1
|
Nurbekova Z, Srivastava S, Nja ZD, Khatri K, Patel J, Choudhary B, Turečková V, Strand M, Zdunek-Zastocka E, Omarov R, Standing D, Sagi M. AAO2 impairment enhances aldehyde detoxification by AAO3 in Arabidopsis leaves exposed to UV-C or Rose-Bengal. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:272-288. [PMID: 39190782 DOI: 10.1111/tpj.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Among the three active aldehyde oxidases in Arabidopsis thaliana leaves (AAO1-3), AAO3, which catalyzes the oxidation of abscisic-aldehyde to abscisic-acid, was shown recently to function as a reactive aldehyde detoxifier. Notably, aao2KO mutants exhibited less senescence symptoms and lower aldehyde accumulation, such as acrolein, benzaldehyde, and 4-hydroxyl-2-nonenal (HNE) than in wild-type leaves exposed to UV-C or Rose-Bengal. The effect of AAO2 expression absence on aldehyde detoxification by AAO3 and/or AAO1 was studied by comparing the response of wild-type plants to the response of single-functioning aao1 mutant (aao1S), aao2KO mutants, and single-functioning aao3 mutants (aao3Ss). Notably, aao3Ss exhibited similar aldehyde accumulation and chlorophyll content to aao2KO treated with UV-C or Rose-Bengal. In contrast, wild-type and aao1S exhibited higher aldehyde accumulation that resulted in lower remaining chlorophyll than in aao2KO leaves, indicating that the absence of active AAO2 enhanced AAO3 detoxification activity in aao2KO mutants. In support of this notion, employing abscisic-aldehyde as a specific substrate marker for AAO3 activity revealed enhanced AAO3 activity in aao2KO and aao3Ss leaves compared to wild-type treated with UV-C or Rose-Bengal. The similar abscisic-acid level accumulated in leaves of unstressed or stressed genotypes indicates that aldehyde detoxification by AAO3 is the cause for better stress resistance in aao2KO mutants. Employing the sulfuration process (known to activate aldehyde oxidases) in wild-type, aao2KO, and molybdenum-cofactor sulfurase (aba3-1) mutant plants revealed that the active AAO2 in WT employs sulfuration processes essential for AAO3 activity level, resulting in the lower AAO3 activity in WT than AAO3 activity in aao2KO.
Collapse
Affiliation(s)
- Zhadyrassyn Nurbekova
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Zai Du Nja
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Kusum Khatri
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Jaykumar Patel
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Babita Choudhary
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Veronica Turečková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany, Palacky University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strand
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany, Palacky University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Rustem Omarov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, 8499000, Israel
- Katif Research Center, Sedot Negev, Israel
- Ministry of Science and Technology, Netivot, Israel
| |
Collapse
|
2
|
Sonmez MC, Yirmibesoglu SSS, Ozgur R, Uzilday B, Turkan I. Roles of Reactive Carbonyl Species (RCS) in Plant Response to Abiotic Stress. Methods Mol Biol 2024; 2798:101-130. [PMID: 38587738 DOI: 10.1007/978-1-0716-3826-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Abiotic and biotic stress conditions lead to production of reactive carbonyl species (RCS) which are lipid peroxide derivatives and have detrimental effects on plant cells especially at high concentrations. There are several molecules that can be classified in RCS; among them, 4-hydroxy-(E)-2-nonenal (HNE) and acrolein are widely recognized and studied because of their toxicity. The toxicity mechanisms of RCS are well known in animals but their roles in plant systems especially signaling aspects in metabolism need to be addressed. This chapter focuses on the production mechanisms of RCS in plants as well as how plants scavenge and modify them to prevent irreversible damage in the cell. We aimed to get a comprehensive look at the literature to summarize the signaling roles of RCS in plant metabolism and their interaction with other signaling mechanisms such as highly recognized reactive oxygen species (ROS) signaling. Changing climate promotes more severe abiotic stress effects on plants which also decrease yield on the field. The effects of abiotic stress conditions on RCS metabolism are also gathered in this chapter including their signaling roles during abiotic stresses. Different methods of measuring RCS in plants are also presented in this chapter to draw more attention to the study of RCS metabolism in plants.
Collapse
Affiliation(s)
| | | | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, Izmir, Turkey.
| |
Collapse
|
3
|
Chakraborty N, Mitra R, Dasgupta D, Ganguly R, Acharya K, Minkina T, Popova V, Churyukina E, Keswani C. Unraveling lipid peroxidation-mediated regulation of redox homeostasis for sustaining plant health. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108272. [PMID: 38100892 DOI: 10.1016/j.plaphy.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Lipid peroxidation (LPO) is a complex process that, depending on the context, can either result in oxidative injury or promote redox homeostasis. LPO is a series of reactions in which polyunsaturated fatty acids are attacked by free radicals that result in the synthesis of lipid peroxides. LPO can alter membrane fluidity and operation and produce secondary products that amplify oxidative stress. LPO can activate cellular signaling pathways that promote antioxidant defense mechanisms that provide oxidative stress protection by elevating antioxidant enzyme action potentials. Enzymatic and nonenzymatic mechanisms tightly regulate LPO to prevent excessive LPO and its adverse consequences. This article emphasizes the dual nature of LPO as a mechanism that can both damage cells and regulate redox homeostasis. In addition, it also highlights the major enzymatic and nonenzymatic mechanisms that tightly regulate LPO to prevent excessive oxidative damage. More importantly, it emphasizes the importance of understanding the cellular and biochemical complexity of LPO for developing strategies targeting this process for efficient management of plant stress.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Rusha Mitra
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Disha Dasgupta
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Retwika Ganguly
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia
| | - Victoria Popova
- Rostov Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, 344012, Russia
| | - Ella Churyukina
- Rostov State Medical University, Rostov-on-Don, 344000, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia.
| |
Collapse
|
4
|
Baker A, Lin CC, Lett C, Karpinska B, Wright MH, Foyer CH. Catalase: A critical node in the regulation of cell fate. Free Radic Biol Med 2023; 199:56-66. [PMID: 36775107 DOI: 10.1016/j.freeradbiomed.2023.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Catalase (CAT) is an extensively studied if somewhat enigmatic enzyme that is at the heart of eukaryotic antioxidant systems with a canonical role in peroxisomal function. The CAT family of proteins exert control over a wide range of plant growth and defence processes. CAT proteins are subject to many types of post-translational modification (PTM), which modify activity, ligand binding, stability, compartmentation and function. The CAT interactome involves many cytosolic and nuclear proteins that appear to be essential for protein functions. Hence, the CAT network of roles extends far beyond those associated with peroxisomal metabolism. Some pathogen effector proteins are able to redirect CAT to the nucleus and recent evidence indicates CAT can traffic to the nucleus in the absence of exogenous proteins. While the mechanisms that target CAT to the nucleus are not understood, CAT activity in the cytosol and nucleus is promoted by interactions with nucleoredoxin. Here we discuss recent findings that have been pivotal in generating a step change in our understanding of CAT functions in plant cells.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chi-Chuan Lin
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Casey Lett
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Megan H Wright
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine H Foyer
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Knieper M, Viehhauser A, Dietz KJ. Oxylipins and Reactive Carbonyls as Regulators of the Plant Redox and Reactive Oxygen Species Network under Stress. Antioxidants (Basel) 2023; 12:antiox12040814. [PMID: 37107189 PMCID: PMC10135161 DOI: 10.3390/antiox12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messengers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent evidence revealed that the interplay of the redox network and oxylipins–molecules derived from oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in coupling ROS generation and subsequent stress defense signaling pathways in plants. This review aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein) and components of the redox network. Further, recent findings on the contribution of oxylipins to environmental acclimatization will be discussed using flooding, herbivory, and establishment of thermotolerance as prime examples of relevant biotic and abiotic stresses.
Collapse
|
6
|
Sandalio LM, Collado-Arenal AM, Romero-Puertas MC. Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic Biol Med 2023; 197:58-70. [PMID: 36642282 DOI: 10.1016/j.freeradbiomed.2023.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| | - Aurelio M Collado-Arenal
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
7
|
Tola AJ, Missihoun TD. Ammonium sulfate-based prefractionation improved proteome coverage and detection of carbonylated proteins in Arabidopsis thaliana leaf extract. PLANTA 2023; 257:62. [PMID: 36808312 DOI: 10.1007/s00425-023-04083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Ammonium sulfate is well known to salt out proteins at high concentrations. The study revealed that it can serve to increase by 60% the total number of identified carbonylated proteins by LC-MS/MS. Protein carbonylation is a significant post-translational modification associated with reactive oxygen species signaling in animal and plant cells. However, the detection of carbonylated proteins involved in signaling is still challenging, as they only represent a small subset of the proteome in the absence of stress. In this study, we investigated the hypothesis that a prefractionation step with ammonium sulphate will improve the detection of the carbonylated proteins in a plant extract. For this, we extracted total protein from the Arabidopsis thaliana leaves and subjected the extract to stepwise precipitation with ammonium sulfate to 40%, 60%, and 80% saturation. The protein fractions were then analyzed by liquid chromatography-tandem mass spectrometry for protein identification. We found that all the proteins identified in the non-fractionated samples were also found in the prefractionated samples, indicating no loss was incurred during the prefractionation. About 45% more proteins were identified in the fractionated samples compared to the non-fractionated total crude extract. When the prefractionation steps were combined with the enrichment of carbonylated proteins labeled with a fluorescent hydrazide probe, several carbonylated proteins, which were unseen in the non-fractionated samples, became visible in the prefractionated samples. Consistently, the prefractionation method allowed to identify 63% more carbonylated proteins by mass spectrometry compared to the number of carbonylated proteins identified from the total crude extract without prefractionation. These results indicated that the ammonium sulfate-based proteome prefractionation can be used to improve proteome coverage and identification of carbonylated proteins from a complex proteome sample.
Collapse
Affiliation(s)
- Adesola Julius Tola
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
8
|
Liang X, Qian R, Ou Y, Wang D, Lin X, Sun C. Lipid peroxide-derived short-chain aldehydes promote programmed cell death in wheat roots under aluminum stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130142. [PMID: 36265378 DOI: 10.1016/j.jhazmat.2022.130142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lipid peroxidation is a primary event in plant roots exposed to aluminum (Al) toxicity, which leads to the formation of reactive aldehydes. Current evidence demonstrates that the resultant aldehydes are integrated components of cellular damage in plants. Here, we investigated the roles of aldehydes in mediating Al-induced damage, particularly cell death, using two wheat genotypes with different Al resistances. Aluminum treatment significantly induced cell death, which was accompanied by decreased root activity and cell length. Al-induced cell death displayed granular nuclei and internucleosomal fragmentation of nuclear DNA, suggesting these cells underwent programmed cell death (PCD). During this process, caspase-3-like protease activity was extensively enhanced and showed a significant difference between these two wheat genotypes. Further experiments showed that Al-induced cell death was positively correlated with aldehydes levels. Al-induced representative diagnostic markers for PCD, such as TUNEL-positive nuclei and DNA fragmentation, were further enhanced by the aldehyde donor (E)-2-hexenal, but significantly suppressed by the aldehyde scavenger carnosine. As the crucial executioner of Al-induced PCD, the activity of caspase-3-like protease was further enhanced by (E)-2-hexenal but inhibited by carnosine in wheat roots. These results suggest that reactive aldehydes sourced from lipid peroxidation mediate Al-initiated PCD probably through activating caspase-3-like protease in wheat roots.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Fangue-Yapseu GY, Tola AJ, Missihoun TD. Proteome-wide analysis of hydrogen peroxide-induced protein carbonylation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1049681. [PMID: 36544875 PMCID: PMC9760910 DOI: 10.3389/fpls.2022.1049681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Protein carbonylation is a non-enzymatic and irreversible post-translational modification that occurs naturally in living organisms under the direct or indirect effect of reactive oxygen species (ROS). In animals, signaling pathways involving numerous carbonylated proteins have been identified, highlighting the dual role of these molecules in ROS signal transduction. In plants, studies on phytohormone signaling (auxin, methyl jasmonate, abscisic acid) have shown that reactive carbonyl species (RCS: acrolein, malondialdehyde, 4-hydroxynonenal, etc.), derived from the action of ROS on lipids, play important roles in secondary root formation and stomatal closure. However, the carbonylated proteins involved in these signaling pathways remain to be identified. METHODS In this study, we analyzed proteins responsive to carbonylation by exogenous hydrogen peroxide (H2O2) by profiling the carbonyl proteome extracted from Arabidopsis thaliana leaves after H2O2 treatment. Carbonylated proteins were enriched at the peptide level and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RESULTS AND DISCUSSION We identified 35 and 39 uniquely carbonylated proteins in the untreated and the H2O2-treated plant samples, respectively. In comparison to the control treatment, gene ontology enrichment analysis revealed that most of the carbonylated proteins identified in the H2O2-treated plant samples are related to sulfate adenylyl transferases and amidophosphoribosyl transferases involved in the immune system response, defense response, and external stimulus-response. These results indicated that exogenous H2O2 caused a change in the pattern of protein carbonylation in A. thaliana leaves. Protein carbonylation may thus influence the plant transcriptome and metabolism in response to H2O2 and ROS-triggering external stimuli.
Collapse
|
10
|
Liang X, Qian R, Wang D, Liu L, Sun C, Lin X. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses. BIOLOGY 2022; 11:biology11111590. [PMID: 36358291 PMCID: PMC9687549 DOI: 10.3390/biology11111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 01/25/2023]
Abstract
Aldehydes, derivatives of lipids, are ubiquitously produced through non-enzymatic and enzymatic pathways in higher plants and participate in many physiological and biological processes. Increasing evidence demonstrates that aldehydes are involved in plants response to many abiotic stresses, such as light, drought, heat and nutrient deficiency. In plant cells, endogenously triggered or exogenously applied high concentrations of aldehydes can damage proteins and nucleic acid, disturb redox homeostasis, and consequently inhibit plant growth; therefore, they are considered cytotoxins. Aldehyde levels are also used as biomarkers to evaluate the health status of plants. Further genetic research shows that several enzymes have strong capacities to detoxify these electrophilic aldehydes. Small molecules, such as carnosine and glutathione, also exhibit the ability to scavenge aldehydes, effectively promoting plant growth. Recently, increasing evidence has shown that certain aldehydes at certain concentrations can upregulate survival genes, activate antioxidant responses, increase defense against pathogens and stimulate plant growth. This review summarizes recent studies of lipid-derived aldehydes in higher plants, mainly focusing on the generation pathway, toxic effects, and detoxification strategies. In addition, the signaling effects of aldehydes in plants are also discussed.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Liu
- Iterdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
11
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
12
|
Sultana MS, Yamamoto SI, Biswas MS, Sakurai C, Isoai H, Mano J. Histidine-Containing Dipeptides Mitigate Salt Stress in Plants by Scavenging Reactive Carbonyl Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11169-11178. [PMID: 36054836 DOI: 10.1021/acs.jafc.2c03800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are critical factors that cause damage in salt-stressed plants, but their mechanisms of action in living cells are largely unknown. We investigated the roles of reactive carbonyl species (RCS), i.e., the lipid peroxide-derived α,β-unsaturated aldehydes and ketones, in plant growth retardation under salt stress. When Arabidopsis thaliana Col-0 seeds were exposed to 100 mM NaCl, germination was delayed and the levels of ROS, RCS, and protein carbonylation in the seedlings were increased. Adding the histidine-containing dipeptides carnosine, N-acetylcarnosine, and anserine, which are reported RCS scavengers, restored the germination speed and suppressed the increases in RCS and protein carbonylation but did not affect the ROS level. Increases in the levels of the RCS acrolein, crotonaldehyde, (E)-2-pentenal, and 4-hydroxy-(E)-2-nonenal were positively correlated with the delay of germination and growth inhibition. These RCS, generated downstream of ROS, are thus primarily responsible for the salt-stress symptoms of plants.
Collapse
Affiliation(s)
- Most Sharmin Sultana
- The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Shun-Ichi Yamamoto
- Technopro Inc., Technopro R&D Nagoya Office, Glass City Sakae 7F, 3-11-31, Naka-ku Sakae, Nagoya 460-0008, Japan
| | - Md Sanaullah Biswas
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Chisato Sakurai
- Graduate School of Sciences and Technologies for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Hayato Isoai
- Graduate School of Sciences and Technologies for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Jun'ichi Mano
- The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
- Graduate School of Sciences and Technologies for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| |
Collapse
|
13
|
Moreau C, Issakidis-Bourguet E. A Simplified Method to Assay Protein Carbonylation by Spectrophotometry. Methods Mol Biol 2022; 2526:135-141. [PMID: 35657517 DOI: 10.1007/978-1-0716-2469-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein carbonylation is an irreversible oxidation process leading to a loss of function of carbonylated proteins. Carbonylation is largely considered as a hallmark of oxidative stress, the level of protein carbonylation being an indicator of the oxidative cellular status. The method described herein represents an adaptation to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based spectrophotometric method to monitor protein carbonylation level. The classical final sample precipitation was replaced by a gel filtration step avoiding the tedious and repetitive washings of the protein pellet to remove free DNPH while allowing optimal protein recovery.This improved protocol here implemented to assay protein carbonylation in plant leaves can potentially be used with any cellular extract.
Collapse
Affiliation(s)
- Corentin Moreau
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | | |
Collapse
|
14
|
Ding G, Yang Q, Ruan X, Si T, Yuan B, Zheng W, Xie Q, Souleymane OA, Wang X. Proteomics analysis of the effects for different salt ions in leaves of true halophyte Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:234-248. [PMID: 34920320 DOI: 10.1016/j.plaphy.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qian Yang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, China
| | - Xueyu Ruan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Tingting Si
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Boxuan Yuan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenwei Zheng
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ousmane Ahmat Souleymane
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xuchu Wang
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
15
|
Liang X, Ou Y, Zhao H, Zhou W, Sun C, Lin X. Lipid Peroxide-Derived Short-Chain Aldehydes are Involved in Aluminum Toxicity of Wheat ( Triticum aestivum) Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10496-10505. [PMID: 34488337 DOI: 10.1021/acs.jafc.1c03975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid peroxidation is a common event during aluminum (Al) toxicity in plants, and it generates an array of aldehyde fragments. The present study investigated and compared the profile and physiological functions of lipid peroxide-derived aldehydes under Al stress in two wheat genotypes that differed in Al resistance. Under Al stress, the sensitive genotype Yangmai-5 suffered more severe plasma membrane damage and accumulated higher levels of aldehydes in roots than the Al-tolerant genotype Jian-864. The complementary use of high-resolution mass spectrometry and standard compounds allowed the identification and quantification of 13 kinds of short-chain aldehydes sourced from lipids in wheat roots. Among these aldehydes, acetaldehyde, isovaldehyde, valeraldehyde, (E)-2-hexenal (HE), heptaldehyde, and nonyl aldehyde were the predominant species. Moreover, it was found that HE in the sensitive genotype was over 2.63 times higher than that in the tolerant genotype after Al treatment. Elimination of aldehydes using carnosine rescued root growth inhibition by 19.59 and 11.63% in Jian-864 and Yangmai-5, respectively, and alleviated Al-induced membrane damage and protein oxidation. Exogenous aldehyde application further inhibited root elongation and exacerbated oxidative injury. The tolerant genotype Jian-864 showed elevated aldehyde detoxifying enzyme activity and transcript levels. These results suggest that lipid peroxide-derived short-chain aldehydes are involved in Al toxicity, and a higher aldehyde-detoxifying capacity may be responsible for Al tolerance.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Farhat N, Kouas W, Braun HP, Debez A. Stability of thylakoid protein complexes and preserving photosynthetic efficiency are crucial for the successful recovery of the halophyte Cakile maritima from high salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:177-190. [PMID: 34116337 DOI: 10.1016/j.plaphy.2021.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Plants native to extreme habitats often face changes in environmental conditions such as salinity level and water availability. In response, plants have evolved efficient mechanisms allowing them to survive or recover. In the present work, effects of high salinity and salt-stress release were studied on the halophyte Cakile maritima. Four week-old plants were either cultivated at 0 mM NaCl or 200 mM NaCl. After one month of treatment, plants were further irrigated at either 0 mM NaCl, 200 mM NaCl, or rewatered to 0 mM NaCl (stress release). Upon salt stress, C. maritima plants exhibited reduced biomass production and shoot hydration which were associated with a decrease in the amount of chlorophyll a and b. However, under the same stressful conditions a significant increase of anthocyanin and malonyldialdehyde concentrations was noticed. Salt-stressed plants were able to maintain stable protein complexes of thylakoid membranes. Measurement of chlorophyll fluorescence and P700 redox state showed that PSI was more susceptible for damage by salinity than PSII. PSII machinery was significantly enhanced under saline conditions. All measured parameters were partially restored under salt-stress release conditions. Photoinhibition of PSI was also reversible and C. maritima was able to successfully re-establish PSI machinery indicating the high contribution of chloroplasts in salt tolerance mechanisms of C. maritima. Overall, to overcome high salinity stress, C. maritima sets a cascade of physio-biochemical and molecular pathways. Chloroplasts seem to act as metabolic centers as part of this adaptive process enabling growth restoration in this halophyte following salt stress release.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Wafa Kouas
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
17
|
Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5876-5892. [PMID: 33453107 PMCID: PMC8355754 DOI: 10.1093/jxb/erab008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Legumes include several major crops that can fix atmospheric nitrogen in symbiotic root nodules, thus reducing the demand for nitrogen fertilizers and contributing to sustainable agriculture. Global change models predict increases in temperature and extreme weather conditions. This scenario might increase plant exposure to abiotic stresses and negatively affect crop production. Regulation of whole plant physiology and nitrogen fixation in legumes during abiotic stress is complex, and only a few mechanisms have been elucidated. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are key players in the acclimation and stress tolerance mechanisms of plants. However, the specific redox-dependent signaling pathways are far from understood. One mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification (PTM) of proteins. Redox-based PTMs occur in the cysteine thiol group (oxidation, S-nitrosylation, S-glutathionylation, persulfidation), and also in methionine (oxidation), tyrosine (nitration), and lysine and arginine (carbonylation/glycation) residues. Unraveling PTM patterns under different types of stress and establishing the functional implications may give insight into the underlying mechanisms by which the plant and nodule respond to adverse conditions. Here, we review current knowledge on redox-based PTMs and their possible consequences in legume and nodule biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
18
|
Maynard D, Viehhauser A, Knieper M, Dreyer A, Manea G, Telman W, Butter F, Chibani K, Scheibe R, Dietz KJ. The In Vitro Interaction of 12-Oxophytodienoic Acid and Related Conjugated Carbonyl Compounds with Thiol Antioxidants. Biomolecules 2021; 11:biom11030457. [PMID: 33803875 PMCID: PMC8003295 DOI: 10.3390/biom11030457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
α,β-unsaturated carbonyls interfere with numerous plant physiological processes. One mechanism of action is their reactivity toward thiols of metabolites like cysteine and glutathione (GSH). This work aimed at better understanding these interactions. Both 12-oxophytodienoic acid (12-OPDA) and abscisic acid (ABA) conjugated with cysteine. It was found that the reactivity of α,β-unsaturated carbonyls with GSH followed the sequence trans-2-hexenal < 12-OPDA ≈ 12-OPDA-ethylester < 2-cyclopentenone << methyl vinylketone (MVK). Interestingly, GSH, but not ascorbate (vitamin C), supplementation ameliorated the phytotoxic potential of MVK. In addition, 12-OPDA and 12-OPDA-related conjugated carbonyl compounds interacted with proteins, e.g., with members of the thioredoxin (TRX)-fold family. 12-OPDA modified two cysteinyl residues of chloroplast TRX-f1. The OPDAylated TRX-f1 lost its activity to activate the Calvin-Benson-cycle enzyme fructose-1,6-bisphosphatase (FBPase). Finally, we show that 12-OPDA interacts with cyclophilin 20-3 (Cyp20-3) non-covalently and affects its peptidyl-prolyl-cis/trans isomerase activity. The results demonstrate the high potential of 12-OPDA as a diverse interactor and cellular regulator and suggest that OPDAylation may occur in plant cells and should be investigated as novel regulatory mechanism.
Collapse
Affiliation(s)
- Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Andrea Viehhauser
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Madita Knieper
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Ghamdan Manea
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrück University, 49069 Osnabrück, Germany;
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
19
|
Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. Protein Lipoxidation: Basic Concepts and Emerging Roles. Antioxidants (Basel) 2021; 10:295. [PMID: 33669164 PMCID: PMC7919664 DOI: 10.3390/antiox10020295] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss several features that could support its role in cell signalling, including its selectivity, reversibility, and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation, thus strengthening the importance of detailed knowledge of this process.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Ophélie Langlois
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Idoia Company-Marín
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| |
Collapse
|
20
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 44:559-573. [PMID: 33215716 DOI: 10.1111/pce.13956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/11/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Biswas MS, Mano J. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:720867. [PMID: 34777410 PMCID: PMC8581730 DOI: 10.3389/fpls.2021.720867] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Oxidation of membrane lipids by reactive oxygen species (ROS) or O2/lipoxygenase leads to the formation of various bioactive compounds collectively called oxylipins. Reactive carbonyl species (RCS) are a group of oxylipins that have the α,β-unsaturated carbonyl structure, including acrolein and 4-hydroxy-(E)-2-nonenal. RCS provides a missing link between ROS stimuli and cellular responses in plants via their electrophilic modification of proteins. The physiological significance of RCS in plants has been established based on the observations that the RCS-scavenging enzymes that are overexpressed in plants or the RCS-scavenging chemicals added to plants suppress the plants' responses to ROS, i.e., photoinhibition, aluminum-induced root damage, programmed cell death (PCD), senescence, abscisic acid-induced stomata closure, and auxin-induced lateral root formation. The functions of RCS are thus a key to ROS- and redox-signaling in plants. The chemical species involved in distinct RCS signaling/damaging phenomena were recently revealed, based on comprehensive carbonyl determinations. This review presents an overview of the current status of research regarding RCS signaling functions in plants and discusses present challenges for gaining a more complete understanding of the signaling mechanisms.
Collapse
Affiliation(s)
- Md. Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jun’ichi Mano
- Science Research Center, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Jun’ichi Mano,
| |
Collapse
|
22
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
23
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
24
|
Corpas FJ, González-Gordo S, Palma JM. Plant Peroxisomes: A Factory of Reactive Species. FRONTIERS IN PLANT SCIENCE 2020; 11:853. [PMID: 32719691 PMCID: PMC7348659 DOI: 10.3389/fpls.2020.00853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 05/19/2023]
Abstract
Plant peroxisomes are organelles enclosed by a single membrane whose biochemical composition has the capacity to adapt depending on the plant tissue, developmental stage, as well as internal and external cellular stimuli. Apart from the peroxisomal metabolism of reactive oxygen species (ROS), discovered several decades ago, new molecules with signaling potential, including nitric oxide (NO) and hydrogen sulfide (H2S), have been detected in these organelles in recent years. These molecules generate a family of derived molecules, called reactive nitrogen species (RNS) and reactive sulfur species (RSS), whose peroxisomal metabolism is autoregulated through posttranslational modifications (PTMs) such as S-nitrosation, nitration and persulfidation. The peroxisomal metabolism of these reactive species, which can be weaponized against pathogens, is susceptible to modification in response to external stimuli. This review aims to provide up-to-date information on crosstalk between these reactive species families and peroxisomes, as well as on their cellular environment in light of the well-recognized signaling properties of H2O2, NO and H2S.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
25
|
Borniego ML, Molina MC, Guiamét JJ, Martinez DE. Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1635. [PMID: 31969890 PMCID: PMC6960232 DOI: 10.3389/fpls.2019.01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.
Collapse
Affiliation(s)
| | | | | | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
26
|
Wu D, Cui M, Hao Y, Liu L, Zhou Y, Wang W, Xue A, Chingin K, Luo L. In Situ Study of Metabolic Response of Arabidopsis thaliana Leaves to Salt Stress by Neutral Desorption-Extractive Electrospray Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12945-12952. [PMID: 31661263 DOI: 10.1021/acs.jafc.9b05339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Salt stress is one of the most common factors limiting plant cultivation. In this study, metabolic responses to salt stress in Arabidopsis thaliana (A. thaliana) leaves were analyzed in situ by neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) without any sample pretreatment. Metabolic changes of A. thaliana leaves were observed in response to salt stress conditions, including the levels of serine, glutamic acid, arginine, cinnamic acid, ferulic acid, caffeic acid, protocatechuic acid, epicatechin, morin, myricetin, apigravin, and β-cotonefuran. The content of serine increased under 50, 100, and 200 mM NaCl salt stress, reaching the highest level at 200 mM NaCl, but decreased under the maximum concentration of 300 mM NaCl. A similar phenomenon was observed for arginine, glutamic acid, cinnamic acid, caffeic acid, ferulic acid, and epicatechin, respectively, involved in the metabolic pathway of shikimate-phenylpropanoid. Both principal component analysis (PCA) and partial least-squares discrimination analysis (PLS-DA) showed that the salt stress treatment groups of the higher concentrations (200 and 300 mM) could be well distinguished from those of the lower concentrations (50 and 100 mM) and the control. Marker metabolites, like m/z 261 (apigravin) and m/z 305 (β-cotonefuran), were assistantly selected from the fingerprints by variable importance for the projection (VIP). Our results indicated the potential of the ND-EESI-MS method for the rapid recognition of metabolic conditions in plant leaves under salt stress.
Collapse
Affiliation(s)
- Dong Wu
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Meng Cui
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Yingbin Hao
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Lihua Liu
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Yalian Zhou
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Wenjing Wang
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Ahui Xue
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation , East China University of Technology , Nanchang 330013 , China
| | - Liping Luo
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| |
Collapse
|
27
|
Biswas MS, Fukaki H, Mori IC, Nakahara K, Mano J. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:536-548. [PMID: 31306517 DOI: 10.1111/tpj.14456] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/27/2019] [Accepted: 07/02/2019] [Indexed: 05/13/2023]
Abstract
In auxin-stimulated roots, production of reactive oxygen species (ROS) via the hormone-induced activation of respiratory burst oxidase homologous NADPH oxidases facilitates lateral root (LR) formation. In this study, in order to verify that ROS can modulate auxin signaling, we examined the involvement of the lipid peroxide-derived agents known as reactive carbonyl species (RCS) in LR formation. When auxin was added to Arabidopsis thaliana roots, the levels of RCS, for example acrolein, 4-hydroxynonenal and crotonaldehyde, were increased prior to LR formation. Addition of the carbonyl scavenger carnosine suppressed auxin-induced LR formation. Addition of RCS to the roots induced the expression of the auxin-responsive DR5 promoter and the TIR1, IAA14, ARF7, LBD16 and PUCHI genes and facilitated LR formation without increasing the endogenous auxin level. DR5 and LBD16 were activated in the LR primordia. The auxin signaling-deficient mutants arf7 arf19 and slr-1 did not respond - and tir1 afb2 appeared to show a poor response - to RCS. When given to the roots RCS promoted the disappearance of the AXR3NT-GUS fusion protein, i.e. the degradation of the auxin/indole-3-acetic acid protein, as did auxin. These results indicate that the auxin-induced production of ROS and their downstream products RCS modulate the auxin signaling pathway in a feed-forward manner. RCS are key agents that connect the ROS signaling and the auxin signaling pathways.
Collapse
Affiliation(s)
- Md Sanaullah Biswas
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550, Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kazuha Nakahara
- Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Jun'ichi Mano
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550, Japan
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
- Graduate School of Sciences and Technologies for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| |
Collapse
|
28
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int J Mol Sci 2019; 20:E4881. [PMID: 31581473 PMCID: PMC6801620 DOI: 10.3390/ijms20194881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid β-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Luis C Romero
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
29
|
Mano J, Biswas MS, Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. PLANTS (BASEL, SWITZERLAND) 2019; 8:E391. [PMID: 31575078 PMCID: PMC6843276 DOI: 10.3390/plants8100391] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the ,-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article.
Collapse
Affiliation(s)
- Jun'ichi Mano
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Koichi Sugimoto
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
30
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
31
|
Alché JDD. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 2019; 23:101136. [PMID: 30772285 PMCID: PMC6859586 DOI: 10.1016/j.redox.2019.101136] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Polyunsaturated fatty acids present in plant membranes react with reactive oxygen species through so-called lipid oxidation events. They generate great diversity of highly-reactive lipid-derived chemical species, which may be further degraded enzymatically or non-enzymatically originating new components like Reactive Carbonyl Species (RCS). Such RCS are able to selectively react with proteins frequently producing loss of function through lipoxidation reactions. Although a basal concentration of lipoxidation products exists in plants (likely involved in signaling), their concentration and variability growth exponentially when plants are subjected to biotic/abiotic stresses. Such conditions typically increase the presence of ROS and the expression of antioxidant enzymes, together with RCS and also metabolites resulting from their reaction with proteins (advanced lipoxidation endproducts, ALE), in those plants susceptible to stress. On the contrary, plants designed as resistant may or may not display enhanced levels of ROS and antioxidant enzymes, whereas levels of lipid oxidation markers as malondialdehyde (MDA) are typically reduced. Great efforts have been made in order to develop methods to identify and quantify RCS, ALE, and other adducts with high sensitivity. Many of these methods are applied to the analysis of plant physiology and stress resistance, although their use has been extended to the control of the processing and conservation parameters of foodstuffs derived from plants. These foods may accumulate either lipid oxidation/lipoxidation products, or antioxidants like polyphenols, which are sometimes critical for their organoleptic properties, nutritional value, and health-promoting or detrimental characteristics. Future directions of research on different topics involving these chemical changes are also discussed. Lipid (per)oxidation occurs in plants as a signaling mechanism and after stress. Electrophylic mediators are widely used to assess plant physiology. Few lypoxidation targets have been identified in plants, mainly related to stress. Lipoxidation frequently inactivates or highly affects enzyme activity in plants. Lipid oxidation/lipoxidation affect the quality and healthy properties of plant foods.
Collapse
Affiliation(s)
- Juan de Dios Alché
- Plant Reproductive Biology Laboratory. Estación Experimental del Zaidín. Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
32
|
Peng C, Chang L, Yang Q, Tong Z, Wang D, Tan Y, Sun Y, Yi X, Ding G, Xiao J, Zhang Y, Wang X. Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:141-150. [PMID: 30537601 DOI: 10.1016/j.jplph.2018.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Sesuvium portulacastrum, an important mangrove-associated true halophyte belongs to the family Aizoaceae, has excellent salt tolerance. Chloroplasts are the most sensitive organelles involved in the response to salinity. However, the regulation mechanism of chloroplasts of S. portulacastrum under salinity stress has not been reported. In this study, morphological and physiological analyses of leaves and comparative proteomics of chloroplasts isolated from the leaves of S. portulacastrum under different NaCl treatments were performed. Our results showed that the thickness of the palisade tissue, the leaf area, the maximum photochemical efficiency of photosystem II, and the electron transport rate increased remarkably after the plants were subjected to differential saline environments, indicating that salinity can increase photosynthetic efficiency and improve the growth of S. portulacastrum. Subsequently, 55 differentially expressed protein species (DEPs) from the chloroplasts of S. portulacastrum under differential salt conditions were positively identified by mass spectrometry. These DEPs were involved in multiple metabolic pathways, such as photosynthesis, carbon metabolism, ATP synthesis and the cell structure. Among these DEPs, the abundance of most proteins was induced by salt stress. Based on a combination of the morphological and physiological data, as well as the chloroplast proteome results, we speculated that S. portulacastrum can maintain photosynthetic efficiency and growth by maintaining the stability of the photosystem II complex, promoting the photochemical reaction rate, enhancing carbon fixation, developing plastoglobules, and preserving the biomembrane system of chloroplasts under salt stress.
Collapse
Affiliation(s)
- Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Qian Yang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yong Sun
- Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, China
| | - Xiaoping Yi
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ying Zhang
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
33
|
Watanabe S, Sato M, Sawada Y, Tanaka M, Matsui A, Kanno Y, Hirai MY, Seki M, Sakamoto A, Seo M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci Rep 2018; 8:16592. [PMID: 30413758 PMCID: PMC6226459 DOI: 10.1038/s41598-018-34862-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Arabidopsis ABA3 is an enzyme involved in the synthesis of the sulfurated form of the molybdenum (Mo) cofactor (MoCo), which is required for the enzymatic activity of so-called Mo enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH). It has been reported that AO and XDH are essential for the biosynthesis of the bioactive compounds, ABA and allantoin, respectively. However, aba3 mutants often exhibit pleiotropic phenotypes that are not explained by defects in ABA and/or allantoin biosynthesis, leading us to hypothesize that ABA3 regulates additional metabolic pathways. To reveal the currently unidentified functions of ABA3 we compared transcriptome and metabolome of the Arabidopsis aba3 mutant with those of wild type and a typical ABA-deficient mutant aba2. We found that endogenous levels of anthocyanins, members of the flavonoid group, were significantly lower in the aba3 mutant than in the wild type or the aba2 mutant under oxidative stress. In contrast, mutants defective in the AO and XDH holoenzymes accumulated significantly higher levels of anthocyanins when compared with aba3 mutant under the same conditions. Our findings shed light on a key role of ABA3 in the ABA- and allantoin-independent accumulation of anthocyanins during stress responses.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Sakamoto
- Department of Mathematics and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
34
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 2018; 8:454. [PMID: 30370195 PMCID: PMC6195494 DOI: 10.1007/s13205-018-1473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
With the continuous increase in the population of developing countries and decline of natural resources, there is an urgent need to qualitatively and quantitatively augment crop productivity by using new tools and technologies for improvement of agriculturally important traits. The new scientific and technological omics-based approaches have enabled us to deal with several issues and challenges faced by modern agricultural system and provided us novel opportunities for ensuring food and nutritional security. Recent developments in sequencing techniques have made available huge amount of genomic and transcriptomic data on model and cultivated crop plants including Arabidopsis thaliana, Oryza sativa, Triticum aestivum etc. The sequencing data along with other data generated through several omics platforms have significantly influenced the disciplines of crop sciences. Gene discovery and expression profiling-based technologies are offering enormous opportunities to the scientific community which can now apply marker-assisted selection technology to assess and enhance diversity in their collected germplasm, introgress essential traits from new sources and investigate genes that control key traits of crop plants. Utilization of omics science and technologies for crop productivity, protection and management has recently been receiving a lot of attention; the majority of the efforts have been put into signifying the possible applications of various omics technologies in crop plant sciences. This article highlights the background of challenges and opportunities for augmentation of crop productivity through interventions of omics technologies in India.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Present Address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
35
|
Satour P, Youssef C, Châtelain E, Vu BL, Teulat B, Job C, Job D, Montrichard F. Patterns of protein carbonylation during Medicago truncatula seed maturation. PLANT, CELL & ENVIRONMENT 2018; 41:2183-2194. [PMID: 29543987 DOI: 10.1111/pce.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.
Collapse
Affiliation(s)
- Pascale Satour
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Chvan Youssef
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Emilie Châtelain
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Benoît Ly Vu
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Béatrice Teulat
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Claudette Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Dominique Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| |
Collapse
|
36
|
Ruiz‐May E, Segura‐Cabrera A, Elizalde‐Contreras JM, Shannon LM, Loyola‐Vargas VM. A recent advance in the intracellular and extracellular redox post‐translational modification of proteins in plants. J Mol Recognit 2018; 32:e2754. [DOI: 10.1002/jmr.2754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Eliel Ruiz‐May
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Aldo Segura‐Cabrera
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome Campus Hinxton Cambridgeshire UK
| | - Jose M. Elizalde‐Contreras
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Laura M. Shannon
- Department of Horticultural ScienceUniversity of Minnesota Saint Paul MN USA
| | - Víctor M. Loyola‐Vargas
- Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
37
|
Colzani M, Regazzoni L, Criscuolo A, Baron G, Carini M, Vistoli G, Lee YM, Han SI, Aldini G, Yeum KJ. Isotopic labelling for the characterisation of HNE-sequestering agents in plant-based extracts and its application for the identification of anthocyanidins in black rice with giant embryo. Free Radic Res 2018; 52:896-906. [PMID: 30035649 DOI: 10.1080/10715762.2018.1490735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive carbonyl species (RCS) are cytotoxic molecules that originate from lipid peroxidation and sugar oxidation. Natural derivatives can be an attractive source of potential RCS scavenger. However, the lack of analytical methods to screen and identify bioactive compounds contained in complex matrices has hindered their identification. The sequestering actions of various rice extracts on RCS have been determined using ubiquitin and 4-hydroxy-2-nonenal (HNE) as a protein and RCS model, respectively. Black rice with giant embryo extract was found to be the most effective among various rice varieties. The identification of bioactive compounds was then carried out by an isotopic signature profile method using the characteristic isotopic ion cluster generated by the mixture of HNE: 2H5-HNE mixed at a 1:1 stoichiometric ratio. An in-house database was used to obtain the structures of the possible bioactive components. The identified compounds were further confirmed as HNE sequestering agents through HPLC-UV analysis.
Collapse
Affiliation(s)
- Mara Colzani
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Luca Regazzoni
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Angela Criscuolo
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Giovanna Baron
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Marina Carini
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Giulio Vistoli
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Yoon-Mi Lee
- b Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju-si , South Korea
| | - Sang-Ik Han
- c National Institute of Crop Science, Rural Development Administration , Suwon-si , South Korea
| | - Giancarlo Aldini
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Kyung-Jin Yeum
- b Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju-si , South Korea
| |
Collapse
|
38
|
Zhao Y, Long MJC, Wang Y, Zhang S, Aye Y. Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses. ACS CENTRAL SCIENCE 2018; 4. [PMID: 29532025 PMCID: PMC5833000 DOI: 10.1021/acscentsci.7b00556] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true kcat/Km conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Marcus J. C. Long
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Yiran Wang
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Sheng Zhang
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Yimon Aye
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
- E-mail:
| |
Collapse
|
39
|
Shimakawa G, Kohara A, Miyake C. Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803. FEBS Lett 2018; 592:1010-1019. [PMID: 29430658 DOI: 10.1002/1873-3468.13003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/24/2023]
Abstract
Reactive carbonyls (RCs), which are inevitably produced during respiratory and photosynthetic metabolism, have the potential to cause oxidative damage to photosynthetic organisms. Previously, we proposed a scavenging model for RCs in the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). In the current study, we constructed mutants deficient in the enzymes medium-chain dehydrogenase/reductase (ΔMDR) and aldo-keto reductase (ΔAKR) to investigate their contributions to RC scavenging in vivo. We found that treatment with the lipid-derived RC acrolein causes growth inhibition and promotes greater protein carbonylation in ΔMDR, compared with the wild-type and ΔAKR. In both ΔMDR and ΔAKR, photosynthesis is severely inhibited in the presence of acrolein. These results suggest that these enzymes function as part of the scavenging systems for RCs in S. 6803 in vivo.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Ayaka Kohara
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan.,Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
40
|
Baena G, Feria AB, Echevarría C, Monreal JA, García-Mauriño S. Salinity promotes opposite patterns of carbonylation and nitrosylation of C 4 phosphoenolpyruvate carboxylase in sorghum leaves. PLANTA 2017; 246:1203-1214. [PMID: 28828537 DOI: 10.1007/s00425-017-2764-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Carbonylation inactivates sorghum C 4 PEPCase while nitrosylation has little impact on its activity but holds back carbonylation. This interplay could be important to preserve photosynthetic C4 PEPCase activity in salinity. Previous work had shown that nitric acid (NO) increased phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity, promoting the phosphorylation of phosphoenolpyruvate carboxylase (PEPCase) in sorghum leaves (Monreal et al. in Planta 238:859-869, 2013b). The present work investigates the effect of NO on C4 PEPCase in sorghum leaves and its interplay with carbonylation, an oxidative modification frequently observed under salt stress. The PEPCase of sorghum leaves could be carbonylated in vitro and in vivo, and this post-translational modification (PTM) was accompanied by a loss of its activity. Similarly, PEPCase could be S-nitrosylated in vitro and in vivo, and this PTM had little impact on its activity. The S-nitrosylated PEPCase showed increased resistance towards subsequent carbonylation, both in vitro and in vivo. Under salt shock, carbonylation of PEPCase increased in parallel with decreased S-nitrosylation of the enzyme. Subsequent increase of S-nitrosylation was accompanied by decreased carbonylation. Taken together, the results suggest that S-nitrosylation could contribute to maintain C4 PEPCase activity in stressed sorghum plants. Thus, salt-induced NO synthesis would be protecting photosynthetic PEPCase activity from oxidative inactivation while promoting its phosphorylation, which will guarantee its optimal functioning in suboptimal conditions.
Collapse
Affiliation(s)
- Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain.
| |
Collapse
|
41
|
Tagnon MD, Simeon KO. Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1387707. [PMID: 28990846 PMCID: PMC5703241 DOI: 10.1080/15592324.2017.1387707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 05/29/2023]
Abstract
Aldehyde molecules were shown to induce gene expression but because of their toxicity, the cell expresses ALDEHYDE DEHYDROGENASES (ALDH, EC 1.2.1.3) that oxidize them to carboxylic acids. To understand how the aldehydes may be both toxic and gene activators, we expressed the ALDH7B4 gene promoter fused to the β-glucuronidase reporter gene in independent transgenic lines and found that pentanal and trans-2-hexenal activated the promoter whereas trans-2-hexenal induced the ALDH7B4 protein. Paraquat led to higher amounts of malondialdehyde compared to trans-2-hexenal and H2O2, and only the treatment by Paraquat activated the ALDH7B4 promoter, indicating that a threshold level of aldehydes is required for gene activation. These findings suggest that ALDH activity may also serve to fine-tune gene activation by the aldehydes.
Collapse
Affiliation(s)
| | - Kotchoni O. Simeon
- Department of Biology, Rutgers University, Camden, NJ, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
42
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
43
|
Pospíšil P, Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta Gen Subj 2017; 1861:457-466. [DOI: 10.1016/j.bbagen.2016.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
44
|
Mano J, Ishibashi A, Muneuchi H, Morita C, Sakai H, Biswas MS, Koeduka T, Kitajima S. Acrolein-detoxifying isozymes of glutathione transferase in plants. PLANTA 2017; 245:255-264. [PMID: 27718072 DOI: 10.1007/s00425-016-2604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/30/2016] [Indexed: 05/09/2023]
Abstract
Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.
Collapse
Affiliation(s)
- Jun'ichi Mano
- Science Research Center, Organization for Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan.
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan.
| | - Asami Ishibashi
- Graduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Hitoshi Muneuchi
- Graduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Chihiro Morita
- Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Hiroki Sakai
- Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Md Sanaullah Biswas
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550, Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
45
|
Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy Is Rapidly Induced by Salt Stress and Is Required for Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1459. [PMID: 28878796 PMCID: PMC5572379 DOI: 10.3389/fpls.2017.01459] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
Salinity stress challenges agriculture and food security globally. Upon salt stress, plant growth slows down, nutrients are recycled, osmolytes are produced, and reallocation of Na+ takes place. Since autophagy is a high-throughput degradation pathway that contributes to nutrient remobilization in plants, we explored the involvement of autophagic flux in salt stress response of Arabidopsis with various approaches. Confocal microscopy of GFP-ATG8a in transgenic Arabidopsis showed that autophagosome formation is induced shortly after salt treatment. Immunoblotting of ATG8s and the autophagy receptor NBR1 confirmed that the level of autophagy peaks within 30 min of salt stress, and then settles to a new homeostasis in Arabidopsis. Such an induction is absent in mutants defective in autophagy. Within 3 h of salt treatment, accumulation of oxidized proteins is alleviated in the wild-type; however, such a reduction is not seen in atg2 or atg7. Consistently, the Arabidopsis atg mutants are hypersensitive to both salt and osmotic stresses, and plants overexpressing ATG8 perform better than the wild-type in germination assays. Quantification of compatible osmolytes further confirmed that the autophagic flux contributes to salt stress adaptation. Imaging of intracellular Na+ revealed that autophagy is required for Na+ sequestration in the central vacuole of root cortex cells following salt treatment. These data suggest that rapid protein turnover through autophagy is a prerequisite for salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dan Wang
- *Correspondence: Dan Wang, Qingqiu Gong,
| | | |
Collapse
|
46
|
Xu W, Lv H, Zhao M, Li Y, Qi Y, Peng Z, Xia G, Wang M. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line. Sci Rep 2016; 6:32384. [PMID: 27562633 PMCID: PMC4999883 DOI: 10.1038/srep32384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins.
Collapse
Affiliation(s)
- Wenjing Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Hongjun Lv
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Mingming Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Yongchao Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Yueying Qi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Zhenying Peng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crop, Jinan, 250100, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| |
Collapse
|
47
|
Biswas MS, Mano J. Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants. PLANT & CELL PHYSIOLOGY 2016; 57:1432-1442. [PMID: 27106783 DOI: 10.1093/pcp/pcw053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/03/2016] [Indexed: 05/10/2023]
Abstract
Reactive oxygen species (ROS)-triggered programmed cell death (PCD) is a typical plant response to biotic and abiotic stressors. We have recently shown that lipid peroxide-derived reactive carbonyl species (RCS), downstream products of ROS, mediate oxidative signal to initiate PCD. Here we investigated the mechanism by which RCS initiate PCD. Tobacco Bright Yellow-2 cultured cells were treated with acrolein, one of the most potent RCS. Acrolein at 0.2 mM caused PCD in 5 h (i.e. lethal), but at 0.1 mM it did not (sublethal). Specifically, these two doses caused critically different effects on the cells. Both lethal and sublethal doses of acrolein exhausted the cellular glutathione pool in 30 min, while the lethal dose only caused a significant ascorbate decrease and ROS increase in 1-2 h. Prior to such redox changes, we found that acrolein caused significant increases in the activities of caspase-1-like protease (C1LP) and caspase-3-like protease (C3LP), the proteases which trigger PCD. The lethal dose of acrolein increased the C3LP activity 2-fold more than did the sublethal dose. In contrast, C1LP activity increments caused by the two doses were not different. Acrolein and 4-hydroxy-(E)-2-nonenal, another RCS, activated both proteases in a cell-free extract from untreated cells. H2O2 at 1 mM added to the cells increased C1LP and C3LP activities and caused PCD, and the RCS scavenger carnosine suppressed their activation and PCD. However, H2O2 did not activate the proteases in a cell-free extract. Thus the activation of caspase-like proteases, particularly C3LP, by RCS is an initial biochemical event in oxidative signal-stimulated PCD in plants.
Collapse
Affiliation(s)
- Md Sanaullah Biswas
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550 Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Jun'ichi Mano
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550 Japan
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
- Graduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| |
Collapse
|
48
|
Silveira JAG, Carvalho FEL. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J Proteomics 2016; 143:24-35. [PMID: 26957143 DOI: 10.1016/j.jprot.2016.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/12/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Salinity is a stressful condition that causes a significant decrease in crop production worldwide. Salt stress affects several photosynthetic reactions, including the modulation of several important proteins. Despite these effects, few molecular-biochemical markers have been identified and evaluated for their importance in improving plant salt resistance. Proteomics is a powerful tool that allows the analysis of multigenic events at the post-translational level that has been widely used to evaluate protein modulation changes in plants exposed to salt stress. However, these studies are frequently fragmented and the results regarding photosynthesis proteins in response to salinity are limited. These constraints could be related to the low number of important photosynthetic proteins differently modulated in response to salinity, as has been commonly revealed by conventional proteomics. In this review, we present an evaluation and perspective on the integrated application of proteomics for the identification of photosynthesis proteins to improve salt resistance. We propose the use of phospho-, thiol- and redox-proteomics, associated with the utilization of isolated chloroplasts or photosynthetic sub-organellar components. This strategy may allow the characterization of essential proteins, providing a better understanding of photosynthesis regulation. Furthermore, this may contribute to the selection of molecular markers to improve salt resistance in crops.
Collapse
Affiliation(s)
- Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| |
Collapse
|
49
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
50
|
Mock HP, Dietz KJ. Redox proteomics for the assessment of redox-related posttranslational regulation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:967-73. [PMID: 26784836 DOI: 10.1016/j.bbapap.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023]
Abstract
The methodological developments of in vivo and in vitro protein labeling and subsequent detection enable sensitive and specific detection of redox modifications. Such methods are presently applied to diverse cells and tissues, subproteomes and developmental as well as environmental conditions. The chloroplast proteome is particularly suitable for such kind of studies, because redox regulation of chloroplast proteins is well established, many plastid proteins are abundant, redox network components have been inventoried in great depth, and functional consequences explored. Thus the repertoire of redox-related posttranslational modifications on the one hand side and their abundance on the other pose a challenge for the near future to understand their contribution to physiological regulation. The various posttranslational redox modifications are introduced, followed by a description of the available proteomics methods. The significance of the redox-related posttranslational modification is exemplarily worked out using established examples from photosynthesis. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hans-Peter Mock
- Applied Biochemistry, Institute of Plant Genetics and Crop Plant Research, IPK, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology - W5-134, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|