin injection. TM significantly attenuated cisplatin-induced nephrotoxicity with the suppressed elevation of blood urea nitrogen and serum creatinine, and reduced histological damages. Actually, TM treatment significantly alleviated oxidative stress-induced apoptosis by reducing reactive oxygen species (ROS) levels in cisplatin-treated renal proximal tubular epithelial cells (RPTECs) in vitro. Furthermore, TM clarified cisplatin-induced apoptosis by reducing caspase-3 levels. In addition, TM attenuated the endoplasmic reticulum (ER) stress signaling pathway in both renal tissues and RPTECs to protect the kidneys from cisplatin-induced AKI. These findings suggest that TM is a potential protectant against cisplatin-induced nephrotoxicity through suppressing ROS generation and ER stress in response to cisplatin.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | - Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Miyu Osako
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuya Iwahashi
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Miki Aragane
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Lennon Matsumoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| |
Collapse
|
9
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
10
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
11
|
Li L, Liu F, Feng C, Chen Z, Zhang N, Mao J. Role of mitochondrial dysfunction in kidney disease: Insights from the cGAS-STING signaling pathway. Chin Med J (Engl) 2024; 137:1044-1053. [PMID: 38445370 PMCID: PMC11062705 DOI: 10.1097/cm9.0000000000003022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 03/07/2024] Open
Abstract
ABSTRACT Over the past decade, mitochondrial dysfunction has been investigated as a key contributor to acute and chronic kidney disease. However, the precise molecular mechanisms linking mitochondrial damage to kidney disease remain elusive. The recent insights into the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthetase (cGAS)-stimulator of interferon gene (STING) signaling pathway have revealed its involvement in many renal diseases. One of these findings is that mitochondrial DNA (mtDNA) induces inflammatory responses via the cGAS-STING pathway. Herein, we provide an overview of the mechanisms underlying mtDNA release following mitochondrial damage, focusing specifically on the association between mtDNA release-activated cGAS-STING signaling and the development of kidney diseases. Furthermore, we summarize the latest findings of cGAS-STING signaling pathway in cell, with a particular emphasis on its downstream signaling related to kidney diseases. This review intends to enhance our understanding of the intricate relationship among the cGAS-STING pathway, kidney diseases, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lu Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Chunyue Feng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Nan Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
12
|
Wang P, Ouyang J, Zhou K, Hu D, Zhang S, Zhang A, Yang Y. Olesoxime protects against cisplatin-induced acute kidney injury by attenuating mitochondrial dysfunction. Biomed J 2024; 48:100730. [PMID: 38643825 DOI: 10.1016/j.bj.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peipei Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Kaiqian Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Dandan Hu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Du R, Liu JS, Huang H, Liu YX, Jin JY, Wang CY, Dong Y, Fan LL, Xiang R. RTN3 deficiency exacerbates cisplatin-induced acute kidney injury through the disruption of mitochondrial stability. Mitochondrion 2024; 75:101851. [PMID: 38336146 DOI: 10.1016/j.mito.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Reticulum 3 (RTN3) is an endoplasmic reticulum (ER) protein that has been reported to act in neurodegenerative diseases and lipid metabolism. However, the role of RTN3 in acute kidney injury (AKI) has not been explored. Here, we employed public datasets, patient data, and animal models to explore the role of RTN3 in AKI. The underlying mechanisms were studied in primary renal tubular epithelial cells and in the HK2 cell line. We found reduced expression of RTN3 in AKI patients, cisplatin-induced mice, and cisplatin-treated HK2 cells. RTN3-null mice exhibit more severe AKI symptoms and kidney fibrosis after cisplatin treatment. Mitochondrial dysfunction was also found in cells with RTN3 knockdown or knockout. A mechanistic study revealed that RTN3 can interact with HSPA9 in kidney cells. RTN3 deficiency may disrupt the RTN3-HSPA9-VDAC2 complex and affect MAMs during ER-mitochondrion contact, which further leads to mitochondrial dysfunction and exacerbates cisplatin-induced AKI. Our study indicated that RTN3 was important in the kidney and that a decrease in RTN3 in the kidney might be a risk factor for the aggravation of AKI.
Collapse
Affiliation(s)
- Ran Du
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410011, China
| | - Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410011, China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Chen-Yu Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Yi Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China.
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410011, China.
| |
Collapse
|
14
|
Jin H, Yang Y, Zhu X, Zhou Y, Xu Y, Li J, Qi C, Shao X, Wu J, Wu S, Cai H, Gu L, Mou S, Ni Z, Li S, Lin Q. DDRGK1-mediated ER-phagy attenuates acute kidney injury through ER-stress and apoptosis. Cell Death Dis 2024; 15:63. [PMID: 38233375 PMCID: PMC10794694 DOI: 10.1038/s41419-024-06449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acute kidney injury (AKI) constitutes a prevalent clinical syndrome characterized by elevated morbidity and mortality rates, emerging as a significant public health issue. This study investigates the interplay between endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and ER-associated degradation (ER-phagy) in the pathogenesis of AKI. We employed four distinct murine models of AKI-induced by contrast media, ischemia-reperfusion injury, cisplatin, and folic acid-to elucidate the relationship between ER-phagy, ER stress, and apoptosis. Our findings reveal a marked decrease in ER-phagy coinciding with an accumulation of damaged ER, elevated ER stress, and increased apoptosis across all AKI models. Importantly, overexpression of DDRGK1 in HK-2 cells enhanced ER-phagy levels, ameliorating contrast-induced ER stress and apoptosis. These findings unveil a novel protective mechanism in AKI, wherein DDRGK1-UFL1-mediated ER-phagy mitigates ER stress and apoptosis in renal tubular epithelial cells. Our results thereby contribute to understanding the molecular underpinnings of AKI and offer potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Haijiao Jin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanting Yang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuying Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yin Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jialin Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chaojun Qi
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingkui Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201200, China
| | - Shan Wu
- Department of Endoscopy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hong Cai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Shu Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qisheng Lin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
15
|
Hurtado KA, Janda J, Schnellmann RG. Lasmiditan restores mitochondrial quality control mechanisms and accelerates renal recovery after ischemia-reperfusion injury. Biochem Pharmacol 2023; 218:115855. [PMID: 37866804 PMCID: PMC10872401 DOI: 10.1016/j.bcp.2023.115855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.
Collapse
Affiliation(s)
- Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Southern Arizona VA Health Care System, Tucson, AZ, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
16
|
Neikirk K, Ume AC, Prasad P, Marshall AG, Rockwood J, Wenegieme T, McMichael KE, McReynolds MR, Williams CR, Hinton A. Latent transforming growth factor beta binding protein 4: A regulator of mitochondrial function in acute kidney injury. Aging Cell 2023; 22:e14019. [PMID: 37960979 PMCID: PMC10726861 DOI: 10.1111/acel.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, latent transforming growth factor beta binding protein 4 (LTBP4) was implicated in the pathogenesis of renal damage through its modulation of mitochondrial dynamics. The seminal article written by Su et al. entitled "LTBP4 (Latent Transforming Growth Factor Beta Binding Protein 4) Protects Against Renal Fibrosis via Mitochondrial and Vascular Impacts" uncovers LTBP4's renoprotective role against acute kidney injury via modulating mitochondrial dynamics. Recently, LTBP4 has emerged as a driver in the mitochondrial-dependent modulation of age-related organ pathologies. This article aims to expand our understanding of LTBP4's diverse roles in these diseases in the context of these recent findings.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Adaku C. Ume
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOhioUSA
| | - Praveena Prasad
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOhioUSA
| | - Tara‐Yesomi Wenegieme
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOhioUSA
| | - Kelia E. McMichael
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOhioUSA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOhioUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
17
|
Jiang K, Li J, Jiang L, Li H, Lei L. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages. Oral Dis 2023; 29:3665-3676. [PMID: 35730318 DOI: 10.1111/odi.14286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Mitochondria are strained by microbial stimuli in the periodontal niche. Damaged mitochondria are cleared by mitophagy. The purpose of the study was to explore whether mitophagy participated in the progress of periodontitis and whether activation of mitophagy can inhibit inflammatory responses to bacterial infection in macrophages. METHODS Mitophagy-related genes were measured in the healthy and inflamed human gingiva. Bone marrow-derived macrophages (BMDMs) were infected with Porphyromonas gingivalis. Dexmedetomidine, urolithin A, and resveratrol were used to activate mitophagy, while small interference RNA was utilized to knock down PTEN-induced putative protein kinase 1 (PINK1). Activation of mitophagy-related genes and colocalization of them were detected by Western blot and confocal imaging. Damages of mitochondria, accumulation of mitochondrial reactive oxygen species (mtROS), and production of IL-1β, IL-6, and TNF-α were measured. RESULTS Levels of mitophagy-related genes were decreased in inflamed periodontal tissues and P. gingivalis-infected BMDMs. Dexmedetomidine, urolithin A, and resveratrol activated mitophagy, leading to reduced mitochondria damages, decreased mtROS generation, and inhibited IL-1β, IL-6, and TNF-α production. PINK1 knockdown reduced dexmedetomidine, urolithin A, and resveratrol-induced anti-inflammatory effect. CONCLUSION Inhibited mitophagy participated in the progress of periodontitis. Activation of mitophagy may become a therapeutic target during the progress of periodontitis by reducing mtROS.
Collapse
Affiliation(s)
- Ke Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Kobroob A, Kongkaew A, Wongmekiat O. Melatonin Reduces Aggravation of Renal Ischemia-Reperfusion Injury in Obese Rats by Maintaining Mitochondrial Homeostasis and Integrity through AMPK/PGC-1α/SIRT3/SOD2 Activation. Curr Issues Mol Biol 2023; 45:8239-8254. [PMID: 37886963 PMCID: PMC10605397 DOI: 10.3390/cimb45100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
This study examined the potential benefits of melatonin against renal ischemia and reperfusion (IR) injury in obesity and explored the underlying mechanisms. Obesity was induced in Wistar rats by feeding a high-fat diet for 16 weeks. Three obese groups that underwent renal IR induction (30-min renal ischemia followed by 24-h reperfusion) were randomly assigned to receive melatonin at ischemic onset, reperfusion onset, or pretreatment for 4 weeks before IR induction. Groups of vehicle-treated obese and normal-diet-fed rats that underwent sham or IR induction were also included in the study. The results showed that renal functional and structural impairments after IR incidence were aggravated in obese rats compared to normal-diet-fed rats. The obese-IR rats also exhibited oxidative stress, mitochondrial dysfunction, apoptosis, and mitochondrial dynamics and mitophagy imbalances, which were all considerably improved upon melatonin treatment, irrespective of the treatment time. This study suggests the prophylactic and therapeutic efficacy of melatonin in IR-induced acute kidney injury (AKI) in obese individuals, which may improve the prognosis of AKI in these populations. The benefits of melatonin are likely mediated by the modification of various signaling molecules within the mitochondria that maintain mitochondrial redox balance and lead to the protection of mitochondrial homeostasis and integrity.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
20
|
Su L, Zhang J, Wang J, Wang X, Cao E, Yang C, Sun Q, Sivakumar R, Peng Z. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 2023; 6:889. [PMID: 37644178 PMCID: PMC10465551 DOI: 10.1038/s42003-023-05226-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury contributes to the development of acute kidney injury (AKI). Kidney is the second organ rich in mitochondrial content next to the heart. Mitochondrial damage substantially contributes for AKI development. Mitophagy eliminates damaged mitochondria from the cells to maintain a healthy mitochondrial population, which plays an important role in AKI. Pannexin 1 (PANX1) channel transmembrane proteins are known to drive inflammation and release of adenosine triphosphate (ATP) during I/R injury. However, the specific role of PANX1 on mitophagy regulation in renal I/R injury remains elusive. In this study, we find that serum level of PANX1 is elevated in patients who developed AKI after cardiac surgery, and the level of PANX1 is positively correlated with serum creatinine and urea nitrogen levels. Using the mouse model of renal I/R injury in vivo and cell-based hypoxia/reoxygenation (H/R) model in vitro, we prove that genetic deletion of PANX1 mitigate the kidney tubular cell death, oxidative stress and mitochondrial damage after I/R injury through enhanced mitophagy. Mechanistically, PANX1 disrupts mitophagy by influencing ATP-P2Y-mTOR signal pathway. These observations provide evidence that PANX1 could be a potential biomarker for AKI and a therapeutic target to alleviate AKI caused by I/R injury.
Collapse
Affiliation(s)
- Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xiaozhan Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Edward Cao
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chen Yang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Qihao Sun
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ramadoss Sivakumar
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
21
|
Cuevas-López B, Romero-Ramirez EI, García-Arroyo FE, Tapia E, León-Contreras JC, Silva-Palacios A, Roldán FJ, Campos ONM, Hernandez-Esquivel L, Marín-Hernández A, Gonzaga-Sánchez JG, Hernández-Pando R, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. NAC Pre-Administration Prevents Cardiac Mitochondrial Bioenergetics, Dynamics, Biogenesis, and Redox Alteration in Folic Acid-AKI-Induced Cardio-Renal Syndrome Type 3. Antioxidants (Basel) 2023; 12:1592. [PMID: 37627587 PMCID: PMC10451243 DOI: 10.3390/antiox12081592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of kidney disease is increasing worldwide. Acute kidney injury (AKI) can strongly favor cardio-renal syndrome (CRS) type 3 development. However, the mechanism involved in CRS development is not entirely understood. In this sense, mitochondrial impairment in both organs has become a central axis in CRS physiopathology. This study aimed to elucidate the molecular mechanisms associated with cardiac mitochondrial impairment and its role in CRS development in the folic acid-induced AKI (FA-AKI) model. Our results showed that 48 h after FA-AKI, the administration of N-acetyl-cysteine (NAC), a mitochondrial glutathione regulator, prevented the early increase in inflammatory and cell death markers and oxidative stress in the heart. This was associated with the ability of NAC to protect heart mitochondrial bioenergetics, principally oxidative phosphorylation (OXPHOS) and membrane potential, through complex I activity and the preservation of glutathione balance, thus preventing mitochondrial dynamics shifting to fission and the decreases in mitochondrial biogenesis and mass. Our data show, for the first time, that mitochondrial bioenergetics impairment plays a critical role in the mechanism that leads to heart damage. Furthermore, NAC heart mitochondrial preservation during an AKI event can be a valuable strategy to prevent CRS type 3 development.
Collapse
Affiliation(s)
- Belén Cuevas-López
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Edgar Ignacio Romero-Ramirez
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Fernando E. García-Arroyo
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Edilia Tapia
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City 14000, Mexico; (J.C.L.-C.); (R.H.-P.)
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Francisco-Javier Roldán
- Outpatient Department, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Omar Noel Medina Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.N.M.C.); (J.P.-C.)
| | - Luz Hernandez-Esquivel
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.H.-E.); (A.M.-H.)
| | - Alvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.H.-E.); (A.M.-H.)
| | - José Guillermo Gonzaga-Sánchez
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City 14000, Mexico; (J.C.L.-C.); (R.H.-P.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.N.M.C.); (J.P.-C.)
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (B.C.-L.); (E.I.R.-R.); (F.E.G.-A.); (E.T.); (J.G.G.-S.); (L.G.S.-L.)
| |
Collapse
|
22
|
Hoogstraten CA, Jacobs MME, de Boer G, van de Wal MAE, Koopman WJH, Smeitink JAM, Russel FGM, Schirris TJJ. Metabolic impact of genetic and chemical ADP/ATP carrier inhibition in renal proximal tubule epithelial cells. Arch Toxicol 2023; 97:1927-1941. [PMID: 37154957 PMCID: PMC10256673 DOI: 10.1007/s00204-023-03510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Maaike M E Jacobs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Guido de Boer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Melissa A E van de Wal
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Werner J H Koopman
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Khondrion BV, Nijmegen, 6525 EX, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
23
|
van Till JO, Nojima H, Kameoka C, Hayashi C, Sakatani T, Washburn TB, Molitoris BA, Shaw AD, Engelman DT, Kellum JA. The Effects of Peroxisome Proliferator-Activated Receptor-Delta Modulator ASP1128 in Patients at Risk for Acute Kidney Injury Following Cardiac Surgery. Kidney Int Rep 2023; 8:1407-1416. [PMID: 37441472 PMCID: PMC10334402 DOI: 10.1016/j.ekir.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Peroxisome proliferator-activated receptor δ (PPARδ) plays a central role in modulating mitochondrial function in ischemia-reperfusion injury. The novel PPARδ modulator, ASP1128, was evaluated. Methods A randomized, double-blind, placebo-controlled, biomarker assignment-driven, multicenter study was performed in adult patients at risk for acute kidney injury (AKI) following cardiac surgery, examining efficacy and safety of a 3-day, once-daily intravenous dose of 100 mg ASP1128 versus placebo (1:1). AKI risk was based on clinical characteristics and postoperative urinary biomarker (TIMP2)•(IGFBP7). The primary end point was the proportion of patients with AKI based on serum creatinine within 72 hours postsurgery (AKI-SCr72h). Secondary endpoints included the composite end point of major adverse kidney events (MAKE: death, renal replacement therapy, and/or ≥25% reduction of estimated glomerular filtration rate [eGFR]) at days 30 and 90). Results A total of 150 patients were randomized and received study medication (81 placebo, 69 ASP1128). Rates of AKI-SCr72h were 21.0% and 24.6% in the placebo and ASP1128 arms, respectively (P = 0.595). Rates of moderate/severe AKI (stage 2/3 AKI-SCr and/or stage 3 AKI-urinary output criteria) within 72 hours postsurgery were 19.8% and 23.2%, respectively (P = 0.609). MAKE occurred within 30 days in 11.1% and 13.0% in the placebo and ASP1128 arms (P = 0.717), respectively; and within 90 days in 9.9% and 15.9% in the placebo and ASP1128 arms (P = 0.266), respectively. No safety issues were identified with ASP1128 treatment, but rates of postoperative atrial fibrillation were lower (11.6%) than in the placebo group (29.6%). Conclusion ASP1128 was safe and well-tolerated in patients at risk for AKI following cardiac surgery, but it did not show efficacy in renal endpoints.
Collapse
Affiliation(s)
| | - Hiroyuki Nojima
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | - Chieri Hayashi
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | | | - Bruce A. Molitoris
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew D. Shaw
- Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel T. Engelman
- Heart and Vascular Program, Baystate Health and University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - John A. Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Su CT, See DHW, Huang YJ, Jao TM, Liu SY, Chou CY, Lai CF, Lin WC, Wang CY, Huang JW, Hung KY. LTBP4 Protects Against Renal Fibrosis via Mitochondrial and Vascular Impacts. Circ Res 2023; 133:71-85. [PMID: 37232163 DOI: 10.1161/circresaha.123.322494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND As a part of natural disease progression, acute kidney injury (AKI) can develop into chronic kidney disease via renal fibrosis and inflammation. LTBP4 (latent transforming growth factor beta binding protein 4) regulates transforming growth factor beta, which plays a role in renal fibrosis pathogenesis. We previously investigated the role of LTBP4 in chronic kidney disease. Here, we examined the role of LTBP4 in AKI. METHODS LTBP4 expression was evaluated in human renal tissues, obtained from healthy individuals and patients with AKI, using immunohistochemistry. LTBP4 was knocked down in both C57BL/6 mice and human renal proximal tubular cell line HK-2. AKI was induced in mice and HK-2 cells using ischemia-reperfusion injury and hypoxia, respectively. Mitochondrial division inhibitor 1, an inhibitor of DRP1 (dynamin-related protein 1), was used to reduce mitochondrial fragmentation. Gene and protein expression were then examined to assess inflammation and fibrosis. The results of bioenergetic studies for mitochondrial function, oxidative stress, and angiogenesis were assessed. RESULTS LTBP4 expression was upregulated in the renal tissues of patients with AKI. Ltbp4-knockdown mice showed increased renal tissue injury and mitochondrial fragmentation after ischemia-reperfusion injury, as well as increased inflammation, oxidative stress, and fibrosis, and decreased angiogenesis. in vitro studies using HK-2 cells revealed similar results. The energy profiles of Ltbp4-deficient mice and LTBP4-deficient HK-2 cells indicated decreased ATP production. LTBP4-deficient HK-2 cells exhibited decreased mitochondrial respiration and glycolysis. Human aortic endothelial cells and human umbilical vein endothelial cells exhibited decreased angiogenesis when treated with LTBP4-knockdown conditioned media. Mitochondrial division inhibitor 1 treatment ameliorated inflammation, oxidative stress, and fibrosis in mice and decreased inflammation and oxidative stress in HK-2 cells. CONCLUSIONS Our study is the first to demonstrate that LTBP4 deficiency increases AKI severity, consequently leading to chronic kidney disease. Potential therapies focusing on LTBP4-associated angiogenesis and LTBP4-regulated DRP1-dependent mitochondrial division are relevant to renal injury.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Daniel H W See
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Yue-Jhu Huang
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
| | - Tzu-Ming Jao
- Global Innovation Joint-Degree Program International Joint Degree Master's Program in Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University, Taipei (T.-M.J.)
| | - Shin-Yun Liu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan (S.-Y.L.)
| | - Chih-Yi Chou
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei (C.-Y.W.)
| | - Chun-Fu Lai
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine (C.-F.L.), National Taiwan University Hospital, Taipei
| | - Wei-Chou Lin
- Department of Pathology (W.-C.L.), National Taiwan University Hospital, Taipei
| | - Chih-Yuan Wang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Jenq-Wen Huang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine, National Taiwan University Yunlin Branch, Douliu (J.-W.H.)
| | - Kuan-Yu Hung
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| |
Collapse
|
25
|
Nanto-Hara F, Yamazaki M, Murakami H, Ohtsu H. Chronic heat stress induces renal fibrosis and mitochondrial dysfunction in laying hens. J Anim Sci Biotechnol 2023; 14:81. [PMID: 37268977 DOI: 10.1186/s40104-023-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Heat stress in laying hens negatively affects egg production and shell quality by disrupting the homeostasis of plasma calcium and phosphorus levels. Although the kidney plays an important role in calcium and phosphorus homeostasis, evidence regarding the effect of heat stress on renal injury in laying hens is yet to be elucidated. Therefore, the aim of this study was to evaluate the effects of chronic heat stress on renal damage in hens during laying periods. METHODS A total of 16 white-leghorn laying hens (32 weeks old) were randomly assigned to two groups (n = 8). One group was exposed to chronic heat stress (33 °C for 4 weeks), whereas the other group was maintained at 24 °C. RESULTS Chronic heat exposure significantly increased plasma creatinine and decreased plasma albumin levels (P < 0.05). Heat exposure also increased renal fibrosis and the transcription levels of fibrosis-related genes (COLA1A1, αSMA, and TGF-β) in the kidney. These results suggest that renal failure and fibrosis were induced by chronic heat exposure in laying hens. In addition, chronic heat exposure decreased ATP levels and mitochondrial DNA copy number (mtDNA-CN) in renal tissue, suggesting that renal mitochondrial dysfunction occurs under conditions of heat stress. Damaged mitochondria leak mtDNAs into the cytosol and mtDNA leakage may activate the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway. Our results showed that chronic heat exposure activated the cGAS-STING pathway as indicated by increased expression of MDA5, STING, IRF7, MAVS, and NF-κB levels. Furthermore, the expression of pro-inflammatory cytokines (IL-12) and chemokines (CCL4 and CCL20) was upregulated in heat-stressed hens. CONCLUSIONS These results suggest that chronic heat exposure induces renal fibrosis and mitochondrial damage in laying hens. Mitochondrial damage by heat stress may activate the mtDNA-cGAS-STING signaling and cause subsequent inflammation, which contributes to the progression of renal fibrosis and dysfunction.
Collapse
Affiliation(s)
- Fumika Nanto-Hara
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Makoto Yamazaki
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hitoshi Murakami
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Haruhiko Ohtsu
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
26
|
Rayego-Mateos S, Basantes P, Morgado-Pascual JL, Brazal Prieto B, Suarez-Alvarez B, Ortiz A, Lopez-Larrea C, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Modulates Mitochondrial Dysfunction and Oxidative Stress Induced by Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:antiox12051130. [PMID: 37237996 DOI: 10.3390/antiox12051130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among the mechanisms involved in the progression of kidney disease, mitochondrial dysfunction has special relevance. Epigenetic drugs such as inhibitors of extra-terminal domain proteins (iBET) have shown beneficial effects in experimental kidney disease, mainly by inhibiting proliferative and inflammatory responses. The impact of iBET on mitochondrial damage was explored in in vitro studies in renal cells stimulated with TGF-β1 and in vivo in murine unilateral ureteral obstruction (UUO) model of progressive kidney damage. In vitro, JQ1 pretreatment prevented the TGF-β1-induced downregulation of components of the oxidative phosphorylation chain (OXPHOS), such as cytochrome C and CV-ATP5a in human proximal tubular cells. In addition, JQ1 also prevented the altered mitochondrial dynamics by avoiding the increase in the DRP-1 fission factor. In UUO model, renal gene expression levels of cytochrome C and CV-ATP5a as well as protein levels of cytochrome C were reduced These changes were prevented by JQ1 administration. In addition, JQ1 decreased protein levels of the DRP1 fission protein and increased the OPA-1 fusion protein, restoring mitochondrial dynamics. Mitochondria also participate in the maintenance of redox balance. JQ1 restored the gene expression of antioxidant proteins, such as Catalase and Heme oxygenase 1 in TGF-β1-stimulated human proximal tubular cells and in murine obstructed kidneys. Indeed, in tubular cells, JQ1 decreased ROS production induced by stimulation with TGF-β1, as evaluated by MitoSOXTM. iBETs, such as JQ1, improve mitochondrial dynamics, functionality, and oxidative stress in kidney disease.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
| | - Beatriz Brazal Prieto
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Carlos Lopez-Larrea
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|
27
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
28
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
29
|
Li MZ, Dai XY, Zhao YX, Li XW, Zhao Y, Li JL. Lycopene Attenuates Di(2-ethylhexyl) Phthalate-Induced Mitochondrial Damage and Inflammation in Kidney via cGAS-STING Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:569-579. [PMID: 36583613 DOI: 10.1021/acs.jafc.2c08351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a highly harmful and persistent environmental pollutant. Due to its unique chemical composition, it frequently dissolves and enters the environment to endanger human and animal health. Lycopene is a natural bioactive component that can potentially reduce the risk of environmental factor-induced chronic diseases. The present study sought to explore the role and underlying mechanism of lycopene (LYC) on DEHP-induced renal inflammatory response and apoptosis. In this study, mice were orally treated with LYC (5 mg/kg BW/day) and/or DEHP (500 or 1000 mg/kg BW/day) for 28 days. Our results indicated that LYC prevented DEHP-induced histopathological alterations and ultrastructural injuries, including decreased mitochondrial membrane potential (ΔΨm), PINK1/Parkin pathway-mediated mitophagy, and mitochondrial energetic deficit. When damaged mitochondria release mitochondrial DNA (mtDNA) into cytosol, LYC can alleviate inflammation and apoptosis caused by DEHP exposure by activating the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signal pathway. Collectively, our data demonstrate that LYC can reduce mitophagy caused by DEHP exposure by activating the PINK1/Parkin pathway and then reduce renal inflammation and apoptosis through the cGAS-STING pathway.
Collapse
Affiliation(s)
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, Jiangxi, P. R. China
| | | | | | | | | |
Collapse
|
30
|
Sun J, Pan J, Liu Q, Cheng J, Tang Q, Ji Y, Cheng K, wang R, Liu L, Wang D, Wu N, Zheng X, Li J, Zhang X, Zhu Z, Ding Y, Zheng F, Li J, Zhang Y, Yuan Y. Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury. Biomol Ther (Seoul) 2023; 31:97-107. [PMID: 36097885 PMCID: PMC9810451 DOI: 10.4062/biomolther.2022.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023] Open
Abstract
Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.
Collapse
Affiliation(s)
- Jian Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Rui wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Junxia Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xueyan Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zhilong Zhu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yanchun Ding
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jia Li
- The First Affiliated Hospital, Dalian Medical University, Dalian 116044, China,Corresponding Authors E-mail: (Li J), (Zhang Y), (Yuan Y), Tel: +86-0411-83635936-2188 (Li J), +86-0411-39728761 (Zhang Y), +86-411-86110154 (Yuan Y), Fax: +86-0411-86110515 (Li J), +86-0411-39536666 (Zhang Y), +86-0411-86110515 (Yuan Y)
| | - Ying Zhang
- Sixth Department of Liver Disease, Dalian Public Health Clinical Center, Dalian 116000, China,Corresponding Authors E-mail: (Li J), (Zhang Y), (Yuan Y), Tel: +86-0411-83635936-2188 (Li J), +86-0411-39728761 (Zhang Y), +86-411-86110154 (Yuan Y), Fax: +86-0411-86110515 (Li J), +86-0411-39536666 (Zhang Y), +86-0411-86110515 (Yuan Y)
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China,Corresponding Authors E-mail: (Li J), (Zhang Y), (Yuan Y), Tel: +86-0411-83635936-2188 (Li J), +86-0411-39728761 (Zhang Y), +86-411-86110154 (Yuan Y), Fax: +86-0411-86110515 (Li J), +86-0411-39536666 (Zhang Y), +86-0411-86110515 (Yuan Y)
| |
Collapse
|
31
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202933. [PMID: 36202760 PMCID: PMC9685437 DOI: 10.1002/advs.202202933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen-terminated germanene (H-germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H-germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H-germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol-induced murine AKI model, H-germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H-germanene nanoplatform is a powerful antioxidant against AKI and various anti-inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ming Zong
- Department of Clinical LaboratoryShanghai East HospitalTongji University School of MedicineShanghai200120P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| |
Collapse
|
32
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE 2022; 9. [DOI: doi.org/10.1002/advs.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 09/08/2023]
Abstract
AbstractAcute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen‐terminated germanene (H‐germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H‐germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H‐germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol‐induced murine AKI model, H‐germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H‐germanene nanoplatform is a powerful antioxidant against AKI and various anti‐inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ming Zong
- Department of Clinical Laboratory Shanghai East Hospital Tongji University School of Medicine Shanghai 200120 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| |
Collapse
|
33
|
Zhang M, Dong R, Da J, Yuan J, Zha Y, Long Y. Hyperhomocysteinemia exacerbates acute kidney injury via increased mitochondrial damage. Front Physiol 2022; 13:967104. [PMID: 36277207 PMCID: PMC9581205 DOI: 10.3389/fphys.2022.967104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a complex and common set of multifactorial clinical syndromes, and associated with increased in-hospital mortality. There is increasing evidence that Hyperhomocysteinemia (HHcy) is highly associated with the development of a variety of kidney diseases, including AKI. However, the pathogenesis of HHcy in AKI remains unclear. In this study, we investigated the effect and mechanism of HHcy on cisplatin-induced AKI in mice and NRK-52E cells cultured with HHcy. We confirmed that mice with HHcy had higher serum levels of creatinine and more severe renal tubule injury after cisplatin injection. We found that HHcy aggravated renal mitochondrial damage, mainly manifested as decreased ATP β, significantly increased cytoplasmic Cyt C expression and the ADP/ATP ratio, and a significantly decreased mitochondrial DNA (mtDNA) copy number. In addition, we found that HHcy accelerated cisplatin-induced renal DNA damage; culturing NRK-52E cells with homocysteine (Hcy) could significantly increase apoptosis and mitochondrial damage. Interestingly, we found that Mdivi-1 reduced Hcy-induced mitochondrial damage, thereby reducing the level of apoptosis. In conclusion, these results suggest that HHcy might aggravate the development of AKI by increasing mitochondrial damage and that reducing Hcy levels or inhibiting mitochondrial damage may be a potential therapeutic strategy to delay the development of AKI.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Biomedicine, Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Biomedicine, Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Biomedicine, Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Yanjun Long
- Department of Nephrology, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Biomedicine, Guizhou University School of Medicine, Guizhou University, Guiyang, China
- Department of Nephrology, People’s Hospital of Zhenfeng County, Qianxinan, Guizhou, China
- *Correspondence: Yanjun Long,
| |
Collapse
|
34
|
Yang EM, Park JS, Joo SY, Bae EH, Ma SK, Kim SW. Stanniocalcin‑1 suppresses TGF‑β‑induced mitochondrial dysfunction and cellular fibrosis in human renal proximal tubular cells. Int J Mol Med 2022; 50:107. [PMID: 35730604 DOI: 10.3892/ijmm.2022.5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Stanniocalcin‑1 (STC1), a multifunctional glycoprotein with antioxidant and anti‑inflammatory properties, serves an important role in kidney protection. STC1 is one of the few hormones targeted to the mitochondria to regulate mitochondrial quality control by suppressing oxidative stress and mitochondrial damage. However, the mechanisms underlying the effect of STC1 remain unclear. The present study aimed to investigate the protective role of recombinant STC1 (rSTC1) in renal fibrosis and to identify the mechanisms underlying cellular fibrosis in HK2 human renal proximal tubular cells. Semi‑quantitative PCR, western blot analysis and confocal microscopy were used to detect the mRNA levels, protein levels and mitochondrial membrane potential (MMP). Mitochondrial superoxide production was evaluated using MitoSox staining. rSTC1 attenuated TGF‑β‑induced downregulation of AMP‑activated protein kinase and uncoupling protein 2 (UCP2). Treatment of HK2 cells with TGF‑β reduced the MMP and increased the production of reactive oxygen species (ROS). In addition, TGF‑β treatment upregulated fibrotic markers, such as α‑SMA and fibronectin, in HK2 cells. Treatment with rSTC1 and TGF‑β suppressed mitochondrial ROS production by recovering the MMP and reversed the upregulation of fibrotic markers in HK2 cells. The effects of rSTC1 were reversed when UCP2 expression was silenced. The present study revealed a novel role of STC1 in preventing TGF‑β induced cellular fibrosis in HK2 cells.
Collapse
Affiliation(s)
- Eun Mi Yang
- Department of Pediatrics, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
35
|
Burtscher J, Vanderriele PE, Legrand M, Predel HG, Niebauer J, O’Keefe JH, Millet GP, Burtscher M. Could Repeated Cardio-Renal Injury Trigger Late Cardiovascular Sequelae in Extreme Endurance Athletes? Sports Med 2022; 52:2821-2836. [DOI: 10.1007/s40279-022-01734-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 12/17/2022]
Abstract
AbstractRegular exercise confers multifaceted and well-established health benefits. Yet, transient and asymptomatic increases in markers of cardio-renal injury are commonly observed in ultra-endurance athletes during and after competition. This has raised concerns that chronic recurring insults could cause long-term cardiac and/or renal damage. Indeed, extreme endurance exercise (EEE) over decades has sometimes been linked with untoward cardiac effects, but a causal relation with acute injury markers has not yet been established. Here, we summarize the current knowledge on markers of cardiac and/or renal injury in EEE athletes, outline the possible interplay between cardiac and kidney damage, and explore the roles of various factors in the development of potential exercise-related cardiac damage, including underlying diseases, medication, sex, training, competition, regeneration, mitochondrial dysfunction, oxidative stress, and inflammation. In conclusion, despite the undisputed health benefits of regular exercise, we speculate, based on the intimate link between heart and kidney diseases, that in rare cases excessive endurance sport may induce adverse cardio-renal interactions that under specific, hitherto undefined conditions could result in persistent cardiac damage. We highlight future research priorities and provide decision support for athletes and clinical consultants who are seeking safe strategies for participation in EEE training and competition.
Collapse
|
36
|
Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11071356. [PMID: 35883847 PMCID: PMC9311633 DOI: 10.3390/antiox11071356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
Collapse
|
37
|
Liu Z, Guan C, Li C, Zhang N, Yang C, Xu L, Zhou B, Zhao L, Luan H, Man X, Xu Y. Tilianin Reduces Apoptosis via the ERK/EGR1/BCL2L1 Pathway in Ischemia/Reperfusion-Induced Acute Kidney Injury Mice. Front Pharmacol 2022; 13:862584. [PMID: 35721209 PMCID: PMC9204490 DOI: 10.3389/fphar.2022.862584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a common syndrome impacting about 13.3 million patients per year. Tilianin has been reported to alleviate myocardial ischemia/reperfusion (I/R) injury, while its effect on AKI is unknown; thus, this study aimed to explore if tilianin protects I/R-induced AKI and the underlying mechanisms.Methods: The microarray dataset GSE52004 was downloaded from GEO DataSets (Gene Expression Omnibus). Differential expression analysis and gene-set enrichment analysis (GSEA) were performed by R software to identify apoptosis pathway-related genes. Then, RcisTarget was applied to identify the transcription factor (TF) related to apoptosis. The STRING database was used to construct a protein–protein interaction (PPI) network. Cytoscape software visualized PPI networks, and hub TFs were selected via cytoHubba. AutoDock was used for molecular docking of tilianin and hub gene-encoded proteins. The expression levels of hub genes were assayed and visualized by quantitative real-time PCR, Western blotting, and immunohistochemistry by establishing I/R-induced AKI mouse models.Results: Bioinformatics analysis showed that 34 genes, including FOS, ATF4, and Gadd45g, were involved in the apoptosis pathway. In total, seven hub TFs might play important roles in tilianin-regulating apoptosis pathways. In in vivo, tilianin improved kidney function and reduced the number of TUNEL-positive renal tubular epithelial cells (RTECs) after I/R-induced AKI. Tilianin reduced the activation of the ERK pathway and then downregulated the expression of EGR1. This further ameliorated the expression of anti-apoptotic genes such as BCL2L1 and BCL2, reduced pro-apoptotic genes such as BAD, BAX, and caspase-3, and reduced the release of cytochrome c.Conclusion: Tilianin reduced apoptosis after I/R-induced AKI by the ERK/EGR1/BCL2L1 pathway. Our findings provided novel insights for the first time into the protective effect and underlying molecular mechanisms of tilianin on I/R-induced AKI.
Collapse
Affiliation(s)
- Zengying Liu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Li
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, München, Germany
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Luan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Man
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yan Xu,
| |
Collapse
|
38
|
Hepokoski M, Singh P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am J Physiol Renal Physiol 2022; 322:F589-F596. [PMID: 35379000 PMCID: PMC9054254 DOI: 10.1152/ajprenal.00372.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.
Collapse
Affiliation(s)
- Mark Hepokoski
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,2Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California
| | - Prabhleen Singh
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,3Division of Nephrology and Hypertension, University of California, San Diego, California
| |
Collapse
|
39
|
Tetratricopeptide repeat domain 36 protects renal tubular cells from cisplatin-induced apoptosis potentially via maintaining mitochondrial homeostasis. Tissue Cell 2022; 76:101749. [DOI: 10.1016/j.tice.2022.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
|
40
|
Szabó-Biczók A, Varga G, Varga Z, Bari G, Vigyikán G, Gajda Á, Vida N, Hodoniczki Á, Rutai A, Juhász L, Nászai A, Gyöngyösi M, Turkevi-Nagy S, Érces D, Boros M. Veno-Venous Extracorporeal Membrane Oxygenation in Minipigs as a Robust Tool to Model Acute Kidney Injury: Technical Notes and Characteristics. Front Med (Lausanne) 2022; 9:866667. [PMID: 35573013 PMCID: PMC9097577 DOI: 10.3389/fmed.2022.866667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 01/04/2023] Open
Abstract
Objective Veno-venous extracorporeal membrane oxygenation (vv-ECMO) can save lives in severe respiratory distress, but this innovative approach has serious side-effects and is accompanied by higher rates of iatrogenic morbidity. Our aims were, first, to establish a large animal model of vv-ECMO to study the pathomechanism of complications within a clinically relevant time frame and, second, to investigate renal reactions to increase the likelihood of identifying novel targets and to improve clinical outcomes of vv-ECMO-induced acute kidney injury (AKI). Methods Anesthetized Vietnamese miniature pigs were used. After cannulation of the right jugular and femoral veins, vv-ECMO was started and maintained for 24 hrs. In Group 1 (n = 6) ECMO was followed by a further 6-hr post-ECMO period, while (n = 6) cannulation was performed without ECMO in the control group, with observation maintained for 30 h. Systemic hemodynamics, blood gas values and hour diuresis were monitored. Renal artery flow (RAF) was measured in the post-ECMO period with an ultrasonic flowmeter. At the end of the experiments, renal tissue samples were taken for histology to measure myeloperoxidase (MPO) and xanthine oxidoreductase (XOR) activity and to examine mitochondrial function with high-resolution respirometry (HRR, Oroboros, Austria). Plasma and urine samples were collected every 6 hrs to determine neutrophil gelatinase-associated lipocalin (NGAL) concentrations. Results During the post-ECMO period, RAF dropped (96.3 ± 21 vs. 223.6 ± 32 ml/min) and, similarly, hour diuresis was significantly lower as compared to the control group (3.25 ± 0.4 ml/h/kg vs. 4.83 ± 0.6 ml/h/kg). Renal histology demonstrated significant structural damage characteristic of ischemic injury in the tubular system. In the vv-ECMO group NGAL levels, rose significantly in both urine (4.24 ± 0.25 vs. 2.57 ± 0.26 ng/ml) and plasma samples (4.67 ± 0.1 vs. 3.22 ± 0.2 ng/ml), while tissue XOR (5.88 ± 0.8 vs. 2.57 ± 0.2 pmol/min/mg protein) and MPO (11.93 ± 2.5 vs. 4.34 ± 0.6 mU/mg protein) activity was elevated. HRR showed renal mitochondrial dysfunction, including a significant drop in complex-I-dependent oxidative capacity (174.93 ± 12.7 vs. 249 ± 30.07 pmol/s/ml). Conclusion Significantly decreased renal function with signs of structural damage and impaired mitochondrial function developed in the vv-ECMO group. The vv-ECMO-induced acute renal impairment in this 30-hr research protocol provides a good basis to study the pathomechanism, biomarker combinations or possible therapeutic possibilities for AKI.
Collapse
Affiliation(s)
- Antal Szabó-Biczók
- Division of Cardiac Surgery, Second Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gábor Bari
- Division of Cardiac Surgery, Second Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | | | - Ámos Gajda
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Noémi Vida
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Ádám Hodoniczki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Attila Rutai
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - László Juhász
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Anna Nászai
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Máté Gyöngyösi
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | | | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
41
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
42
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
43
|
Zhu P, Ma H, Cui S, Zhou X, Xu W, Yu J, Li J. ZLN005 Alleviates In Vivo and In Vitro Renal Fibrosis via PGC-1α-Mediated Mitochondrial Homeostasis. Pharmaceuticals (Basel) 2022; 15:ph15040434. [PMID: 35455432 PMCID: PMC9025854 DOI: 10.3390/ph15040434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, chronic kidney disease (CKD) is one of the most common diseases; it is also a serious threat to human health due to its high mortality, and its treatment is still a major clinical challenge. Mitochondrial dyshomeostasis plays an important role in the development of CKD. ZLN005 is a novel peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) activator from our laboratory. To explore whether ZLN005 can protect against CKD in vivo and in vitro, a unilateral ureteral obstruction (UUO) model and TGF-β1-treated renal tubular epithelial cells (TECs), respectively, were used in this study. We found that ZLN005-administrated UUO mice showed less kidney damages than control mice, as indicated by the reduced expression of fibrotic biomarkers in the kidney of UUO mice. ZLN005 treatment also alleviated the TGF-β1-induced fibrotic phenotype and lipid accumulation in TECs. Our study demonstrated ZLN005 treatment improved mitochondrial homeostasis at least partially via the activation of PGC-1α, thus maintaining mitochondria function and energy homeostasis. In summary, ZLN005 treatment ameliorates UUO-induced renal fibrosis, providing conceptional support for mitochondria-targeting therapies for chronic kidney disease.
Collapse
Affiliation(s)
- Pengfei Zhu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing 210000, China;
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (H.M.); (S.C.)
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China; (X.Z.); (W.X.)
| | - Haijian Ma
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (H.M.); (S.C.)
| | - Shichao Cui
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (H.M.); (S.C.)
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China; (X.Z.); (W.X.)
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China; (X.Z.); (W.X.)
| | - Jiangyi Yu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing 210000, China;
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China; (X.Z.); (W.X.)
- Correspondence: (J.Y.); (J.L.)
| | - Jingya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (H.M.); (S.C.)
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Correspondence: (J.Y.); (J.L.)
| |
Collapse
|
44
|
Strazdauskas A, Trumbeckaite S, Jakstas V, Kamarauskaite J, Ivanauskas L, Baniene R. Ischemia In Vivo Induces Cardiolipin Oxidation in Rat Kidney Mitochondria. BIOLOGY 2022; 11:biology11040541. [PMID: 35453739 PMCID: PMC9026122 DOI: 10.3390/biology11040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Cardiolipin is a mitochondrial phospholipid that plays a significant role in mitochondrial bioenergetics. Cardiolipin is oxidized under conditions like oxidative stress that occurs during ischemia/reperfusion; however, it is known that even during ischemia, many reactive oxygen species are generated. Our aim was to analyze the effect of in vivo ischemia on cardiolipin oxidation. Adult male Wistar rats were anesthetized; then, their abdomens were opened, and microvascular clips were placed on renal arteries for 30, 40 or 60 min, causing ischemia. After ischemia, kidneys were harvested, mitochondria were isolated, and lipids were extracted for chromatographic and mass spectrometric analysis of tetralinoleoyl cardiolipin and its oxidation products. Chromatographic and mass spectrometric analysis revealed a 47%, 68% and 74% decrease in tetralinoleoyl cardiolipin after 30 min, 40 min and 60 min of renal ischemia, respectively (p < 0.05). Eight different cardiolipin oxidation products with up to eight additional oxygens were identified in rat kidney mitochondria. A total of 40 min of ischemia caused an average of a 6.9-fold increase in all oxidized cardiolipin forms. We present evidence that renal ischemia in vivo alone induces tetralinoleoyl cardiolipin oxidation and depletion in rat kidney mitochondria.
Collapse
Affiliation(s)
- Arvydas Strazdauskas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Correspondence:
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (V.J.); (J.K.)
| | - Valdas Jakstas
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (V.J.); (J.K.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Justina Kamarauskaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (V.J.); (J.K.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania;
| | - Rasa Baniene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
45
|
Li Y, Jiang Y, Zhou W, Wu Y, Zhang S, Ding G, Zhang Y, Zhang A, Huang S, Jia Z, You R. Maintaining homeostasis of mitochondria and endoplasmic reticulum with NSC228155 alleviates cisplatin-induced acute kidney injury. Free Radic Biol Med 2022; 181:270-287. [PMID: 35134531 DOI: 10.1016/j.freeradbiomed.2022.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is a common complication of hospitalization with high mortality. Approximately 30% of patients receiving cisplatin, the first-line chemotherapy treatment, develop AKI. NSC228155 is a novel compound with potential anti-cancer and anti-bacterial effects. Its therapeutic efficacy in other diseases is unclear. In the present study, we investigated the effect of NSC228155 on cisplatin-induced AKI. The mice were consecutively treated with 2.5 mg/kg of NSC228155 for five days and injected with cisplatin (22 mg/kg) via intraperitoneal injection on day three. NSC228155 strikingly improved the renal function by decreasing the serum creatinine by 52.6% in the cisplatin-induced AKI mice model. Pathologically, NSC228155 profoundly alleviated the tubular damage in Periodic Acid-Schiff staining, and significantly reduced the expression of tubular injury markers and apoptosis in the cisplatin-injured mice kidneys. NSC228155 effectively restored the mitochondrial homeostasis by decreasing damaged mitochondria, activating signals for mitochondrial dynamics and recycling, and corrected mitochondrial dysfunction in ATP production and oxidative stress in the cisplatin model. Transcriptomics and metabolomics analysis on the mice renal cortex suggested that NSC228155 profoundly corrected energy metabolism, especially citrate cycle-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress in the cisplatin-induced AKI kidneys. NSC228155 effectively inhibited ER stress induced by cisplatin or tunicamycin in mice kidneys and HK-2 cells. Co-treatment of NSC228155 with 4-phenylbutyrate or MnTBAP showed a similar therapeutic effect in AKI as the inhibitors or NSC228155 alone did, and corrected the mitochondrial dysfunction and ER stress, respectively, indicating the crosstalk between ER and mitochondria played essential roles in the therapeutic effect of NSC228155 in AKI. Together, these results consistently demonstrated that NSC228155 alleviated cisplatin-induced AKI by restoring the homeostasis in mitochondria and ER, suggesting a therapeutic potential and perhaps a novel strategy for drug discovery.
Collapse
Affiliation(s)
- Yanwei Li
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuteng Jiang
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Hoogstraten CA, Smeitink JAM, Russel FGM, Schirris TJJ. Dissecting Drug-Induced Cytotoxicity and Metabolic Dysfunction in Conditionally Immortalized Human Proximal Tubule Cells. FRONTIERS IN TOXICOLOGY 2022; 4:842396. [PMID: 35295229 PMCID: PMC8915871 DOI: 10.3389/ftox.2022.842396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Fourteen to 26 percent of all hospitalized cases of acute kidney injury are explained by drug-induced toxicity, emphasizing the importance of proper strategies to pre-clinically assess renal toxicity. The MTT assay is widely used as a measure of cell viability, but largely depends on cellular metabolic activity. Consequently, MTT as a single assay may not be the best way to assess cytotoxicity of compounds that reduce mitochondrial function and cellular metabolic activity without directly affecting cell viability. Accordingly, we aim to highlight the limitations of MTT alone in assessing renal toxicity of compounds that interfere with metabolic activity. Therefore, we compared toxic effects observed by MTT with a fluorescent assay that determines compromised plasma membrane permeability. Exposure of proximal tubule epithelial cells to nephrotoxic compounds reduced cellular metabolic activity concentration- and time-dependently. We show that compared to our fluorescence-based approach, assessment of cellular metabolic activity by means of MTT provides a composite readout of cell death and metabolic impairment. An approach independent of cellular metabolism is thus preferable when assessing cytotoxicity of compounds that induce metabolic dysfunction. Moreover, combining both assays during drug development enables a first discrimination between compounds having a direct or indirect mitochondrial toxic potential.
Collapse
Affiliation(s)
- Charlotte A. Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan A. M. Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
- Khondrion BV, Nijmegen, Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom J. J. Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
47
|
Li X, Jiang B, Zou Y, Zhang J, Fu YY, Zhai XY. Roxadustat (FG-4592) Facilitates Recovery From Renal Damage by Ameliorating Mitochondrial Dysfunction Induced by Folic Acid. Front Pharmacol 2022; 12:788977. [PMID: 35280255 PMCID: PMC8915431 DOI: 10.3389/fphar.2021.788977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023] Open
Abstract
Incomplete recovery from acute kidney injury induced by folic acid is a major risk factor for progression to chronic kidney disease. Mitochondrial dysfunction has been considered a crucial contributor to maladaptive repair in acute kidney injury. Treatment with FG-4592, an inhibitor of hypoxia inducible factor prolyl-hydroxylase, is emerging as a new approach to attenuate renal damage; however, the underlying mechanism has not been fully elucidated. The current research demonstrated the protective effect of FG-4592 against renal dysfunction and histopathological damage on the 7th day after FA administration. FG-4592 accelerated tubular repair by promoting tubular cell regeneration, as indicated by increased proliferation of cell nuclear antigen-positive tubular cells, and facilitated structural integrity, as reflected by up-regulation of the epithelial inter-cellular tight junction molecule occludin-1 and the adherens junction molecule E-cadherin. Furthermore, FG-4592 ameliorated tubular functional recovery by restoring the function-related proteins aquaporin1, aquaporin2, and sodium chloride cotransporter. Specifically, FG-4592 pretreatment inhibited hypoxia inducible factor-1α activation on the 7th day after folic acid injection, which ameliorated ultrastructural abnormalities, promoted ATP production, and attenuated excessive reactive oxygen species production both in renal tissue and mitochondria. This was mainly mediated by balancing of mitochondrial dynamics, as indicated by down-regulation of mitochondrial fission 1 and dynamin-related protein 1 as well as up-regulation of mitofusin 1 and optic atrophy 1. Moreover, FG-4592 pretreatment attenuated renal tubular epithelial cell death, kidney inflammation, and subsequent interstitial fibrosis. In vitro, TNF-α-induced HK-2 cells injury could be ameliorated by FG-4592 pretreatment. In summary, our findings support the protective effect of FG-4592 against folic acid-induced mitochondrial dysfunction; therefore, FG-4592 treatment can be used as a useful strategy to facilitate tubular repair and mitigate acute kidney injury progression.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Institute of Nephropathology, China Medical University, Shenyang, China
- *Correspondence: Xiao-Yue Zhai,
| |
Collapse
|
48
|
He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, Li X, Du S, Zhang Y, Yu J. NAD + ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med 2022; 26:1979-1993. [PMID: 35137552 PMCID: PMC8980955 DOI: 10.1111/jcmm.17222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.
Collapse
Affiliation(s)
- Simeng He
- School of Medicine, Nankai University, Tianjin, China
| | - Qiaoying Gao
- Tianjin key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Xiaoyang Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Yang
- Tianjin key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- School of Medicine, Nankai University, Tianjin, China.,Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Wang Y, Liu Q, Cai J, Wu P, Wang D, Shi Y, Huyan T, Su J, Li X, Wang Q, Wang H, Zhang F, Bae ON, Tie L. Emodin prevents renal ischemia-reperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fission. Eur J Pharmacol 2022; 916:174603. [PMID: 34793771 DOI: 10.1016/j.ejphar.2021.174603] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is a serious threat to human health. Clinically, ischemia-reperfusion (I/R) injury is considered one of the most common contributors to AKI. Emodin has been reported to alleviate I/R injury in the heart, brain, and small intestine in rats and mice through its anti-inflammatory effects. The present study investigated whether emodin improved AKI induced by I/R and elucidated the molecular mechanisms. We used a mouse model of renal I/R injury and human renal tubular epithelial cell model of hypoxia/reoxygenation (H/R) injury. Ischemia/reperfusion resulted in renal dysfunction. Pretreatment with emodin ameliorated renal injury in mice following I/R injury. Emodin reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial reactive oxygen species and accelerated the recovery of adenosine triphosphate both in vivo and in vitro. Emodin prevented mitochondrial fission and restored the balance of mitochondrial dynamics. The phosphorylation of dynamin-related protein 1 (DRP1) at Ser616, a master regulator of mitochondrial fission, was upregulated in both models of I/R and H/R injury, and this upregulation was blocked by emodin. Using computational cognate protein kinase prediction and specific kinase inhibitors, we found that emodin inhibited the phosphorylation of calcium/calmodulin-dependent protein kinase II (https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554), thereby inhibiting its kinase activity and reducing the phosphorylation of DRP1 at Ser616. The results demonstrated that emodin pretreatment could protect renal function by improving mitochondrial dysfunction induced by I/R.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jiaying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Di Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yundi Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
50
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|