1
|
Sertse D, Haile JK, Sari E, Klymiuk V, N'Diaye A, Pozniak CJ, Cloutier S, Kagale S. Genome scans capture key adaptation and historical hybridization signatures in tetraploid wheat. THE PLANT GENOME 2023:e20410. [PMID: 37974527 DOI: 10.1002/tpg2.20410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Tetraploid wheats (Triticum turgidum L.), including durum wheat (T. turgidum ssp. durum (Desf.) Husn.), are important crops with high nutritional and cultural values. However, their production is constrained by sensitivity to environmental conditions. In search of adaptive genetic signatures tracing historical selection and hybridization events, we performed genome scans on two datasets: (1) Durum Global Diversity Panel comprising a total of 442 tetraploid wheat and wild progenitor accessions including durum landraces (n = 286), domesticated emmer (T. turgidum ssp. dicoccum (Schrank) Thell.; n = 103) and wild emmer (T. turgidum ssp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.; n = 53) wheats genotyped using the 90K single nucleotide polymorphism (SNP) array, and (2) a second dataset comprising a total 121 accessions of nine T. turgidum subspecies including wild emmer genotyped with >100 M SNPs from whole-genome resequencing. The genome scan on the first dataset detected six outlier loci on chromosomes 1A, 1B, 3A (n = 2), 6A, and 7A. These loci harbored important genes for adaptation to abiotic stresses, phenological responses, such as seed dormancy, circadian clock, flowering time, and key yield-related traits, including pleiotropic genes, such as HAT1, KUODA1, CBL1, and ZFN1. The scan on the second dataset captured a highly differentiated region on chromosome 2B that shows significant differentiation between two groups: one group consists of Georgian (T. turgidum ssp. paleocolchicum A. Love & D. Love) and Persian (T. turgidum ssp. carthlicum (Nevski) A. Love & D. Love) wheat accessions, while the other group comprises all the remaining tetraploids including wild emmer. This is consistent with a previously reported introgression in this genomic region from T. timopheevii Zhuk. which naturally cohabit in the Georgian and neighboring areas. This region harbored several adaptive genes, including the thermomorphogenesis gene PIF4, which confers temperature-resilient disease resistance and regulates other biological processes. Genome scans can be used to fast-track germplasm housed in gene banks and in situ; which helps to identify environmentally resilient accessions for breeding and/or to prioritize them for conservation.
Collapse
Affiliation(s)
- Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jemanesh K Haile
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Canola Council of Canada, Crop Production and Innovation, Saskatoon, SK, Canada
| | - Ehsan Sari
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Valentyna Klymiuk
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Zhu W, Xu L, Yu X, Zhong Y. The immunophilin CYCLOPHILIN28 affects PSII-LHCII supercomplex assembly and accumulation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:915-929. [PMID: 35199452 DOI: 10.1111/jipb.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In plant chloroplasts, photosystem II (PSII) complexes, together with light-harvesting complex II (LHCII), form various PSII-LHCII supercomplexes (SCs). This process likely involves immunophilins, but the underlying regulatory mechanisms are unclear. Here, by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28 (CYP28) to wild-type and transgenic complemented lines, we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs. Compared to the wild type, cyp28 plants showed accelerated leaf growth, earlier flowering time, and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions. The lack of CYP28 also significantly affected the electron transport rate. Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants. Peptidyl-prolyl cis/trans isomerase (PPIase) activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity. Mutant analysis suggested that CYP28 may regulate PSII-LHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity. Furthermore, the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation. Therefore, our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.
Collapse
Affiliation(s)
- Weining Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Linqing Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ying Zhong
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Bakku RK, Gupta R, Min CW, Kim ST, Takahashi G, Shibato J, Shioda S, Takenoya F, Agrawal GK, Rakwal R. Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031111. [PMID: 35164374 PMCID: PMC8840128 DOI: 10.3390/molecules27031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/09/2023]
Abstract
The present research investigates the tuber proteome of the ‘medicinal’ plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as ‘kiku-imo’) as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tenodai, Tsukuba 305-8572, Japan;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Cheol-Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| | - Genboku Takahashi
- Zen-Yoga Institute, 3916 Okusa, Nakagawa-mura, Kamiina-gun, Nagano 399-3801, Japan;
| | - Junko Shibato
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| |
Collapse
|
4
|
Hao Y, Chu J, Shi L, Ma C, Hui L, Cao X, Wang Y, Xu M, Fu A. Identification of interacting proteins of Arabidopsis cyclophilin38 (AtCYP38) via multiple screening approaches reveals its possible broad functions in chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153487. [PMID: 34358944 DOI: 10.1016/j.jplph.2021.153487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
AtCYP38, a thylakoid lumen localized immunophilin, is found to be essential for photosystem II assembly and maintenance, but how AtCYP38 functions in chloroplast remains unknown. Based on previous functional studies and its crystal structure, we hypothesize that AtCYP38 should function via binding its targets or cofactors in the thylakoid lumen. To identify potential interacting proteins of AtCYP38, we first adopted ATTED-II and STRING web-tools, and found 12 proteins functionally related to AtCYP38. We then screened a yeast two-hybrid library including an Arabidopsis genome wide cDNA with different domain of AtCYP38, and five thylakoid lumen-localized targets were identified. In order to specifically search interacting proteins of AtCYP38 in the thylakoid lumen, we generated a yeast two-hybrid mini library including the thylakoid lumenal proteins and lumenal fractions of thylakoid membrane proteins, and we obtained six thylakoid membrane proteins and nine thylakoid lumenal proteins as interacting proteins of AtCYP38. The interactions between AtCYP38 and several potential targets were further confirmed via pull-down and co-immunoprecipitation assays. Together, a couple of new potential candidate interacting proteins of AtCYP38 were identified, and the results will lay a foundation for unveiling the regulatory mechanisms in photosynthesis by AtCYP38.
Collapse
Affiliation(s)
- Yaqi Hao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jiashu Chu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Lujing Shi
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Cong Ma
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Liangliang Hui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiaofei Cao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Yuhua Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, China P.R.229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
Shi L, Du L, Wen J, Zong X, Zhao W, Wang J, Xu M, Wang Y, Fu A. Conserved Residues in the C-Terminal Domain Affect the Structure and Function of CYP38 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:630644. [PMID: 33732275 PMCID: PMC7959726 DOI: 10.3389/fpls.2021.630644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis cyclophilin38 (CYP38) is a thylakoid lumen protein critial for PSII assembly and maintenance, and its C-terminal region serves as the target binding domain. We hypothesized that four conserved residues (R290, F294, Q372, and F374) in the C-terminal domain are critical for the structure and function of CYP38. In yeast two-hybrid and protein pull-down assays, CYP38s with single-sited mutations (R290A, F294A, Q372A, or F374A) did not interact with the CP47 E-loop as the wild-type CYP38. In contrast, CYP38 with the R290A/F294A/Q372A/F374A quadruple mutation could bind the CP47 E-loop. Gene transformation analysis showed that the quadruple mutation prevented CYP38 to efficiently complement the mutant phenotype of cyp38. The C-terminal domain half protein with the quadruple mutation, like the wild-type one, could interact with the N-terminal domain or the CP47 E-loop in vitro. The cyp38 plants expressing CYP38 with the quadruple mutation showed a similar BN-PAGE profile as cyp38, but distinct from the wild type. The CYP38 protein with the quadruple mutation associated with the thylakoid membrane less efficiently than the wild-type CYP38. We concluded that these four conserved residues are indispensable as changes of all these residues together resulted in a subtle conformational change of CYP38 and reduced its intramolecular N-C interaction and the ability to associate with the thylakoid membrane, thus impairing its function in chloroplast.
Collapse
|
6
|
Jung H, Jo SH, Park HJ, Lee A, Kim HS, Lee HJ, Cho HS. Golgi-localized cyclophilin 21 proteins negatively regulate ABA signalling via the peptidyl prolyl isomerase activity during early seedling development. PLANT MOLECULAR BIOLOGY 2020; 102:19-38. [PMID: 31786704 DOI: 10.1007/s11103-019-00928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/24/2019] [Indexed: 05/20/2023]
Abstract
Plant possesses particular Golgi-resident cyclophilin 21 proteins (CYP21s) and the catalytic isomerase activities have a negative effect on ABA signalling gene expression during early seedling development. Cyclophilins (CYPs) are essential for diverse cellular process, as these catalyse a rate-limiting step in protein folding. Although Golgi proteomics in Arabidopsis thaliana suggests the existence of several CYPs in the Golgi apparatus, only one putative Golgi-resident CYP protein has been reported in rice (Oryza sativa L.; OsCYP21-4). Here, we identified the Golgi-resident CYP21 family genes and analysed their molecular characteristics in Arabidopsis and rice. The CYP family genes (CYP21-1, CYP21-2, CYP21-3, and CYP21-4) are plant-specific, and their appearance and copy numbers differ among plant species. CYP21-1 and CYP21-4 are common to all angiosperms, whereas CYP21-2 and CYP21-3 evolved in the Malvidae subclass. Furthermore, all CYP21 proteins localize to cis-Golgi, trans-Golgi or both cis- and trans-Golgi membranes in plant cells. Additionally, based on the structure, enzymatic function, and topological orientation in Golgi membranes, CYP21 proteins are divided into two groups. Genetic analysis revealed that Group I proteins (CYP21-1 and CYP21-2) exhibit peptidyl prolyl cis-trans isomerase (PPIase) activity and regulate seed germination and seedling growth and development by affecting the expression levels of abscisic acid signalling genes. Thus, we identified the Golgi-resident CYPs and demonstrated that their PPIase activities are required for early seedling growth and development in higher plants.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
7
|
Skagia A, Vezyri E, Grados K, Venieraki A, Karpusas M, Katinakis P, Dimou M. Structure-Function Analysis of the Periplasmic Escherichia coli Cyclophilin PpiA in Relation to Biofilm Formation. J Mol Microbiol Biotechnol 2017; 27:228-236. [PMID: 28889121 DOI: 10.1159/000478858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8) in all domains of life indicates their biological importance. Cyclophilin PpiA, present in the periplasm of gram-negative bacteria, possesses PPIase activity but its physiological functions are still not clearly defined. Here, we demonstrate that the ΔppiA deletion strain from Escherichia coli exhibits an increased ability for biofilm formation and enhanced swimming motility compared to the wild-type strain. To identify structural features of PpiA which are necessary for the negative modulation of biofilm formation, we constructed a series of mutant PpiA proteins using a combination of error-prone and site-directed mutagenesis approaches. We show that the negative effect of PpiA on biofilm formation is not dependent on its PPIase activity, since PpiA mutants with a reduced PPIase activity are able to complement the ΔppiA strain during biofilm growth.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
8
|
Simkin AJ, McAusland L, Lawson T, Raines CA. Overexpression of the RieskeFeS Protein Increases Electron Transport Rates and Biomass Yield. PLANT PHYSIOLOGY 2017; 175:134-145. [PMID: 28754840 DOI: 10.1101/133702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 05/22/2023]
Abstract
In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII, electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Lorna McAusland
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
9
|
Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins. Sci Rep 2017; 7:1514. [PMID: 28473712 PMCID: PMC5431436 DOI: 10.1038/s41598-017-01596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Cyclophilins (CYPs) are a group of ubiquitous proteins characterized by their ability to bind to the immunosuppressive drug cyclosporin A. The CYP family occurs in a wide range of organisms and contains a conserved peptidyl-prolyl cis/trans isomerase domain. In addition to fulfilling a basic role in protein folding, CYPs may also play diverse important roles, e.g. in protein degradation, mRNA processing, development, and stress responses. We performed a genome-wide database survey and identified a total of 94 CYP genes encoding 91 distinct proteins. Sequence alignment analysis of the putative BnCYP cyclophilin-like domains revealed highly conserved motifs. By using RNA-Seq, we could verify the presence of 77 BnCYP genes under control conditions. To identify phloem-specific BnCYP proteins in a complementary approach, we used LC-MS/MS to determine protein abundances in leaf and phloem extracts. We detected 26 BnCYPs in total with 12 being unique to phloem sap. Our analysis provides the basis for future studies concentrating on the functional characterization of individual members of this gene family in a plant of dual importance: as a crop and a model system for polyploidization and long-distance signalling.
Collapse
Affiliation(s)
- Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Melanie Thieß
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Khalid Amari
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Krzysztof Bajdzienko
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|
10
|
Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
11
|
Tomašić Paić A, Fulgosi H. Chloroplast immunophilins. PROTOPLASMA 2016; 253:249-258. [PMID: 25963286 DOI: 10.1007/s00709-015-0828-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Immunophilins occur in almost all living organisms. They are ubiquitously expressed proteins including cyclophilins, FK506/rapamycin-binding proteins, and parvulins. Their functional significance in vascular plants is mostly related to plant developmental processes, signalling, and regulation of photosynthesis. Enzymatically active immunophilins catalyse isomerization of proline imidic peptide bonds and assist in rapid folding of nascent proline-containing polypeptides. They also participate in protein trafficking and assembly of supramolecular protein complexes. Complex immunophilins possess various additional functional domains associated with a multitude of molecular interactions. A considerable number of immunophilins act as auxiliary and/or regulatory proteins in highly specialized cellular compartments, such as lumen of thylakoids. In this review, we present a comprehensive overview of so far identified chloroplast immunophilins that assist in specific assembly/repair processes necessary for the maintenance of efficient photosynthetic energy conversion.
Collapse
Affiliation(s)
- Ana Tomašić Paić
- Division of Molecular Biology, Rudjer Bošković Institute, Bijenička cesta 54, HR-10002, Zagreb, Croatia
| | - Hrvoje Fulgosi
- Division of Molecular Biology, Rudjer Bošković Institute, Bijenička cesta 54, HR-10002, Zagreb, Croatia.
| |
Collapse
|
12
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
13
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Plant immunophilins: a review of their structure-function relationship. Biochim Biophys Acta Gen Subj 2014; 1850:2145-58. [PMID: 25529299 DOI: 10.1016/j.bbagen.2014.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Originally discovered as receptors for immunosuppressive drugs, immunophilins consist of two major groups, FK506 binding proteins (FKBPs) and cyclosporin A binding proteins (cyclophilins, CYPs). Many members in both FKBP and CYP families are peptidyl prolyl isomerases that are involved in protein folding processes, though they share little sequence homology. It is not surprising to find immunophilins in all organisms examined so far, including viruses, bacteria, fungi, plants and animals, as protein folding represents a common process in all living systems. SCOPE OF REVIEW Studies on plant immunophilins have revealed new functions beyond protein folding and new structural properties beyond that of typical PPIases. This review focuses on the structural and functional diversity of plant FKBPs and CYPs. MAJOR CONCLUSIONS The differences in sequence, structure as well as subcellular localization, have added on to the diversity of this family of molecular chaperones. In particular, the large number of immunophilins present in the thylakoid lumen of the photosynthetic organelle, promises to deliver insights into the regulation of photosynthesis, a unique feature of plant systems. However, very little structural information and functional data are available for plant immunophilins. GENERAL SIGNIFICANCE Studies on the structure and function of plant immunophilins are important in understanding their role in plant biology. By reviewing the structural and functional properties of some immunophilins that represent the emerging area of research in plant biology, we hope to increase the interest of researchers in pursuing further research in this area. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
15
|
Seok MS, You YN, Park HJ, Lee SS, Aigen F, Luan S, Ahn JC, Cho HS. AtFKBP16-1, a chloroplast lumenal immunophilin, mediates response to photosynthetic stress by regulating PsaL stability. PHYSIOLOGIA PLANTARUM 2014; 150:620-31. [PMID: 24124981 PMCID: PMC4282393 DOI: 10.1111/ppl.12116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 05/10/2023]
Abstract
Arabidopsis contains 16 putative chloroplast lumen-targeted immunophilins (IMMs). Proteomic analysis has enabled the subcellular localization of IMMs experimentally, but the exact biological and physiological roles of most luminal IMMs remain to be discovered. FK506-binding protein (FKBP) 16-1, one of the lumenal IMMs containing poorly conserved amino acid residues for peptidyl-prolyl isomerase (PPIase) activity, was shown to play a possible role in chloroplast biogenesis in Arabidopsis, and was also found to interact with PsaL in wheat. In this study, further evidence is provided for the notion that Arabidopsis FKBP16-1 (AtFKBP16-1) is transcriptionally and post-transcriptionally regulated by environmental stresses including high light (HL) intensity, and that overexpression of AtFKBP16-1 plants exhibited increased photosynthetic stress tolerance. A blue native-polyacrylamide gel electrophoresis/two-dimensional (BN-PAGE/2-D) analysis revealed that the increase of AtFKBP16-1 affected the levels of photosystem I (PSI)-light harvesting complex I (LHCI) and PSI-LHCI-light harvesting complex II (LHCII) supercomplex, and consequently enhanced tolerance under conditions of HL stress. In addition, plants overexpressing AtFKBP16-1 showed increased accumulation of PsaL protein and enhanced drought tolerance. Using a protease protection assay, AtFKBP16-1 protein was found to have a role in PsaL stability. The AtPsaL levels also responded to abiotic stresses derived from drought, and from methyl viologen stresses in wild-type plants. Taken together, these results suggest that AtFKBP16-1 plays a role in the acclimation of plants under photosynthetic stress conditions, probably by regulating PsaL stability.
Collapse
Affiliation(s)
- Min Sook Seok
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, 305-806, Korea
- † Current address: College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea
| | - Young Nim You
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, 305-806, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, 305-806, Korea
| | - Sang Sook Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, 305-806, Korea
| | - Fu Aigen
- Department of Plant Microbial Biology, UCBerkeley, CA, 94720, USA
- ‡ Current address: College of Life Sciences, Northwest University, Xian, Shanxi 710069, People's Republic of China
| | - Sheng Luan
- Department of Plant Microbial Biology, UCBerkeley, CA, 94720, USA
| | - Jun Cheul Ahn
- Department of Pharmacology, Medical Science, Seonam UniversityNamwon, 590-170, Korea
- * Correspondence Corresponding author, e-mail: ;
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, 305-806, Korea
- * Correspondence Corresponding author, e-mail: ;
| |
Collapse
|
16
|
Developing inexpensive malaria vaccines from plants and algae. Appl Microbiol Biotechnol 2014; 98:1983-90. [DOI: 10.1007/s00253-013-5477-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
17
|
Heinnickel ML, Grossman AR. The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions. PHOTOSYNTHESIS RESEARCH 2013; 116:427-36. [PMID: 23873414 DOI: 10.1007/s11120-013-9882-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/01/2013] [Indexed: 05/06/2023]
Abstract
Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex.
Collapse
Affiliation(s)
- Mark L Heinnickel
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA,
| | | |
Collapse
|
18
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Gollan PJ, Bhave M, Aro EM. The FKBP families of higher plants: Exploring the structures and functions of protein interaction specialists. FEBS Lett 2012; 586:3539-47. [PMID: 22982859 DOI: 10.1016/j.febslet.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/24/2023]
Abstract
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| | | | | |
Collapse
|
20
|
Phosphoproteomics of Arabidopsis
chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Lett 2012; 586:1265-71. [DOI: 10.1016/j.febslet.2012.03.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
|
21
|
Kim SK, You YN, Park JC, Joung Y, Kim BG, Ahn JC, Cho HS. The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. PLANT CELL REPORTS 2012; 31:417-26. [PMID: 22041789 DOI: 10.1007/s00299-011-1176-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/20/2023]
Abstract
The role that the putative thylakoid lumenal cyclophilin (CYP) CYP20-2 locates in the thylakoid, and whether CYP20-2 is an essential gene, have not yet been elucidated. Here, we show that CYP20-2 is well conserved in several photosynthetic plants and that the transcript level of the rice OsCYP20-2 gene is highly regulated under abiotic stress. We found that ectopic expression of rice OsCYP20-2 in both tobacco and Arabidopsis confers enhanced tolerance to osmotic stress and extremely high light. Based on these results, we suggest that although the exact biochemical function of OsCYP20-2 in the thylakoid lumen (TL) remains unclear, it may be involved in photosynthetic acclimation to help plants cope with environmental stress; the OsCYP20-2 gene may be a candidate for enhancing multiple abiotic stress tolerance.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/radiation effects
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis/radiation effects
- Conserved Sequence/genetics
- Cyclophilins/chemistry
- Cyclophilins/genetics
- Cyclophilins/metabolism
- Droughts
- Environment
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Light
- Molecular Sequence Data
- NADPH Dehydrogenase/metabolism
- Oryza/drug effects
- Oryza/metabolism
- Oryza/radiation effects
- Paraquat/pharmacology
- Peptidylprolyl Isomerase/metabolism
- Photosystem II Protein Complex/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Sequence Alignment
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Thylakoids/drug effects
- Thylakoids/enzymology
- Thylakoids/metabolism
- Thylakoids/radiation effects
- Nicotiana/drug effects
- Nicotiana/genetics
- Nicotiana/physiology
- Nicotiana/radiation effects
Collapse
Affiliation(s)
- Se-Kyong Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Hall M, Mishra Y, Schröder WP. Preparation of stroma, thylakoid membrane, and lumen fractions from Arabidopsis thaliana chloroplasts for proteomic analysis. Methods Mol Biol 2011; 775:207-22. [PMID: 21863445 DOI: 10.1007/978-1-61779-237-3_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
For many studies regarding important chloroplast processes such as oxygenic photosynthesis, fractionation of the total chloroplast proteome is a necessary first step. Here, we describe a method for isolating the stromal, the thylakoid membrane, and the thylakoid lumen subchloroplast fractions from Arabidopsis thaliana leaf material. All three fractions can be isolated sequentially from the same plant material in a single day preparation. The isolated fractions are suitable for various proteomic analyses such as simple mapping studies or for more complex experiments such as differential expression analysis using two-dimensional difference gel electrophoresis (2D-DIGE) or mass spectrometry (MS)-based techniques. Besides this, the obtained fractions can also be used for many other purposes such as immunological assays, enzymatic activity assays, and studies of protein complexes by native-polyacrylamide gel electrophoresis (native-PAGE).
Collapse
Affiliation(s)
- Michael Hall
- Department of Biological Chemistry, Institute of Chemistry and Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
23
|
Gollan PJ, Ziemann M, Bhave M. PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid. PHYSIOLOGIA PLANTARUM 2011; 143:385-395. [PMID: 21848652 DOI: 10.1111/j.1399-3054.2011.01503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
FK506-binding proteins (FKBPs) and cyclophilins, collectively called immunophilins, conserve peptidyl-prolyl cis/trans isomerase (PPIase) active sites, although many lack PPIase activity. The chloroplast thylakoid contains a large proportion of the plant immunophilin family, but their functions within this compartment are unclear. Some lumenal immunophilins are important for assembly of photosynthetic complexes, implicating them in the maintenance and turnover of the photosynthetic apparatus during acclimation processes. In this investigation into the functions of three FKBPs localized to the thylakoid of Triticum aestivum (wheat), we present the first evidence of PPIase activity in the thylakoid of a cereal plant, and also show that PPIase activity is not conserved in all lumenal FKBPs. Using yeast two-hybrid analysis we found that the PPIase-active FKBP13 interacts with the globular domain of the wheat Rieske protein, with potential impact on photosynthetic electron transfer. Specific interaction partners for PPIase-deficient FKBP16-1 and FKBP16-3 link these isoforms to photosystem assembly.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
| | | | | |
Collapse
|
24
|
Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011; 10:3674-89. [DOI: 10.1021/pr200299t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John G. Rowland
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J. Simon
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
25
|
Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC PLANT BIOLOGY 2010; 10:253. [PMID: 21087465 PMCID: PMC3012604 DOI: 10.1186/1471-2229-10-253] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. RESULTS FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. CONCLUSION Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.
Collapse
Affiliation(s)
- Jun Cheul Ahn
- Department of Biological Science, Seonam University, Namwon 590-711, Korea
| | - Dae-Won Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-306, Korea
| | - Young Nim You
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Min Sook Seok
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| | - Hyunsik Hwang
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - Beom-Gi Kim
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Hong-Seog Park
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-306, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea
| |
Collapse
|
26
|
Di Carli M, Villani ME, Bianco L, Lombardi R, Perrotta G, Benvenuto E, Donini M. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 2010; 9:5684-97. [PMID: 20815412 DOI: 10.1021/pr100487x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cucumber mosaic virus (CMV), a member of the Cucumovirus genus, is the causal agent of several plant diseases in a wide range of host species, causing important economic losses in agriculture. Because of the lack of natural resistance genes in most crops, different genetic engineering strategies have been adopted to obtain virus-resistant plants. In a previous study, we described the engineering of transgenic tomato plants expressing a single-chain variable fragment antibody (scFv G4) that are specifically protected from CMV infection. In this work, we characterized the leaf proteome expressed during compatible plant-virus interaction in wild type and transgenic tomato. Protein changes in both inoculated and apical leaves were revealed using two-dimensional gel electrophoresis (2-DE) coupled to differential in gel electrophoresis (DIGE) technology. A total of 2084 spots were detected, and 50 differentially expressed proteins were identified by nanoscale liquid chromatographic-electrospray ionization-ion trap-tandem mass spectrometry (nLC-ESI-IT-MS/MS). The majority of these proteins were related to photosynthesis (38%), primary metabolism (18%), and defense activity (14%) and demonstrated to be actively down regulated by CMV in infected leaves. Moreover, our analysis revealed that asymptomatic apical leaves of transgenic inoculated plants had no protein profile alteration as compared to control wild type uninfected plants demonstrating that virus infection is confined to the inoculated leaves and systemic spread is hindered by the CMV coat protein (CP)-specific scFv G4 molecules. Our work is the first comparative study on compatible plant-virus interactions between engineered immunoprotected and susceptible wild type tomato plants, contributing to the understanding of antibody-mediated disease resistance mechanisms.
Collapse
Affiliation(s)
- Mariasole Di Carli
- ENEA, Centro Ricerche Casaccia, Via Anguillarese 301, I-00123, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gollan PJ, Bhave M. A thylakoid-localised FK506-binding protein in wheat may be linked to chloroplast biogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:655-662. [PMID: 20570161 DOI: 10.1016/j.plaphy.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Plant chloroplasts contain a large proportion of immunophilins, comprising the FK506-binding proteins (FKBPs) and cyclophilins (CYPs), which are members of the peptidyl-prolyl cis/trans isomerase (PPIase) family of proline-folding enzymes. Some of the chloroplastic immunophilins are known to chaperone certain photosynthetic proteins, however the functions of a majority of these proteins are unknown. This work focussed on characterisation of genes encoding the chloroplast-localised FKBP16-1 from wheat and its progenitor species, and identification of its putative promoters, as well as investigations into the effects of light regulation and plant development on its expression. The work identified several alternatively spliced FKBP16-1 transcripts, indicating expression of FKBP16-1 may be post-transcriptionally regulated. FKBP16-1 was expressed in both green and etiolated tissues, and highest levels were detected in developing tissues, indicating a role in chloroplast biogenesis. We also report a novel transcription module, designated 'chloroplast biogenesis module' (CBM) in the FKBP16-1 promoter of cereals that also appears to be involved in the regulation of additional genes involved in chloroplast biogenesis or other aspects of plant development. The results point to considerable potential for a role for FKBP16-1 in early chloroplast development, architecture of photosynthetic apparatus and plant development.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P O Box 218, Hawthorn, Victoria 3122, Australia
| | | |
Collapse
|
28
|
Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F, Rochaix JD, Vener AV, Goldschmidt-Clermont M. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci U S A 2010; 107:4782-7. [PMID: 20176943 PMCID: PMC2842063 DOI: 10.1073/pnas.0913810107] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Departments of Plant Biology and Molecular Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Björn Ingelsson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; and
| | - Iga Samol
- Departments of Plant Biology and Molecular Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Charles Andres
- Institute of Biology, University of Neuchâtel, 2009 Neuchâtel, Switzerland
| | - Felix Kessler
- Institute of Biology, University of Neuchâtel, 2009 Neuchâtel, Switzerland
| | - Jean-David Rochaix
- Departments of Plant Biology and Molecular Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Alexander V. Vener
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; and
| | | |
Collapse
|