1
|
Palani T, Selvakumar D, Nathan B, Shanmugam V, Duraisamy K, Mannu J. Deciphering the impact of microRNAs in plant biology: a review of computational insights and experimental validation. Mol Biol Rep 2025; 52:209. [PMID: 39913060 DOI: 10.1007/s11033-025-10273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Exploring the complex world of microRNA (miRNA) biogenesis and functions in plants is essential for understanding their diverse regulatory mechanisms. This review highlights the processes involved in miRNA biogenesis and their crucial roles in growth and development of plant, stress responses, and nutrient homeostasis. miRNAs play a central role in various developmental processes, including the transition from the juvenile to adult stage, the growth of shoot apical meristem, leaf and floral morphogenesis, and the determination of flowering time. By presenting the current state of research, we focus on the vital role of computational tools and databases in deciphering the regulatory networks controlled by miRNAs, which helps us navigate the intricate world of plant biology. Furthermore, it stresses the importance of experimental validation techniques in confirming computational predictions, ensuring that miRNA research is reliable and robust. As the field continues to grow, this review emphasizes the urgent need for integrated approaches, to deepen our knowledge of plant miRNA biology and its implications. These insights will pave the way for advancements in crop improvement, stress resilience, and biotechnological innovations.
Collapse
Affiliation(s)
- Tamilarasi Palani
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Divya Selvakumar
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kavithamani Duraisamy
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
2
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Singh D, Verma N, Rengasamy B, Banerjee G, Sinha AK. The small RNA biogenesis in rice is regulated by MAP kinase-mediated OsCDKD phosphorylation. THE NEW PHYTOLOGIST 2024; 244:1482-1497. [PMID: 39285527 DOI: 10.1111/nph.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/18/2024]
Abstract
CDKs are the master regulator of cell division and their activity is controlled by the regulatory subunit cyclins and phosphorylation by the CAKs. However, the role of MAP kinases in regulating plant cell cycle or CDKs have not been explored. Here, we report that the MAP kinases OsMPK3, OsMPK4, and OsMPK6 physically interact and phosphorylate OsCDKD and its regulatory subunit OsCYCH in rice. MAP kinases phosphorylate CDKD at Ser-168 and Thr-235 residues in OsCDKD. The MAP kinase-mediated phosphorylation of OsCDKD is required for its activation to control the small RNA biogenesis. The phosphodead version of OsCDKD fails to activate the C-terminal domain of RNA Polymerase II, thereby negatively impacting small RNA transcription. Further, the overexpression lines of wild-type (WT) OsCDKD and phosphomimic OsCDKD show increased root growth, plant height, tiller number, panicle number, and seed number in comparison to WT, phosphodead OsCDKD-OE, and kinase-dead OsCDKD-OE plants. In a nutshell, our study establishes a novel regulation of OsCDKD by MAPK-mediated phosphorylation in rice. The phosphorylation of OsCDKD by MAPKs imparts a positive effect on rice growth and development by regulating miRNAs transcription.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| |
Collapse
|
4
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
5
|
Sugumar T, Shen G, Smith J, Zhang H. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1238. [PMID: 38732452 PMCID: PMC11085490 DOI: 10.3390/plants13091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.
Collapse
Affiliation(s)
- Tharanya Sugumar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jennifer Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| |
Collapse
|
6
|
Li M, Yu H, Zhou B, Gan L, Li S, Zhang C, Yu B. JANUS, a spliceosome-associated protein, promotes miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2024; 52:420-430. [PMID: 37994727 PMCID: PMC10783502 DOI: 10.1093/nar/gkad1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Lu Gan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| |
Collapse
|
7
|
Hu Y, Li C, Zhou R, Song Y, Lv Z, Wang Q, Dong X, Liu S, Feng C, Zhou Y, Zeng X, Zhang L, Wang Z, Di H. The Transcription Factor ZmNAC89 Gene Is Involved in Salt Tolerance in Maize ( Zea mays L.). Int J Mol Sci 2023; 24:15099. [PMID: 37894780 PMCID: PMC10606073 DOI: 10.3390/ijms242015099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The NAC gene family has transcription factors specific to plants, which are involved in development and stress response and adaptation. In this study, ZmNAC89, an NAC gene in maize that plays a role in saline-alkaline tolerance, was isolated and characterized. ZmNAC89 was localized in the nucleus and had transcriptional activation activity during in vitro experiments. The expression of ZmNAC89 was strongly upregulated under saline-alkaline, drought and ABA treatments. Overexpression of the ZmNAC89 gene in transgenic Arabidopsis and maize enhanced salt tolerance at the seedling stage. Differentially expressed genes (DEGs) were then confirmed via RNA-sequencing analysis with the transgenic maize line. GO analyses showed that oxidation-reduction process-regulated genes were involved in ZmNAC89-mediated salt-alkaline stress. ZmNAC89 may regulate maize saline-alkali tolerance through the REDOX pathway and ABA signal transduction pathway. From 140 inbred maize lines, 20 haplotypes and 16 SNPs were found in the coding region of the ZmNAC89 gene, including the excellent haplotype HAP20. These results contribute to a better understanding of the response mechanism of maize to salt-alkali stress and marker-assisted selection during maize breeding.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Chunxiang Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Runyu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Yongfeng Song
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Zhichao Lv
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Qi Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Xiaojie Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
- Institute of Crop Resources Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shan Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Chenchen Feng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| |
Collapse
|
8
|
Xu C, Zhang Z, He J, Bai Y, Cui J, Liu L, Tang J, Tang G, Chen X, Mo B. The DEAD-box helicase RCF1 plays roles in miRNA biogenesis and RNA splicing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:144-160. [PMID: 37415266 DOI: 10.1111/tpj.16366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
RCF1 is a highly conserved DEAD-box RNA helicase found in yeast, plants, and mammals. Studies about the functions of RCF1 in plants are limited. Here, we uncovered the functions of RCF1 in Arabidopsis thaliana as a player in pri-miRNA processing and splicing, as well as in pre-mRNA splicing. A mutant with miRNA biogenesis defects was isolated, and the defect was traced to a recessive point mutation in RCF1 (rcf1-4). We show that RCF1 promotes D-body formation and facilitates the interaction between pri-miRNAs and HYL1. Finally, we show that intron-containing pri-miRNAs and pre-mRNAs exhibit a global splicing defect in rcf1-4. Together, this work uncovers roles for RCF1 in miRNA biogenesis and RNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Chi Xu
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Xuemei Chen
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Xu Y, Chen X. microRNA biogenesis and stabilization in plants. FUNDAMENTAL RESEARCH 2023; 3:707-717. [PMID: 38933298 PMCID: PMC11197542 DOI: 10.1016/j.fmre.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
MicroRNAs (miRNAs) are short endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level in a broad range of eukaryotic species. In animals, it is estimated that more than 60% of mammalian genes are targets of miRNAs, with miRNAs regulating cellular processes such as differentiation and proliferation. In plants, miRNAs regulate gene expression and play essential roles in diverse biological processes, including growth, development, and stress responses. Arabidopsis mutants with defective miRNA biogenesis are embryo lethal, and abnormal expression of miRNAs can cause severe developmental phenotypes. It is therefore crucial that the homeostasis of miRNAs is tightly regulated. In this review, we summarize the key mechanisms of plant miRNA biogenesis and stabilization. We provide an update on nuclear proteins with functions in miRNA biogenesis and proteins linking miRNA biogenesis to environmental triggers.
Collapse
Affiliation(s)
- Ye Xu
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Kapadia C, Datta R, Mahammad SM, Tomar RS, Kheni JK, Ercisli S. Genome-Wide Identification, Quantification, and Validation of Differentially Expressed miRNAs in Eggplant ( Solanum melongena L.) Based on Their Response to Ralstonia solanacearum Infection. ACS OMEGA 2023; 8:2648-2657. [PMID: 36687045 PMCID: PMC9851032 DOI: 10.1021/acsomega.2c07097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a type of short noncoding RNA molecule (21-23 nucleotides), mediate repressive gene regulation through RNA silencing at the posttranscriptional level and play an important role in the defense response to abiotic and biotic stresses. miRNAs of the plant system have been studied in model crops for their diverse regulatory role while less is known about their significance in other plants whose genome and transcriptome data are scarce in the database, including eggplant (Solanum melongena L.). In the present study, a next-generation sequencing platform was used for the sequencing of miRNA, and real-time quantitative PCR for miRNAs was used to validate the gene expression patterns of miRNAs in Solanum melongena plantlets infected with the bacterial wilt-causing pathogen Ralstonia solanacearum (R. solanacearum). Sequence analyses showed the presence of 375 miRNAs belonging to 29 conserved families. The miR414 is highly conserved miRNA across the plant system while miR5658 and miR5021 were found exclusively in Arabidopsis thaliana surprisingly, these miRNAs were found in eggplants too. The most abundant families were miR5658 and miR414. Ppt-miR414, hvu-miR444b, stu-miR8020, and sly miR5303 were upregulated in Pusa purple long (PPL) (susceptible) at 48 h postinfection, followed by a decline after 96 h postinfection. A similar trend was obtained in ath-miR414, stu-mir5303h, alymiR847-5p, far-miR1134, ath-miR5021, ath-miR5658, osa-miR2873c, lja-miR7530, stu-miR7997c, and gra-miR8741 but at very low levels after infection in the susceptible variety, indicating their negative role in the suppression of host immunity. On the other hand, osa-miR2873c was found to be slightly increased after 96 hpi from 48 hpi. Most of the miRNAs under study showed relatively lower expression in the resistant variety Arka Nidhi after infection than in the susceptible variety. These results shed light on a deeper regulatory role of miRNAs and their targets in regulation of the plant response to bacterial infection. The present experiment and their results suggested that the higher expression of miRNA leads to a decline in host mRNA and thus shows susceptibility.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Saiyed Mufti Mahammad
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rukam Singh Tomar
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Jasmin Kumar Kheni
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
13
|
Chithung TA, Kansal S, Jajo R, Balyan S, Raghuvanshi S. Understanding the evolution of miRNA biogenesis machinery in plants with special focus on rice. Funct Integr Genomics 2023; 23:30. [PMID: 36604385 DOI: 10.1007/s10142-022-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
miRNA biogenesis process is an intricate and complex event consisting of many proteins working in a highly coordinated fashion. Most of these proteins have been studied in Arabidopsis; however, their orthologs and functions have not been explored in other plant species. In the present study, we have manually curated all the experimentally verified information present in the literature regarding these proteins and found a total of 98 genes involved in miRNA biogenesis in Arabidopsis. The conservation pattern of these proteins was identified in other plant species ranging from dicots to lower organisms, and we found that a major proportion of proteins involved in the pri-miRNA processing are conserved. However, nearly 20% of the genes, mostly involved in either transcription or functioning of the miRNAs, were absent in the lower organisms. Further, we manually curated a regulatory network of the core components of the biogenesis process and found that nearly half (46%) of the proteins interact with them, indicating that the processing step is perhaps the most under surveillance/regulation. We have subsequently attempted to characterize the orthologs identified in Oryza sativa, on the basis of transcriptome and epigenetic modifications under field drought conditions in order to assess the impact of drought on the process. We found several participating genes to be differentially expressed and/or epigenetically methylated under drought, although the core components like DCL1, SE, and HYL1 remain unaffected by the stress itself. The study enhances our present understanding of the biogenesis process and its regulation.
Collapse
Affiliation(s)
- Tonu Angaila Chithung
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Ringyao Jajo
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
14
|
Olek AT, Rushton PS, Kihara D, Ciesielski P, Aryal UK, Zhang Z, Stauffacher CV, McCann MC, Carpita NC. Essential amino acids in the Plant-Conserved and Class-Specific Regions of cellulose synthases. PLANT PHYSIOLOGY 2023; 191:142-160. [PMID: 36250895 PMCID: PMC9806608 DOI: 10.1093/plphys/kiac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/24/2022] [Indexed: 05/05/2023]
Abstract
The Plant-Conserved Region (P-CR) and the Class-Specific Region (CSR) are two plant-unique sequences in the catalytic core of cellulose synthases (CESAs) for which specific functions have not been established. Here, we used site-directed mutagenesis to replace amino acids and motifs within these sequences predicted to be essential for assembly and function of CESAs. We developed an in vivo method to determine the ability of mutated CesA1 transgenes to complement an Arabidopsis (Arabidopsis thaliana) temperature-sensitive root-swelling1 (rsw1) mutant. Replacement of a Cys residue in the CSR, which blocks dimerization in vitro, rendered the AtCesA1 transgene unable to complement the rsw1 mutation. Examination of the CSR sequences from 33 diverse angiosperm species showed domains of high-sequence conservation in a class-specific manner but with variation in the degrees of disorder, indicating a nonredundant role of the CSR structures in different CESA isoform classes. The Cys residue essential for dimerization was not always located in domains of intrinsic disorder. Expression of AtCesA1 transgene constructs, in which Pro417 and Arg453 were substituted for Ala or Lys in the coiled-coil of the P-CR, were also unable to complement the rsw1 mutation. Despite an expected role for Arg457 in trimerization of CESA proteins, AtCesA1 transgenes with Arg457Ala mutations were able to fully restore the wild-type phenotype in rsw1. Our data support that Cys662 within the CSR and Pro417 and Arg453 within the P-CR of Arabidopsis CESA1 are essential residues for functional synthase complex formation, but our data do not support a specific role for Arg457 in trimerization in native CESA complexes.
Collapse
Affiliation(s)
- Anna T Olek
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Phillip S Rushton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Peter Ciesielski
- Renewable Resources & Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Uma K Aryal
- Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| |
Collapse
|
15
|
Jamla M, Joshi S, Patil S, Tripathi BN, Kumar V. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops. PROTOPLASMA 2023; 260:5-19. [PMID: 35657503 DOI: 10.1007/s00709-022-01775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During their lifespan, sessile plants have to cope with bioavailability of the suboptimal nutrient concentration and have to constantly sense/evolve the connecting web of signal cascades for efficient nutrient uptake, storage, and translocation for proper growth and metabolism. However, environmental fluctuations and escalating anthropogenic activities are making it a formidable challenge for plants. This is adding to (micro)nutrient-deficient crops and nutritional insecurity. Biofortification is emerging as a sustainable and efficacious approach which can be utilized to combat the micronutrient malnutrition. A biofortified crop has an enriched level of desired nutrients developed using conventional breeding, agronomic practices, or advanced biotechnological tools. Nutrient homeostasis gets hampered under nutrient stress, which involves disturbance in short-distance and long-distance cell-cell/cell-organ communications involving multiple cellular and molecular components. Advanced sequencing platforms coupled with bioinformatics pipelines and databases have suggested the potential roles of tiny signaling molecules and post-transcriptional regulators, the microRNAs (miRNAs) in key plant phenomena including nutrient homeostasis. miRNAs are seen as emerging targets for biotechnology-based biofortification programs. Thus, understanding the mechanistic insights and regulatory role of miRNAs could open new windows for exploring them in developing nutrient-efficient biofortified crops. This review discusses significance and roles of miRNAs in plant nutrition and nutrient homeostasis and how they play key roles in plant responses to nutrient imbalances/deficiencies/toxicities covering major nutrients-nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), iron (Fe), and zinc (Zn). A perspective view has been given on developing miRNA-engineered biofortified crops with recent success stories. Current challenges and future strategies have also been discussed.
Collapse
Affiliation(s)
- Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
16
|
Zhang H, Li X, Song R, Zhan Z, Zhao F, Li Z, Jiang D. Cap-binding complex assists RNA polymerase II transcription in plant salt stress response. PLANT, CELL & ENVIRONMENT 2022; 45:2780-2793. [PMID: 35773782 DOI: 10.1111/pce.14388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Adaptive response to stress involves an extensive reprogramming of gene expression. Under stressful conditions, the induction of efficient changes in messenger RNA (mRNA) production is crucial for maximized plant survival. Transcription and pre-mRNA processing are two closely related steps in mRNA biogenesis, yet how they are controlled in plant stress response remains elusive. Here, we show that the Arabidopsis nuclear cap-binding complex (CBC) component CBP20 directly interacts with ELF7, a subunit of the transcription elongation factor RNA Pol II-associated factor 1 complex (PAF1c) to promote RNA Pol II transcription in plant response to salt stress. CBP20 and ELF7 coregulate the expression of a large number of genes including those crucial for salt tolerance. Both CBP20 and ELF7 are required for enhanced RNA Pol II elongation at salt-activated genes. Though CBP20 also regulates intron splicing, this function is largely independent of ELF7. Our study reveals the function of an RNA processing regulator CBC in assisting efficient RNA Pol II transcription and pinpoints the complex roles of CBC on mRNA production in plant salt stress resistance.
Collapse
Affiliation(s)
- Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruitian Song
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Identification of Pri-miRNA Stem-Loop Interacting Proteins in Plants Using a Modified Version of the Csy4 CRISPR Endonuclease. Int J Mol Sci 2022; 23:ijms23168961. [PMID: 36012225 PMCID: PMC9409100 DOI: 10.3390/ijms23168961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Regulation at the RNA level by RNA-binding proteins (RBPs) and microRNAs (miRNAs) is key to coordinating eukaryotic gene expression. In plants, the importance of miRNAs is highlighted by severe developmental defects in mutants impaired in miRNA biogenesis. MiRNAs are processed from long primary-microRNAs (pri-miRNAs) with internal stem-loop structures by endonucleolytic cleavage. The highly structured stem-loops constitute the basis for the extensive regulation of miRNA biogenesis through interaction with RBPs. However, trans-acting regulators of the biogenesis of specific miRNAs are largely unknown in plants. Therefore, we exploit an RNA-centric approach based on modified versions of the conditional CRISPR nuclease Csy4* to pull down interactors of the Arabidopsis pri-miR398b stem-loop (pri-miR398b-SL) in vitro. We designed three epitope-tagged versions of the inactive Csy4* for the immobilization of the protein together with the pri-miR398b-SL bait on high affinity matrices. After incubation with nucleoplasmic extracts from Arabidopsis and extensive washing, pri-miR398b-SL, along with its specifically bound proteins, were released by re-activating the cleavage activity of the Csy4* upon the addition of imidazole. Co-purified proteins were identified via quantitative mass spectrometry and data sets were compared. In total, we identified more than 400 different proteins, of which 180 are co-purified in at least two out of three independent Csy4*-based RNA pulldowns. Among those, the glycine-rich RNA-binding protein AtRZ-1a was identified in all pulldowns. To analyze the role of AtRZ-1a in miRNA biogenesis, we determined the miR398 expression level in the atrz-1a mutant. Indeed, the absence of AtRZ-1a caused a decrease in the steady-state level of mature miR398 with a concomitant reduction in pri-miR398b levels. Overall, we show that our modified Csy4*-based RNA pulldown strategy is suitable to identify new trans-acting regulators of miRNA biogenesis and provides new insights into the post-transcriptional regulation of miRNA processing by plant RBPs.
Collapse
|
18
|
Pietrykowska H, Sierocka I, Zielezinski A, Alisha A, Carrasco-Sanchez JC, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z. Biogenesis, conservation, and function of miRNA in liverworts. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4528-4545. [PMID: 35275209 PMCID: PMC9291395 DOI: 10.1093/jxb/erac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules, 18-24 nucleotides long, that control multiple gene regulatory pathways via post-transcriptional gene silencing in eukaryotes. To develop a comprehensive picture of the evolutionary history of miRNA biogenesis and action in land plants, studies on bryophyte representatives are needed. Here, we review current understanding of liverwort MIR gene structure, miRNA biogenesis, and function, focusing on the simple thalloid Pellia endiviifolia and the complex thalloid Marchantia polymorpha. We review what is known about conserved and non-conserved miRNAs, their targets, and the functional implications of miRNA action in M. polymorpha and P. endiviifolia. We note that most M. polymorpha miRNAs are encoded within protein-coding genes and provide data for 23 MIR gene structures recognized as independent transcriptional units. We identify M. polymorpha genes involved in miRNA biogenesis that are homologous to those identified in higher plants, including those encoding core microprocessor components and other auxiliary and regulatory proteins that influence the stability, folding, and processing of pri-miRNAs. We analyzed miRNA biogenesis proteins and found similar domain architecture in most cases. Our data support the hypothesis that almost all miRNA biogenesis factors in higher plants are also present in liverworts, suggesting that they emerged early during land plant evolution.
Collapse
Affiliation(s)
| | | | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Juan Carlo Carrasco-Sanchez
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | | | | |
Collapse
|
19
|
Cai Y, Zhang W, Fu Y, Shan Z, Xu J, Wang P, Kong F, Jin J, Yan H, Ge X, Wang Y, You X, Chen J, Li X, Chen W, Chen X, Ma J, Tang X, Zhang J, Bao Y, Jiang L, Wang H, Wan J. Du13 encodes a C 2 H 2 zinc-finger protein that regulates Wx b pre-mRNA splicing and microRNA biogenesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1387-1401. [PMID: 35560858 PMCID: PMC9241381 DOI: 10.1111/pbi.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre-mRNA. Here, we uncover dual roles for a novel Dull gene in pre-mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map-based cloning showed that Du13 encodes a C2 H2 zinc-finger protein. Du13 coordinates with the nuclear cap-binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein-coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre-mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yushuang Fu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Zhuangzhuang Shan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xinyuan Ge
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yongxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Li
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yiqun Bao
- College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
20
|
Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A, Smolinski DJ, Mammarella MF, Ariel FD, Marquardt S, Szweykowska-Kulinska Z, Jarmolowski A, Manavella PA. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. NATURE PLANTS 2022; 8:402-418. [PMID: 35449404 PMCID: PMC9023350 DOI: 10.1038/s41477-022-01125-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.
Collapse
Affiliation(s)
- Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ileana Tossolini
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
| | - Anna Kasprowicz-Maluski
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Dariusz Jan Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - María Florencia Mammarella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
21
|
Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nat Commun 2022; 13:1217. [PMID: 35260568 PMCID: PMC8904849 DOI: 10.1038/s41467-022-28872-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in gene expression regulation through RNA cleavage or translation repression. Here, we report the identification of an evolutionarily conserved WD40 domain protein as a player in miRNA biogenesis in Arabidopsis thaliana. A mutation in the REDUCTION IN BLEACHED VEIN AREA (RBV) gene encoding a WD40 domain protein led to the suppression of leaf bleaching caused by an artificial miRNA; the mutation also led to a global reduction in the accumulation of endogenous miRNAs. The nuclear protein RBV promotes the transcription of MIR genes into pri-miRNAs by enhancing the occupancy of RNA polymerase II (Pol II) at MIR gene promoters. RBV also promotes the loading of miRNAs into AGO1. In addition, RNA-seq revealed a global splicing defect in the mutant. Thus, this evolutionarily conserved, nuclear WD40 domain protein acts in miRNA biogenesis and RNA splicing. MicroRNAs regulate gene expression through RNA cleavage or translation repression. Here the authors show that RBV, an evolutionarily conserved WD40 domain protein, acts to promote MIR transcription, pri-miRNA processing and miRNA loading into AGO1.
Collapse
|
22
|
Dong Q, Hu B, Zhang C. microRNAs and Their Roles in Plant Development. FRONTIERS IN PLANT SCIENCE 2022; 13:824240. [PMID: 35251094 PMCID: PMC8895298 DOI: 10.3389/fpls.2022.824240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 05/26/2023]
Abstract
Small RNAs are short non-coding RNAs with a length ranging between 20 and 24 nucleotides. Of these, microRNAs (miRNAs) play a distinct role in plant development. miRNAs control target gene expression at the post-transcriptional level, either through direct cleavage or inhibition of translation. miRNAs participate in nearly all the developmental processes in plants, such as juvenile-to-adult transition, shoot apical meristem development, leaf morphogenesis, floral organ formation, and flowering time determination. This review summarizes the research progress in miRNA-mediated gene regulation and its role in plant development, to provide the basis for further in-depth exploration regarding the function of miRNAs and the elucidation of the molecular mechanism underlying the interaction of miRNAs and other pathways.
Collapse
Affiliation(s)
- Qingkun Dong
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Li M, Yu H, Liu K, Yang W, Zhou B, Gan L, Li S, Zhang C, Yu B. Serrate-Associated Protein 1, a splicing-related protein, promotes miRNA biogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1959-1973. [PMID: 34449907 PMCID: PMC8568667 DOI: 10.1111/nph.17691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) are essential regulators of gene expression in metazoans and plants. In plants, most miRNAs are generated from primary miRNA transcripts (pri-miRNAs), which are processed by the Dicer-like 1 (DCL1) complex along with accessory proteins. Serrate-Associated Protein 1 (SEAP1), a conserved splicing-related protein, has been studied in human and yeast. However, the functions of SEAP1 in plants remain elusive. Lack of SEAP1 results in embryo lethality and knockdown of SEAP1 by an artificial miRNA (amiRSEAP1 ) causes pleiotropic developmental defects and reduction in miRNA accumulation. SEAP1 associates with the DCL1 complex, and may promote the interaction of the DCL1 complexes with pri-miRNAs. SEAP1 also enhances pri-miRNA accumulation, but does not affect pri-miRNA transcription, suggesting it may indirectly or directly stabilize pri-miRNAs. In addition, SEAP1 affects the splicing of some pri-miRNAs and intron retention of messenger RNAs at global levels. Our findings uncover both conserved and novel functions of SEAP1 in plants. Besides the role as a splicing factor, SEPA1 may promote miRNA biogenesis by positively modulating pri-miRNA splicing, processing and/or stability.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Huihui Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Kan Liu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Weilong Yang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bangjun Zhou
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Lu Gan
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| |
Collapse
|
24
|
Merli ML, Padgett-Pagliai KA, Cuaycal AE, Garcia L, Marano MR, Lorca GL, Gonzalez CF. ' Candidatus Liberibacter asiaticus' Multimeric LotP Mediates Citrus sinensis Defense Response Activation. Front Microbiol 2021; 12:661547. [PMID: 34421834 PMCID: PMC8371691 DOI: 10.3389/fmicb.2021.661547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
‘Candidatus Liberibacter asiaticus’ is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, ‘Ca. L. asiaticus’ remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with ‘Ca. L. asiaticus.’ LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP—revealing a new protein–protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein–protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.
Collapse
Affiliation(s)
- Marcelo L Merli
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandra E Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Maria Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Yang X, Dong W, Ren W, Zhao Q, Wu F, He Y. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. THE PLANT CELL 2021; 33:1980-1996. [PMID: 33764452 PMCID: PMC8290291 DOI: 10.1093/plcell/koab090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for correspondence:
| |
Collapse
|
26
|
Jodder J. Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. PLANT CELL REPORTS 2021; 40:783-798. [PMID: 33454802 DOI: 10.1007/s00299-020-02660-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
miRNAs in plant plays crucial role in controlling proper growth, development and fitness by modulating the expression of their target genes. Therefore to modulate the expression of any stress/development related gene specifically, it is better to modulate expression of the miRNA that can target that gene. To modulate the expression level of miRNA, it is prerequisite to uncover the underlying molecular mechanism of its biogenesis. The biogenesis pathway consists of two major steps, transcription of MIR gene to pri-MIRNA and processing of pri-MIRNA into mature miRNA via sequential cleavage steps. Both of these pathways are tightly controlled by several different factors involving structural and functional molecules. This review is mainly focused on different aspects of pri-MIRNA processing mechanism to emphasize on the fact that to modulate the level of a miRNA in the cell only over-expression or knock-down of that MIR gene is not always sufficient rather it is also crucial to take processing regulation into consideration. The data collected from the recent and relevant literatures depicts that processing regulation is controlled by several aspects like structure and size of the pri-MIRNA, presence of introns in MIR gene and their location, interaction of processing factors with the core components of processing machinery etc. These detailed information can be utilized to figure out the particular point which can be utilized to modulate the expression of the miRNA which would ultimately be beneficial for the scientist and researcher working in this field to generate protocol for engineering plant with improved yield and stress tolerance.
Collapse
Affiliation(s)
- Jayanti Jodder
- School of Biotechnology, Presidency University (Rajarhat Campus), Canal Bank 7 Road, DG Block, Action Area 1D, Newtown, Kolkata, West Bengal, 700156, India.
| |
Collapse
|
27
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
28
|
Xu X, Chen X, Shen X, Chen R, Zhu C, Zhang Z, Chen Y, Lin W, Xu X, Lin Y, Lai Z. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153364. [PMID: 33465637 DOI: 10.1016/j.jplph.2021.153364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
DEAD-box (DDX) proteins belong to the largest subfamily of RNA helicase SF2, which contributes to all biological processes of RNA metabolism in the plant kingdom. Till now, no significant data are available regarding studies on DDX in Somatic Embryogenesis (SE) of woody plants. It is important to investigate the biological function of the DlDDX family in longan SE. Thus, a comprehensive analysis of 58 longan DEAD-box (DlDDX) genes characterization was performed by genome-wide identification and transcript abundance validation analysis. Homologous evolution has revealed that some DlDDXs in longan had high sequence similarity with Mus musculus, Citrus and Saccharomyces cerevisiae, indicating that DlDDXs were highly conservative in the animal, plant, and microorganism. Remarkably, gene duplication, purifying selection, and alternative splicing events, and new auxiliary domains have likely contributed to the functional evolution of DlDDX, indicating that DlDDX appeared neofunctionalization in longan. Besides, DlDDX3, 15, 28, 36 might interact with protein complex (MAC3A, MAC3B, CDC5, CBP20) of miRNA biosynthesis. Notably, DlDDX28 contained a novel auxiliary domain (CAF-1 p150), which might contribute to DNA demethylation in longan early SE. 4 DlDDX genes significantly expressed not only in early SE and zygotic embryogenesis (ZE) but also up-regulated at high levels in 'Honghezi' and 'Quanlongbaihe' with abortive seeds, which are of great significance. Moreover, some DlDDXs presented abiotic stress-response dynamic expression patterns by ABA, SA, JA, and NaCl treatments during early SE. Hence, DEAD-box is essential to SE development and seed abortive in longan.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhu Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou, 362212, China
| | - Xuhan Xu
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Zhang W, Zhu Z, Du P, Zhang C, Yan H, Wang W, Li W. NtRBP45, a nuclear RNA-binding protein of Nicotiana tabacum, facilitates post-transcriptional gene silencing. PLANT DIRECT 2020; 4:e00294. [PMID: 33615112 PMCID: PMC7880056 DOI: 10.1002/pld3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The tobacco RBP45 is a nuclear RNA binding protein (RBP). In this study, we identified that the gene expression of NtRBP45 was significantly up-regulated upon the Tobacco mosaic virus infection and the central region of the protein accounted for its nuclear localization. In particular, using a green fluorescent protein-based transient suppression assay, we uncovered that the transiently overexpressed NtRBP45 was able to enhance local post-transcriptional gene silencing (PTGS), facilitate siRNA accumulation, and compromise the RNA silencing suppression mediated by Tomato aspermy virus 2b protein. Deletion mutagenesis showed that both the N- and C-terminal regions of NtRBP45 were necessary for enhancing PTGS. The data overall indicated a novel RNA silencing factor that might participate in antiviral defense.
Collapse
Affiliation(s)
- Wangbin Zhang
- College of Plant ScienceTarim UniversityAlarPR China
- Southern Xinjiang Key Laboratory of IPMTarim UniversityAlarPR China
| | - Zongcai Zhu
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Peixiu Du
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Chao Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Hailin Yan
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable EnergyMinistry of Agriculture and Rural AffairsChengduPR China
| | - Weimin Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| |
Collapse
|
30
|
Daszkowska-Golec A, Karcz J, Plociniczak T, Sitko K, Szarejko I. Cuticular waxes-A shield of barley mutant in CBP20 (Cap-Binding Protein 20) gene when struggling with drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110593. [PMID: 33180718 DOI: 10.1016/j.plantsci.2020.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Jagna Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Tomasz Plociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Krzysztof Sitko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
31
|
MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc Natl Acad Sci U S A 2020; 117:23982-23990. [PMID: 32887800 DOI: 10.1073/pnas.2008283117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels in mac5 is partially caused by XRN2/XRN3, the nuclear-localized 5'-to-3' exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.
Collapse
|
32
|
Li T, Gonzalez N, Inzé D, Dubois M. Emerging Connections between Small RNAs and Phytohormones. TRENDS IN PLANT SCIENCE 2020; 25:912-929. [PMID: 32381482 DOI: 10.1016/j.tplants.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored. Phytohormones are central in the plant's response to stress, and multiple recent studies highlight an emerging role for sRNAs in the direct response to, or the regulation of, plant hormonal pathways. In this review, we discuss recent progress on the unraveling of crossregulation between sRNAs and nine plant hormones.
Collapse
Affiliation(s)
- Ting Li
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, F-33882 Villenave d'Ornon cedex, France
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
33
|
Arabidopsis thaliana cbp80, c2h2, and flk Knockout Mutants Accumulate Increased Amounts of Circular RNAs. Cells 2020; 9:cells9091937. [PMID: 32825779 PMCID: PMC7564263 DOI: 10.3390/cells9091937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are the products of the non-canonical splicing of pre-mRNAs. In contrast to humans and animals, our knowledge of the biogenesis and function of circRNAs in plants is very scarce. To identify proteins involved in plant circRNA generation, we characterized the transcriptomes of 18 Arabidopsis thaliana knockout mutants for genes related to splicing. The vast majority (>90%) of circRNAs were formed in more than one variant; only a small fraction of circRNAs was mutant-specific. Five times more circRNA types were identified in cbp80 and three times more in c2h2 mutants than in the wild-type. We also discovered that in cbp80, c2h2 and flk mutants, the accumulation of circRNAs was significantly increased. The increased accumulation of circular transcripts was not accompanied by corresponding changes in the accumulation of linear transcripts. Our results indicate that one of the roles of CBP80, C2H2 and FLK in splicing is to ensure the proper order of the exons. In the absence of one of the above-mentioned factors, the process might be altered, leading to the production of circular transcripts. This suggests that the transition toward circRNA production can be triggered by factors sequestering these proteins. Consequently, the expression of linear transcripts might be regulated through circRNA production.
Collapse
|
34
|
Abstract
To investigate factors influencing pre-mRNA splicing in plants, we conducted a forward genetic screen using an alternatively-spliced GFP reporter gene in Arabidopsis thaliana. This effort generated a collection of sixteen mutants impaired in various splicing-related proteins, many of which had not been recovered in any prior genetic screen or implicated in splicing in plants. The factors are predicted to act at different steps of the spliceosomal cycle, snRNP biogenesis pathway, transcription, and mRNA transport. We have described eleven of the mutants in recent publications. Here we present the final five mutants, which are defective, respectively, in RNA-BINDING PROTEIN 45D (rbp45d), DIGEORGE SYNDROME CRITICAL REGION 14 (dgcr14), CYCLIN-DEPENDENT KINASE G2 (cdkg2), INTERACTS WITH SPT6 (iws1) and CAP BINDING PROTEIN 80 (cbp80). We provide RNA-sequencing data and analyses of differential gene expression and alternative splicing patterns for the cbp80 mutant and for several previously published mutants, including smfa and new alleles of cwc16a, for which such information was not yet available. Sequencing of small RNAs from the cbp80 mutant highlighted the necessity of wild-type CBP80 for processing of microRNA (miRNA) precursors into mature miRNAs. Redundancy tests of paralogs encoding several of the splicing factors revealed their functional non-equivalence in the GFP reporter gene system. We discuss the cumulative findings and their implications for the regulation of pre-mRNA splicing efficiency and alternative splicing in plants. The mutant collection provides a unique resource for further studies on a coherent set of splicing factors and their roles in gene expression, alternative splicing and plant development.
Collapse
|
35
|
Marondedze C, Thomas L, Lilley KS, Gehring C. Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Front Mol Biosci 2020; 6:163. [PMID: 32039234 PMCID: PMC6985371 DOI: 10.3389/fmolb.2019.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
The spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
37
|
Song X, Li Y, Cao X, Qi Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:489-525. [PMID: 30848930 DOI: 10.1146/annurev-arplant-050718-100334] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide noncoding RNAs abundant in plants and animals. The biogenesis of plant miRNAs involves transcription of miRNA genes, processing of primary miRNA transcripts by DICER-LIKE proteins into mature miRNAs, and loading of mature miRNAs into ARGONAUTE proteins to form miRNA-induced silencing complex (miRISC). By targeting complementary sequences, miRISC negatively regulates gene expression, thereby coordinating plant development and plant-environment interactions. In this review, we present and discuss recent updates on the mechanisms and regulation of miRNA biogenesis, miRISC assembly and actions as well as the regulatory roles of miRNAs in plant developmental plasticity, abiotic/biotic responses, and symbiotic/parasitic interactions. Finally, we suggest future directions for plant miRNA research.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
38
|
Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol Cell Biol 2019; 39:MCB.00540-18. [PMID: 30745412 DOI: 10.1128/mcb.00540-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Saccharomyces cerevisiae Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export. Such function of CBC is not mediated via THO and Sub2 of TREX, cleavage and polyadenylation factors, or Sus1 (that regulates mRNA export via transcription export 2 [TREX-2]). However, CBC promotes splicing of SUS1 mRNA and, consequently, Sus1 protein level and mRNA export via TREX-2. Collectively, our results support the hypothesis that CBC promotes recruitment of Yra1 and Npl3 to the active genes, independently of THO, Sub2, or cleavage and polyadenylation factors, and enhances mRNA export via TREX and RNP, respectively, in addition to its role in facilitating SUS1 mRNA splicing to increase mRNA export through TREX-2, revealing distinct stimulatory functions of CBC in mRNA export.
Collapse
|
39
|
Abstract
MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.
Collapse
|
40
|
Pegler JL, Grof CPL, Eamens AL. The Plant microRNA Pathway: The Production and Action Stages. Methods Mol Biol 2019; 1932:15-39. [PMID: 30701489 DOI: 10.1007/978-1-4939-9042-9_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional regulation of gene expression in plant development and environmental stress adaptation or in response to pathogen challenge. The plant microRNA pathway is readily separated into two distinct stages: (1) the production stage, which is localized to the plant cell nucleus and where the microRNA small RNA is processed from a double-stranded RNA precursor transcript, and (2) the action stage, which is localized to the plant cell cytoplasm and where the mature microRNA small RNA is loaded into an effector complex and is used by the complex as a sequence specificity guide to direct expression repression of target genes harboring highly complementary microRNA target sequences. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway requiring a small set of core machinery proteins. However, contemporary research has demonstrated that the plant microRNA pathway is highly dynamic, and to allow for this flexibility, a large and highly functionally diverse set of machinery proteins is now known to be required. For example, recent research has shown that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism of RNA silencing: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, here we report on both the core and auxiliary sets of machinery proteins now known to be required for both microRNA production and microRNA action in plants.
Collapse
Affiliation(s)
- Joseph L Pegler
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P L Grof
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew L Eamens
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
41
|
Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N. Improvement of Drought Tolerance in Rice ( Oryza sativa L.): Genetics, Genomic Tools, and the WRKY Gene Family. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3158474. [PMID: 30175125 PMCID: PMC6106855 DOI: 10.1155/2018/3158474] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M. Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - T. M. M. Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Rambod Abiri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nahid Kalhori
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. Shabanimofrad
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Gous Miah
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Narges Atabaki
- Iran Azad University of Tehran Science & Reserach Branch, Hesarak, Tehran 1477893855, Iran
| |
Collapse
|
42
|
Cheng L, Wang Y, Liu Y, Zhang Q, Gao H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. PHYSIOLOGIA PLANTARUM 2018; 163:103-123. [PMID: 29135031 DOI: 10.1111/ppl.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 05/24/2023]
Abstract
Among the multiple environmental signals and hormonal factors regulating potato tuberization, gibberellins (GAs) are important components of the signaling pathways in these processes. To understand the GAs-signaling response mechanism of potato tuberization, a comparative proteomics approach was applied to analyze proteome change of potato tuberization in vitro subjected to a range of exogenous GA3 treatments (0, 0.01, 0.1 and 1.0 μM) using two-dimensional gel electrophoresis. Quantitative image analyses showed that a total of 37 protein spots have their abundance significantly altered more than 2-fold. Among these proteins, 13 proteins were up-regulated, 13 proteins were down-regulated, one protein was absent and 10 proteins were induced after treatment by exogenous GA3 . The MALDI-TOF/TOF MS analyses led to the identification of differentially abundant proteins that are mainly involved in bioenergy and metabolism, storage, signaling, cell defense and rescue, transcription, chaperones, transport. Furthermore, the comparative analysis of GA3 -responsive proteome allowed for general elucidation of underlying molecular mechanisms of potato tuberization inhibited by exogenous GA3 . Most of these cellular processes were not conducive to the transition from stolon elongation to tuber formation, including a blockage of starch and storage protein accumulation, the accelerated carbohydrate catabolism, a blockage of JA biosynthesis but an elevated endogenous GAs level, the amplification of GA3 signal transduction by other signaling pathways, and the regulation of cellular RNA metabolism for controlling tuberization. Our results firstly integrated physiology and proteome data to provide new insights into GA3 -signaling response mechanisms of potato tuberization in vitro.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yueshan Liu
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Qingquan Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Huihui Gao
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
43
|
Pieczynski M, Kruszka K, Bielewicz D, Dolata J, Szczesniak M, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. A Role of U12 Intron in Proper Pre-mRNA Splicing of Plant Cap Binding Protein 20 Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:475. [PMID: 29755485 PMCID: PMC5932401 DOI: 10.3389/fpls.2018.00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/27/2018] [Indexed: 05/30/2023]
Abstract
The nuclear cap-binding complex (CBC) is composed of two cap-binding proteins: CBP20 and CBP80. The CBP20 gene structure is highly conserved across land plant species. All studied CBP20 genes contain eight exons and seven introns, with the fourth intron belonging to the U12 class. This highly conserved U12 intron always divides the plant CBP20 gene into two parts: one part encodes the core domain containing the RNA binding domain (RBD), and the second part encodes the tail domain with a nuclear localization signal (NLS). In this study, we investigate the importance of the U12 intron in the Arabidopsis thaliana CBP20 gene by moving it to different intron locations of the gene. Relocation of the U12 intron resulted in a significant decrease in the U12 intron splicing efficiency and the accumulation of wrongly processed transcripts. These results suggest that moving the U12 intron to any other position of the A. thaliana CBP20 gene disturbs splicing, leading to substantial downregulation of the level of properly spliced mRNA and CBP20 protein. Moreover, the replacement of the U12 intron with a U2 intron leads to undesired alternative splicing events, indicating that the proper localization of the U12 intron in the CBP20 gene secures correct CBP20 pre-mRNA maturation and CBP20 protein levels in a plant. Surprisingly, our results also show that the efficiency of U12 splicing depends on intron length. In conclusion, our study emphasizes the importance of proper U12 intron localization in plant CBP20 genes for correct pre-mRNA processing.
Collapse
Affiliation(s)
- Marcin Pieczynski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Michal Szczesniak
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
44
|
Kørner CJ, Pitzalis N, Peña EJ, Erhardt M, Vazquez F, Heinlein M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. NATURE PLANTS 2018; 4:157-164. [PMID: 29497161 DOI: 10.1038/s41477-018-0117-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
Virus-induced diseases cause severe damage to cultivated plants, resulting in crop losses. Certain plant-virus interactions allow disease recovery at later stages of infection and have the potential to reveal important molecular targets for achieving disease control. Although recovery is known to involve antiviral RNA silencing1,2, the specific components of the many plant RNA silencing pathways 3 required for recovery are not known. We found that Arabidopsis thaliana plants infected with oilseed rape mosaic virus (ORMV) undergo symptom recovery. The recovered leaves contain infectious, replicating virus, but exhibit a loss of viral suppressor of RNA silencing (VSR) protein activity. We demonstrate that recovery depends on the 21-22 nt siRNA-mediated post-transcriptional gene silencing (PTGS) pathway and on components of a transcriptional gene silencing (TGS) pathway that is known to facilitate non-cell-autonomous silencing signalling. Collectively, our observations indicate that recovery reflects the establishment of a tolerant state in infected tissues and occurs following robust delivery of antiviral secondary siRNAs from source to sink tissues, and establishment of a dosage able to block the VSR activity involved in the formation of disease symptoms.
Collapse
Affiliation(s)
- Camilla Julie Kørner
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Nicolas Pitzalis
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Eduardo José Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - Mathieu Erhardt
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Franck Vazquez
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MDPI, Basel, Switzerland
| | - Manfred Heinlein
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France.
| |
Collapse
|
45
|
Daszkowska-Golec A. Emerging Roles of the Nuclear Cap-Binding Complex in Abiotic Stress Responses. PLANT PHYSIOLOGY 2018; 176:242-253. [PMID: 29142023 PMCID: PMC5761810 DOI: 10.1104/pp.17.01017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Plant nuclear CBC consisted of two subunits (CBP20 and CBP80) is involved in both conserved processes related to RNA metabolism and simultaneously in extremely dynamic plant stress response.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
46
|
Wang Y, Zhang S, Huang F, Zhou X, Chen Z, Peng W, Luo M. VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2. THE NEW PHYTOLOGIST 2018; 217:726-738. [PMID: 29084344 DOI: 10.1111/nph.14854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 05/28/2023]
Abstract
During Agrobacterium (Agrobacterium tumefaciens) infection, the translocated virulence proteins (VirD2, VirE2, VirE3, VirF and VirD5) play crucial roles. It is thought that, through protein-protein interactions, Agrobacterium uses and abuses host plant factors and systems to facilitate its infection. Although some molecular functions have been revealed, the roles of VirD5 still need to be further elucidated. Here, plant transformation and tumorigenesis mediated by genetically modified Agrobacterium strains were performed to examine VirD5 roles. In addition, protein-protein interaction-associated molecular and biochemistry technologies were used to reveal and elucidate VirD5 interaction with Arabidopsis VirE2 interacting protein 2 (VIP2). Our results showed that deleting virD5 from Agrobacterium reduced its tumor formation ability and stable transformation efficiency but did not affect the transient transformation efficiency. We also found that VirD5 can interact with Arabidopsis VIP2. Further experiments demonstrated that VirD5 can affect VIP2 binding to cap-binding proteins (CBP20 and CBP80). The tumorigenesis efficiency for cbp80 mutant was not significantly changed, but that for cbp20, cbp20cbp80 mutants were significantly increased. This work demonstrates experimentally that VirD5 is required for efficient Agrobacterium infection and may promote this process by competitive interaction with Arabidopsis VIP2. CBP20 is involved in the Agrobacterium infection process and its effect can be synergistically enhanced by CBP80.
Collapse
Affiliation(s)
- Yafei Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaojuan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuo Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Peng
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
47
|
Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 2017; 12:e0189788. [PMID: 29244865 PMCID: PMC5731758 DOI: 10.1371/journal.pone.0189788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022] Open
Abstract
In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.
Collapse
Affiliation(s)
- Xuebin Zhang
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dasuni Jayaweera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Jeremy A. Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Zinnia H. González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
48
|
Jodder J, Das R, Sarkar D, Bhattacharjee P, Kundu P. Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biol 2017; 15:130-143. [PMID: 29023193 DOI: 10.1080/15476286.2017.1391438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Besides their definite role in plant developmental processes miR167 also serve as mediator of stress response. Although differential expression of miR167 occurs during stresses, the regulatory-mechanism of biogenesis remained elusive. Therefore, using tomato as the model plant we have explored the mechanism of regulation of miR167a expression during stresses. Fungus or virus infections and exposure to cold stress raised the level of miR167a expression. Whereas, salt, drought and heat treatments resulted in the downregulation, indicating different stresses activated alternative mechanisms for miR167a regulation. Interestingly, the relative expression level of precursors in control versus temperature stressed plants differed from the pattern observed in the mature miR167a expression, suggesting that both transcriptional and processing regulation were important for biogenesis. The promoter-regulatory sequence of the major isoform MIR167a harbours several development and stress-related regulatory sites. Accordingly, promoter assays using transient transformation and transgenic tobacco plants proved stress-dependent regulation of the promoter. Further analyses corroborated the role of tomato DREB2A protein in the transcriptional regulation during temperature stress. Finally, in vitro assays established the importance of processing factors in cold-stress dependent efficient processing of MIR167a precursors. These data confirm distinct role of transcriptional and processing machinery in stress-influenced regulation of tomato miR167a biogenesis.
Collapse
Affiliation(s)
- Jayanti Jodder
- a Division of Plant Biology , Bose Institute , Kolkata , West Bengal , India
| | - Rohit Das
- a Division of Plant Biology , Bose Institute , Kolkata , West Bengal , India
| | - Deepti Sarkar
- a Division of Plant Biology , Bose Institute , Kolkata , West Bengal , India
| | - Payel Bhattacharjee
- a Division of Plant Biology , Bose Institute , Kolkata , West Bengal , India
| | - Pallob Kundu
- a Division of Plant Biology , Bose Institute , Kolkata , West Bengal , India
| |
Collapse
|
49
|
Daszkowska-Golec A, Skubacz A, Marzec M, Slota M, Kurowska M, Gajecka M, Gajewska P, Płociniczak T, Sitko K, Pacak A, Szweykowska-Kulinska Z, Szarejko I. Mutation in HvCBP20 ( Cap Binding Protein 20) Adapts Barley to Drought Stress at Phenotypic and Transcriptomic Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:942. [PMID: 28626467 PMCID: PMC5454077 DOI: 10.3389/fpls.2017.00942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 05/20/2023]
Abstract
CBP20 (Cap-Binding Protein 20) encodes a small subunit of the cap-binding complex (CBC), which is involved in the conserved cell processes related to RNA metabolism in plants and, simultaneously, engaged in the signaling network of drought response, which is dependent on ABA. Here, we report the enhanced tolerance to drought stress of barley mutant in the HvCBP20 gene manifested at the morphological, physiological, and transcriptomic levels. Physiological analyses revealed differences between the hvcbp20.ab mutant and its WT in response to a water deficiency. The mutant exhibited a higher relative water content (RWC), a lower stomatal conductance and changed epidermal pattern compared to the WT after drought stress. Transcriptome analysis using the Agilent Barley Microarray integrated with observed phenotypic traits allowed to conclude that the hvcbp20.ab mutant exhibited better fitness to stress conditions by its much more efficient and earlier activation of stress-preventing mechanisms. The network hubs involved in the adjustment of hvcbp20.ab mutant to the drought conditions were proposed. These results enabled to make a significant progress in understanding the role of CBP20 in the drought stress response.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Anna Skubacz
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Michal Slota
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Marzena Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Monika Gajecka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Patrycja Gajewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Tomasz Płociniczak
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Krzysztof Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz University in PoznanPoznań, Poland
| | | | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| |
Collapse
|
50
|
Cho SK, Ryu MY, Poulsen C, Kim JH, Oh TR, Choi SW, Kim M, Yang JY, Boo KH, Geshi N, Kim WT, Yang SW. HIGLE is a bifunctional homing endonuclease that directly interacts with HYL1 and SERRATE in Arabidopsis thaliana. FEBS Lett 2017; 591:1383-1393. [PMID: 28321834 DOI: 10.1002/1873-3468.12628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
A highly coordinated complex known as the microprocessor precisely processes primary transcripts of MIRNA genes into mature miRNAs. In plants, the microprocessor minimally consists of three components: Dicer-like protein 1 (DCL1), HYPONASTIC LEAF 1 (HYL1), and SERRATE (SE). To precisely modulate miRNA maturation, the microprocessor cooperates with at least 12 proteins in plants. In addition, we here show the involvement of a novel gene, HYL1-interacting GIY-YIG-like endonuclease (HIGLE). The encoded protein has a GIY-YIG domain that is generally found within a class of homing endonucleases. HIGLE directly interacts with the microprocessor components HYL1 and SE. Unlike the functions of other GIY-YIG endonucleases, the catalytic core of HIGLE has both DNase and RNase activities that sufficiently processes miRNA precursors into short fragments in vitro.
Collapse
Affiliation(s)
- Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Suk Won Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mijung Kim
- Group of host pathogen interaction, Temasek Life Science Laboratory, 1 Research link, National University of Singapore, Singapore
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan
| | - Kyung Hwan Boo
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Korea
| | | | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|