1
|
Li Z, Bai H, Bai Z, Han J, Luo D, Bai L. Multi-omics analysis identifies EcCS4 is negatively regulated in response to phytotoxin isovaleric acid stress in Echinochloa crus-galli. PEST MANAGEMENT SCIENCE 2024; 80:1957-1967. [PMID: 38088480 DOI: 10.1002/ps.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Knowledge of herbicidal targets is critical for weed management and food safety. The phytotoxin isovaleric acid (ISA) is effective against weeds with a broad spectrum, carries low environmental risks, and is thus an excellent herbicide lead. However, the biochemical and molecular mechanisms underlying the action of ISA remain unclear. RESULTS Multi-omics data showed that acetyl coenzyme A (acetyl-CoA) was the key affected metabolite, and that citrate synthase (CS) 4 was substantially down-regulated under ISA treatment in Echinochloa crus-galli leaves. In particular, the transcript level of EcCS4 was the most significantly regulated among the six genes involved in the top 10 different pathways. The EcCS4 encodes a protein of 472 amino acids and is localized to the cell membrane and mitochondria, similar to the CS4s of other plants. The protein content of EcCS4 was down-regulated after ISA treatment at 0.5 h. ISA markedly inhibited the CS4 activity in vitro in a concentration-dependent manner (IC50 = 41.35 μM). In addition, the transgenic rice plants overexpressing EcCS4 (IC50 = 111.8 mM for OECS4-8 line) were more sensitive, whereas loss-of-function rice mutant lines (IC50 = 746.5 mM for oscs4-19) were more resistant to ISA, compared to wild type (WT) plants (IC50 = 355.6 mM). CONCLUSION CS4 was first reported as a negative regulator of plant responses to ISA. These results highlight that CS4 is a candidate target gene for the development of novel herbicides and for breeding herbicide-resistant crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Dingfeng Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
2
|
Isayenka I, Beaudoin N. The Streptomyces scabiei Pathogenicity Factor Thaxtomin A Induces the Production of Phenolic Compounds in Potato Tubers. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233216. [PMID: 36501257 PMCID: PMC9737112 DOI: 10.3390/plants11233216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 05/27/2023]
Abstract
The phytotoxin thaxtomin A (TA) is the key pathogenicity factor synthesized by the bacteria Streptomyces scabiei, the main causal agent of common scab of potato (Solanum tuberosum L.). TA treatment of potato tuber flesh produces a brown color that was attributed to necrosis. The intensity of TA-induced browning was generally thought to correlate with potato sensitivity to the disease. In this study, we found that TA-induced browning was much more intense in the potato tuber flesh of the common scab moderately resistant variety Russet Burbank (RB) than that observed in tubers of the disease-susceptible variety Yukon Gold (YG). However, there was no significant difference in the level of TA-induced cell death detected in both varieties, suggesting that tubers response to TA does not correlate with the level of sensitivity to common scab. TA-treated potato tuber tissues accumulated significantly higher levels of phenolic compounds than untreated controls, with a higher phenol content detected in RB TA-treated tissues than in those of YG. Browning was associated with a significant induction of the expression of genes of the phenylpropanoid pathway in RB tubers, indicating that TA activated this metabolic pathway. These results suggest that tuber flesh browning induced by TA is due to the accumulation of phenolic compounds. These phenolics may play a role in the protection of potato tubers against S. scabiei.
Collapse
|
3
|
Beaudoin N, Isayenka I, Ducharme A, Massie S, Gagnon A, Hogue R, Beaulieu C, Michaud D. Habituation to thaxtomin A increases resistance to common scab in 'Russet Burbank' potato. PLoS One 2021; 16:e0253414. [PMID: 34133457 PMCID: PMC8208575 DOI: 10.1371/journal.pone.0253414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Common scab is a potato disease characterized by the formation of scab-like lesions on the surface of potato tubers. The actinobacterium Streptomyces scabiei is the main causal agent of common scab. During infection, this bacterium synthesizes the phytotoxin thaxtomin A which is essential for the production of disease symptoms. While thaxtomin A can activate an atypical programmed cell death in plant cell suspensions, it is possible to gradually habituate plant cells to thaxtomin A to provide resistance to lethal phytotoxin concentrations. Potato 'Russet Burbank' calli were habituated to thaxtomin A to regenerate the somaclone RB9 that produced tubers more resistant to common scab than those obtained from the original cultivar. Compared to the Russet Burbank cultivar, somaclone RB9 generated up to 22% more marketable tubers with an infected tuber area below the 5% threshold. Enhanced resistance was maintained over at least two years of cultivation in the field. However, average size of tubers was significantly reduced in somaclone RB9 compared to the parent cultivar. Small RB9 tubers had a thicker phellem than Russet Burbank tubers, which may contribute to improving resistance to common scab. These results show that thaxtomin A-habituation in potato is efficient to produce somaclones with increased and durable resistance to common scab.
Collapse
Affiliation(s)
- Nathalie Beaudoin
- Département de biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| | - Iauhenia Isayenka
- Département de biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Audrey Ducharme
- Département de biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Richard Hogue
- Institut de recherche et de développement en agroenvironnement inc. (IRDA), Québec, QC, Canada
| | - Carole Beaulieu
- Département de biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Michaud
- Centre de recherche et d’innovation sur les végétaux, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3941-3954. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered: (i) sensors for gaseous analytes (O2, CO2, and H2S); and (ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients and environmental pollutants such as heavy metals). We show that application of such microsensors may significantly advance understanding of mechanisms of plant-environmental interaction and regulation of plant developmental and adaptive responses under adverse environmental conditions via non-destructive visualization of key analytes with high spatial and/or temporal resolution. Examples included cover a broad range of environmental situations including hypoxia, salinity, and heavy metal toxicity. We highlight the power of combining microsensor technology with other advanced biophysical (patch-clamp, voltage-clamp, and single-cell pressure probe), imaging (MRI and fluorescent dyes), and genetic techniques and approaches. We conclude that future progress in the field may be achieved by applying existing microsensors for important signalling molecules such as NO and H2O2, by improving selectivity of existing microsensors for some key analytes (e.g. Na, Mg, and Zn), and by developing new microsensors for P.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, University of Copenhagen, Denmark
- School of Agriculture and Environment, The University of Western Australia, Australia
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Bioscience, Aarhus University, Denmark
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, China
| |
Collapse
|
5
|
Awwad F, Bertrand G, Grandbois M, Beaudoin N. Auxin protects Arabidopsis thaliana cell suspension cultures from programmed cell death induced by the cellulose biosynthesis inhibitors thaxtomin A and isoxaben. BMC PLANT BIOLOGY 2019; 19:512. [PMID: 31752698 PMCID: PMC6873746 DOI: 10.1186/s12870-019-2130-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/11/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Thaxtomin A (TA) is a natural cellulose biosynthesis inhibitor (CBI) synthesized by the potato common scab-causing pathogen Streptomyces scabies. Inhibition of cellulose synthesis by TA compromises cell wall organization and integrity, leading to the induction of an atypical program of cell death (PCD). These processes may facilitate S. scabies entry into plant tissues. To study the mechanisms that regulate the induction of cell death in response to inhibition of cellulose synthesis, we used Arabidopsis thaliana cell suspension cultures treated with two structurally different CBIs, TA and the herbicide isoxaben (IXB). RESULTS The induction of cell death by TA and IXB was abrogated following pretreatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the natural auxin indole-3-acetic acid (IAA). The addition of auxin efflux inhibitors also inhibited the CBI-mediated induction of PCD. This effect may be due to intracellular accumulation of auxin. Auxin has a wide range of effects in plant cells, including a role in the control of cell wall composition and rigidity to facilitate cell elongation. Using Atomic Force Microscopy (AFM)-based force spectroscopy, we found that inhibition of cellulose synthesis by TA and IXB in suspension-cultured cells decreased cell wall stiffness to a level slightly different than that caused by auxin. However, the cell wall stiffness in cells pretreated with auxin prior to CBI treatment was equivalent to that of cells treated with auxin only. CONCLUSIONS Addition of auxin to Arabidopsis cell suspension cultures prevented the TA- and IXB-mediated induction of cell death. Cell survival was also stimulated by inhibition of polar auxin transport during CBI-treatment. Inhibition of cellulose synthesis perturbed cell wall mechanical properties of Arabidopsis cells. Auxin treatment alone or with CBI also decreased cell wall stiffness, showing that the mechanical properties of the cell wall perturbed by CBIs were not restored by auxin. However, since auxin's effects on the cell wall stiffness apparently overrode those induced by CBIs, we suggest that auxin may limit the impact of CBIs by restoring its own transport and/or by stabilizing the plasma membrane - cell wall - cytoskeleton continuum.
Collapse
Affiliation(s)
- Fatima Awwad
- Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- Present address: Groupe de Recherche en Biologie végétale, Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Guillaume Bertrand
- Institut de Pharmacologie de Sherbrooke, Département de pharmacologie et physiologie, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Michel Grandbois
- Institut de Pharmacologie de Sherbrooke, Département de pharmacologie et physiologie, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Nathalie Beaudoin
- Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
6
|
Li Y, Liu J, Adekunle D, Bown L, Tahlan K, Bignell DR. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2019; 20:1379-1393. [PMID: 31282068 PMCID: PMC6792134 DOI: 10.1111/mpp.12843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.
Collapse
Affiliation(s)
- Yuting Li
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Jingyu Liu
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Damilola Adekunle
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Luke Bown
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
- Present address:
Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐Champaign1206 W Gregory DriveUrbana Il61801USA
| | - Kapil Tahlan
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Dawn R.D. Bignell
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| |
Collapse
|
7
|
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. MICROBIOLOGY-SGM 2019; 165:1025-1040. [PMID: 31162023 DOI: 10.1099/mic.0.000818] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Gustavo Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|
8
|
Shi W, Li M, Wei G, Tian R, Li C, Wang B, Lin R, Shi C, Chi X, Zhou B, Gao Z. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. MICROBIOME 2019; 7:14. [PMID: 30709420 PMCID: PMC6359780 DOI: 10.1186/s40168-019-0629-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soil microorganisms can mediate the occurrence of plant diseases. Potato common scab (CS) is a refractory disease caused by pathogenic Streptomyces that occurs worldwide, but little is known about the interactions between CS and the soil microbiome. In this study, four soil-root system compartments (geocaulosphere soil (GS), rhizosphere soil (RS), root-zone soil (ZS), and furrow soil (FS)) were analyzed for potato plants with naturally high (H) and low (L) scab severity levels. We aimed to determine the composition and putative function of the soil microbiome associated with potato CS. RESULTS The copy numbers of the scab phytotoxin biosynthetic gene txtAB and the bacterial 16S rRNA gene as well as the diversity and composition of each of the four soil-root system compartments were examined; GS was the only compartment that exhibited significant differences between the H and L groups. Compared to the H group, the L group exhibited a lower txtAB gene copy number, lower bacterial 16S copy number, higher diversity, higher co-occurrence network complexity, and higher community function similarity within the GS microbiome. The community composition and function of the GS samples were further revealed by shotgun metagenomic sequencing. Variovorax, Stenotrophomonas, and Agrobacterium were the most abundant genera that were significantly and positively correlated with the scab severity level, estimated absolute abundance (EAA) of pathogenic Streptomyces, and txtAB gene copy number. In contrast, Geobacillus, Curtobacterium, and unclassified Geodermatophilaceae were significantly negatively correlated with these three parameters. Compared to the function profiles in the L group, several genes involved in "ABC transporters," the "bacterial secretion system," "quorum sensing (QS)," "nitrogen metabolism," and some metabolism by cytochrome P450 were enriched in the H group. In contrast, some antibiotic biosynthesis pathways were enriched in the L group. Based on the differences in community composition and function, a simple model was proposed to explain the putative relationships between the soil microbiome and CS occurrence. CONCLUSIONS The GS microbiome was closely associated with CS severity in the soil-root system, and the occurrence of CS was accompanied by changes in community composition and function. The differential functions provide new clues to elucidate the mechanism underlying the interaction between CS occurrence and the soil microbiome, and varying community compositions provide novel insights into CS occurrence.
Collapse
Affiliation(s)
- Wencong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, 361005, China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Renmao Tian
- Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, USA
| | - Cuiping Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Bing Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, 271018, China
| | - Rongshan Lin
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, 271018, China
| | - Chunyu Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuli Chi
- Plant Protection Station, Jiaozhou Agricultural Bureau, Qingdao, 266300, China
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, 271018, China.
| | - Zheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, USA.
| |
Collapse
|
9
|
Dees MW, Lysøe E, Alsheikh M, Davik J, Brurberg MB. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation. MOLECULAR PLANT PATHOLOGY 2016; 17:703-13. [PMID: 26416294 PMCID: PMC6638500 DOI: 10.1111/mpp.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Common scab, caused by species from the bacterial genus Streptomyces, is an important disease of potato (Solanum tuberosum) crops worldwide. Early tuberization is a critical period for pathogen infection; hence, studies of host gene expression responses during this developmental stage can be important to expand our understanding of the infection process and to identify putative resistance genes. In an infection experiment with the highly susceptible potato cultivar Saturna and the relatively resistant cultivar Beate, transcription profiles were obtained by RNA sequencing at two developmental stages: the early hook stage and the early tuber formation stage. Our results indicate that 'Beate' mounts an early and sustained response to infection by S. turgidiscabies, whereas the defence response by 'Saturna' ceases before the early tuber formation stage. Most pronounced were the putative candidate defence-associated genes uniquely expressed in 'Beate'. We observed an increase in alternative splicing on pathogen infection at the early hook stage for both cultivars. A significant down-regulation of genes involved in the highly energy-demanding process of ribosome biogenesis was observed for the infected 'Beate' plants at the early hook stage, which may indicate an allocation of resources that favours the expression of defence-related genes.
Collapse
Affiliation(s)
- Merete Wiken Dees
- NIBIO, The Norwegian Institute of Bioeconomy Research, 1430, Ås, Norway
| | - Erik Lysøe
- NIBIO, The Norwegian Institute of Bioeconomy Research, 1430, Ås, Norway
| | - Muath Alsheikh
- Graminor Breeding Ltd, 2322, Ridabu, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jahn Davik
- NIBIO, The Norwegian Institute of Bioeconomy Research, 1430, Ås, Norway
| | | |
Collapse
|
10
|
Thangavel T, Tegg RS, Wilson CR. Toughing It Out--Disease-Resistant Potato Mutants Have Enhanced Tuber Skin Defenses. PHYTOPATHOLOGY 2016; 106:474-83. [PMID: 26780437 DOI: 10.1094/phyto-08-15-0191-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Common scab, a globally important potato disease, is caused by infection of tubers with pathogenic Streptomyces spp. Previously, disease-resistant potato somaclones were obtained through cell selections against the pathogen's toxin, known to be essential for disease. Further testing revealed that these clones had broad-spectrum resistance to diverse tuber-invading pathogens, and that resistance was restricted to tuber tissues. The mechanism of enhanced disease resistance was not known. Tuber periderm tissues from disease-resistant clones and their susceptible parent were examined histologically following challenge with the pathogen and its purified toxin. Relative expression of genes associated with tuber suberin biosynthesis and innate defense pathways within these tissues were also examined. The disease-resistant somaclones reacted to both pathogen and toxin by producing more phellem cell layers in the tuber periderm, and accumulating greater suberin polyphenols in these tissues. Furthermore, they had greater expression of genes associated with suberin biosynthesis. In contrast, signaling genes associated with innate defense responses were not differentially expressed between resistant and susceptible clones. The resistance phenotype is due to induction of increased periderm cell layers and suberization of the tuber periderm preventing infection. The somaclones provide a valuable resource for further examination of suberization responses and its genetic control.
Collapse
Affiliation(s)
- Tamilarasan Thangavel
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| |
Collapse
|
11
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 952] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Tegg RS, Shabala S, Cuin TA, Wilson CR. Mechanisms of thaxtomin A-induced root toxicity revealed by a thaxtomin A sensitive Arabidopsis mutant (ucu2-2/gi-2). PLANT CELL REPORTS 2016; 35:347-356. [PMID: 26518425 DOI: 10.1007/s00299-015-1888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The Arabidopsis mutant ( ucu2 - 2/gi - 2 ) is thaxtomin A, isoxaben and NPA-sensitive indicated by root growth and ion flux responses providing new insights into these compounds mode of action and interactions. Thaxtomin A (TA) is a cellulose biosynthetic inhibitor (CBI) that promotes plant cell hypertrophy and cell death. Electrophysiological analysis of steady-state K(+) and Ca(2+) fluxes in Arabidopsis thaliana roots pretreated with TA for 24 h indicated a disturbance in the regulation of ion movement across the plant cell membrane. The observed inability to control solute movement, recorded in rapidly growing meristematic and elongation root zones, may partly explain typical root toxicity responses to TA treatment. Of note, the TA-sensitive mutant (ucu2-2/gi-2) was more susceptible with K(+) and Ca(2+) fluxes altered between 1.3 and eightfold compared to the wild-type control where fluxes altered between 1.2 and threefold. Root growth inhibition assays showed that the ucu2-2/gi-2 mutant had an increased sensitivity to the auxin 2,4-D, but not IAA or NAA; it also had increased sensitivity to the auxin efflux transport inhibitor, 1-naphthylphthalamic acid (NPA), but not 2,3,5- Triiodobenzoic acid (TIBA), when compared to the WT. The NPA sensitivity data were supported by electrophysiological analysis of H(+) fluxes in the mature (but not elongation) root zone. Increased sensitivity to the CBI, isoxaben (IXB), but not dichlobenil was recorded. Increased sensitivity to both TA and IXB corresponded with higher levels of accumulation of these toxins in the root tissue, compared to the WT. Further root growth inhibition assays showed no altered sensitivity of ucu2-2/gi-2 to two other plant pathogen toxins, alternariol and fusaric acid. Identification of a TA-sensitive Arabidopsis mutant provides further insight into how this CBI toxin interacts with plant cells.
Collapse
Affiliation(s)
- Robert S Tegg
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia.
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| | - Tracey A Cuin
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| |
Collapse
|
13
|
Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:809-19. [PMID: 26608645 DOI: 10.1093/jxb/erv500] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Calcium (Ca(2+)) mobilization is a central theme in various plant signal transduction pathways. We demonstrate that Arabidopsis thaliana cyclic nucleotide-gated channel 2 (AtCNGC2) is involved in jasmonic acid (JA)-induced apoplastic Ca(2+) influx in Arabidopsis epidermal cells. Ca(2+) imaging results showed that JA can induce an elevation in the cytosolic cAMP concentration ([cAMP]cyt), reaching a maximum within 3 min. Dibutyryl cAMP (db-cAMP), a cell membrane-permeable analogue of cAMP, induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)]cyt), with a peak at 4 min. This [Ca(2+)]cyt increase was triggered by the JA-induced increase in [cAMP]cyt. W-7[N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin, positively modulated the JA-induced increase in [Ca(2+)]cyt, while W-5[N-(6-aminohexyl)-1-naphthalenesulfonamide], an inactive antagonist of calmodulin, had no apparent effect. db-cAMP and JA positively induced the expression of primary (i.e. JAZ1 and MYC2) and secondary (i.e. VSP1) response genes in the JA signalling pathway in wild-type Arabidopsis thaliana, whereas they had no significant effect in the AtCNGC2 mutant 'defense, no death (dnd1) plants. These data provide evidence that JA first induces the elevation of cAMP, and cAMP, as an activating ligand, activates the AtCNGC2 channel, resulting in apoplastic Ca(2+) influx through AtCNGC2.
Collapse
Affiliation(s)
- Min Lu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yanyan Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shikun Tang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jinbao Pan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yongkun Yu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yangyang Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhangjie Nan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Qingpeng Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
14
|
Luxardi G, Reid B, Ferreira F, Maillard P, Zhao M. Measurement of extracellular ion fluxes using the ion-selective self-referencing microelectrode technique. J Vis Exp 2015:e52782. [PMID: 25993490 DOI: 10.3791/52782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells from animals, plants and single cells are enclosed by a barrier called the cell membrane that separates the cytoplasm from the outside. Cell layers such as epithelia also form a barrier that separates the inside from the outside or different compartments of multicellular organisms. A key feature of these barriers is the differential distribution of ions across cell membranes or cell layers. Two properties allow this distribution: 1) membranes and epithelia display selective permeability to specific ions; 2) ions are transported through pumps across cell membranes and cell layers. These properties play crucial roles in maintaining tissue physiology and act as signaling cues after damage, during repair, or under pathological condition. The ion-selective self-referencing microelectrode allows measurements of specific fluxes of ions such as calcium, potassium or sodium at single cell and tissue levels. The microelectrode contains an ionophore cocktail which is selectively permeable to a specific ion. The internal filling solution contains a set concentration of the ion of interest. The electric potential of the microelectrode is determined by the outside concentration of the ion. As the ion concentration varies, the potential of the microelectrode changes as a function of the log of the ion activity. When moved back and forth near a source or sink of the ion (i.e. in a concentration gradient due to ion flux) the microelectrode potential fluctuates at an amplitude proportional to the ion flux/gradient. The amplifier amplifies the microelectrode signal and the output is recorded on computer. The ion flux can then be calculated by Fick's law of diffusion using the electrode potential fluctuation, the excursion of microelectrode, and other parameters such as the specific ion mobility. In this paper, we describe in detail the methodology to measure extracellular ion fluxes using the ion-selective self-referencing microelectrode and present some representative results.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis;
| | - Brian Reid
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis
| | - Fernando Ferreira
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis; Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho
| | - Pauline Maillard
- Department of Neurology and Center for Neuroscience, University of California, Davis Imaging of Dementia and Aging Laboratory
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis; Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis
| |
Collapse
|
15
|
Thangavel T, Steven Tegg R, Wilson CR. Resistance to multiple tuber diseases expressed in somaclonal variants of the potato cultivar Russet Burbank. ScientificWorldJournal 2014; 2014:417697. [PMID: 24523639 PMCID: PMC3913341 DOI: 10.1155/2014/417697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 11/17/2022] Open
Abstract
Multiple disease resistance is an aim of many plant breeding programs. Previously, novel somatic cell selection was used to generate potato variants of "Russet Burbank" with resistance to common scab caused by infection with an actinomycete pathogen. Coexpression of resistance to powdery scab caused by a protozoan pathogen was subsequently shown. This study sought to define whether this resistance was effective against additional potato tuber diseases, black scurf, and tuber soft rot induced by fungal and bacterial pathogens. Pot trials and in vitro assays with multiple pathogenic strains identified significant resistance to both tuber diseases across the potato variants examined; the best clone A380 showed 51% and 65% reductions in disease severity to tuber soft rot and black scurf, respectively, when compared with the parent line. The resistance appeared to be tuber specific as no enhanced resistance was recorded in stolons or stem material when challenged Rhizoctonia solani that induces stolon pruning and stem canker. The work presented here suggests that morphological characteristics associated with tuber resistance may be the predominant change that has resulted from the somaclonal cell selection process, potentially underpinning the demonstrated broad spectrum of resistance to tuber invading pathogens.
Collapse
Affiliation(s)
- Tamilarasan Thangavel
- Tasmanian Institute of Agriculture, University of Tasmania, New Town Research Laboratories, 13 St. Johns' Avenue, New Town, TAS 7008, Australia
| | - Robert Steven Tegg
- Tasmanian Institute of Agriculture, University of Tasmania, New Town Research Laboratories, 13 St. Johns' Avenue, New Town, TAS 7008, Australia
| | - Calum Rae Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, New Town Research Laboratories, 13 St. Johns' Avenue, New Town, TAS 7008, Australia
| |
Collapse
|
16
|
Wu H, Shabala L, Barry K, Zhou M, Shabala S. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. PHYSIOLOGIA PLANTARUM 2013; 149:515-27. [PMID: 23611560 DOI: 10.1111/ppl.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 05/18/2023]
Abstract
This work investigated the importance of the ability of leaf mesophyll cells to control K(+) flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10-day-old leaves were excised, and net K(+) and H(+) fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na(+) delivery to the shoot) using non-invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K(+) in salt-treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage-gated K(+) -permeable channels mediate K(+) retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl-induced K(+) fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
Collapse
Affiliation(s)
- Honghong Wu
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Lana Shabala
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Karen Barry
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Sergey Shabala
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
17
|
Bignell D, Fyans J, Cheng Z. Phytotoxins produced by plant pathogenic Streptomyces
species. J Appl Microbiol 2013; 116:223-35. [DOI: 10.1111/jam.12369] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 01/18/2023]
Affiliation(s)
- D.R.D. Bignell
- Department of Biology; Memorial University of Newfoundland; St. John's NL Canada
| | - J.K. Fyans
- Department of Biology; Memorial University of Newfoundland; St. John's NL Canada
| | - Z. Cheng
- Department of Biology; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
18
|
Zhang H, Ning X, Hang H, Ru X, Li H, Li Y, Wang L, Zhang X, Yu S, Qiao Y, Wang X, Wang PG. Total Synthesis of Thaxtomin A and Its Stereoisomers and Findings of Their Biological Activities. Org Lett 2013; 15:5670-3. [DOI: 10.1021/ol4026556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongbo Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Ning
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Hang Hang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xuyan Ru
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Haichen Li
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yonghong Li
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lizhong Wang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiao Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Shujing Yu
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuanyuan Qiao
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Peng George Wang
- State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, and College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
19
|
Tegg RS, Shabala SN, Cuin TA, Davies NW, Wilson CR. Enhanced resistance to the cellulose biosynthetic inhibitors, thaxtomin A and isoxaben in Arabidopsis thaliana mutants, also provides specific co-resistance to the auxin transport inhibitor, 1-NPA. BMC PLANT BIOLOGY 2013; 13:76. [PMID: 23638731 PMCID: PMC3655924 DOI: 10.1186/1471-2229-13-76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/30/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thaxtomin A (TA) is a phytotoxin produced by plant pathogenic Streptomyces spp. responsible for potato common scab. TA inhibits cellulose biosynthesis in expanding plant tissues and is essential for disease induction. Auxin treatment of various plant tissues has been repeatedly demonstrated to inhibit TA toxicity and to reduce common scab. This work utilises Arabidopsis thaliana mutants with resistance to cellulose biosynthesis inhibitors (CBIs) to investigate the interaction between TA, other CBIs and auxins. RESULTS Three CBI resistant A. thaliana mutants; txr1-1 (tolerance to TA), ixr1-1 (tolerance to isoxaben - IXB) and KOR1 (cellulose deficiency), showed no altered root growth response to treatment with natural or synthetic auxins, nor with the auxin efflux transport inhibitor 2,3,5-Triiodobenzoic acid (TIBA). However, all mutants had significantly enhanced tolerance to 1-napthylphthalamic acid (NPA), another auxin efflux transport inhibitor, which blocks polar auxin transport at a site distinct from TIBA. NPA tolerance of txr1-1 and ixr1-1 was further supported by electrophysiological analysis of net H+ fluxes in the mature, but not elongation zone of roots. All three mutants showed increased tolerance to IXB, but only txr1-1 showed tolerance to TA. No mutant showed enhanced tolerance to a third CBI, dichlobenil (DCB). CONCLUSIONS We have demonstrated that plant tolerance to TA and IXB, as well as cell wall synthesis modifications in roots, have resulted in specific co-resistance to NPA but not TIBA. This suggests that CBI resistance has an impact on polar auxin efflux transport processes associated with the NPA binding protein. We also show that NPA inhibitory response in roots occurs in the mature root zone but not the elongation zone. Responses of mutants to CBIs indicate a similar, but not identical mode of action of TA and IXB, in contrast to DCB.
Collapse
Affiliation(s)
- Robert S Tegg
- Tasmanian Institute of Agriculture (TIA), University of Tasmania (UTAS), 13 St John’s Ave, New Town, Tasmania, 7008, Australia
| | - Sergey N Shabala
- TIA, UTAS, Private Bag 54, Tasmania, Hobart, TAS 7001, Australia
| | - Tracey A Cuin
- TIA, UTAS, Private Bag 54, Tasmania, Hobart, TAS 7001, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Tasmania, Hobart, 7001, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture (TIA), University of Tasmania (UTAS), 13 St John’s Ave, New Town, Tasmania, 7008, Australia
- TIA, UTAS, Private Bag 54, Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
20
|
Ordoñez NM, Shabala L, Gehring C, Shabala S. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides. Methods Mol Biol 2013; 1016:95-106. [PMID: 23681574 DOI: 10.1007/978-1-62703-441-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular.
Collapse
Affiliation(s)
- Natalia Maria Ordoñez
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | |
Collapse
|
21
|
Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:185-93. [PMID: 20732880 PMCID: PMC2993909 DOI: 10.1093/jxb/erq257] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 05/18/2023]
Abstract
Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.
Collapse
Affiliation(s)
- Yuda Hariadi
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Jember, Jember 68121, East Java, Indonesia
| | - Karl Marandon
- Institute Polytechnique LaSalle Beauvais, BP 30313-60026 Beauvais Cedex, France
| | - Yu Tian
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Sven-Erik Jacobsen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Højbakkegaard Alle 13, DK-2630 Taastrup, Denmark
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
22
|
Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 2010; 107:21193-8. [PMID: 21088220 DOI: 10.1073/pnas.1000191107] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.
Collapse
|
23
|
Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. PLANT PHYSIOLOGY 2010; 154:733-43. [PMID: 20699402 PMCID: PMC2949008 DOI: 10.1104/pp.110.161356] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/02/2010] [Indexed: 05/18/2023]
Abstract
Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269–4163 (W. Ma, A.S., R.K.W., G.A.B.); Department of Cell and Systems Biology and Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2 (W. Moeder, K.Y.)
| |
Collapse
|
24
|
Wilson CR, Tegg RS, Wilson AJ, Luckman GA, Eyles A, Yuan ZQ, Hingston LH, Conner AJ. Stable and extreme resistance to common scab of potato obtained through somatic cell selection. PHYTOPATHOLOGY 2010; 100:460-467. [PMID: 20373967 DOI: 10.1094/phyto-100-5-0460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Somatic cell selection with thaxtomin A as a positive selection agent was used to isolate variants of potato cv. Russet Burbank with strong to extreme resistance to common scab. Glasshouse and field trials identified 51 variants with significantly reduced disease incidence (frequency of infected tubers) and severity (tuber lesion coverage) compared with the parent cultivar. The most promising variants exhibited extreme disease resistance, rarely showing lesions, which were invariably superficial and shallower than those on the parent. Resistance traits were consistently expressed both in 10 glasshouse and two field trials at different locations, with varied inoculum and disease pressure. Disease-resistant variants differed in their response to thaxtomin A in tuber slice bioassays. Of 23 variants tested, 10 showed reduced thaxtomin A susceptibility, with the remaining 13 responding similar to that of the parent. Thus, toxin tolerance was not the only factor responsible for observed disease resistance; however, four of the five most disease-resistant variants had enhanced thaxtomin A tolerance, suggesting that this factor is important in the expression of strong disease resistance. Pathogenicity and toxin tolerance remained stable over a 6-year period, demonstrating that selected phenotypes were robust and genetic changes stable. The majority of disease-resistant variants had tuber yields equivalent to the parent cultivar in glasshouse trials. This suggests that selection for disease resistance was not associated with negative tuber attributes and that certain variants may have commercial merit, worthy of further agronomic testing.
Collapse
Affiliation(s)
- Calum R Wilson
- Tasmanian Institute of Agricultural Research, University of Tasmania, New Town, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 2010; 98:179-94. [DOI: 10.1007/s10482-010-9429-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
|
26
|
Lerat S, Babana AH, El Oirdi M, El Hadrami A, Daayf F, Beaudoin N, Bouarab K, Beaulieu C. Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynthesis in tobacco and Arabidopsis thaliana. PLANT CELL REPORTS 2009; 28:1895-903. [PMID: 19859716 DOI: 10.1007/s00299-009-0792-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/24/2009] [Accepted: 10/06/2009] [Indexed: 05/28/2023]
Abstract
Streptomyces scabiei is the predominant causal agent of common scab of potato in North America. The virulence of common scab-causing streptomycetes relies on their capacity to synthesize thaxtomins. In this study, the effects of S. scabiei infection and of thaxtomin A, the main toxin produced by S. scabiei, were tested for the elicitation of plant defense molecules in the model plants tobacco (Nicotiana tabacum) and Arabidopsis thaliana. Tobacco leaves infected with spores of S. scabiei strain EF-35 or infiltrated with purified thaxtomin A produced a blue fluorescent compound that was not detected in leaves infiltrated with spores of a S. scabiei mutant deficient in thaxtomin A biosynthesis. Thin layer chromatography and high performance liquid chromatography identified this fluorescent compound as scopoletin, a plant defense phytoalexin. Arabidopsis seedlings grown in liquid medium also excreted scopoletin as a reaction to S. scabiei and thaxtomin A. The effects of the presence of scopoletin on S. scabiei were also investigated. The phytoalexin scopoletin caused a slight reduction of bacterial growth and a severe decrease of thaxtomin A production. Scopoletin was shown to inhibit thaxtomin A production by repression of a gene involved in the toxin biosynthesis.
Collapse
Affiliation(s)
- Sylvain Lerat
- Centre SEVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lerat S, Simao-Beaunoir AM, Beaulieu C. Genetic and physiological determinants of Streptomyces scabies pathogenicity. MOLECULAR PLANT PATHOLOGY 2009; 10:579-85. [PMID: 19694949 PMCID: PMC6640508 DOI: 10.1111/j.1364-3703.2009.00561.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED SUMMARY Common scab is a severe disease worldwide affecting tap root crops and potato tubers. It is caused by soil-borne filamentous bacteria belonging to the genus Streptomyces. Streptomycetes usually are saprophytic microorganisms, but a few species have acquired the ability to infect underground plant tissues. The predominant causal agent of potato scab worldwide is Streptomyces scabies. The production of phytotoxins called thaxtomins is essential for the virulence of common scab-causing agents. The genes involved in the biosynthetic pathway of thaxtomins and other virulence genes are clustered on a large pathogenicity island. The pathogenicity island can be mobilized and transferred to nonpathogenic relatives, leading to the emergence of new pathogenic streptomycetes. In most pathogenic Streptomyces species, thaxtomin A is the predominant form found. The regulation of thaxtomin A synthesis is complex. Although the plant-derived compound cellobiose is now recognized as the inducer of thaxtomin A synthesis at a genetic level, other molecules (including aromatic amino acids and some secondary metabolites) show inhibitory effects on the production of the toxin. This paper is an overview of common scab with a focus on S. scabies and its virulence mechanisms. TAXONOMY Streptomyces scabies (Thaxt.) Lambert and Loria; Kingdom Bacteria; Phylum Actinobacteria; Class Actinomycetes; Order Actinomycetales; Family Streptomycetaceae; genus Streptomyces; species scabies or scabiei. HOST RANGE Streptomyces scabies (syn. S. scabiei) has a broad host range comprising tuber vegetables and most tap root crops. Streptomyces scabies causes common scab on potato (Solanum tuberosum), beet (Beta vulgaris), carrot (Daucus carota), parsnip (Pastinaca sativa), radish (Raphanus sativus), rutabaga (Brassica napobrassica) and turnip (Brassica rapa). Disease symptoms: Common scab symptoms appear as randomly distributed shallow, raised or deep-pitted corky lesions. Their size and colour are quite variable, but lesions typically are brown with a diameter of a few millimetres. No above-ground symptoms disclose the presence of the disease as aerial tissues of scab-infected plants remain healthy. Streptomyces scabies also inhibits the growth of seedlings in monocot and dicot plants. USEFUL WEBSITES http://www.sanger.ac.uk/Projects/S_scabies, http://www.potatodiseases.org/scab.html, http://www.uri.edu/ce/factsheets/sheets/potatoscab.html.
Collapse
Affiliation(s)
- Sylvain Lerat
- Centre SEVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | | | | |
Collapse
|
28
|
Duval I, Beaudoin N. Transcriptional profiling in response to inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells. PLANT CELL REPORTS 2009; 28:811-30. [PMID: 19198845 DOI: 10.1007/s00299-009-0670-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/16/2008] [Accepted: 01/07/2009] [Indexed: 05/05/2023]
Abstract
The plant cell wall determines cell shape and is the main barrier against environmental challenges. Perturbations in the cellulose content of the wall lead to global modifications in cellular homeostasis, as seen in cellulose synthase mutants or after inhibiting cellulose synthesis. In particular, application of inhibitors of cellulose synthesis such as thaxtomin A (TA) and isoxaben (IXB) initiates a programmed cell death (PCD) in Arabidopsis thaliana suspension cells that is dependent on de novo gene transcription. To further understand how TA and IXB activate PCD, a whole genome microarray analysis was performed on mRNA isolated from Arabidopsis suspension cells exposed to TA and IXB. More than 75% of the genes upregulated by TA were also upregulated by IXB, including genes encoding cell wall-related and calcium-binding proteins, defence/stress-related transcription factors, signalling components and cell death-related proteins. Comparisons with published transcriptional analyses revealed that half of these genes were also induced by ozone, wounding, bacterial elicitor, Yariv reagent, chitin and H(2)O(2). These data indicate that both IXB and TA activate a similar gene expression profile, which includes an important subset of genes generally induced in response to various biotic and abiotic stress. However, genes typically activated during the defence response mediated by classical salicylic acid, jasmonate or ethylene signalling pathways were not upregulated in response to TA and IXB. These results suggest that inhibition of cellulose synthesis induces PCD by the activation of common stress-related pathways that would somehow bypass the classical hormone-dependent defence pathways.
Collapse
Affiliation(s)
- Isabelle Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
29
|
Meimoun P, Tran D, Baz M, Errakhi R, Dauphin A, Lehner A, Briand J, Biligui B, Madiona K, Beaulieu C, Bouteau F. Two different signaling pathways for thaxtomin A-induced cell death in Arabidopsis and tobacco BY2. PLANT SIGNALING & BEHAVIOR 2009; 4:142-4. [PMID: 19649193 PMCID: PMC2637503 DOI: 10.4161/psb.4.2.7719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 05/24/2023]
Abstract
Thaxtomin A (TXT) is a phytotoxin produced by all plant-pathogenic Streptomyces scabies involved in the potato scab disease. Their pathogenicity was previously correlated with the production of TXT. Calcium is known to be an essential second messenger associated with pathogen-induced plant responses and cell death. We have effectively shown that in Arabidopsis thaliana cell suspensions, TXT induces an early short lived Ca(2+) influx which is involved in the cell death process and other TXT-induced responses. We extended our study to Nicotiana tabacum BY2 by monitoring cell death and changes in cytosolic calcium concentration on cells expressing the apoaequorine Ca(2+) reporter protein to compare the responses to TXT of the two model plants, tobacco and A. thaliana. Our investigations show that cell death in BY2 appeared to be dose dependent with a lag of sensitivity comparing to A. thaliana. Moreover, pathway leading to cell death in BY2 does not involve calcium signaling. Our results suggest that different pathways are engaged in A. thaliana and N. tabacum BY2 to achieve the same response to TXT.
Collapse
Affiliation(s)
- Patrice Meimoun
- LEM (EA 3514), Université Paris Diderot-Paris7, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bischoff V, Cookson SJ, Wu S, Scheible WR. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:955-65. [PMID: 19269997 PMCID: PMC2652064 DOI: 10.1093/jxb/ern344] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 05/18/2023]
Abstract
Thaxtomin A, a phytotoxin produced by Streptomyces eubacteria, is suspected to act as a natural cellulose synthesis inhibitor. This view is confirmed by the results obtained from new chemical, molecular, and microscopic analyses of Arabidopsis thaliana seedlings treated with thaxtomin A. Cell wall analysis shows that thaxtomin A reduces crystalline cellulose, and increases pectins and hemicellulose in the cell wall. Treatment with thaxtomin A also changes the expression of genes involved in primary and secondary cellulose synthesis as well as genes associated with pectin metabolism and cell wall remodelling, in a manner nearly identical to isoxaben. In addition, it induces the expression of several defence-related genes and leads to callose deposition. Defects in cellulose synthesis cause ectopic lignification phenotypes in A. thaliana, and it is shown that lignification is also triggered by thaxtomin A, although in a pattern different from isoxaben. Spinning disc confocal microscopy further reveals that thaxtomin A depletes cellulose synthase complexes from the plasma membrane and results in the accumulation of these particles in a small microtubule-associated compartment. The results provide new and clear evidence for thaxtomin A having a strong impact on cellulose synthesis, thus suggesting that this is its primary mode of action.
Collapse
Affiliation(s)
- Volker Bischoff
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sarah Jane Cookson
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Shuang Wu
- University of Massachusetts, Biology Department, 611 N. Pleasant Street, Amherst MA 01003, USA
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
31
|
Lewis JW, Morley NJ, Drinkall J, Jamieson BJ, Wright R, Parry JD. Toxic effects of Streptomyces griseus spores and exudate on gill pathology of freshwater fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:173-181. [PMID: 18755510 DOI: 10.1016/j.ecoenv.2008.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 07/07/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
Many unexplained fish-kills in British waters are considered microbial in origin and a large proportion of field sites contains elevated concentrations of filamentous actinobacteria. The present study has shown that a strain of Streptomyces griseus, isolated from field sites, elicits pathological changes to the gills of fish under laboratory conditions which mirror those found in situ. These changes include hyperplasia leading to fusion of the secondary lamellae and loss of microridging on the filamental epithelium of the primary lamellae. Juveniles of up to six fish species were exposed to spore suspensions or exudate of S. griseus in the range of 1 x 10(2)-1 x 10(6)spores ml(-1) for up to 96 h. The exudate was more potent than the spores and there was a positive correlation between exudate concentration and the rate and extent of fish gill pathology with bream and rainbow trout being more sensitive than carp, tench and roach. The results are discussed in the context of recognising and managing potential fish mortalities caused by microbial toxins.
Collapse
Affiliation(s)
- J W Lewis
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | - N J Morley
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK.
| | - J Drinkall
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - B J Jamieson
- Ecology and Soils, Science, Environment Agency, Howbery Park, Wallingford OX10 8BD, UK
| | - R Wright
- Environment Agency, Rivers House, Inworth Road, Feering, Essex CO5 1UD, UK
| | - J D Parry
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
32
|
Tegg RS, Gill WM, Thompson HK, Davies NW, Ross JJ, Wilson CR. Auxin-Induced Resistance to Common Scab Disease of Potato Linked to Inhibition of Thaxtomin A Toxicity. PLANT DISEASE 2008; 92:1321-1328. [PMID: 30769443 DOI: 10.1094/pdis-92-9-1321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Production of the phytotoxin thaxtomin A by pathogenic Streptomyces spp. is essential for induction of common scab disease in potato. Prior studies have shown that foliar application of sublethal concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxin or auxin-like compounds significantly reduced severity and occurrence of common scab in subsequently produced tubers. However, the means of disease suppression by these compounds was not known. We confirm the disease suppressive activity of 2,4-D. Detailed tuber physiological examination showed that lenticel numbers, lenticel external dimensions, and periderm thickness and structure, physiological features believed to be critical to Streptomyces scabiei infection, were not substantially changed by 2,4-D treatments, negating a possible mechanism for disease suppression through alteration of these structures. In contrast, our studies show accumulation of 2,4-D in tubers of treated plants occurs and is associated with an enhanced tolerance to thaxtomin A. Applying 2,4-D to cultures of S. scabiei did not significantly alter in vitro growth of the pathogen. Thaxtomin A production by the pathogen was inhibited by 2,4-D, but only at the highest rate tested (1.0 mM), which is at least 200-fold more than is found in 2,4-D treated tubers. These data suggest 2,4-D has no direct effect on the pathogen or its virulence. Confirmatory evidence from studies with Arabidopsis thaliana seedlings demonstrated that the auxins 2,4-D and IAA ameliorate thaxtomin A toxicity. The evidence presented whereby auxin treatment inhibits toxicity of thaxtomin A secreted by the pathogen suggests a novel indirect means of disease suppression.
Collapse
Affiliation(s)
- Robert S Tegg
- Tasmanian Institute of Agricultural Research, University of Tasmania, New Town Research Laboratories, 13 St. John's Avenue, New Town, Tasmania 7008, Australia
| | - Warwick M Gill
- Tasmanian Institute of Agricultural Research, University of Tasmania, New Town Research Laboratories, 13 St. John's Avenue, New Town, Tasmania 7008, Australia
| | - Hannah K Thompson
- Tasmanian Institute of Agricultural Research, University of Tasmania, New Town Research Laboratories, 13 St. John's Avenue, New Town, Tasmania 7008, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania 7001, Australia
| | - John J Ross
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agricultural Research, University of Tasmania, New Town Research Laboratories, 13 St. John's Avenue, New Town, Tasmania 7008, Australia
| |
Collapse
|
33
|
Lanfermeijer FC, Staal M, Malinowski R, Stratmann JW, Elzenga JTM. Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. PLANT PHYSIOLOGY 2008; 146:129-39. [PMID: 18055585 PMCID: PMC2230550 DOI: 10.1104/pp.107.110643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/18/2007] [Indexed: 05/20/2023]
Abstract
In this study, we introduce the Micro-Electrode Ion Flux Estimation technique as a sensitive and accurate technique to study systemin-induced changes in ion fluxes from isolated nearly intact plant tissues. Our results demonstrate the effectiveness and value of the Micro-Electrode Ion Flux Estimation technique to monitor and characterize those elicitor-induced ion flux changes from intact tissues. We used the method to monitor the systemin-induced changes in ion fluxes from leaf tissue of various plant species, including wild-type and cu3 mutant tomato (Solanum pimpinellifolium) plants, and confirm previous observations, but now in intact leaf tissue. Upon exposure of leaf tissue of plant species from the subtribe solaneae to systemin, the H(+) influx and K(+) efflux were transiently strongly increased. Plant species of other clades did not show a response upon systemin exposure. Although it has been reported that the gene containing the cu3 null mutation is identical to the SR160/tBRI1 gene, which encodes the systemin/brassinosteroid receptor and is essential in systemin and brassinosteroid perception, we observed no differences in the response of H(+) and K(+) fluxes from both wild-type and mutant leaf tissue to systemin. Also, the effects of various pharmacological effectors on systemin-induced flux changes were similar. Moreover, a SR160/tBRI1 transgene-containing tobacco (Nicotiana tabacum) line was insensitive to systemin, whereas both this line and its wild-type predecessor were responsive to the elicitor flg22. Our results support the conclusion that the Cu3 receptor of tomato is not the systemin receptor, and, hence, another receptor is the principal systemin receptor.
Collapse
Affiliation(s)
- Frank C Lanfermeijer
- Laboratory of Plant Physiology, Centre for Ecological and Evolutionary Studies, University of Groningen, 9750 AA, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Errakhi R, Dauphin A, Meimoun P, Lehner A, Reboutier D, Vatsa P, Briand J, Madiona K, Rona JP, Barakate M, Wendehenne D, Beaulieu C, Bouteau F. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4259-70. [PMID: 19015217 DOI: 10.1093/jxb/ern267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.
Collapse
Affiliation(s)
- R Errakhi
- LEM (EA 3514), Université Paris Diderot-Paris7, 2, place Jussieu, F-75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Joshi M, Rong X, Moll S, Kers J, Franco C, Loria R. Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:599-608. [PMID: 17555268 DOI: 10.1094/mpmi-20-6-0599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Emergence of new, economically important plant-pathogenic species in the mostly saprophytic genus Streptomyces involves acquisition of a large, mobile pathogenicity island (PAI). Biosynthetic genes for a phytotoxin, thaxtomin A, are contained on this PAI. The Nec1 protein has necrogenic activity on excised potato tuber tissue, and the encoding gene is highly conserved in plant-pathogenic Streptomyces spp. The G+C content of nec1 indicates lateral transfer from an unrelated taxon; however, the nucleic acid and protein databases have not yielded homologs. Data presented in this article demonstrate that the Nec1 protein is necrogenic when expressed in Escherichia coli and that an active 16-kDa form of Nec1 is secreted from the plant pathogen Streptomyces turgidiscabies. Deletion analysis of nec1 demonstrated that the 151-amino-acid C-terminal region of the Nec1 protein is sufficient to confer necrogenic activity. Analysis of nec1 transcriptional start sites indicates that two mRNA species are produced and that the site of transcription initiation is influenced by glucose. S. turgidiscabies containing a nec1 deletion was greatly compromised in virulence on Arabidopsis thaliana, Nicotiana tabacum, and Raphanus sativus seedlings. The wild-type strain, S. turgidiscabies Car8, aggressively colonized and infected the root meristem of radish, whereas the deltanec1 mutant Car811 did not. Taken together, these data suggest that Nec1 is a secreted virulence protein with a conserved plant cell target that acts early in plant infection.
Collapse
Affiliation(s)
- Madhumita Joshi
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-5904, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hedrich R, Marten I. 30-year progress of membrane transport in plants. PLANTA 2006; 224:725-39. [PMID: 16835760 DOI: 10.1007/s00425-006-0341-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 03/18/2006] [Indexed: 05/10/2023]
Abstract
In the past 30 years enormous progress was made in plant membrane biology and transport physiology, a fact reflected in the appearance of textbooks. The first book dedicated to 'Membrane Transport in Plants' was published on the occasion of the 'International Workshop on Membrane Transport in Plants' held at the Nuclear Research Center, Jülich, Germany [Zimmermann and Dainty (eds) 1974] and was followed in 1976 by a related volume 'Transport in plants II' in the 'Encyclopedia of plant physiology' [Lüttge and Pitman (eds) 1976]. A broad spectrum of topics including thermodynamics of transport processes, water relations, primary reactions of photosynthesis, as well as more conventional aspects of membrane transport was presented. The aim of the editors of the first book was to bring advanced thermodynamical concepts to the attention of biologists and to show physical chemists and biophysicist what the more complex biological systems were like. To bundle known data on membrane transport in plants and relevant fields for mutual understanding, interdisciplinary research and clarification of problems were considered highly important for further progress in this scientific area of plant physiology. The present review will critically evaluate the progress in research in membrane transport in plants that was achieved during the past. How did 'Membrane Transport in Plants' progress within the 30 years between the publication of the first book about this topic (Zimmermann and Dainty 1974), a recent one with the same title (Blatt 2004), and today?
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Bioscience, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.
| | | |
Collapse
|
37
|
Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:171-84. [PMID: 16330526 DOI: 10.1093/jxb/erj022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Among the multitude of soil-inhabiting, saprophytic Streptomyces species are a growing number of plant pathogens that cause economically important diseases, including potato scab. Streptomyces scabies is the dominant pathogenic species worldwide, but is only one of many that cause very similar disease symptoms on plants. Molecular genetic analysis is beginning to identify the mechanisms used by plant pathogenic species to manipulate their hosts. The nitrated dipeptide phytotoxin, thaxtomin, inhibits cellulose biosynthesis in expanding plant tissues, stimulates Ca2+ spiking, and causes cell death. A secreted necrogenic protein, Nec1, contributes to virulence on diverse plant species. The thaxtomin biosynthetic genes and nec1 lie on a large mobilizable PAI, along with other putative virulence genes including a cytokinin biosynthetic pathway and a saponinase homolog. The PAI is mobilized during conjugation and site-specifically inserts in the linear chromosome of recipient species, accounting for the emergence of new pathogens in agricultural systems. The recently available genome sequence of S. scabies will accelerate research on host-pathogen interactions.
Collapse
Affiliation(s)
- Rosemary Loria
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203, USA.
| | | | | |
Collapse
|
39
|
O'LOONEY NICHOLA, FRY STEPHENC. Oxaziclomefone, a new herbicide, inhibits wall expansion in maize cell-cultures without affecting polysaccharide biosynthesis, xyloglucan transglycosylation, peroxidase action or apoplastic ascorbate oxidation. ANNALS OF BOTANY 2005; 96:1097-107. [PMID: 16144873 PMCID: PMC4247098 DOI: 10.1093/aob/mci261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/06/2005] [Accepted: 07/27/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Oxaziclomefone (OAC), a new herbicide, inhibits cell expansion, especially in roots and cell-cultures of gramineous monocots. OAC does not affect turgor in cultured maize cells, and must therefore inhibit wall-loosening or promote wall-tightening. METHODS The effects of OAC in living cultured maize cells on various biochemical processes thought to influence wall extension were studied. KEY RESULTS OAC did not affect 14C-incorporation from D-[U-14C]glucose into the major sugar residues of the cell wall (cellulosic glucose, non-cellulosic glucose, arabinose, xylose, galactose, mannose or uronic acids). OAC had no effect on 14C-incorporation from trans-[U-14C]cinnamate into wall-bound ferulate or its oxidative coupling-products. OAC did not influence the secretion or in-vivo action of peroxidase or xyloglucan endotransglucosylase activities-proposed wall-tightening and -loosening activities, respectively. The herbicide did not affect the consumption of extracellular L-ascorbate, an apoplastic solute proposed to act as an antioxidant and/or to generate wall-loosening hydroxyl radicals. CONCLUSIONS OAC decreased wall extensibility without influencing the synthesis or post-synthetic modification of major architectural wall components, or the redox environment of the apoplast. The possible value of OAC as a probe to explore aspects of primary cell wall physiology is discussed.
Collapse
Affiliation(s)
| | - STEPHEN C. FRY
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| |
Collapse
|