1
|
Gu X, Dong Y, Wang X, Ren Z, Li G, Hao Y, Wu J, Guo S, Fan Y, Ren H, Liu C, Ding S, Li W, Wu G, Liu Z. Identification of serum biomarkers for chronic kidney disease using serum metabolomics. Ren Fail 2024; 46:2409346. [PMID: 39378112 PMCID: PMC11463012 DOI: 10.1080/0886022x.2024.2409346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024] Open
Abstract
This study aimed to identify biomarkers for chronic kidney disease (CKD) by studying serum metabolomics. Serum samples were collected from 194 non-dialysis CKD patients and 317 healthy controls (HC). Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), untargeted metabolomics analysis was conducted. A random forest model was developed and validated in separate sets of HC and CKD patients. The serum metabolomic profiles of patients with chronic kidney disease (CKD) exhibited significant differences compared to healthy controls (HC). A total of 314 metabolites were identified as significantly different, with 179 being upregulated and 135 being downregulated in CKD patients. KEGG enrichment analysis revealed several key pathways, including arginine biosynthesis, phenylalanine metabolism, linoleic acid metabolism, and purine metabolism. The diagnostic efficacy of the classifier was high, with an area under the curve of 1 in the training and validation sets and 0.9435 in the cross-validation set. This study provides comprehensive insights into serum metabolism in non-dialysis CKD patients, highlighting the potential involvement of abnormal biological metabolism in CKD pathogenesis. Exploring metabolites may offer new possibilities for the management of CKD.
Collapse
Affiliation(s)
- Xi Gu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yindi Dong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanhua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaxin Hao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyuan Guo
- Department of Nephrology, Xinxiang Central Hospital, Xinxiang, China
| | - Yajuan Fan
- Department of Nephrology, Zhumadian Central Hospital, Zhumadian, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, China
| | - Suying Ding
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weikang Li
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ge Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Le Page AK, Johnson EC, Greenberg JH. Is mild dehydration a risk for progression of childhood chronic kidney disease? Pediatr Nephrol 2024; 39:3177-3191. [PMID: 38632124 PMCID: PMC11413076 DOI: 10.1007/s00467-024-06332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Children with chronic kidney disease (CKD) can have an inherent vulnerability to dehydration. Younger children are unable to freely access water, and CKD aetiology and stage can associate with reduced kidney concentrating capacity, which can also impact risk. This article aims to review the risk factors and consequences of mild dehydration and underhydration in CKD, with a particular focus on evidence for risk of CKD progression. We discuss that assessment of dehydration in the CKD population is more challenging than in the healthy population, thus complicating the definition of adequate hydration and clinical research in this field. We review pathophysiologic studies that suggest mild dehydration and underhydration may cause hyperfiltration injury and impact renal function, with arginine vasopressin as a key mediator. Randomised controlled trials in adults have not shown an impact of improved hydration in CKD outcomes, but more vulnerable populations with baseline low fluid intake or poor kidney concentrating capacity need to be studied. There is little published data on the frequency of dehydration, and risk of complications, acute or chronic, in children with CKD. Despite conflicting evidence and the need for more research, we propose that paediatric CKD management should routinely include an assessment of individual dehydration risk along with a treatment plan, and we provide a framework that could be used in outpatient settings.
Collapse
Affiliation(s)
- Amelia K Le Page
- Department of Nephrology, Monash Children's Hospital, Clayton, VIC, Australia.
- Department of Pediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Evan C Johnson
- Division of Kinesiology & Health, College of Health Sciences, University of Wyoming, Laramie, WY, USA
| | - Jason H Greenberg
- Section of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Clinical and Translational Research Accelerator, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
4
|
Madison J, Wilhelm K, Meehan DT, Gratton MA, Vosik D, Samuelson G, Ott M, Fascianella J, Nelson N, Cosgrove D. Ramipril therapy in integrin α1-null, autosomal recessive Alport mice triples lifespan: mechanistic clues from RNA-seq analysis. J Pathol 2024; 262:296-309. [PMID: 38129319 PMCID: PMC10872630 DOI: 10.1002/path.6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1β1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Denise Vosik
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Megan Ott
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Noa Nelson
- Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
5
|
Ozbek DA, Koc SC, Özkan NE, Kablan SE, Yet I, Uner M, Ozlu N, Nemutlu E, Lay I, Ayhan AS, Yildirim T, Arici M, Yilmaz SR, Erdem Y, Altun B. A comparative urinary proteomic and metabolomic analysis between renal aa amyloidosis and membranous nephropathy with clinicopathologic correlations. J Proteomics 2024; 293:105064. [PMID: 38154551 DOI: 10.1016/j.jprot.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Urinary omics has become a powerful tool for elucidating pathophysiology of glomerular diseases. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urine proteomic and metabolomic analysis between recently diagnosed renal AA amyloidosis (AA) and membranous nephropathy (MN) patients. Urine samples of 22 (8 AA, 8 MN and 6 healthy control) patients were analyzed with nLC-MS/MS and GC/MS for proteomic and metabolomic studies, respectively. Pathological specimens were scored for glomerulosclerosis and tubulointerstitial fibrosis grades. Functional enrichment analysis between AA and control groups showed enrichment in cell adhesion related sub-domains. Uromodulin (UMOD) was lower, whereas ribonuclease 1 (RNase1) and α-1-microglobulin/bikunin precursor (AMBP) were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03) and AMBP-eGFR (r = -0.69, p = 0.003) variables. Metabolomic analysis showed myo-inositol and urate were higher in AA compared to MN group. A positive correlation was detected between RNase1 and urate independent of eGFR values (r = 0.63, p = 0.01). Enrichment in cell adhesion related domains suggested a possible increased urinary shear stress due to amyloid fibrils. UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be related with systemic inflammation in AA amyloidosis. SIGNIFICANCE: Urinary omics studies have become a standard tool for biomarker studies. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urinary omics analysis between recently diagnosed renal AA amyloidosis (AA), membranous nephropathy (MN) patients and healthy controls. Pathological specimens were scored with glomerulosclerosis (G) and tubulointerstitial fibrosis (IF) grades to consolidate the results of the omics studies and correlation analyzes. Functional enrichment analysis showed enrichment in cell adhesion related sub-domains due to downregulation of cadherins; which could be related with increased urinary shear stress due to amyloid deposition and disruption of tissue micro-architecture. In comparative proteomic analyzes UMOD was lower, whereas RNase1 and AMBP were higher in AA compared to MN group. Whereas in metabolomic analyzes; myo-inositol, urate and maltose were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03), AMBP-eGFR (r = -0.69, p = 0.003) and between RNase1-Urate independent of eGFR values (r = 0.63, p = 0.01). This study is the first comprehensive urinary omics analysis focusing on renal AA Amyloidosis to the best of our knowledge. Based on physiologic roles and clinicopathologic correlations of the molecules; UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be increased with systemic inflammation and endothelial damage in AA amyloidosis.
Collapse
Affiliation(s)
- Deniz Aral Ozbek
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey.
| | - Sila Cankurtaran Koc
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Nazlı Ezgi Özkan
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
| | - Sevilay Erdogan Kablan
- Hacettepe University Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Idil Yet
- Hacettepe University Graduate School of Health Sciences, Department of Bioinformatics, Ankara, Turkey
| | - Meral Uner
- Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Nurhan Ozlu
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
| | - Emirhan Nemutlu
- Hacettepe University Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Incilay Lay
- Hacettepe University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | - Arzu Saglam Ayhan
- Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Tolga Yildirim
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Mustafa Arici
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Seref Rahmi Yilmaz
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Yunus Erdem
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Bulent Altun
- Hacettepe University Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| |
Collapse
|
6
|
Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19:e0294926. [PMID: 38166023 PMCID: PMC10760924 DOI: 10.1371/journal.pone.0294926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024] Open
Abstract
Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Guerrero-Mauvecin J, Fontecha-Barriuso M, López-Diaz AM, Ortiz A, Sanz AB. RIPK3 and kidney disease. Nefrologia 2024; 44:10-22. [PMID: 37150671 DOI: 10.1016/j.nefroe.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 05/09/2023] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3) is an intracellular kinase at the crossroads of cell death and inflammation. RIPK3 contains a RIP homotypic interaction motif (RHIM) domain which allows interactions with other RHIM-containing proteins and a kinase domain that allows phosphorylation of target proteins. RIPK3 may be activated through interaction with RHIM-containing proteins such as RIPK1, TRIF and DAI (ZBP1, DLM-1) or through RHIM-independent mechanisms in an alkaline intracellular pH. RIPK3 mediates necroptosis and promotes inflammation, independently of necroptosis, through either activation of NFκB or the inflammasome. There is in vivo preclinical evidence of the contribution of RIPK3 to both acute kidney injury (AKI) and chronic kidney disease (CKD) and to the AKI-to-CKD transition derived from RIPK3 deficient mice or the use of small molecule RIPK3 inhibitors. In these studies, RIPK3 targeting decreased inflammation but kidney injury improved only in some contexts. Clinical translation of these findings has been delayed by the potential of some small molecule inhibitors of RIPK3 kinase activity to trigger apoptotic cell death by inducing conformational changes of the protein. A better understanding of the conformational changes in RIPK3 that trigger apoptosis, dual RIPK3/RIPK1 inhibitors or repurposing of multiple kinase inhibitors such as dabrafenib may facilitate clinical development of the RIPK3 inhibition concept for diverse inflammatory diseases, including kidney diseases.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | | | - Ana M López-Diaz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; RICORS2040, 28040 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; RICORS2040, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Carriazo S, Ribagorda M, Pintor-Chocano A, Perez-Gomez MV, Ortiz A, Sanchez-Niño MD. Increased expression of SCARF genes favoring SARS-CoV-2 infection in key target organs in CKD. Clin Kidney J 2023; 16:2672-2682. [PMID: 38046008 PMCID: PMC10689187 DOI: 10.1093/ckj/sfad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background Chronic kidney disease (CKD), especially diabetic CKD, is the condition that most increases the risk of lethal coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the underlying molecular mechanisms are unclear. SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) regulate coronavirus cell entry and/or replication. We hypothesized that CKD may alter the expression of SCARF genes. Methods A literature search identified 34 SCARF genes of which we selected 21 involved in interactions between SARS-CoV/SARS-CoV-2 and host cells, and assessed their mRNA expression in target tissues of COVID-19 (kidneys, lungs, aorta and heart) in mice with adenine-induced CKD. Results Twenty genes were differentially expressed in at least one organ in mice with CKD. For 15 genes, the differential expression would be expected to favor SARS-CoV-2 infection and/or severity. Of these 15 genes, 13 were differentially expressed in the kidney and 8 were validated in human CKD kidney transcriptomics datasets, including those for the most common cause of CKD, diabetic nephropathy. Two genes reported to protect from SARS-CoV-2 were downregulated in at least two non-kidney target organs: Ifitm3 encoding interferon-induced transmembrane protein 3 (IFITM3) in lung and Ly6e encoding lymphocyte antigen 6 family member 6 (LY6E) in aorta. Conclusion CKD, including diabetic CKD, is associated with the differential expression of multiple SCARF genes in target organs of COVID-19, some of which may sensitize to SARS-CoV-2 infection. This information may facilitate developing therapeutic strategies aimed at decreasing COVID-19 severity in patients with CKD.
Collapse
Affiliation(s)
- Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Kathrani A, Yen S, Hall EJ, Swann JR. The effects of a hydrolyzed protein diet on the plasma, fecal and urine metabolome in cats with chronic enteropathy. Sci Rep 2023; 13:19979. [PMID: 37968311 PMCID: PMC10652014 DOI: 10.1038/s41598-023-47334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Hydrolyzed protein diets are extensively used to treat chronic enteropathy (CE) in cats. However, the biochemical effects of such a diet on feline CE have not been characterized. In this study an untargeted 1H nuclear magnetic resonance spectroscopy-based metabolomic approach was used to compare the urinary, plasma, and fecal metabolic phenotypes of cats with CE to control cats with no gastrointestinal signs recruited at the Royal Veterinary College (RVC). In addition, the biomolecular consequences of a hydrolyzed protein diet in cats with CE was also separately determined in cats recruited from the RVC (n = 16) and the University of Bristol (n = 24) and whether these responses differed between dietary responders and non-responders. Here, plasma metabolites related to energy and amino acid metabolism significantly varied between CE and control cats in the RVC cohort. The hydrolyzed protein diet modulated the urinary metabolome of cats with CE (p = 0.005) in both the RVC and Bristol cohort. In the RVC cohort, the urinary excretion of phenylacetylglutamine, p-cresyl-sulfate, creatinine and taurine at diagnosis was predictive of dietary response (p = 0.025) although this was not observed in the Bristol cohort. Conversely, in the Bristol cohort plasma betaine, glycerol, glutamine and alanine at diagnosis was predictive of outcome (p = 0.001), but these same results were not observed in the RVC cohort. The biochemical signature of feline CE in the RVC cohort was consistent with that identified in human and animal models of inflammatory bowel disease. The hydrolyzed protein diet had the same effect on the urinary metabolome of cats with CE at both sites. However, biomarkers that were predictive of dietary response at diagnosis differed between the 2 sites. This may be due to differences in disease severity, disease heterogeneity, factors unrelated to the disease or small sample size at both sites. As such, further studies utilizing larger number of cats are needed to corroborate these findings.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
10
|
Xie YH, Wang L, Li ML, Gong ZC, Du J. Role of myo-inositol in acute kidney injury induced by cisplatin. Toxicology 2023; 499:153653. [PMID: 37863467 DOI: 10.1016/j.tox.2023.153653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
There is an increasing evidence suggesting that myo-inositol (MI) may be a renoprotective factor. Our previous study revealed that decreased MI concentrations and increased excretion are often observed in animal models of renal injury and in patients with nephropathy. However, the role of MI supplementation in renal injury remains unclear. In this study, we aimed to explore the role of MI in cisplatin-induced acute kidney injury (AKI). We established a model of acute kidney injury caused by cisplatin (CDDP). Male Kunming mice were randomly divided into six groups: Sham (normal saline), CDDP (15 mg/kg), + MI (150 mg/kg), + MI (300 mg/kg), + MI (600 mg/kg) and MI (600 mg/kg). Human renal tubular epithelial cell line HK-2 cells were likewise separated into six groups at random: Control (normal saline), CDDP (20 µM), + MI (200 µM), + MI (400 µM), + MI (800 µM) and MI (800 µM). After the model was established, renal function indexes were subsequently detected, and experiments such as pathological staining analysis and protein expression analysis were performed. Our results showed that cisplatin administration led to AKI and apoptosis in mice and HK-2 cells, accompanied by markedly increased levels of MIOX, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), whereas exogenous MI significantly attenuated kidney injury and HK-2 cell damage induced by cisplatin both in vivo and in vitro by inhibiting excessive apoptosis. Overall, our findings demonstrate that exogenous MI can reduce excessive apoptosis, thus playing a protective role in cisplatin-induced AKI, indicating that exogenous MI may be used as an adjunctive treatment modality in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Liang Li
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Salvador CL, Flemmen PTK, Tøndel C, Bliksrud YT, Tsui EFF, Brun A, Bjerre A, Mørkrid L. Renal function, sex and age influence purines and pyrimidines in urine and could lead to diagnostic misinterpretation. Mol Genet Metab 2023; 140:107649. [PMID: 37517327 DOI: 10.1016/j.ymgme.2023.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
Glomerular filtration rate (GFR) is commonly used in clinical practice for the diagnosis and follow-up of chronic kidney disease. Screening for inborn errors of metabolism (IEM) is based on analysis of biomarkers in urine, reported by their ratio to urinary creatinine (crn). Impaired renal function may complicate the interpretation of several biomarkers used for screening of IEM. Our goal was to investigate the influence of kidney function, in terms of measured GFR (mGFR) on purines and pyrimidines in urine, in addition to the relationship to sex, age, pH and ketosis. Children (n = 96) with chronic kidney disease (CKD), in different CKD stages, were included. Urine samples were obtained prior to the injection of iohexol. Serum samples at 7 time-points were used to calculate mGFR based on iohexol plasma clearance. The association with sex, age, ketosis and pH was examined in samples of the laboratory production from 2015 to 2021 (n = 8192). Age was a highly significant covariate for all markers. GFR correlated positively to several purines and pyrimidines; the ratios hypoxanthine/crn, xanthine/crn and urate/crn (p = 2.0 × 10-14, < 3 × 10-15 and 7.2 × 10-4, respectively), and the ratios orotic acid/crn, uracil/crn, and carbamyl-β-alanine/crn (p = 0.03, 1.4 × 10-6 and 0.003, respectively). The values of urate/crn, xanthine/crn, uracil/crn, and carbamyl-β-alanine/crn were higher in females above 16 years of age. Ketosis and pH influenced some markers. In conclusion, decreased renal function interferes with the excretion of urinary purines and pyrimidines, and this could change decision limits substantially, e.g. result in false negative results in Lesch-Nyhan syndrome. SYNOPSIS: GFR influences purines and pyrimidines in urine. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT01092260, https://clinicaltrials.gov/ct2/show/NCT01092260?term=tondel&rank=2.
Collapse
Affiliation(s)
| | | | - Camilla Tøndel
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Atle Brun
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Anna Bjerre
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Danilova EY, Maslova AO, Stavrianidi AN, Nosyrev AE, Maltseva LD, Morozova OL. CKD Urine Metabolomics: Modern Concepts and Approaches. PATHOPHYSIOLOGY 2023; 30:443-466. [PMID: 37873853 PMCID: PMC10594523 DOI: 10.3390/pathophysiology30040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
One of the primary challenges regarding chronic kidney disease (CKD) diagnosis is the absence of reliable methods to detect early-stage kidney damage. A metabolomic approach is expected to broaden the current diagnostic modalities by enabling timely detection and making the prognosis more accurate. Analysis performed on urine has several advantages, such as the ease of collection using noninvasive methods and its lower protein and lipid content compared with other bodily fluids. This review highlights current trends in applied analytical methods, major discoveries concerning pathways, and investigated populations in the context of urine metabolomic research for CKD over the past five years. Also, we are presenting approaches, instrument upgrades, and sample preparation modifications that have improved the analytical parameters of methods. The onset of CKD leads to alterations in metabolism that are apparent in the molecular composition of urine. Recent works highlight the prevalence of alterations in the metabolic pathways related to the tricarboxylic acid cycle and amino acids. Including diverse patient cohorts, using numerous analytical techniques with modifications and the appropriate annotation and explanation of the discovered biomarkers will help develop effective diagnostic models for different subtypes of renal injury with clinical applications.
Collapse
Affiliation(s)
- Elena Y. Danilova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Anna O. Maslova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Andrey N. Stavrianidi
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Alexander E. Nosyrev
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Larisa D. Maltseva
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| | - Olga L. Morozova
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| |
Collapse
|
13
|
Kim Y, Lee J, Kang MS, Song J, Kim SG, Cho S, Huh H, Lee S, Park S, Jo HA, Yang SH, Paek JH, Park WY, Han SS, Lee H, Lee JP, Joo KW, Lim CS, Hwang GS, Kim DK. Urinary Metabolite Profile Predicting the Progression of CKD. KIDNEY360 2023; 4:1048-1057. [PMID: 37291728 PMCID: PMC10476680 DOI: 10.34067/kid.0000000000000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Key Points As a biomarker, urinary metabolites could bridge the gap between genetic abnormalities and phenotypes of diseases. We found that levels of betaine, choline, fumarate, citrate, and glucose were significantly correlated with kidney function and could predict kidney outcomes, providing prognostic biomarkers in CKD. Background Because CKD is caused by genetic and environmental factors, biomarker development through metabolomic analysis, which reflects gene-derived downstream effects and host adaptation to the environment, is warranted. Methods We measured the metabolites in urine samples collected from 789 patients at the time of kidney biopsy and from urine samples from 147 healthy participants using nuclear magnetic resonance. The composite outcome was defined as a 30% decline in eGFR, doubling of serum creatinine levels, or end-stage kidney disease. Results Among the 28 candidate metabolites, we identified seven metabolites showing (1 ) good discrimination between healthy controls and patients with stage 1 CKD and (2 ) a consistent change in pattern from controls to patients with advanced-stage CKD. Among the seven metabolites, betaine, choline, glucose, fumarate, and citrate showed significant associations with the composite outcome after adjustment for age, sex, eGFR, the urine protein–creatinine ratio, and diabetes. Furthermore, adding choline, glucose, or fumarate to traditional biomarkers, including eGFR and proteinuria, significantly improved the ability of the net reclassification improvement (P < 0.05) and integrated discrimination improvement (P < 0.05) to predict the composite outcome. Conclusion Urinary metabolites, including betaine, choline, fumarate, citrate, and glucose, were found to be significant predictors of the progression of CKD. As a signature of kidney injury–related metabolites, it would be warranted to monitor to predict the renal outcome.
Collapse
Affiliation(s)
- Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Mi Sun Kang
- Integrated Metabolomics Research Group, Western Seoul center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jeongin Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seong Geun Kim
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Semin Cho
- Department of Internal Medicine, Chungang University Gwangmyeong hospital, Gyeonggi-do, Korea
| | - Hyuk Huh
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | - Soojin Lee
- Department of Internal Medicine, Uijeongbu Eulji University Medical Center, Gyeonggi-do, Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Ah Jo
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Ilsan, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Jin Hyuk Paek
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Woo Yeong Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
- Departement of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Departement of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
- Departement of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Departement of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Houske EA, Glimm MG, Bergstrom AR, Slipher SK, Welhaven HD, Greenwood MC, Linse GM, June RK, Yu ASL, Wallace DP, Hahn AK. Metabolomic profiling to identify early urinary biomarkers and metabolic pathway alterations in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 324:F590-F602. [PMID: 37141147 PMCID: PMC10281782 DOI: 10.1152/ajprenal.00301.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.
Collapse
Affiliation(s)
- Eden A Houske
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| | - Matthew G Glimm
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| | - Annika R Bergstrom
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, United States
| | - Sally K Slipher
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Hope D Welhaven
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States
- Molecular Biosciences Program, Montana State University, Bozeman, Montana, United States
| | - Mark C Greenwood
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Greta M Linse
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Ronald K June
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana, United States
| | - Alan S L Yu
- Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Darren P Wallace
- Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Alyssa K Hahn
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| |
Collapse
|
15
|
Royer B, Launay M, Ciccolini J, Derain L, Parant F, Thomas F, Guitton J. Impact of renal impairment on dihydropyrimidine dehydrogenase (DPD) phenotyping. ESMO Open 2023; 8:101577. [PMID: 37267808 DOI: 10.1016/j.esmoop.2023.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND The chemotherapeutic agent 5-fluorouracil (5-FU) is catabolized by dihydropyrimidine dehydrogenase (DPD), the deficiency of which may lead to severe toxicity or death. Since 2019, DPD deficiency testing, based on uracilemia, is mandatory in France and recommended in Europe before initiating fluoropyrimidine-based regimens. However, it has been recently shown that renal impairment may impact uracil concentration and thus DPD phenotyping. PATIENTS AND METHODS The impact of renal function on uracilemia and DPD phenotype was studied on 3039 samples obtained from three French centers. We also explored the influence of dialysis and measured glomerular filtration rate (mGFR) on both parameters. Finally, using patients as their own controls, we assessed as to what extent modifications in renal function impacted uracilemia and DPD phenotyping. RESULTS We observed that uracilemia and DPD-deficient phenotypes increased concomitantly to the severity of renal impairment based on the estimated GFR, independently and more critically than hepatic function. This observation was confirmed with the mGFR. The risk of being classified 'DPD deficient' based on uracilemia was statistically higher in patients with renal impairment or dialyzed if uracilemia was measured before dialysis but not after. Indeed, the rate of DPD deficiency decreased from 86.4% before dialysis to 13.7% after. Moreover, for patients with transient renal impairment, the rate of DPD deficiency dropped dramatically from 83.3% to 16.7% when patients restored their renal function, especially in patients with an uracilemia close to 16 ng/ml. CONCLUSIONS DPD deficiency testing using uracilemia could be misleading in patients with renal impairment. When possible, uracilemia should be reassessed in case of transient renal impairment. For patients under dialysis, testing of DPD deficiency should be carried out on samples taken after dialysis. Hence, 5-FU therapeutic drug monitoring would be particularly helpful to guide dose adjustments in patients with elevated uracil and renal impairment.
Collapse
Affiliation(s)
- B Royer
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon, Besançon; Univ. Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon.
| | - M Launay
- Pôle de Biologie-Pathologie, Hôpital Nord-CHU Saint Etienne, Saint Etienne
| | - J Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille Inserm U1068 Aix Marseille Université and Assistance Publique Hôpitaux de Marseille, Marseille
| | - L Derain
- Service de Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Hospices Civils de Lyon, Hôpital E. Herriot, Lyon F-69003; University of Lyon 1; CNRS UMR 5305, Lyon
| | - F Parant
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite
| | - F Thomas
- Laboratoire de Pharmacologie, Institut Claudius Regaud, Inserm CRCT, Université de Toulouse, Toulouse Cedex 9
| | - J Guitton
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite; Laboratoire de Toxicologie, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon; Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
16
|
Pana C, Stanigut AM, Cimpineanu B, Alexandru A, Salim C, Nicoara AD, Resit P, Tuta LA. Urinary Biomarkers in Monitoring the Progression and Treatment of Autosomal Dominant Polycystic Kidney Disease-The Promised Land? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050915. [PMID: 37241147 DOI: 10.3390/medicina59050915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease, and it leads to end-stage renal disease (ESRD). The clinical manifestations of ADPKD are variable, with extreme differences observable in its progression, even among members of the same family with the same genetic mutation. In an age of new therapeutic options, it is important to identify patients with rapidly progressive evolution and the risk factors involved in the disease's poor prognosis. As the pathophysiological mechanisms of the formation and growth of renal cysts have been clarified, new treatment options have been proposed to slow the progression to end-stage renal disease. Furthermore, in addition to the conventional factors (PKD1 mutation, hypertension, proteinuria, total kidney volume), increasing numbers of studies have recently identified new serum and urinary biomarkers of the disease's progression, which are cheaper and more easily to dosing from the early stages of the disease. The present review discusses the utility of new biomarkers in the monitoring of the progress of ADPKD and their roles in new therapeutic approaches.
Collapse
Affiliation(s)
- Camelia Pana
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Alina Mihaela Stanigut
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Bogdan Cimpineanu
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Andreea Alexandru
- Nephrology Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Camer Salim
- Emergency Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Alina Doina Nicoara
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Periha Resit
- Faculty of Medicine, "Ovidius" University of Constanta, 900601 Constanta, Romania
| | - Liliana Ana Tuta
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
17
|
Auwerx C, Sadler MC, Woh T, Reymond A, Kutalik Z, Porcu E. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype associations. eLife 2023; 12:81097. [PMID: 36891970 PMCID: PMC9998083 DOI: 10.7554/elife.81097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Despite the success of genome-wide association studies (GWASs) in identifying genetic variants associated with complex traits, understanding the mechanisms behind these statistical associations remains challenging. Several methods that integrate methylation, gene expression, and protein quantitative trait loci (QTLs) with GWAS data to determine their causal role in the path from genotype to phenotype have been proposed. Here, we developed and applied a multi-omics Mendelian randomization (MR) framework to study how metabolites mediate the effect of gene expression on complex traits. We identified 216 transcript-metabolite-trait causal triplets involving 26 medically relevant phenotypes. Among these associations, 58% were missed by classical transcriptome-wide MR, which only uses gene expression and GWAS data. This allowed the identification of biologically relevant pathways, such as between ANKH and calcium levels mediated by citrate levels and SLC6A12 and serum creatinine through modulation of the levels of the renal osmolyte betaine. We show that the signals missed by transcriptome-wide MR are found, thanks to the increase in power conferred by integrating multiple omics layer. Simulation analyses show that with larger molecular QTL studies and in case of mediated effects, our multi-omics MR framework outperforms classical MR approaches designed to detect causal relationships between single molecular traits and complex phenotypes.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,University Center for Primary Care and Public Health, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,University Center for Primary Care and Public Health, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Tristan Woh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,University Center for Primary Care and Public Health, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,University Center for Primary Care and Public Health, Lausanne, Switzerland
| |
Collapse
|
18
|
Marhuenda-Egea FC, Narro-Serrano J, Shalabi-Benavent MJ, Álamo-Marzo JM, Amador-Prous C, Algado-Rabasa JT, Garijo-Saiz AM, Marco-Escoto M. A metabolic readout of the urine metabolome of COVID-19 patients. Metabolomics 2023; 19:7. [PMID: 36694097 PMCID: PMC9873393 DOI: 10.1007/s11306-023-01971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Analysis of urine samples from COVID-19 patients by 1H NMR reveals important metabolic alterations due to SAR-CoV-2 infection. Previous studies have identified biomarkers in urine that reflect metabolic alterations in COVID-19 patients. We have used 1H NMR to better define these metabolic alterations since this technique allows us to obtain a broad profile of the metabolites present in urine. This technique offers the advantage that sample preparation is very simple and gives us very complete information on the metabolites present. To detect these alterations, we have compared urine samples from COVID-19 patients (n = 35) with healthy people (n = 18). We used unsupervised (Robust PCA) and supervised (PLS-LDA) multivariate analysis methods to evaluate the differences between the two groups: COVID-19 and healthy controls. The differences focus on a group of metabolites related to energy metabolism (glucose, ketone bodies, glycine, creatinine, and citrate) and other processes related to bacterial flora (TMAO and formic acid) and detoxification (hippuric acid). The alterations in the urinary metabolome shown in this work indicate that SARS-CoV-2 causes a metabolic change from a normal situation of glucose consumption towards a gluconeogenic situation and possible insulin resistance.
Collapse
Affiliation(s)
- F C Marhuenda-Egea
- Departamento de Agroquímica y Bioquímica, Universidad de Alicante, Alicante, Spain.
| | - J Narro-Serrano
- Departamento de Química Física, Universidad de Alicante, Alicante, Spain
| | | | - J M Álamo-Marzo
- Biochemical Laboratory, Hospital Marina Baixa, Villajoyosa, Spain
| | | | | | | | | |
Collapse
|
19
|
Meeusen JW, Stämmler F, Dasari S, Schiffer E, Lieske JC. Serum myo-inositol and valine improve metabolomic-based estimated glomerular filtration rate among kidney transplant recipients. Front Med (Lausanne) 2022; 9:988989. [PMID: 36465899 PMCID: PMC9712186 DOI: 10.3389/fmed.2022.988989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/31/2022] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Close monitoring of glomerular filtration rate (GFR) is essential for the management of patients post kidney transplantation. Measured GFR (mGFR), the gold standard, is not readily accessible in most centers. Furthermore, the performance of new estimated GFR (eGFR) equations based upon creatinine and/or cystatin C have not been validated in kidney transplant patients. Here we evaluate a recently published eGFR equation using cystatin C, creatinine, myo-inositol and valine as measured by nuclear magnetic resonance (eGFRNMR). METHODS Residual sera was obtained from a cohort of patients with clinically ordered iothalamate renal clearance mGFR (n = 602). Kidney transplant recipients accounted for 220 (37%) of participants. RESULTS Compared to mGFR, there was no significant bias for eGFRcr or eGFRNMR, while eGFRcr-cys significantly underestimated mGFR. P30 values were similar for all eGFR. P15 was significantly higher for eGFRNMR compared to eGFRcr, while the P15 for eGFRcr-cys only improved among patients without a kidney transplant. Agreement with mGFR CKD stages of <15, 30, 45, 60, and 90 ml/min/1.73 m2 was identical for eGFRcr and eGFRcr-cys (61.8%, both cases) while eGFRNMR was significantly higher (66.4%) among patients with a kidney transplant. CONCLUSION The 2021 CKD-EPI eGFRcr and eGFRcr-cys have similar bias, P15, and agreement while eGFRNMR more closely matched mGFR with the strongest improvement among kidney transplant recipients.
Collapse
Affiliation(s)
- Jeffrey W. Meeusen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Frank Stämmler
- Department of Research and Development, numares AG, Regensburg, Germany
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, United States
| | - Eric Schiffer
- Department of Research and Development, numares AG, Regensburg, Germany
| | - John C. Lieske
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Heinzmann SS, Waldenberger M, Peters A, Schmitt-Kopplin P. Cluster Analysis Statistical Spectroscopy for the Identification of Metabolites in 1H NMR Metabolomics. Metabolites 2022; 12:metabo12100992. [PMID: 36295894 PMCID: PMC9607017 DOI: 10.3390/metabo12100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolite identification in non-targeted NMR-based metabolomics remains a challenge. While many peaks of frequently occurring metabolites are assigned, there is a high number of unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis. Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which gives important information on possible structural and/or biological correlations from the NMR spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a hypothesis, a full structural elucidation approach would be required. The approach allows a higher identification yield in NMR spectra, especially once pathway-related subclusters are identified.
Collapse
Affiliation(s)
- Silke S. Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Correspondence:
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, 85764 Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, 80336 Munich, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, 80336 Munich, Germany
- Institute of Epidemiology, Helmholtz Munich, 85764 Neuherberg, Germany
- Institute for Medical Information Processing Biometry and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
21
|
Tomaszewski M, Morris AP, Howson JMM, Franceschini N, Eales JM, Xu X, Dikalov S, Guzik TJ, Humphreys BD, Harrap S, Charchar FJ. Kidney omics in hypertension: from statistical associations to biological mechanisms and clinical applications. Kidney Int 2022; 102:492-505. [PMID: 35690124 PMCID: PMC9886011 DOI: 10.1016/j.kint.2022.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.
Collapse
Affiliation(s)
- Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen Harrap
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia; Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
22
|
The Role of Betaine in Patients With Chronic Kidney Disease: a Narrative Review. Curr Nutr Rep 2022; 11:395-406. [PMID: 35792998 DOI: 10.1007/s13668-022-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This narrative review aimed to explore the functions of betaine and discuss its role in patients with chronic kidney disease (CKD). RECENT FINDINGS Some studies on CKD animal models have shown the benefits of betaine supplementation, including decreased kidney damage, antioxidant recovery status, and decreased inflammation. Betaine (N-trimethylglycine) is an N-trimethylated amino acid with an essential regulatory osmotic function. Moreover, it is a methyl donor and has anti-inflammatory and antioxidant properties. Additionally, betaine has positive effects on intestinal health by regulating the osmolality and gut microbiota. Due to these crucial functions, betaine has been studied in several diseases, including CKD, in which betaine plasma levels decline with the progression of the disease. Low betaine levels are linked to increased kidney damage, inflammation, oxidative stress, and intestinal dysbiosis. Furthermore, betaine is considered an essential metabolite for identifying CKD stages.
Collapse
|
23
|
Valiño-Rivas L, Cuarental L, Ceballos MI, Pintor-Chocano A, Perez-Gomez MV, Sanz AB, Ortiz A, Sanchez-Niño MD. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int 2022; 101:1200-1215. [PMID: 35337892 DOI: 10.1016/j.kint.2022.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor-15 (GDF15) is a member of the GDF subfamily with potential kidney protective functions. Here, we explored the impact of GDF15 on the expression of the kidney protective factor Klotho in models of acute kidney injury and kidney fibrosis in mice. GDF15 was the most upregulated GDF family gene in experimental toxic acute kidney injury and in kidney fibrosis transcriptomics. GDF15 function was explored in toxic acute kidney injury in genetically modified mice and following treatment with GDF15. Gdf15-deficient mice developed more severe toxic acute kidney injury (folic acid or cisplatin) while GDF15 overexpression or GDF15 administration were protective. Kidney expression of Klotho was more severely depressed in Gdf15-deficient mice and was preserved by GDF15 overexpression or GDF15 treatment. Moreover, increased plasma calcitriol levels inversely correlated with kidney Klotho across models with diverse levels of GDF15 availability. Kidney fibrosis induced by unilateral ureteral obstruction was more severe in Gdf15-deficient mice while GDF15 overexpression decreased kidney injury and preserved Klotho expression. GDF15 increased Klotho expression in vivo in healthy mice, in cultured tubular cells, and prevented Klotho downregulation by inflammatory factors in tubular cells by preventing transcription factor NF-ĸB activation. Thus, spontaneous increased kidney expression of endogenous GDF15 is not enough to prevent kidney injury, but further increments in GDF15 are kidney protecting and preserve expression of the kidney protective factor Klotho within the kidney in acute and chronic settings.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Arancha Pintor-Chocano
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain; Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
25
|
Zeng T, Liang Y, Chen J, Cao G, Yang Z, Zhao X, Tian J, Xin X, Lei B, Cai Z. Urinary metabolic characterization with nephrotoxicity for residents under cadmium exposure. ENVIRONMENT INTERNATIONAL 2021; 154:106646. [PMID: 34049269 DOI: 10.1016/j.envint.2021.106646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is a well-known hazardous pollutant that mainly comes from dietary, tobacco and occupational exposure, posing threat to kidney. However, there is still a lack of systematic study on metabolic pathways and urinary biomarkers related to its nephrotoxicity under cadmium exposure for both females and males. In this study, a mass spectrometry-based metabolomics investigation of a cohort of 144 volunteers was conducted to explore sex-specific metabolic alteration and to screen biomarkers related to cadmium-induced nephrotoxicity. When the concentration of urinary cadmium increased, creatine pathway, amino acid metabolism especially the tryptophan metabolism, aminoacyl-tRNA biosynthesis, and purine metabolism were primarily influenced regardless of the gender. Also, the most specific biomarkers linked with nephrotoxicity based on the statistical analysis were detected including creatine, creatinine, l-tryptophan, adenine and uric acid. The study outcome might provide information to reflect the body burden and help improve health policy for risk assessment.
Collapse
Affiliation(s)
- Ting Zeng
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Yanshan Liang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Sichuan, Chengdu 610041, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xingchen Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jinglin Tian
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xiong Xin
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
26
|
Yu MC, Wang TM, Chiou YH, Yu MK, Lin CF, Chiu CY. Urine metabolic phenotyping in children with nocturnal enuresis and comorbid neurobehavioral disorders. Sci Rep 2021; 11:16592. [PMID: 34400733 PMCID: PMC8368245 DOI: 10.1038/s41598-021-96104-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nocturnal enuresis (NE) is a common problem among 10% school-aged children. The etiologies underlying childhood NE is complex and not fully understood nowadays. Nevertheless, increasing evidence suggests a potential link between neurobehavioral disorders and enuresis in children. In this study, we aimed to explore novel metabolomic insights into the pathophysiology of NE and also, its association with pediatric psychiatric problems. Urine collected from 41 bedwetting children and 27 healthy control children was analyzed by using 1H-nuclear magnetic resonance spectroscopy from August 2017 to December 2018. At regular follow-up, there were 14 children with refractory NE having a diagnosis of attention deficient hyperactivity disorder (ADHD) or anxiety. Eventually, we identified eight significantly differential urinary metabolites and particularly increased urinary excretion of betaine, creatine and guanidinoacetate linked to glycine, serine and threonine metabolism were associated with a comorbidity of neurobehavioral disorders in refractory bedwetting children. Notably, based on physiological functions of betaine acting as a renal osmolyte and methyl group donor, we speculated its potential role in modulation of renal and/or central circadian clock systems, becoming a useful urinary metabolic marker in diagnosis of treatment-resistant NE in children affected by these two disorders.
Collapse
Affiliation(s)
- Mei-Ching Yu
- Division of Pediatric Nephrology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 5, Fusing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Ta-Min Wang
- Division of Pediatric Urology, Department of Urology, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Meng-Kung Yu
- Department of Pediatrics, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chiao-Fan Lin
- Department of Child and Adolescent Psychiatry, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Clinical Metabolomics Core Laboratory, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 5, Fusing Street, Gueishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
27
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Lousa I, Reis F, Beirão I, Alves R, Belo L, Santos-Silva A. New Potential Biomarkers for Chronic Kidney Disease Management-A Review of the Literature. Int J Mol Sci 2020; 22:E43. [PMID: 33375198 PMCID: PMC7793089 DOI: 10.3390/ijms22010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and the mortality rate continues to be unacceptably high. The biomarkers currently used in clinical practice are considered relevant when there is already significant renal impairment compromising the early use of potentially successful therapeutic interventions. More sensitive and specific biomarkers to detect CKD earlier on and improve patients' prognoses are an important unmet medical need. The aim of this review is to summarize the recent literature on new promising early CKD biomarkers of renal function, tubular lesions, endothelial dysfunction and inflammation, and on the auspicious findings from metabolomic studies in this field. Most of the studied biomarkers require further validation in large studies and in a broad range of populations in order to be implemented into routine CKD management. A panel of biomarkers, including earlier biomarkers of renal damage, seems to be a reasonable approach to be applied in clinical practice to allow earlier diagnosis and better disease characterization based on the underlying etiologic process.
Collapse
Affiliation(s)
- Irina Lousa
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Idalina Beirão
- Universitary Hospital Centre of Porto (CHUP), 4099-001 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Rui Alves
- Nephrology Department, Coimbra University Hospital Center, 3004-561 Coimbra, Portugal;
- University Clinic of Nephrology, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| | - Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| |
Collapse
|
29
|
Hu X, Xie Y, Xiao Y, Zeng W, Gong Z, Du J. Longitudinal analysis of fecal microbiome and metabolome during renal fibrotic progression in a unilateral ureteral obstruction animal model. Eur J Pharmacol 2020; 886:173555. [PMID: 32937112 DOI: 10.1016/j.ejphar.2020.173555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 02/02/2023]
Abstract
Renal fibrosis is a major pathological process in the progression of various chronic kidney diseases to end-stage renal disease (ESRD). Growing evidence has suggested that gut microbiota dysbiosis is closely related to ESRD. However, the interplay between altered fecal microbiome and metabolome during the renal fibrotic process remains unclear. Herein, an integrated approach of 16S ribosomal DNA sequencing combined with an ultra-high performance liquid chromatography-mass spectrometry-based metabolomics platform was applied to investigate the dynamic changes of fecal microbiota and metabolites throughout renal fibrosis progression in a mouse model of unilateral ureteral obstruction (UUO). The composition of gut microbiota changed markedly before and after UUO surgery. UUO mice showed a decrease in short-chain fatty acids-producing genera, including Bacteroides, Prevotellaceae_UCG-001, Roseburia, and Lachnospiraceae_NK4A136_group, as well as an increase in the genera Parasutterella and Alistipes, which changed dynamically over time. Additionally, 41 differential metabolites, mainly involved in 12 metabolic pathways, including inositol phosphate metabolism, primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, taurine and hypotaurine metabolism, purine metabolism, were identified in the UUO mice before and after surgery. Four fecal metabolites, myo-inositol, dodecanoic acid, N-acetylputrescine, and anthranilic acid, were positively associated with the progression of renal fibrosis. Moreover, by using multi-omics analyses, we found the alteration in UUO-related gut microbiota was correlated with a change in fecal metabolites. Therefore, our results provide insights into disturbances of the microbiome-metabolome interface in the progression of UUO-related renal fibrosis.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China
| | - Yuhong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China
| | - Wenjing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China.
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Sigdel TK, Schroeder AW, Yang JYC, Sarwal RD, Liberto JM, Sarwal MM. Targeted Urine Metabolomics for Monitoring Renal Allograft Injury and Immunosuppression in Pediatric Patients. J Clin Med 2020; 9:jcm9082341. [PMID: 32707952 PMCID: PMC7465632 DOI: 10.3390/jcm9082341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Despite new advancements in surgical tools and therapies, exposure to immunosuppressive drugs related to non-immune and immune injuries can cause slow deterioration and premature failure of organ transplants. Diagnosis of these injuries by non-invasive urine monitoring would be a significant clinical advancement for patient management, especially in pediatric cohorts. We investigated the metabolomic profiles of biopsy matched urine samples from 310 unique kidney transplant recipients using gas chromatography-mass spectrometry (GC-MS). Focused metabolite panels were identified that could detect biopsy confirmed acute rejection with 92.9% sensitivity and 96.3% specificity (11 metabolites) and could differentiate BK viral nephritis (BKVN) from acute rejection with 88.9% sensitivity and 94.8% specificity (4 metabolites). Overall, targeted metabolomic analyses of biopsy-matched urine samples enabled the generation of refined metabolite panels that non-invasively detect graft injury phenotypes with high confidence. These urine biomarkers can be rapidly assessed for non-invasive diagnosis of specific transplant injuries, opening the window for precision transplant medicine.
Collapse
|
31
|
Tacrolimus Prevents TWEAK-Induced PLA2R Expression in Cultured Human Podocytes. J Clin Med 2020; 9:jcm9072178. [PMID: 32664235 PMCID: PMC7408934 DOI: 10.3390/jcm9072178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Primary membranous nephropathy is usually caused by antibodies against the podocyte antigen membrane M-type phospholipase A2 receptor (PLA2R). The treatment of membranous nephropathy is not fully satisfactory. The calcineurin inhibitor tacrolimus is used to treat membranous nephropathy, but recurrence upon drug withdrawal is common. TNF superfamily members are key mediators of kidney injury. We have now identified key TNF receptor superfamily members in podocytes and explored the regulation of PLA2R expression and the impact of tacrolimus. Data mining of single cell transcriptomics and glomerular transcriptomics data identified TNFRSF12a/Fn14 as the highest expressed TNF receptor superfamily gene in human membranous nephropathy, and this was confirmed by immunohistochemistry that also identified NFκB activation in membranous nephropathy podocytes. Additionally, glomerular transcriptomics identified PLA2R1 expression as being increased in membranous nephropathy in the parenteral administration of the Fn14 ligand TWEAK increased podocyte PLA2R expression in mice. Furthermore, in cultured human podocytes, TWEAK increased the expression of PLA2R as well as the expression of other genes recently identified by GWAS as linked to membranous nephropathy: NFKB1 and IRF4. Interestingly, IRF4 encodes the FK506-binding protein 52 (FKBP52), a protein associated with tacrolimus. Tacrolimus prevented the increased expression of PLA2R, NFKB1 and IRF4 induced by TWEAK in cultured podocytes. In conclusion, TWEAK upregulates the expression of PLA2R and of other genes linked to membranous nephropathy in podocytes, and this is prevented by tacrolimus. An impact of tacrolimus on the expression of PLA2R and other genes in podocytes may underlie its efficacy in treating the disease as well as the frequent recurrence of nephrotic syndrome upon tacrolimus withdrawal.
Collapse
|
32
|
Dekker SEI, Verhoeven A, Soonawala D, Peters DJM, de Fijter JW, Mayboroda OA. Urinary metabolites associate with the rate of kidney function decline in patients with autosomal dominant polycystic kidney disease. PLoS One 2020; 15:e0233213. [PMID: 32442208 PMCID: PMC7244119 DOI: 10.1371/journal.pone.0233213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background The variable course of autosomal dominant polycystic kidney disease (ADPKD), and the advent of renoprotective treatment require early risk stratification. We applied urinary metabolomics to explore differences associated with estimated glomerular filtration rate (eGFR; CKD-EPI equation) and future eGFR decline. Methods Targeted, quantitative metabolic profiling (1H NMR-spectroscopy) was performed on baseline spot urine samples obtained from 501 patients with ADPKD. The discovery cohort consisted of 338 patients (56% female, median values for age 46 [IQR 38 to 52] years, eGFR 62 [IQR 45 to 85] ml/min/1.73m2, follow-up time 2.5 [range 1 to 3] years, and annual eGFR slope –3.3 [IQR –5.3 to –1.3] ml/min/1.73m2/year). An independent cohort (n = 163) was used for validation. Multivariate modelling and linear regression were used to analyze the associations between urinary metabolites and eGFR, and eGFR decline over time. Results Twenty-nine known urinary metabolites were quantified from the spectra using a semi-automatic quantification routine. The model optimization routine resulted in four metabolites that most strongly associated with actual eGFR in the discovery cohort (F = 128.9, P = 7×10−54, R2 = 0.724). A model using the ratio of two other metabolites, urinary alanine/citrate, showed the best association with future annual change in eGFR (F = 51.07, P = 7.26×10−12, R2 = 0.150). This association remained significant after adjustment for clinical risk markers including height-adjusted total kidney volume (htTKV). Results were confirmed in the validation cohort. Conclusions Quantitative NMR profiling identified urinary metabolic markers that associated with actual eGFR and future rate of eGFR decline. The urinary alanine/citrate ratio showed additional value beyond conventional risk markers.
Collapse
Affiliation(s)
- Shosha E. I. Dekker
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, The Netherlands
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W. de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
33
|
Valiño-Rivas L, Cuarental L, Agustin M, Husi H, Cannata-Ortiz P, Sanz AB, Mischak H, Ortiz A, Sanchez-Niño MD. MAGE genes in the kidney: identification of MAGED2 as upregulated during kidney injury and in stressed tubular cells. Nephrol Dial Transplant 2020; 34:1498-1507. [PMID: 30541139 DOI: 10.1093/ndt/gfy367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Leticia Cuarental
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Mateo Agustin
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Pablo Cannata-Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Mosaiques diagnostics GmbH, Hannover, Germany
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| |
Collapse
|
34
|
Johnson AC, Wu W, Attipoe EM, Sasser JM, Taylor EB, Showmaker KC, Kyle PB, Lindsey ML, Garrett MR. Loss of Arhgef11 in the Dahl Salt-Sensitive Rat Protects Against Hypertension-Induced Renal Injury. Hypertension 2020; 75:1012-1024. [PMID: 32148127 DOI: 10.1161/hypertensionaha.119.14338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arhgef11 is a Rho-guanine nucleotide exchange factor that was previously implicated in kidney injury in the Dahl salt-sensitive (SS) rat, a model of hypertension-related chronic kidney disease. Reduced Arhgef11 expression in an SS-Arhgef11SHR-minimal congenic strain (spontaneously hypertensive rat allele substituted for S allele) significantly decreased proteinuria, fibrosis, and improved renal hemodynamics, without impacting blood pressure compared with the control SS (SS-wild type). Here, SS-Arhgef11-/- and SS-wild type rats were placed on either low or elevated salt (0.3% or 2% NaCl) from 4 to 12 weeks of age. On low salt, starting at week 6 and through week 12, SS-Arhgef11-/- animals demonstrated a 3-fold decrease in proteinuria compared with SS-wild type. On high salt, beginning at week 6, SS-Arhgef11-/- animals demonstrated >2-fold lower proteinuria from weeks 8 to 12 and 30 mm Hg lower BP compared with SS-wild type. To better understand the molecular mechanisms of the renal protection from loss of Arhgef11, both RNA sequencing and discovery proteomics were performed on kidneys from week 4 (before onset of renal injury/proteinuria between groups) and at week 12 (low salt). The omics data sets revealed loss of Arhgef11 (SS-Arhgef11-/-) initiates early transcriptome/protein changes in the cytoskeleton starting as early as week 4 that impact a number of cellular functions, including actin cytoskeletal regulation, mitochondrial metabolism, and solute carrier transporters. In summary, in vivo phenotyping coupled with a multi-omics approach provides strong evidence that increased Arhgef11 expression in the Dahl SS rat leads to actin cytoskeleton-mediated changes in cell morphology and cell function that promote kidney injury, hypertension, and decline in kidney function.
Collapse
Affiliation(s)
- Ashley C Johnson
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Wenjie Wu
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Esinam M Attipoe
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Jennifer M Sasser
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Erin B Taylor
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Kurt C Showmaker
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Patrick B Kyle
- Department of Pathology (P.B.K.), University of Mississippi Medical Center
| | - Merry L Lindsey
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Michael R Garrett
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center.,Department of Medicine (Nephrology) (M.R.G.), University of Mississippi Medical Center
| |
Collapse
|
35
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|
36
|
Wei T, Shu Q, Ning J, Wang S, Li C, Zhao L, Zheng H, Gao H. The Protective Effect of Basic Fibroblast Growth Factor on Diabetic Nephropathy Through Remodeling Metabolic Phenotype and Suppressing Oxidative Stress in Mice. Front Pharmacol 2020; 11:66. [PMID: 32153399 PMCID: PMC7046551 DOI: 10.3389/fphar.2020.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy is a common complication in diabetes, but still lack of effective therapeutic strategies. This study aimed to investigate the therapeutic effect of basic fibroblast growth factor (bFGF) in db/db mice with diabetic nephropathy and explore its possible metabolic mechanisms using a nuclear magnetic resonance-based metabolomic approach. We found that bFGF treatment significantly alleviate urinary albumin to creatinine ratio and renal fibrosis in db/db mice, suggesting a potential renal protective effect. Metabolomics results reveal that bFGF remodeled metabolic phenotypes of the kidney and urine in db/db mice, mainly involving energy metabolism, methylamine metabolism, osmoregulation, and oxidative stress. Furthermore, the results show that bFGF-induced reductions of oxidative stress and apoptosis in db/db mice might be mediated by NOX-ROS-Nrf2 signaling. Therefore, our study suggests that the protective effect of bFGF on diabetic nephropathy could be mediated by remodeling metabolic phenotype and suppressing oxidative stress.
Collapse
Affiliation(s)
- Tingting Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuaijie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
38
|
Urinary myo-inositol is associated with the clinical outcome in focal segmental glomerulosclerosis. Sci Rep 2019; 9:14707. [PMID: 31605028 PMCID: PMC6789025 DOI: 10.1038/s41598-019-51276-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) have similar initial histological findings; however, their prognoses are distinct. Therefore, it is of great importance to discriminate FSGS from MCD in the early phase of disease and predict clinical prognosis. A discovery set of 184 urine samples (61 healthy control, 80 MCD, and 43 FSGS) and a validation set of 61 urine samples (12 healthy control, 26 MCD, and 23 FSGS) were collected at the time of kidney biopsy. Metabolic profiles were examined using nuclear magnetic resonance spectroscopy. Of 70 urinary metabolites, myo-inositol was significantly higher in FSGS patients than in control patients (discovery set, 2.34-fold, P < 0.001; validation set, 2.35-fold, P = 0.008) and MCD patients (discovery set, 2.48-fold, P = 0.002; validation set, 1.69-fold, P = 0.042). Myo-inositol showed an inverse relationship with the initial estimated glomerular filtration rate (eGFR) and was associated with the plasma level of soluble urokinase-type plasminogen activator receptor in FSGS patients. Myo-inositol treatment ameliorated the decreased expression of ZO-1 and synaptopodin in an in vitro FSGS model, and as myo-inositol increased, myo-inositol oxygenase tissue expression decreased proportionally to eGFR. Furthermore, urinary myo-inositol exhibited an increase in the power to discriminate FSGS patients, and its addition could better predict the response to initial treatment. In conclusion, urinary myo-inositol may be an important indicator in the diagnosis and treatment of FSGS patients.
Collapse
|
39
|
Wang X, Gu H, Palma-Duran SA, Fierro A, Jasbi P, Shi X, Bresette W, Tasevska N. Influence of Storage Conditions and Preservatives on Metabolite Fingerprints in Urine. Metabolites 2019; 9:metabo9100203. [PMID: 31569767 PMCID: PMC6836253 DOI: 10.3390/metabo9100203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Human urine, which is rich in metabolites, provides valuable approaches for biomarker measurement. Maintaining the stability of metabolites in urine is critical for accurate and reliable research results and subsequent interpretation. In this study, the effect of storage temperature (4, 22, and 40 °C), storage time (24 and 48 h), and use of preservatives (boric acid (BA), thymol) and para-aminobenzoic acid (PABA) on urinary metabolites in the pooled urine samples from 20 participants was systematically investigated using large-scale targeted liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomics. Statistical analysis of 158 reliably detected metabolites showed that metabolites in urine with no preservative remained stable at 4 °C for 24 and 48 h as well as at 22 °C for 24 h, but significant metabolite differences were observed in urine stored at 22 °C for 48 h and at 40 °C. The mere addition of BA caused metabolite changes. Thymol was observed to be effective in maintaining metabolite stability in urine in all the conditions designed, most likely due to the inhibitory effect of thymol on urine microbiota. Our results provide valuable urine preservation guidance during sample storage, which is essential for obtaining reliable, accurate, and reproducible analytical results from urine samples.
Collapse
Affiliation(s)
- Xinchen Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | | | - Andres Fierro
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - William Bresette
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - Natasha Tasevska
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
40
|
Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019; 499:54-63. [PMID: 31476302 DOI: 10.1016/j.cca.2019.08.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), characterized as renal dysfunction, is recognized as a major public health problem with high morbidity and mortality worldwide. Unfortunately, there are no obvious clinical symptoms in early stage disease until severe damage has occurred. Further complicating early diagnosis and treatment is the lack of sensitive and specific biomarkers. As such, novel biomarkers are urgently needed. Metabolomics has shown an increasing potential for identifying underlying disease mechanisms, facilitating clinical diagnosis and developing pharmaceutical treatments for CKD. Recent advances in metabolomics revealed that CKD was closely associated with the dysregulation of numerous metabolites, such as amino acids, lipids, nucleotides and glycoses, that might be exploited as potential biomarkers. In this review, we summarize recent metabolomic applications based on animal model studies and in patients with CKD and highlight several biomarkers that may play important roles in diagnosis, intervention and development of new therapeutic strategies.
Collapse
|
41
|
Haslauer KE, Hemmler D, Schmitt-Kopplin P, Heinzmann SS. Guidelines for the Use of Deuterium Oxide (D 2O) in 1H NMR Metabolomics. Anal Chem 2019; 91:11063-11069. [PMID: 31397558 DOI: 10.1021/acs.analchem.9b01580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In metabolomics, nuclear magnetic resonance (NMR) spectroscopy allows to identify and quantify compounds in biological samples. The sample preparation generally requires only few steps; however, an indispensable factor is the addition of a locking substance into the biofluid sample, such as deuterium oxide (D2O). While creatinine loss in pure D2O is well-described, the effects of different D2O concentrations on the signal profile of biological samples are unknown. In this work, we investigated the effect of D2O levels in the NMR buffer system in urine samples, in dependence on dwell time and temperature exposition. We reveal a decrease of the urinary creatinine peak area up to 35% after 24 h of dwell time at room temperature (RT) using 25% (v/v) D2O, but only 4% loss using 2.5% D2O. 1H, inverse-gated (IG) 13C, DEPT-HSQC NMR, and mass spectrometry (MS) experiments confirmed a proton-deuterium (H/D) exchange at the CH2. This leads to underestimation of creatinine levels and has an extensive effect when creatinine is used for normalization. This work offers a sample stability examination, depending on the D2O concentration, dwell time, and temperature and enables a method to correct for the successive loss. We propose an equation to correct the creatinine loss for samples prepared with various D2O concentrations and storage temperatures for dwell times up to 24 h. The correction function was validated against an external data set with n = 26 samples. To ensure sufficient creatinine stability in future studies, we suggest that a maximum of 10% D2O should be used at 4 °C or 2.5% D2O at RT, respectively.
Collapse
Affiliation(s)
- Kristina Elisa Haslauer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München , German Research Center for Environmental Health , Neuherberg , D-85764 , Germany.,Chair of Analytical Food Chemistry , Technical University Munich , Freising-Weihenstephan , D-85354 , Germany
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München , German Research Center for Environmental Health , Neuherberg , D-85764 , Germany.,Chair of Analytical Food Chemistry , Technical University Munich , Freising-Weihenstephan , D-85354 , Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München , German Research Center for Environmental Health , Neuherberg , D-85764 , Germany.,Chair of Analytical Food Chemistry , Technical University Munich , Freising-Weihenstephan , D-85354 , Germany
| | - Silke Sophie Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München , German Research Center for Environmental Health , Neuherberg , D-85764 , Germany
| |
Collapse
|
42
|
Hosseiniyan Khatibi SM, Zununi Vahed F, Sharifi S, Ardalan M, Mohajel Shoja M, Zununi Vahed S. Osmolytes resist against harsh osmolarity: Something old something new. Biochimie 2019; 158:156-164. [PMID: 30629975 DOI: 10.1016/j.biochi.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
From the halophilic bacteria to human, cells have to survive under the stresses of harsh environments. Hyperosmotic stress is a process that triggers cell shrinkage, oxidative stress, DNA damage, and apoptosis and it potentially contributes to a number of human diseases. Remarkably, by high salts and organic solutes concentrations, a variety of organisms struggle with these conditions. Different strategies have been developed for cellular osmotic adaptations among which organic osmolyte synthesis/accumulation is a conserved once. Osmolytes are naturally occurring solutes used by cells of several halophilic (micro) organisms to preserve cell volume and function. In this review, the osmolytes diversity and their protective roles in harsh hyperosmolar environments from bacteria to human cells are highlighted. Moreover, it provides a close look at mammalian kidney osmoregulation at a molecular level. This review provides a concise view on the recent developments and advancements on the applications of osmolytes. Identification of disease-related osmolytes and their targeted-delivery may be used as a therapeutic measurement for treatment of the pathological conditions and the inherited diseases related to protein misfolding and aggregation. The molecular and cellular aspects of cell adaptation against harsh environmental osmolarity will benefit the development of effective drugs for many diseases.
Collapse
Affiliation(s)
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
43
|
Ghosh R, Kishore N. Physicochemical Insights into the Stabilization of Stressed Lysozyme and Glycine Homopeptides by Sorbitol. J Phys Chem B 2018; 122:7839-7854. [DOI: 10.1021/acs.jpcb.8b04394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|