1
|
Austigard ÅD, Smedbold HT, von Hirsch Svendsen K. Comparison of 3 methods characterizing H2S exposure in water and wastewater management work. Ann Work Expo Health 2024; 68:725-736. [PMID: 38981129 PMCID: PMC11306318 DOI: 10.1093/annweh/wxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/02/2024] [Indexed: 07/11/2024] Open
Abstract
This study evaluates the effectiveness of self-assessed exposure (SAE) data collection for characterization of hydrogen sulfide (H2S) risks in water and wastewater management, challenging the adequacy of traditional random or campaign sampling strategies. We compared 3 datasets derived from distinct strategies: expert data with activity metadata (A), SAE without metadata (B), and SAE with logbook metadata (C). The findings reveal that standard practices of random sampling (dataset A) fail to capture the sporadic nature of H2S exposure. Instead, SAE methods enhanced by logbook metadata and supported by reliable detection and calibration infrastructure (datasets B and C) are more effective. When assessing risk, particularly peak exposure risks, it is crucial to adopt measures that capture exposure variability, such as the range and standard deviations. This finer assessment is vital where high H2S peaks occur in confined spaces. Risk assessment should incorporate indices that account for peak exposure, utilizing variability measures like range and standard or geometric standard deviation to reflect the actual risk more accurately. For large datasets, a histogram is just as useful as statistical measures. This approach has revealed that not only wastewater workers but also water distribution network workers, can face unexpectedly high H2S levels when accessing confined underground spaces. Our research underscores the need for continuous monitoring with personal electrochemical gas detector alarm systems, particularly in environments with variable and potentially hazardous exposure levels.
Collapse
Affiliation(s)
- Åse Dalseth Austigard
- Department of Industrial Economics and Technology Management, NTNU – Norwegian University of Science and Technology, PO Box 8900, Torgarden, N-7491 Trondheim, Norway
- Trondheim Municipality, Working Environment Office, PO Box 2300, Torgarden, N-7004 Trondheim, Norway
| | - Hans Thore Smedbold
- Department of Occupational Medicine, St Olav University Hospital, PO Box 3250, Torgarden, N-7006 Trondheim, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, PO Box 8900, Torgarden, N-7491 Trondheim, Norway
| | - Kristin von Hirsch Svendsen
- Department of Industrial Economics and Technology Management, NTNU – Norwegian University of Science and Technology, PO Box 8900, Torgarden, N-7491 Trondheim, Norway
| |
Collapse
|
2
|
Ju Z, Zhang Y, Kong L. A Highly Selective Fluorescent Probe for Hydrogen Sulfide and its Application in Living Cell. J Fluoresc 2024:10.1007/s10895-024-03601-3. [PMID: 38300483 DOI: 10.1007/s10895-024-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
A new Near-infrared fluorescent probe for hydrogen sulfide detection was synthesized by employing dicyanoisophorone based fluorescence dye as a fluorophore and methyl 3-(2-(carbonyl)phenyl)-2-cyanoacrylate group as the response unit. The Probe DCI-H2S showed a long emission wavelength (λem = 674 nm). Based on the H2S-induced addition-cyclization of deprotecting methyl 3-(2-(carbonyl)phenyl)-2-cyanoacrylate group, the probe DCI-H2S showed high selectivity, sensitivity and response speed toward hydrogen sulfide under room temperature. These numerous advantages of the probe DCI-H2S make it to potentially detect endogenous hydrogen sulfide in living organisms.
Collapse
Affiliation(s)
- Zhiyu Ju
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China.
| | - Yuxiang Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Lingyu Kong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| |
Collapse
|
3
|
Park S, Mukai D, Lee J, Burney T, Boss G, Haouzi P, Lee JA, Kim MT, Fox AM, Philipopoulos G, Brenner M. Intratracheal cobinamide (vitamin B 12 analog) administration increases survivability in rabbits exposed to a lethal dose of inhaled hydrogen sulfide. Clin Toxicol (Phila) 2024; 62:94-100. [PMID: 38512020 DOI: 10.1080/15563650.2024.2314155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Hydrogen sulfide is a highly toxic, flammable, and colorless gas. Hydrogen sulfide has been identified as a potential terrorist chemical threat agent in mass-casualty events. Our previous studies showed that cobinamide, a vitamin B12 analog, effectively reverses the toxicity from hydrogen sulfide poisoning. In this study, we investigate the effectiveness of intratracheally administered cobinamide in treating a lethal dose hydrogen sulfide gas inhalation and compare its performance to saline control administration. METHODS A total of 53 pathogen-free New Zealand White rabbits were used for this study. Four groups were compared: (i) received no saline solution or drug intratracheally (n = 15), (ii) slow drip saline intratracheally (n = 15), (iii) fast drip saline intratracheally (n = 15), and (iv) slow drip cobinamide intratracheally (n = 8). Blood pressure was continuously monitored, and deoxy- and oxyhemoglobin concentration changes were monitored in real-time in vivo using continuous wave near-infrared spectroscopy. RESULTS The mean (± standard deviation) weight for all animals (n = 53) was 3.87 ± 0.10 kg. The survival rates of the slow cobinamide and the fast saline groups were 75 percent and 60 percent, respectively, while the survival rates in the slow saline and control groups were 26.7 percent and 20 percent, respectively. A log-rank (Mantel-Cox) test showed that survival in fast saline and slow cobinamide groups were significantly greater than those of no saline control and slow saline groups (P < 0.05). The slow and no saline control groups were not significantly different (P = 0.59). The slow cobinamide group did significantly better than the slow saline group (P = 0.021). DISCUSSION The ability to use intratracheal cobinamide as an antidote to hydrogen sulfide poisoning is a novel approach to mass-casualty care. The major limitations of this study are that it was conducted in a single species at a single inhaled hydrogen sulfide concentration. Repeated investigations in other species and at varying levels of hydrogen sulfide exposure will be needed before any definitive recommendations can be made. CONCLUSIONS We demonstrated that intratracheal cobinamide and fast saline drip improved survival for hydrogen sulfide gas inhalation in rabbit models. Although further study is required, our results suggest that intratracheal administration of cobinamide and fast saline may be useful in hydrogen sulfide mass-casualty events.
Collapse
Affiliation(s)
- Seungyong Park
- Beckman Laser Institute, University of CA, Irvine, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Irvine, CA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - David Mukai
- Beckman Laser Institute, University of CA, Irvine, CA, USA
| | - Jangweon Lee
- Beckman Laser Institute, University of CA, Irvine, CA, USA
| | - Tanya Burney
- Beckman Laser Institute, University of CA, Irvine, CA, USA
| | - Gerry Boss
- Department of Medicine, University of California, San Diego, CA, USA
| | - Phillipe Haouzi
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Matthew Brenner
- Beckman Laser Institute, University of CA, Irvine, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Léger-Pigout M, Navarro E, Ménard F, Ruitton S, Le Loc’h F, Guasco S, Munaron JM, Thibault D, Changeux T, Connan S, Stiger-Pouvreau V, Thibaut T, Michotey V. Predominant heterotrophic diazotrophic bacteria are involved in Sargassum proliferation in the Great Atlantic Sargassum Belt. THE ISME JOURNAL 2024; 18:wrad026. [PMID: 38365246 PMCID: PMC10833076 DOI: 10.1093/ismejo/wrad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Since 2011, the Caribbean coasts have been subject to episodic influxes of floating Sargassum seaweed of unprecedented magnitude originating from a new area "the Great Atlantic Sargassum Belt" (GASB), leading in episodic influxes and mass strandings of floating Sargassum. For the biofilm of both holopelagic and benthic Sargassum as well as in the surrounding waters, we characterized the main functional groups involved in the microbial nitrogen cycle. The abundance of genes representing nitrogen fixation (nifH), nitrification (amoA), and denitrification (nosZ) showed the predominance of diazotrophs, particularly within the GASB and the Sargasso Sea. In both location, the biofilm associated with holopelagic Sargassum harboured a more abundant proportion of diazotrophs than the surrounding water. The mean δ15N value of the GASB seaweed was very negative (-2.04‰), and lower than previously reported, reinforcing the hypothesis that the source of nitrogen comes from the nitrogen-fixing activity of diazotrophs within this new area of proliferation. Analysis of the diversity of diazotrophic communities revealed for the first time the predominance of heterotrophic diazotrophic bacteria belonging to the phylum Proteobacteria in holopelagic Sargassum biofilms. The nifH sequences belonging to Vibrio genus (Gammaproteobacteria) and Filomicrobium sp. (Alphaproteobacteria) were the most abundant and reached, respectively, up to 46.0% and 33.2% of the community. We highlighted the atmospheric origin of the nitrogen used during the growth of holopelagic Sargassum within the GASB and a contribution of heterotrophic nitrogen-fixing bacteria to a part of the Sargassum proliferation.
Collapse
Affiliation(s)
- Matéo Léger-Pigout
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Elisabeth Navarro
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Frédéric Ménard
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sandrine Ruitton
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Sophie Guasco
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Delphine Thibault
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Thomas Changeux
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Solène Connan
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | | | - Thierry Thibaut
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Valérie Michotey
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
5
|
Genjiafu A, Shi M, Zhang X, Jian X. Case report: Analysis of a case of hydrogen sulfide poisoning in a waste treatment plant. Front Public Health 2023; 11:1226282. [PMID: 37965501 PMCID: PMC10641707 DOI: 10.3389/fpubh.2023.1226282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
This paper summarizes and analyzes the clinical data of a patient with Occupational hydrogen sulfide poisoning admitted to our hospital on March 4, 2023. On the morning of March 2, 2023, the patient worked at an environmental energy company (waste treatment plant) in Shandong Province for the first time, The job was to flush the sludge from the walls of the sludge treatment tank (anaerobic tank) with a water gun, which can release hydrogen sulfide gas. When the patient was about to start work after entering the tank for about 1 min, he suddenly smelled a harsh and pungent odor, felt dizzy and weak, and then the patient suddenly fainted. After hearing the sound of the patient fainting, the workman waiting at the entrance of the tank immediately called someone to go into the tank and quickly pull the patient out, and sent to the local hospital. In the local hospital, the patient was confused, accompanied by irritability, convulsion and other manifestations, and was treated with sedation and nutritional support. Two days later, the patient's condition did not improve. For further diagnosis and treatment, the patient was transferred to the Department of Poisoning and Occupational Diseases in our hospital. After comprehensive treatment in our hospital, the patient got better and was discharged. Subsequent reexamination and follow-up showed that the patient recovered well. The work unit of the patient did not provide any personal protective equipment. According to the field investigation after the accident, the pipeline around the sludge treatment tank was blocked by sludge, resulting in a large amount of high concentration of H2S accumulated in the tank, causing the patient to faint soon after entering the tank, and his worker should be in the tank for a short time, and no health abnormalities were found. Hydrogen sulfide has a strong irritation to the human body, which can lead to asphyxia or even death in severe cases. The safety prevention and prevention knowledge of hydrogen sulfide poisoning should be popularized among enterprises and workers to reduce the occurrence of such incidents.
Collapse
Affiliation(s)
- Aerbusili Genjiafu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Shi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxing Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangdong Jian
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Traven L, Baldigara A, Crvelin G, Budimir D, Linšak DT, Linšak Ž. Exploring the link between sulphur-containing compounds and noxious odours at waste management facilities: implications for odour monitoring and mitigation strategies. Arh Hig Rada Toksikol 2023; 74:179-186. [PMID: 37791677 PMCID: PMC10549876 DOI: 10.2478/aiht-2023-74-3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/01/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
With this study we challenge the widely held assumption that sulphur-containing compounds in ambient air are good indicators of the presence noxious odours near waste management facilities. We analysed an extensive set of olfactometric data and data on the concentrations of hydrogen sulphide and trace sulphur compounds (TSCs) near a waste management facility in Croatia in 2021. The results show that the presence of noxious odours significantly correlates only with the concentrations of hydrogen sulphide and methyl mercaptan in ambient air but not with other measured TSCs. Thus, in addition to the measurement of pollutants in ambient air, Integrated Pollution and Prevention Control (IPPC) permits should mandate olfactometric measurements to detect and mitigate noxious odours near waste management facilities.
Collapse
Affiliation(s)
- Luka Traven
- University of Rijeka Faculty of Medicine, Department of Environmental Medicine, Rijeka, Croatia
- Teaching Institute of Public Health, Rijeka, Croatia
| | | | - Goran Crvelin
- Teaching Institute of Public Health, Rijeka, Croatia
| | - Darko Budimir
- Teaching Institute of Public Health, Rijeka, Croatia
| | - Dijana Tomić Linšak
- University of Rijeka Faculty of Medicine, Department of Environmental Medicine, Rijeka, Croatia
- Teaching Institute of Public Health, Rijeka, Croatia
| | - Željko Linšak
- University of Rijeka Faculty of Medicine, Department of Environmental Medicine, Rijeka, Croatia
- Teaching Institute of Public Health, Rijeka, Croatia
| |
Collapse
|
7
|
Kim H, Cho S, Jung I, Jung S, Park WJ. A case of syncope in a villager with hypertrophic cardiomyopathy after hydrogen sulfide exposure by an unauthorized discharge of wastewater. Ann Occup Environ Med 2023; 35:e34. [PMID: 37701488 PMCID: PMC10493378 DOI: 10.35371/aoem.2023.35.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Background Hydrogen sulfide is a toxic substance that humans can be exposed to occupationally, and cases of hydrogen sulfide poisoning of workers in industrial sites are commonly reported. However, there have been no cases of poisoning of the public due to an unauthorized discharge of wastewater, so it is important to describe this incident. Case presentation In a small village in Jeollanam-do, Republic of Korea, accounts of a terrible stench had been reported. A 26-year-old man who lived and worked in a foul-smelling area was taken to the emergency room with a headache, dizziness, nausea, and repeated syncope. A subsequent police and Ministry of Environment investigation determined that the cause of the stench was the unauthorized discharge of 9 tons of wastewater containing hydrogen sulfide through a stormwater pipe while the villagers were sleeping. The patient had no previous medical history or experience of symptoms. Leukocytes and cardiac markers were elevated, an electrocardiogram indicated biatrial enlargement, left ventricular hypertrophy, and corrected QT interval prolongation. Myocardial hypertrophy was detected on a chest computed tomography scan, and hypertrophic cardiomyopathy was confirmed on echocardiography. After hospitalization, cardiac marker concentrations declined, symptoms improved, and the patient was discharged after 7 days of hospitalization. There was no recurrence of symptoms after discharge. Conclusions We suspect that previously unrecognized heart disease manifested or was aggravated in this patient due to exposure to hydrogen sulfide. Attention should be paid to the possibility of unauthorized discharge of hydrogen sulfide, etc., in occasional local incidents and damage to public health. In the event of such an accident, it is necessary to have government guidelines in place to investigate health impact and follow-up clinical management of exposed residents.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Occupational and Environmental Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seunghyeon Cho
- Department of Occupational and Environmental Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Inho Jung
- Department of Occupational and Environmental Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sunjin Jung
- Department of Occupational and Environmental Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Won-Ju Park
- Department of Occupational and Environmental Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
8
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
9
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
10
|
Raval D, Gupta SK, Gajjar PN. Detection of H 2S, HF and H 2 pollutant gases on the surface of penta-PdAs 2 monolayer using DFT approach. Sci Rep 2023; 13:699. [PMID: 36639684 PMCID: PMC9839685 DOI: 10.1038/s41598-023-27563-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
In this research, the adsorption of targeted noxious gases like H2S, HF and H2 on penta-PdAs2 monolayer are deeply studied by means of the density functional theory (DFT). After the capturing of three kind of pollutant gases (H2S, HF and H2), it is observed that, the electronic properties are slightly affected from the pristine one. In all cases, the physisorption interaction found with adsorption energy of - 0.49, - 0.39 and - 0.16 eV for H2S, HF and H2 gases, respectively. Which is exposed that H2S gas strongly absorbed on penta-PdAs2 nanosheet. In case of HF (H2) gas adsorbed systems, the obtained charge transfer is + 0.111 e (+ 0.037 e), revealed that the electrons are going to PdAs2 nanosheet from the HF (H2) molecules. Further, under the non-equilibrium Green's function (NEGF) theory, the IV response and sensitivity of absorbed H2S, HF and H2 have been discussed. The results demonstrate that the H2S molecules on PdAs2 has suitable adsorption strength and explicit charge transfer compared with other targeted molecules. Hence, our novel findings of H2S, HF and H2 targeted gas sensing on penta-PdAs2 nanosheet might provide reference-line to design modern gas sensor device at the nano-scale.
Collapse
Affiliation(s)
- Dhara Raval
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Sanjeev K Gupta
- Computational Materials and Nanoscience Group, Department of Physics and Electronics, St. Xavier's College, Ahmedabad, 380009, India.
| | - P N Gajjar
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
11
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
12
|
Benhabib M, Kleinman SL, Peterman MC. Quantitative Analysis of Triazine-Based H 2S Scavengers via Raman Spectroscopy. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abstract
Toxic inhalants include various xenobiotics. Irritants cause upper and lower respiratory tract injuries. Highly water-soluble agents injure the upper respiratory tract, while low water-soluble inhalants injure the lower track. Asphyxiants are divided into simple asphyxiants and chemical asphyxiants. Simple asphyxiants displace oxygen, causing hypoxia, while chemical asphyxiants also impair the body's ability to use oxygen. Cyanide is a classic chemical asphyxiant. Treatment includes hydroxocobalamin. Electronic cigarette or vaping use-associated lung injury (EVALI) is a relatively new illness. Patients present with respiratory symptoms and gastrointestinal distress. EVALI appears to be associated with vaping cannabinoids. Treatment is supportive and may include steroids.
Collapse
Affiliation(s)
- Evan S Schwarz
- Washington University School of Medicine, 660 South Euclid, Campus Box 8072, St Louis, MO 63110, USA.
| |
Collapse
|
14
|
Perspectives on reactive separation and removal of hydrogen sulfide. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Miyazaki Y, Marutani E, Ikeda T, Ni X, Hanaoka K, Xian M, Ichinose F. A Sulfonyl Azide-Based Sulfide Scavenger Rescues Mice from Lethal Hydrogen Sulfide Intoxication. Toxicol Sci 2021; 183:393-403. [PMID: 34270781 DOI: 10.1093/toxsci/kfab088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to hydrogen sulfide (H2S) can cause neurotoxicity and cardiopulmonary arrest. Resuscitating victims of sulfide intoxication is extremely difficult, and survivors often exhibit persistent neurological deficits. However, no specific antidote is available for sulfide intoxication. The objective of this study was to examine whether administration of a sulfonyl azide-based sulfide-specific scavenger, SS20, would rescue mice in models of H2S intoxication: ongoing exposure and post-cardiopulmonary arrest. In the ongoing exposure model, SS20 (1,250 µmol/kg) or vehicle was administered to awake CD-1 mice intraperitoneally at 10 minutes after breathing 790 ppm of H2S followed by another 30 minutes of H2S inhalation. Effects of SS20 on survival was assessed. In the post-cardiopulmonary arrest model, cardiopulmonary arrest was induced by an intraperitoneal administration of sodium sulfide nonahydrate (125 mg/kg) in anesthetized mice. After 1 minute of cardiopulmonary arrest, mice were resuscitated with intravenous administration of SS20 (250 µmol/kg) or vehicle. Effects of SS20 on survival, neurological outcomes, and plasma H2S levels were evaluated. Administration of SS20 during ongoing H2S inhalation improved 24-hour survival (6/6 [100%] in SS20 versus 1/6 [17%] in vehicle; P = 0.0043). Post-arrest administration of SS20 improved 7-day survival (4/10 [40%] in SS20 versus 0/10 [0%] in vehicle; P = 0.0038) and neurological outcomes after resuscitation. SS20 decreased plasma H2S levels to pre-arrest baseline immediately after reperfusion and shortened the time to return of spontaneous circulation and respiration. The current results suggest that SS20 is an effective antidote against lethal H2S intoxication, even when administered after cardiopulmonary arrest.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Takamitsu Ikeda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, RI
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
16
|
Abstract
Dissolved gases produce a gas pressure. This gas pressure is the appropriate physical quantity for judging the possibility of bubble formation and hence it is central for understanding exchange of climate-relevant gases between (limnic) water and the atmosphere. The contribution of ebullition has widely been neglected in numerical simulations. We present measurements from six lacustrine waterbodies in Central Germany: including a natural lake, a drinking water reservoir, a mine pit lake, a sand excavation lake, a flooded quarry, and a small flooded lignite opencast, which has been heavily polluted. Seasonal changes of oxygen and temperature are complemented by numerical simulations of nitrogen and calculations of vapor pressure to quantify the contributions and their dynamics in lacustrine waters. In addition, accumulation of gases in monimolimnetic waters is demonstrated. We sum the partial pressures of the gases to yield a quantitative value for total gas pressure to reason which processes can force ebullition at which locations. In conclusion, only a small number of gases contribute decisively to gas pressure and hence can be crucial for bubble formation.
Collapse
|
17
|
Kulkarni AC. Saturation diver fatality due to hydrogen sulphide while working on a subsea pipe line. Diving Hyperb Med 2021. [PMID: 33761548 DOI: 10.28920/dhm51.1.94-97.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the offshore oil industry, Multipurpose Support Vessels with extensive diving capability are used for inspection, maintenance and repair of subsea pipelines. The diving industry has developed systemic safety checks and strict regulatory control after a number of fatal accidents in early years. However, accidents do continue to occur and, when involving divers in the water, are often fatal. Hydrogen sulphide (H2S), called 'sour gas' in an oil field, is produced by the action of anaerobic bacteria on sulphate containing organic matter. A highly toxic gas, it remains a constant danger for offshore oil industry workers who must remain vigilant. Crude oil and gas produced in these oilfields is called 'sour crude' and pipelines carry this crude with varying content of dissolved H2S to shore for processing. Divers are routinely called to attend to leaking pipelines and come in contact with this crude. Their hot water suits and umbilical lines are often covered with crude containing dissolved H2S. There is always a possibility that these may enter and contaminate the bell environment. Such a case leading to fatality is reported here.
Collapse
Affiliation(s)
- Ajit C Kulkarni
- Hyperbaric Solutions, Mumbai, India.,Corresponding author: Dr Ajit C Kulkarni, Hyperbaric Solutions, 3 A, Siddhivinayak Chambers, Bandra East, Mumbai 400051, India,
| |
Collapse
|
18
|
Kulkarni AC. Saturation diver fatality due to hydrogen sulphide while working on a subsea pipe line. Diving Hyperb Med 2021; 51:94-97. [PMID: 33761548 DOI: 10.28920/dhm51.1.94-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/05/2020] [Indexed: 11/05/2022]
Abstract
In the offshore oil industry, Multipurpose Support Vessels with extensive diving capability are used for inspection, maintenance and repair of subsea pipelines. The diving industry has developed systemic safety checks and strict regulatory control after a number of fatal accidents in early years. However, accidents do continue to occur and, when involving divers in the water, are often fatal. Hydrogen sulphide (H2S), called 'sour gas' in an oil field, is produced by the action of anaerobic bacteria on sulphate containing organic matter. A highly toxic gas, it remains a constant danger for offshore oil industry workers who must remain vigilant. Crude oil and gas produced in these oilfields is called 'sour crude' and pipelines carry this crude with varying content of dissolved H2S to shore for processing. Divers are routinely called to attend to leaking pipelines and come in contact with this crude. Their hot water suits and umbilical lines are often covered with crude containing dissolved H2S. There is always a possibility that these may enter and contaminate the bell environment. Such a case leading to fatality is reported here.
Collapse
Affiliation(s)
- Ajit C Kulkarni
- Hyperbaric Solutions, Mumbai, India.,Corresponding author: Dr Ajit C Kulkarni, Hyperbaric Solutions, 3 A, Siddhivinayak Chambers, Bandra East, Mumbai 400051, India,
| |
Collapse
|
19
|
Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H, Joles JA. Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems. Antioxidants (Basel) 2021; 10:373. [PMID: 33801446 PMCID: PMC7998720 DOI: 10.3390/antiox10030373] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
Collapse
Affiliation(s)
- Joshua J. Scammahorn
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Isabel T. N. Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Eelke M. Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Harry Van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jaap A. Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| |
Collapse
|
20
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
21
|
Shaikh N, Kakosimos KE, Adia N, Véchot L. Concept and demonstration of a fully coupled and dynamic exposure-response methodology for crowd evacuation numerical modelling in airborne-toxic environments. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123093. [PMID: 32531670 DOI: 10.1016/j.jhazmat.2020.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Evacuation simulation plays an indispensable role when planning for emergencies and evaluating the consequences of disasters related to airborne toxics. Various attempts have been made to improve simulation of evacuation in toxic environments and to account for the varying concentration levels and the dynamic exposure. However, most studies neglect the reverse effect, how the exposure and dosage levels affect the physical and psychological state of an evacuee and consequently the evacuation path and process. In this work, a fully coupled exposure-response-evacuation and agent based algorithm is proposed, focusing on the H2S airborne toxic. Accordingly, the dynamically estimated exposure of the evacuee affects, non-linearly, the evacuation speed and thus the overall evacuation. This coupling is challenging and thus it depends on the available epidemiological and toxicological data. Nevertheless, the diversity and advantages of the algorithm is successfully demonstrated over three case studies including single- and multi-agent in straight-path and building evacuation scenarios. For example, the building evacuation time increased by more than 50% by inclusion of the aforementioned coupling. In conclusion, herein, a gap on the evacuation modelling is addressed by a fully coupled methodology that could be easily adapted by safety engineers and further improved by researchers as more data become available.
Collapse
Affiliation(s)
- Nawayd Shaikh
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Center Qatar, Texas A&M University at Qatar, Qatar.
| | - Konstantinos E Kakosimos
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Center Qatar, Texas A&M University at Qatar, Qatar.
| | - Neil Adia
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Center Qatar, Texas A&M University at Qatar, Qatar
| | - Luc Véchot
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Center Qatar, Texas A&M University at Qatar, Qatar
| |
Collapse
|
22
|
Fatal poisoning of four workers in a farm: Distribution of hydrogen sulfide and thiosulfate in 10 different biological matrices. Forensic Sci Int 2020; 316:110525. [PMID: 33039903 DOI: 10.1016/j.forsciint.2020.110525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
We evaluate the distribution of sulfide and thiosulfate (TS) in biological samples of four dairy farmers died inside a pit connected to a manure lagoon. Autopsies were performed 4 days later. Toxicological analyses of sulfide and TS were made using an extractive alkylation technique combined with gas chromatography/mass spectrometry (GC/MS). Autopsies revealed: multiorgan congestion; pulmonary edema; manure inside distal airways of three of the four victims. Sulfide concentrations were cardiac blood: 0.5-3.0 μg/mL, femoral blood: 0.5-1.2 μg/mL, bile: <0.1-2.2 μg/mL; liver 2.8-8.3 μg/g, lung: 5.0-9.4 μg/g, brain: 2.7-13.9 μg/g, spleen: 3.3-6.3 μg/g, fat: <0.1-1.5 μg/g, muscle: 2.6-3.5 μg/g. TS concentrations were cardiac blood: 2.1-4.9 μg/mL, femoral blood: 2.1-2.3 μg/mL, bile: 2.5-4.4 μg/mL, urine: <0.5-1.8 μg/mL; liver <0.5-2.6, lung: 2.8-5.4 μg/g, brain: <0.5-1.9 μg/g, spleen: 1.2-2.9 μg/g, muscle: <0.5-5.6 μg/g. The cause of death was assessed to be acute poisoning by hydrogen sulfide (H2S) for all the victims. Manure inhalation contributed to the death of three subjects. The measurement of sulfide and TS concentrations in biological samples contributed to better understand the sequence of the events. Subjects 3 provided the highest concentration of sulfide in brain, thus, supporting the hypothesis of a rapid loss of consciousness and respiratory depression. One by one, the other farmers entered the pit in attempts to rescue the coworkers but collapsed. Despite the rapid death, subject 3 was the only one with TS detectable in urine. This could be due to differences in metabolism of H2S.
Collapse
|
23
|
Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Mohseni F, Bagheri F, Khaksari M. Hydrogen Sulfide Attenuates the Neurotoxicity in the Animal Model of Fetal Alcohol Spectrum Disorders. Neurotox Res 2020; 37:977-986. [PMID: 31900896 DOI: 10.1007/s12640-019-00152-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Fetal alcohol spectrum disorder (FASD), which is caused by prenatal alcohol exposure, can result in cell death in specific brain regions. Alcohol-induced neurocognitive defects offspring's are included with activation of oxidative-inflammatory cascade followed with wide apoptotic neurodegeneration in many brain's regions such as hippocampus. According to the latest studies, H2S (hydrogen sulfide) can protect neuronal cells via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in different animal models. Therefore, we aimed to evaluate the protective effects of H2S on ethanol-induced neuroinflammation and neuronal apoptosis in pup hippocampus with postnatal alcohol exposure. Administration of ethanol (5.27 g/kg) in milk solution (27.8 mL/kg) for each rat pups was performed through intragastric intubation on 2 to 10 postnatal days and NaHS as H2S donor (1 mg/kg) was injected on similar time, subcutaneously. For examining the antioxidant and anti-inflammatory effects, ELISA assay was performed to determine the levels of TNF-α, IL1β, and antioxidant enzymes. Immunohistochemical staining was performed to evaluate the expression levels of GFAP and caspase-3 also Nissl staining was done for necrotic cell death evaluation. H2S treatment could significantly increase the activity of total superoxide dismutase, catalase, and glutathione (P < 0.05). It also decreased the levels of TNF-α, IL1β, and malondialdehyde, compared with the ethanol group (P < 0.05). Moreover, the number of hippocampal caspase-3, GFAP-positive cells, and necrotic cells death reduced in the H2S group (P < 0.01). Based on the findings, H2S can inhibit apoptotic signaling that is mediated by the oxidative-inflammatory cascade following ethanol exposure of rat pups on postnatal period.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
25
|
Schulz M, Marquardt N, Schäfer M, Heinemeyer T, Schaate A. Solvent-assisted linker exchange as a tool for the design of mixed-linker MIL-140D structured MOFs for highly selective detection of gaseous H 2S. RSC Adv 2020; 10:12334-12338. [PMID: 35497577 PMCID: PMC9050664 DOI: 10.1039/d0ra01164a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Solvent-assisted linker exchange was used as tool to modify a MIL-140D-sdc (sdc = 4,4′-stilbenedicarboxylate) MOF with azostilbene dicarboxylic acid. The azo groups can act as coordination sites for copper ions and allow the use of this material as sensor for gaseous H2S.
Collapse
Affiliation(s)
- Marcel Schulz
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Nele Marquardt
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Malte Schäfer
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Thea Heinemeyer
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Andreas Schaate
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| |
Collapse
|
26
|
Daae HL, Heldal KK, Madsen AM, Olsen R, Skaugset NP, Graff P. Occupational exposure during treatment of offshore drilling waste and characterization of microbiological diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:533-540. [PMID: 31121403 DOI: 10.1016/j.scitotenv.2019.05.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The exposure for workers handling and recycling offshore drilling waste are previously not described, and given the potential for exposure to hazardous components, there is a need for characterizing this occupational exposure. In this study five plants recycling offshore drilling waste with different techniques were included. Measurements were conducted in both winter and summer to include seasonal exposure variations. Altogether >200 personal air-exposure measurements for oil mist, oil vapor, volatile organic compounds (VOC), hydrogen sulfide (H2S) and solvents were carried out respectively. Microorganisms related to drilling waste were identified in bulk samples and in stationary air measurements from two of the plants. The exposure to oil mist and oil vapor were below 10% of the current Norwegian occupational exposure limits (OEL) for all measured components. The plants using the Resoil or TCC method had a statistically significant higher exposure to oil vapor than the plant using complete combustion (p-value <0.05). No statistically significant difference was found between the different treatment methods for oil mist. The exposure to solvents was generally low (additive factor < 0.03). Endotoxin measurements done during winter showed a median concentration of 5.4 endotoxin units (EU)/m3. Levels of H2S above the odor threshold of 0.1 ppm were measured at four plants. Both drill mud and slop water contained a high number and diversity of bacteria (2-4 × 104 colony forming unit (CFU)/mL), where a large fraction was Gram-negative species. Some of the identified microorganisms are classified as potentially infectious pathogens for humans and thus might be a hazard to workers.
Collapse
Affiliation(s)
- Hanne Line Daae
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Kari Kulvik Heldal
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Raymond Olsen
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Pål Graff
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway.
| |
Collapse
|
27
|
Yang CT, Wang Y, Marutani E, Ida T, Ni X, Xu S, Chen W, Zhang H, Akaike T, Ichinose F, Xian M. Data-Driven Identification of Hydrogen Sulfide Scavengers. Angew Chem Int Ed Engl 2019; 58:10898-10902. [PMID: 31194894 DOI: 10.1002/anie.201905580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Indexed: 11/10/2022]
Abstract
Hydrogen sulfide (H2 S) is an important signaling molecule whose up- and down-regulation have specific biological consequences. Although significant advances in H2 S up-regulation, by the development of H2 S donors, have been achieved in recent years, precise H2 S down-regulation is still challenging. The lack of potent/specific inhibitors for H2 S-producing enzymes contributes to this problem. We expect the development of H2 S scavengers is an alternative approach to address this problem. Since chemical sensors and scavengers of H2 S share the same criteria, we constructed a H2 S sensor database, which summarizes key parameters of reported sensors. Data-driven analysis led to the selection of 30 potential compounds. Further evaluation of these compounds identified a group of promising scavengers, based on the sulfonyl azide template. The efficiency of these scavengers in in vitro and in vivo experiments was demonstrated.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Yingying Wang
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Eizo Marutani
- Dept. Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University, Sendai, 980-8575, Japan
| | - Xiang Ni
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Shi Xu
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Wei Chen
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University, Sendai, 980-8575, Japan
| | - Fumito Ichinose
- Dept. Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
| | - Ming Xian
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
28
|
Yang C, Wang Y, Marutani E, Ida T, Ni X, Xu S, Chen W, Zhang H, Akaike T, Ichinose F, Xian M. Data‐Driven Identification of Hydrogen Sulfide Scavengers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun‐tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095 China
| | - Yingying Wang
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Eizo Marutani
- Dept. Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital/Harvard Medical School Boston MA 02114 USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology Tohoku University Sendai 980-8575 Japan
| | - Xiang Ni
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Shi Xu
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Wei Chen
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095 China
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology Tohoku University Sendai 980-8575 Japan
| | - Fumito Ichinose
- Dept. Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital/Harvard Medical School Boston MA 02114 USA
| | - Ming Xian
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| |
Collapse
|
29
|
Alahmari S, Kang XW, Hippler M. Diode laser photoacoustic spectroscopy of CO 2, H 2S and O 2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry. Anal Bioanal Chem 2019; 411:3777-3787. [PMID: 31111181 PMCID: PMC6595070 DOI: 10.1007/s00216-019-01877-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
Abstract
Photoacoustic spectroscopy in a differential Helmholtz resonator has been employed with near-IR and red diode lasers for the detection of CO2, H2S and O2 in 1 bar of air/N2 and natural gas, in static and flow cell measurements. With the red distributed feedback (DFB) diode laser, O2 can be detected at 764.3 nm with a noise equivalent detection limit of 0.60 mbar (600 ppmv) in 1 bar of air (35-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 2.2 × 10-8 cm-1 W s1/2. Within the tuning range of the near-IR DFB diode laser (6357-6378 cm-1), CO2 and H2S absorption features can be accessed, with a noise equivalent detection limit of 0.160 mbar (160 ppmv) CO2 in 1 bar N2 (30-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 8.3 × 10-9 cm-1 W s1/2. Due to stronger absorptions, the noise equivalent detection limit of H2S in 1 bar N2 is 0.022 mbar (22 ppmv) at 1-s integration time. Similar detection limits apply to trace impurities in 1 bar natural gas. Detection limits scale linearly with laser power and with the square root of integration time. At 16-s total measurement time to obtain a spectrum, a noise equivalent detection limit of 40 ppmv CO2 is obtained after a spectral line fitting procedure, for example. Possible interferences due to weak water and methane absorptions have been discussed and shown to be either negligible or easy to correct. The setup has been used for simultaneous in situ monitoring of O2, CO2 and H2S in the cysteine metabolism of microbes (E. coli), and for the analysis of CO2 and H2S impurities in natural gas. Due to the inherent signal amplification and noise cancellation, photoacoustic spectroscopy in a differential Helmholtz resonator has a great potential for trace gas analysis, with possible applications including safety monitoring of toxic gases and applications in the biosciences and for natural gas analysis in petrochemistry. Graphical abstract.
Collapse
Affiliation(s)
- Saeed Alahmari
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Xiu-Wen Kang
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
30
|
Haouzi P, Sonobe T, Judenherc-Haouzi A. Hydrogen sulfide intoxication induced brain injury and methylene blue. Neurobiol Dis 2019; 133:104474. [PMID: 31103557 DOI: 10.1016/j.nbd.2019.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) remains a chemical hazard in the gas and farming industry. It is easy to manufacture from common chemicals and thus represents a potential threat for the civilian population. It is also employed as a method of suicide, for which incidence has recently increased in the US. H2S is a mitochondrial poison and exerts its toxicity through mechanisms that are thought to result from its high affinity to various metallo-proteins (such as - but not exclusively- the mitochondrial cytochrome c oxidase) and interactions with cysteine residues of proteins. Ion channels with critical implications for the cardiac and the brain functions appear to be affected very early during and following H2S exposure, an effect which is rapidly reversible during a light intoxication. However, during severe H2S intoxication, a coma, associated with a reduction in cardiac contractility, develops within minutes or even seconds leading to death by complete electro-mechanical dissociation of the heart. If the level of intoxication is milder, a rapid and spontaneous recovery of the coma occurs as soon as the exposure stops. The risk, although probably very small, of developing long-term debilitating motor or cognitive deficits is present. One of the major challenges impeding our effort to offer an effective treatment against H2S intoxication after exposure is that the pool of free/soluble H2S almost immediately disappears from the body preventing agents trapping free H2S (cobalt or ferric compounds) to play their protective role. This paper (1) presents and discusses the neurological symptoms and lesions observed in various animals models and in humans following an acute exposure to sub-lethal or lethal levels of H2S, (2) reviews the potential interest of methylene blue (MB), a potent cyclic redox dye - currently used for the treatment of methemoglobinemia - which has potential rescuing effects on the mitochondrial activity, as an antidote against sulfide intoxication.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
31
|
Cheung JY, Wang J, Zhang XQ, Song J, Davidyock JM, Prado FJ, Shanmughapriya S, Worth AM, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene Blue Counteracts H 2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovasc Toxicol 2019; 18:407-419. [PMID: 29603116 DOI: 10.1007/s12012-018-9451-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously demonstrated that methylene blue (MB) counteracts the effects of hydrogen sulfide (H2S) cardiotoxicity by improving cardiomyocyte contractility and intracellular Ca2+ homeostasis disrupted by H2S poisoning. In vivo, MB restores cardiac contractility severely depressed by sulfide and protects against arrhythmias, ranging from bundle branch block to ventricular tachycardia or fibrillation. To dissect the cellular mechanisms by which MB reduces arrhythmogenesis and improves bioenergetics in myocytes intoxicated with H2S, we evaluated the effects of H2S on resting membrane potential (Em), action potential (AP), Na+/Ca2+ exchange current (INaCa), depolarization-activated K+ currents and ATP levels in adult mouse cardiac myocytes and determined whether MB could counteract the toxic effects of H2S on myocyte electrophysiology and ATP. Exposure to toxic concentrations of H2S (100 µM) significantly depolarized Em, reduced AP amplitude, prolonged AP duration at 90% repolarization (APD90), suppressed INaCa and depolarization-activated K+ currents, and reduced ATP levels in adult mouse cardiac myocytes. Treating cardiomyocytes with MB (20 µg/ml) 3 min after H2S exposure restored Em, APD90, INaCa, depolarization-activated K+ currents, and ATP levels toward normal. MB improved mitochondrial membrane potential (∆ψm) and oxygen consumption rate in myocytes in which Complex I was blocked by rotenone. We conclude that MB ameliorated H2S-induced cardiomyocyte toxicity at multiple levels: (1) reversing excitation-contraction coupling defects (Ca2+ homeostasis and L-type Ca2+ channels); (2) reducing risks of arrhythmias (Em, APD, INaCa and depolarization-activated K+ currents); and (3) improving cellular bioenergetics (ATP, ∆ψm).
Collapse
MESH Headings
- Action Potentials
- Adenosine Triphosphate/metabolism
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Energy Metabolism/drug effects
- Heart Rate/drug effects
- Hydrogen Sulfide/toxicity
- Ion Channels/drug effects
- Ion Channels/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Methylene Blue/pharmacology
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxygen Consumption/drug effects
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Sodium-Calcium Exchanger/drug effects
- Sodium-Calcium Exchanger/metabolism
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA.
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA.
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - John M Davidyock
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA
| | - Fabian Jana Prado
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Alison M Worth
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
32
|
Chiarini A, Onorati F, Marconi M, Pasquali A, Patuzzo C, Malashicheva A, Irtyega O, Faggian G, Pignatti PF, Trabetti E, Armato U, Dal Pra I. Studies on sporadic non-syndromic thoracic aortic aneurysms: 1. Deregulation of Jagged/Notch 1 homeostasis and selection of synthetic/secretor phenotype smooth muscle cells. Eur J Prev Cardiol 2018; 25:42-50. [DOI: 10.1177/2047487318759119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design. Methods Media layer samples taken from seven carefully selected SNSTAAs and seven reference patients (controls) were investigated via quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, quantitative histology, and immunohistochemistry/immunofluorescence. Results In SNSTAAs media, aortic smooth muscle cells numbers were halved due to an apoptotic process coupled with a negligible cell proliferation. Cystathionine γ-lyase was diffusely up-regulated. Surviving aortic smooth muscle cells exhibited diverging phenotypes: in inner- and outer-media contractile cells prevailed, having higher contents of smooth-muscle-α-actin holoprotein (45-kDa) and of caspase-3-cleaved smooth-muscle-α-actin 25-kDa fragments; in mid-media, aortic smooth muscle cells exhibited a synthetic/secretor phenotype, down-regulating vimentin, but up-regulating glial fibrillary acidic protein, trans-Golgi network 46 protein, Jagged1 (172-kDa) holoprotein, and Jagged1’s receptor Notch1. Extracellular soluble Jagged1 (42-kDa) fragments accumulated. Conclusions In SNSTAAs, there is a relentless aortic smooth muscle cells attrition caused by the up-regulated cystathionine γ-lyase. In mid-media, synthetic/secretor aortic smooth muscle cells intensify Jagged1/NOTCH1 signalling in the attempt to counterbalance the weakened aortic wall, due to aortic smooth muscle cells net loss and mechanical stress. Synthetic/secretor aortic smooth muscle cells are apoptosis-prone, and the accruing thrombin-cleaved Jagged1 fragments counteract the otherwise useful effects of Jagged1/NOTCH1 signalling, thus hampering tissue homeostasis/remodelling, and aortic smooth muscle cells adhesion, differentiation, and migration.
Collapse
Affiliation(s)
- Anna Chiarini
- Histology and Embryology Section, University of Verona Medical School, Italy
| | - Francesco Onorati
- Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Maddalena Marconi
- Histology and Embryology Section, University of Verona Medical School, Italy
| | | | - Cristina Patuzzo
- Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Olga Irtyega
- Federal Almazov Medical Research Centre, St. Petersburg, Russia
| | - Giuseppe Faggian
- Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Pier F Pignatti
- Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Ubaldo Armato
- Histology and Embryology Section, University of Verona Medical School, Italy
| | - Ilaria Dal Pra
- Histology and Embryology Section, University of Verona Medical School, Italy
| |
Collapse
|
33
|
Austigard ÅD, Svendsen K, Heldal KK. Hydrogen sulphide exposure in waste water treatment. J Occup Med Toxicol 2018; 13:10. [PMID: 29507599 PMCID: PMC5831676 DOI: 10.1186/s12995-018-0191-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Background The aims of this study was to assess exposure to hydrogen sulphide (H2S) among waste water treatment workers (WWWs), and achieve a better measure of the risks of H2S exposure than only using the eight-hour average value and the ceiling value because the exposure pattern of H2S for WWWs is dominated by short-term peaks. Methods Ninety-three measurements of H2S from 56 WWWs in three cities and three rural areas were collected. All exposure measurements were carried out from the start of the day until lunch time (sampling time 4–5 h) when most of the practical work was performed. The type of tasks and extent of flushing were registered. H2S was measured using direct-reading instruments with logging: OdaLog L2/LL, Dräger X-am 5000 and Dräger Pac 7000 (0.1–200 ppm). Number and duration of peaks for different work tasks, seasons, places and extent of flushing were combined in an exposure index (IN), and evaluated in a mixed-model analysis, building a model aimed to predict exposure for different job tasks. Results Nine Percent (8 of 93) of all H2S measurements have peaks above 10 ppm; in addition, 15% (14 of 93) have peaks of 5–10 ppm, 35% (33 of 93) have peaks of 1–5 ppm and 65% (62 of 93) have peaks of 0.1–1 ppm. 29% of the measurements of hydrogen sulphide showed no registered level > 0.1 ppm. From the mixed-model analyses we see that exposure level, expressed as H2S index IN, varied between places, work type, season and degree of flushing. For the work in a plant in the capital, the exposure index varied from 0.02 for working in spring doing some flushing, to 0.7 for working at the same plant in winter doing flushing more than three times or more than 10 min. Collecting sewage from cesspools in city 2 in winter doing a lot of flushing gave a hydrogen sulphide index of 230. Conclusions The use of a H2S index, taking into consideration peak height, duration and number of peaks, could be a tool for exposure assessment for H2S.
Collapse
Affiliation(s)
| | - Kristin Svendsen
- 2Institute of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz vei 3, 7491 Trondheim, Norway
| | - Kari K Heldal
- 3The National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
34
|
Ren R, Yang Z, Zhao A, Huang Y, Lin S, Gong J, Chen J, Zhu P, Huang F, Lin W. Sulfated polysaccharide from Enteromorpha prolifera increases hydrogen sulfide production and attenuates non-alcoholic fatty liver disease in high-fat diet rats. Food Funct 2018; 9:4376-4383. [DOI: 10.1039/c8fo00518d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EP upregulates hepatic CBS expression, thus increasing serum H2S level, which reduces serum TG level and ameliorates NAFLD induced by a high-fat diet.
Collapse
Affiliation(s)
- Rendong Ren
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Zheng Yang
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Aili Zhao
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Yuyang Huang
- School of Clinical Medicine
- Fujian Medical University
- Fuzhou
- China
| | - Shiying Lin
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Junjie Gong
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Jie Chen
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Pingping Zhu
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Fang Huang
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| | - Wenting Lin
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|
35
|
Gas chromatographic sulphur speciation in heavy crude oil using a modified standard D5623 method and microfluidic Deans switching. J Chromatogr A 2017; 1530:241-246. [DOI: 10.1016/j.chroma.2017.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022]
|
36
|
Malone Rubright SL, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017; 71:1-13. [PMID: 29017846 PMCID: PMC5777517 DOI: 10.1016/j.niox.2017.09.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha L Malone Rubright
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States
| | - Linda L Pearce
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| | - Jim Peterson
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| |
Collapse
|
37
|
Frawley KL, Cronican AA, Pearce LL, Peterson J. Sulfide Toxicity and Its Modulation by Nitric Oxide in Bovine Pulmonary Artery Endothelial Cells. Chem Res Toxicol 2017; 30:2100-2109. [PMID: 29088535 DOI: 10.1021/acs.chemrestox.7b00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine pulmonary artery endothelial cells (BPAEC) respond in a dose-dependent manner to millimolar (0-10) levels of sodium sulfide (NaHS). No measurable increase in caspase-3 activity and no change in the extent of autophagy (or mitophagy) were observed in BPAEC. However, lactate dehydrogenase levels increased in the BPAEC exposed NaHS, which indicated necrotic cell death. In the case of galactose-conditioned BPAEC, the toxicity of NaHS was increased by 30% compared to that observed in BPAEC maintained in the regular glucose-containing culture medium, which indicated a link between mitochondrial oxidative phosphorylation and the mechanism of toxicant action. This is consistent with the widely held view that cytochrome c oxidase (complex IV of the mitochondrial electron-transport system) is the principal molecular target involved in the acute toxicity of "sulfide" (H2S/HS-). In support of this view, elevated NO (which can reverse cytochrome c oxidase inhibition) ameliorated the toxicity of NaHS and, conversely, suppression of endogenous NO production exacerbated the observed toxicity. Respirometric measurements showed the BPAEC to possess a robust sulfide oxidizing system, which was able to out-compete cytochrome c oxidase for available H2S/HS- at micromolar concentrations. This detoxification system has previously been reported by other groups in several cell types, but notably, not neurons. The findings appear to provide some insight into the question of why human survivors of H2S inhalation frequently present at the clinic with respiratory insufficiency/pulmonary edema, while acutely poisoned laboratory animals tend to either succumb to cardiopulmonary paralysis or fully recover without any intervention.
Collapse
Affiliation(s)
- Kristin L Frawley
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Andrea A Cronican
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Jim Peterson
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
38
|
Zhang N, Zheng Y, Chen WG, Li R, Song LX, Xu LH, Xu KS. Changes in hydrogen sulfide in rats with hepatic cirrhosis in different stages. Curr Med Sci 2017; 37:705-710. [PMID: 29058283 DOI: 10.1007/s11596-017-1792-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022]
Abstract
This study aimed to observe changes in the hydrogen sulfide (H2S) system in the blood and liver tissue of rats with hepatic cirrhosis at different stages by studying the effect of H2S on the course of hyperdynamic circulation in rats with hepatic cirrhosis. H2S concentration in the blood from the portal vein and inferior vena cava of hepatic cirrhosis rat model induced with carbon tetrachloride was detected on the 15th, 30th, and 52nd day. The expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) protein, and CBS and CSE mRNA in the liver was detected by immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. The results indicated that H2S concentration in the blood from the portal vein and inferior vena cava of rats with hepatic cirrhosis was significantly lower than that in the control group. H2S was gradually decreased with the development of the disease and significantly lower in the blood from portal vein than in the blood of inferior vena cava at the mid-stage and the late stage groups. The expression levels of CBS and CSE protein, and CBS and CSE mRNA in the livers with hepatic cirrhosis at different stages were all higher than those in the control group, and the expression gradually increased with the development of the disease. The expression of CBS was lower than CSE in the same stages. The results indicated that the CSE mRNA was expressed predominantly in the cirrhosis groups as compared with CBS mRNA. Among experimental rats, the H2S system has an important effect on the occurrence and development of hyperdynamic circulation in rats with hepatic cirrhosis. This finding adds to the literature by demonstrating that H2S protects vascular remodelling in the liver, and that CSE is indispensable in this process.
Collapse
Affiliation(s)
- Ning Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Yong Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China.
| | - Wei-Gang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Li-Xiu Song
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Li-Hong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Ke-Shu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Anantharam P, Whitley EM, Mahama B, Kim DS, Imerman PM, Shao D, Langley MR, Kanthasamy A, Rumbeiha WK. Characterizing a mouse model for evaluation of countermeasures against hydrogen sulfide-induced neurotoxicity and neurological sequelae. Ann N Y Acad Sci 2017; 1400:46-64. [PMID: 28719733 DOI: 10.1111/nyas.13419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2 S) is a highly neurotoxic gas. It is the second most common cause of gas-induced deaths. Beyond mortality, surviving victims of acute exposure may suffer long-term neurological sequelae. There is a need to develop countermeasures against H2 S poisoning. However, no translational animal model of H2 S-induced neurological sequelae exists. Here, we describe a novel mouse model of H2 S-induced neurotoxicity for translational research. In paradigm I, C57/BL6 mice were exposed to 765 ppm H2 S for 40 min on day 1, followed by 15-min daily exposures for periods ranging from 1 to 6 days. In paradigm II, mice were exposed once to 1000 ppm H2 S for 60 minutes. Mice were assessed for behavioral, neurochemical, biochemical, and histopathological changes. H2 S intoxication caused seizures, dyspnea, respiratory depression, knockdowns, and death. H2 S-exposed mice showed significant impairment in locomotor and coordinated motor movement activity compared with controls. Histopathology revealed neurodegenerative lesions in the collicular, thalamic, and cortical brain regions. H2 S significantly increased dopamine and serotonin concentration in several brain regions and caused time-dependent decreases in GABA and glutamate concentrations. Furthermore, H2 S significantly suppressed cytochrome c oxidase activity and caused significant loss in body weight. Overall, male mice were more sensitive than females. This novel translational mouse model of H2 S-induced neurotoxicity is reliable, reproducible, and recapitulates acute H2 S poisoning in humans.
Collapse
Affiliation(s)
- Poojya Anantharam
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | | | - Belinda Mahama
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Dong-Suk Kim
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Paula M Imerman
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Dahai Shao
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Monica R Langley
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Wilson K Rumbeiha
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
40
|
Expression characteristics of sulfur dioxygenase and its function adaption to sulfide in echiuran worm Urechis unicinctus. Gene 2016; 593:334-41. [DOI: 10.1016/j.gene.2016.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022]
|
41
|
Paustenbach DJ, Winans B, Novick RM, Green SM. The toxicity of crude 4-methylcyclohexanemethanol (MCHM): review of experimental data and results of predictive models for its constituents and a putative metabolite. Crit Rev Toxicol 2016; 45 Suppl 2:1-55. [PMID: 26509789 DOI: 10.3109/10408444.2015.1076376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Crude 4-methylcyclohexanemethanol (MCHM) is an industrial solvent used to clean coal. Approximately 10 000 gallons of a liquid mixture containing crude MCHM were accidently released into the Elk River in West Virginia in January 2014. Because of the proximity to a water treatment facility, the contaminated water was distributed to approximately 300 000 residents. In this review, experimental data and computational predictions for the toxicity for crude MCHM, distilled MCHM, its other components and its putative metabolites are presented. Crude MCHM, its other constituents and its metabolites have low to moderate acute and subchronic oral toxicity. Crude MCHM has been shown not to be a skin sensitizer below certain doses, indicating that at plausible human exposures it does not cause an allergic response. Crude MCHM and its constituents cause slight to moderate skin and eye irritation in rodents at high concentrations. These chemicals are not mutagenic and are not predicted to be carcinogenic. Several of the constituents were predicted through modeling to be possible developmental toxicants; however, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedicarboxylic acid and dimethyl 1,4-cyclohexanedicarboxylate did not demonstrate developmental toxicity in rat studies. Following the spill, the Centers for Disease Control and Prevention recommended a short-term health advisory level of 1 ppm for drinking water that it determined was unlikely to be associated with adverse health effects. Crude MCHM has an odor threshold lower than 10 ppb, indicating that it could be detected at concentrations at least 100-fold less than this risk criterion. Collectively, the findings and predictions indicate that crude MCHM poses no apparent toxicological risk to humans at 1 ppm in household water.
Collapse
|
42
|
Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas. Talanta 2016; 153:295-300. [DOI: 10.1016/j.talanta.2016.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 11/20/2022]
|
43
|
Liu X, Qin Z, Li X, Ma X, Gao B, Zhang Z. NF1, Sp1 and HSF1 are synergistically involved in sulfide-induced sqr activation in echiuran worm Urechis unicinctus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:232-40. [PMID: 27070384 DOI: 10.1016/j.aquatox.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Sulfide is a well-known environmental toxic substance. Mitochondrial sulfide oxidation is a main mechanism of sulfide detoxification in organisms, and sulfide: quinone oxidoreductase (SQR) is a key enzyme which is involved in transferring electrons from sulfide to ubiquinone and converting sulfide into thiosulfate. Previous studies have revealed the SQR-mediated mitochondrial sulfide oxidation exists in the echiuran worm Urechis unicinctus, and its sqr mRNA level increased significantly when the worm is exposed to sulfide. In this study, we attempt to reveal the synergistic regulation of transcription factors on sulfide-induced sqr transcription in U. unicinctus. METHODS ChIP and EMSA were used to identify the interactions between sqr proximal promoter (from -391 to +194bp) and transcription factors NF1 (nuclear factor 1) and Sp1 (specificity protein 1). Site-directed mutation and transfection assays further revealed their binding sites and synergistic roles of HSF1, NF1 and Sp1 in the sqr transcription. When U. unicinctus were exposed to 150μM sulfide, the expression levels and nuclear contents of NF1 and Sp1 were examined by Western blotting, and the binding contents between NF1 or Sp1 and the sqr promoter were also detected by ChIP. RESULTS Transcription factors NF1 and Sp1 were confirmed to interact with the sqr proximal promoter, and their binding sites were identified in -75 to -69bp for NF1 and -210 to -201bp for Sp1. Transfection assays showed mutation of NF1 or Sp1 binding site significantly decreased the sqr promoter activity by 50% or 73%, respectively. Moreover, we demonstrated three transcription factors NF1, Sp1 and HSF1 enhanced synergistically the activity of sqr transcription. Furthermore, contents of NF1 or Sp1 binding to the sqr proximal region increased significantly in the hindgut when the worms were exposed to 150μM sulfide. Similar changes of NF1 or Sp1 levels and nuclear NF1 or Sp1 levels were also presented. CONCLUSION Transcription factors NF1, Sp1 and HSF1 are all involved in sulfide-induced sqr transcription. Sulfide can activate sqr transcription by not only increasing their expression levels, but also promoting them entering nucleus and binding to the sqr promoter. NF1 and Sp1 participate in both basal and sulfide-induced sqr transcription, while HSF1 functions mainly in sulfide-induced sqr transcription.
Collapse
Affiliation(s)
- Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
44
|
Ahmad A, Sattar MA, Rathore HA, Khan SA, Lazhari MI, Afzal S, Hashmi F, Abdullah NA, Johns EJ. A critical review of pharmacological significance of Hydrogen Sulfide in hypertension. Indian J Pharmacol 2016; 47:243-7. [PMID: 26069359 PMCID: PMC4450547 DOI: 10.4103/0253-7613.157106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/08/2013] [Accepted: 04/20/2015] [Indexed: 11/04/2022] Open
Abstract
In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Munavvar A Sattar
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Hassaan A Rathore
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Safia Akhtar Khan
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - M I Lazhari
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Sheryar Afzal
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - F Hashmi
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Nor A Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Edward J Johns
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Weir SM, Knox A, Talent LG, Anderson TA, Salice CJ. Direct and indirect effects of petroleum production activities on the western fence lizard (Sceloporus occidentalis) as a surrogate for the dunes sagebrush lizard (Sceloporus arenicolus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1276-1283. [PMID: 26456391 DOI: 10.1002/etc.3279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The dunes sagebrush lizard (Sceloporus arenicolus) is a habitat specialist of conservation concern limited to shin oak sand dune systems of New Mexico and Texas (USA). Because much of the dunes sagebrush lizard's habitat occurs in areas of high oil and gas production, there may be direct and indirect effects of these activities. The congeneric Western fence lizard (Sceloporus occidentalis) was used as a surrogate species to determine direct effects of 2 contaminants associated with oil and gas drilling activities in the Permian Basin (NM and TX, USA): herbicide formulations (Krovar and Quest) and hydrogen sulfide gas (H2S). Lizards were exposed to 2 concentrations of H2 S (30 ppm or 90 ppm) and herbicide formulations (1× or 2× label application rate) representing high-end exposure scenarios. Sublethal behavioral endpoints were evaluated, including sprint speed and time to prey detection and capture. Neither H2S nor herbicide formulations caused significant behavioral effects compared to controls. To understand potential indirect effects of oil and gas drilling on the prey base, terrestrial invertebrate biomass and order diversity were quantified at impacted sites to compare with nonimpacted sites. A significant decrease in biomass was found at impacted sites, but no significant effects on diversity. The results suggest little risk from direct toxic effects, but the potential for indirect effects should be further explored.
Collapse
Affiliation(s)
- Scott M Weir
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Ami Knox
- Department of University Studies, Texas Tech University, Lubbock, Texas, USA
| | - Larry G Talent
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Christopher J Salice
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
46
|
Recent advances in electrochemical detection of important sulfhydryl-containing compounds. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Salvi A, Bankhele P, Jamil J, Chitnis MK, Njie-Mbye YF, Ohia SE, Opere CA. Effect of Hydrogen Sulfide Donors on Intraocular Pressure in Rabbits. J Ocul Pharmacol Ther 2016; 32:371-5. [PMID: 27092593 DOI: 10.1089/jop.2015.0144] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE In this study, we investigated the effect of a slow-releasing hydrogen sulfide (H2S) donor, GYY 4137, on intraocular pressure (IOP) in normotensive rabbits. Furthermore, we compared the IOP-lowering action of GYY 4137 with those elicited by other H2S-producing compounds, l-cysteine and ACS67 (a hybrid compound of latanoprost with an H2S-releasing moiety). METHODS IOP was measured in New Zealand normotensive male albino rabbits using a pneumatonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY). At 0 h, 50 μL of test compounds were applied topically to 1 eye of each animal, while the contralateral eye received the same quantity of vehicle (saline). IOP was measured hourly until baseline IOP readings were attained and animal eyes monitored for potential side effects (i.e., tearing, hyperemia). RESULTS GYY 4137 (0.1%-2%) produced a dose-dependent decrease in IOP reaching a maximum of 27.8% ± 3.14% (n = 5) after 6 h. Interestingly, a significant contralateral effect was observed in vehicle-treated controls eyes at all doses tested. l-cysteine (5%) and ACS67 (0.005%) also elicited a significant (P < 0.01) decrease in IOP that achieved a maximum of 28.84% ± 1.53% (n = 5) and 23.27% ± 0.51% (n = 5), respectively, after 3 h. All 3 H2S-producing compounds also caused a significant contralateral effect in vehicle-treated control eyes. CONCLUSION We conclude that GYY 4137 and other H2S-producing donors can reduce IOP in normotensive rabbits. However, the profile of IOP-lowering action of GYY 4137 was different from the other H2S donors affirming its ability to act as a slow-releasing gas donor.
Collapse
Affiliation(s)
- Ankita Salvi
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Pratik Bankhele
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Jamal Jamil
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Madhura Kulkarni Chitnis
- 2 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Ya Fatou Njie-Mbye
- 2 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Sunny E Ohia
- 2 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Catherine A Opere
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| |
Collapse
|
48
|
Judenherc-Haouzi A, Zhang XQ, Sonobe T, Song J, Rannals MD, Wang J, Tubbs N, Cheung JY, Haouzi P. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1030-44. [PMID: 26962024 DOI: 10.1152/ajpregu.00527.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/08/2016] [Indexed: 11/22/2022]
Abstract
We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania;
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Matthew D Rannals
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
49
|
Haouzi P, Sonobe T, Judenherc-Haouzi A. Developing effective countermeasures against acute hydrogen sulfide intoxication: challenges and limitations. Ann N Y Acad Sci 2016; 1374:29-40. [PMID: 26945701 DOI: 10.1111/nyas.13015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/25/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2 S) is a chemical hazard in the gas and farming industry. As it is easy to manufacture from common chemicals, it has also become a method of suicide. H2 S exerts its toxicity through its high affinity with metalloproteins, such as cytochrome c oxidase and possibly via its interactions with cysteine residues of various proteins. The latter was recently proposed to acutely alter ion channels with critical implications for cardiac and brain functions. Indeed, during severe H2 S intoxication, a coma, associated with a reduction in cardiac contractility, develops within minutes or even seconds leading to death by complete electromechanical dissociation of the heart. In addition, long-term neurological deficits can develop owing to the direct toxicity of H2 S on neurons combined with the consequences of a prolonged apnea and circulatory failure. Here, we review the challenges impeding efforts to offer an effective treatment against H2 S intoxication using agents that trap free H2 S, and present novel pharmacological approaches aimed at correcting some of the most harmful consequences of H2 S intoxication.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
50
|
Mengistie E, Ambelu A, Van Gerven T, Smets I. Impact of Tannery Effluent on the Self-purification Capacity and Biodiversity Level of a River. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:369-375. [PMID: 26781632 DOI: 10.1007/s00128-016-1735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
The present study investigates the impact of tannery effluents on the self-purification capacity and the local macroinvertebrate community of one natural stream. As the concentration of chromium and sulfide increased from up- to downstream sites, the reduction of suspended solids, 5-days biological oxygen demand (BOD5), chemical oxygen demand and nitrification capacity decreased by 61 %, 21 %, 30 % and 74 %, respectively. Similarly, the share of Ephemeroptera, Plecoptera, and Trichoptera on the macroinvertebrate community decreased from 24 % to 0 %. Also the diversity (Simpson's) index and the correlation between the physicochemical parameters, BOD5 reduction, the macroinvertebrate abundance and the chromium concentration underpin the importance of the contamination by tannery effluents for the degradation of the stream habitat quality. In conclusion, although the physicochemical parameters indicate that the self-purification of the river can be maintained for a certain stream section, the biodiversity of the river is severely compromised.
Collapse
Affiliation(s)
- Embialle Mengistie
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Louvain, Belgium.
| | - Argaw Ambelu
- Department of Environmental Health Sciences and Technology, Jimma University, P. O. Box: 378, Jimma, Ethiopia
| | - Tom Van Gerven
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Louvain, Belgium
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Louvain, Belgium
| |
Collapse
|