1
|
Liao Y, Zeng Z, Lin K, Jiang W, Wang J, Duan L, Liang X, Huang Y, Han Z, Hu H, Xu ZF, Ni J. Gibberellin promotes xylem expansion and cell lignification by regulating sugar accumulation and the expression of JcMYB43 and JcMYB63 in the woody plant Jatropha curcas. Int J Biol Macromol 2025; 294:139434. [PMID: 39756755 DOI: 10.1016/j.ijbiomac.2024.139434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Gibberellins (GAs) are a group of diterpene plant hormones that regulate various plant developmental processes, including wood formation. Nevertheless, the regulatory pattern and the downstream targets of GA in the regulation of xylem expansion and cell lignification in woody plants remain unclear. In transgenic Jatropha curcas with significantly increased or decreased bioactive GA content via separate overexpression of JcGA20ox1 or JcGA2ox6, comparative transcriptomic, metabolomic and physiological investigations were conducted on the young stems. Lignin quantification and ultrastructural investigations of the young stems at different development stages revealed that JcGA20ox1 plants presented much faster lignin deposition and xylem expansion even at early development stages. The transcriptomic results revealed that the majority of the differentially expressed genes (DEGs) in the JcGA20ox1 and JcGA2ox6 plants were mainly related to metabolic pathways. Analysis of the DEGs and the gene regulatory network revealed that the increased lignification in JcGA20ox1 plants was due to the activated expression of several key transcription factors and the structural genes in the lignin biosynthesis pathway, which was confirmed by the significantly increased precursors of lignin identified via metabolomic analysis. Interestingly, a total of 15 sugar-related metabolites were differentially regulated, most of which were increased in the xylem of JcGA20ox1, but decreased in JcGA2ox6 plants. Importantly, two key GA-responsive transcription factors JcMYB43 and JcMYB63 were identified to play dual roles in promoting both xylem expansion and cell lignification. Conclusively, this study provides novel insights into the molecular mechanisms of GA-regulated xylem development in the woody plants.
Collapse
Affiliation(s)
- Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhiyu Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Weixin Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jianzhong Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Dongmen Forest Farm, Chongzuo 532108, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiuqing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunkai Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeiwei Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
3
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Tanaka W, Ohyama A, Toriba T, Tominaga R, Hirano HY. FINE CULM1 Encoding a TEOSINTE BRANCHED1-like TCP Transcription Factor Negatively Regulates Axillary Meristem Formation in Rice. PLANT & CELL PHYSIOLOGY 2024; 65:1862-1872. [PMID: 39431787 DOI: 10.1093/pcp/pcae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Shoot branching is a critical determinant of plant architecture and a key factor affecting crop yield. The shoot branching involves two main processes: axillary meristem formation and subsequent bud outgrowth. While considerable progress has been made in elucidating the genetic mechanisms underlying the latter process, our understanding of the former process remains limited. Rice FINE CULM1 (FC1), which is an ortholog of teosinte branched1 in maize (Zea mays) and BRANCHED1/2 in Arabidopsis (Arabidopsis thaliana), is known to act in the latter process by repressing bud outgrowth. In this study, we found that FC1 also plays a role in the former process, i.e. axillary meristem formation, in rice. This study was triggered by our unexpected observation that fc1 mutation suppresses the loss of axillary meristems in the loss-of-function mutant of the rice WUSCHEL gene TILLERS ABSENT1 (TAB1). In tab1 fc1, unlike in tab1, both stem cells and undifferentiated cells were maintained during axillary meristem formation, similar to the wild type. Morphological analysis showed that axillary meristem formation was accelerated in fc1, compared to the wild type. Consistent with this, cell proliferation was more active in the region containing stem cells and undifferentiated cells during axillary meristem formation in fc1 than in the wild type. Taken altogether, these findings suggest that FC1 negatively regulates axillary meristem formation by mildly repressing cell proliferation during this process.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Ami Ohyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215 Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8654 Japan
| |
Collapse
|
5
|
Du S, Wang M, Liang J, Pan W, Sang Q, Ma Y, Jin M, Zhang M, Zhang X, Du Y. Histological, Transcriptomic, and Functional Analyses Reveal the Role of Gibberellin in Bulbil Development in Lilium lancifolium. PLANTS (BASEL, SWITZERLAND) 2024; 13:2965. [PMID: 39519884 PMCID: PMC11547782 DOI: 10.3390/plants13212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Lily bulbils, advantageous axillary organs used for asexual reproduction, have an underexplored developmental mechanism. Gibberellins are known to participate in bulbil development, but the regulatory mechanisms remain unclear. In this study, exogenous gibberellin (GA3) significantly increased the bulbil length, width, and weight by raising the endogenous gibberellin levels and elongating the scale cells. Transcriptomic analysis identified LlGA20ox2, a key gibberellin biosynthesis gene, which was upregulated during bulbil development and significantly responsive to GA3 treatment. Given the similarities in bulbil and bulblet development, we determined the roles of LlGA20ox2 using a bulblet system. Silencing LlGA20ox2 in bulblets inhibited development by reducing the cell length, while overexpression increased the bulblet length and width. In the gibberellin signaling pathway, we identified two key genes, LlGID1C and LlCIGR2. Silencing these genes resulted in phenotypes similar to LlGA20ox2, inhibiting bulblet development. Further transcriptomic analysis revealed that gibberellin-responsive genes were enriched in the glucuronate pathway, pentose phosphate pathway and galactose metabolism pathways. Most of these differentially expressed genes responded to gibberellin and were highly expressed in later stages of bulbil development, suggesting their involvement in gibberellin-regulated bulbil growth. In conclusion, we preliminarily explored the mechanisms of gibberellin regulation in bulbil development, offering significant commercial potential for new lily reproductive organs.
Collapse
Affiliation(s)
- Shanshan Du
- School of Life Sciences, Jilin University, Changchun 130118, China;
| | - Mengdi Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Qianzi Sang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
- Agriculture College, Yanbian University, Yanji 133002, China
| | - Yanfang Ma
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mengzhu Jin
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Yunpeng Du
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| |
Collapse
|
6
|
Deng J, Deng X, Yao H, Ji S, Dong L. Gibberellins Play an Essential Role in the Bud Growth of Petunia hybrida. Curr Issues Mol Biol 2024; 46:9906-9915. [PMID: 39329942 PMCID: PMC11430761 DOI: 10.3390/cimb46090590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
This study delves into the role of gibberellin (GA) in governing plant branch development, a process that remains incompletely understood. Through a combination of exogenous hormone treatment, gene expression analysis, and transgenic phenotype investigations, the impact of GA on petunia's branch development was explored. The results showed that GA3 alone did not directly induce axillary bud germination. However, paclobutrazol (PAC), an inhibitor of GA synthesis, effectively inhibited bud growth. Interestingly, the simultaneous application of GA3 and 6-BA significantly promoted bud growth in both intact and decapitated plants compared to using 6-BA alone. Moreover, this study observed a significant downregulation of GA synthesis genes, including GA20ox1, GA20ox2, GA20ox3, GA3ox1, and CPS1, alongside an upregulation of GA degradation genes such as GA2ox2, GA2ox4, and GA2ox8. The expression of GA signal transduction gene GID1 and GA response factor RGA was found to be upregulated. Notably, the PhGID1 gene, spanning 1029 bp and encoding 342 amino acids, exhibited higher expression in buds and the lowest expression in leaves. The overexpression of PhGID1 in Arabidopsis resulted in a noteworthy rise in the number of branches. This study highlights the crucial role of GA in bud germination and growth and the positive regulatory function of GA signaling in shoot branching processes.
Collapse
Affiliation(s)
| | | | | | | | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.D.); (X.D.); (H.Y.); (S.J.)
| |
Collapse
|
7
|
Huang P, Yang J, Ke J, Cai L, Hu Y, Ni J, Li C, Xu ZF, Tang M. Inhibition of flowering by gibberellins in the woody plant Jatropha curcas is restored by overexpression of JcFT. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112100. [PMID: 38679393 DOI: 10.1016/j.plantsci.2024.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Jatropha curcas (J. curcas) is a perennial oil-seed plant with vigorous vegetative growth but relatively poor reproductive growth and low seed yield. Gibberellins (GAs) promotes flowering in most annual plants but inhibits flowering in many woody plants, including J. curcas. However, the underlying mechanisms of GA inhibits flowering in perennial woody plants remain unclear. Here, we found that overexpression of the GA biosynthesis gene JcGA20ox1 inhibits flowering in J. curcas and in J. curcas × J. integerrima hybrids. Consistent with this finding, overexpression of the GA catabolic gene JcGA2ox6 promotes flowering in J. curcas. qRTPCR revealed that inhibits floral transition by overexpressing JcGA20ox1 resulted from a decrease in the expression of JcFT and other flowering-related genes, which was restored by overexpressing JcFT in J. curcas. Overexpression of JcGA20ox1 or JcGA2ox6 reduced seed yield, but overexpression of JcFT significantly increased seed yield. Furthermore, hybridization experiments showed that the reduction in seed yield caused by overexpression of JcGA20ox1 or JcGA2ox6 was partially restored by the overexpression of JcFT. In addition, JcGA20ox1, JcGA2ox6 and JcFT were also found to be involved in the regulation of seed oil content and endosperm development. In conclusion, our study revealed that the inhibitory effect of GA on flowering is mediated through JcFT and demonstrated the effects of JcGA20ox1, JcGA2ox6 and JcFT on agronomic traits in J. curcas. This study also indicates the potential value of GA metabolism genes and JcFT in the breeding of new varieties of woody oil-seed plants.
Collapse
Affiliation(s)
- Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jiapeng Ke
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Li Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Yingxiong Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jun Ni
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chaoqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| |
Collapse
|
8
|
Zhou C, Gu X, Li J, Su X, Chen S, Tang J, Chen L, Cai N, Xu Y. Physiological Characteristics and Transcriptomic Responses of Pinus yunnanensis Lateral Branching to Different Shading Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1588. [PMID: 38931020 PMCID: PMC11207258 DOI: 10.3390/plants13121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.
Collapse
Affiliation(s)
- Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xuesha Gu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiangfei Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Shi Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Lin Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Jiang P, Han P, He M, Shui G, Guo C, Shah S, Wang Z, Wu H, Li J, Pan Z. Appropriate mowing can promote the growth of Anabasis aphylla through the auxin metabolism pathway. BMC PLANT BIOLOGY 2024; 24:482. [PMID: 38822275 PMCID: PMC11141038 DOI: 10.1186/s12870-024-05204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Anabasis aphylla (A. aphylla), a species of the Amaranthaceae family, is widely distributed in northwestern China and has high pharmacological value and ecological functions. However, the growth characteristics are poorly understood, impeding its industrial development for biopesticide development. Here, we explored the regenerative capacity of A. aphylla. To this end, different lengths of the secondary branches of perennial branches were mowed at the end of March before sprouting. The four treatments were no mowing (M0) and mowing 1/3, 2/3, and the entire length of the secondary branches of perennial branches (M1-M3, respectively). Next, to evaluate the compensatory growth after mowing, new assimilate branches' related traits were recorded every 30 days, and the final biomass was recorded. The mowed plants showed a greater growth rate of assimilation branches than un-mowed plants. Additionally, with the increasing mowing degree, the growth rate and the final biomass of assimilation branches showed a decreasing trend, with the greatest growth rate and final biomass in response to M1. To evaluate the mechanism of the compensatory growth after mowing, a combination of dynamic (0, 1, 5, and 8 days after mowing) plant hormone-targeted metabolomics and transcriptomics was performed for the M0 and M1 treatment. Overall, 26 plant hormone metabolites were detected, 6 of which significantly increased after mowing compared with control: Indole-3-acetyl-L-valine methyl ester, Indole-3-carboxylic acid, Indole-3-carboxaldehyde, Gibberellin A24, Gibberellin A4, and cis (+)-12-oxo-phytodienoic acid. Additionally, 2,402 differentially expressed genes were detected between the mowed plants and controls. By combining clustering analysis based on expression trends after mowing and gene ontology analysis of each cluster, 18 genes related to auxin metabolism were identified, 6 of which were significantly related to auxin synthesis. Our findings suggest that appropriate mowing can promote A. aphylla growth, regulated by the auxin metabolic pathway, and lays the foundation for the development of the industrial value of A. aphylla.
Collapse
Affiliation(s)
- Ping Jiang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Peng Han
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Mengyao He
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Guangling Shui
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Chunping Guo
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Sulaiman Shah
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Zixuan Wang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Haokai Wu
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Jian Li
- Southern Xinjiang Research Institute, Shihezi University, Tumushuk, 843806, Xinjiang, China.
| | - Zhenyuan Pan
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
10
|
Wen S, Hu Q, Wang J, Li H. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. PLANT MOLECULAR BIOLOGY 2024; 114:55. [PMID: 38727895 DOI: 10.1007/s11103-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical β-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.
Collapse
Affiliation(s)
- Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
11
|
Xie C, Chen R, Sun Q, Hao D, Zong J, Guo H, Liu J, Li L. Physiological and Proteomic Analyses of mtn1 Mutant Reveal Key Players in Centipedegrass Tiller Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1028. [PMID: 38611557 PMCID: PMC11013472 DOI: 10.3390/plants13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Tillering directly determines the seed production and propagation capacity of clonal plants. However, the molecular mechanisms involved in the tiller development of clonal plants are still not fully understood. In this study, we conducted a proteome comparison between the tiller buds and stem node of a multiple-tiller mutant mtn1 (more tillering number 1) and a wild type of centipedegrass. The results showed significant increases of 29.03% and 27.89% in the first and secondary tiller numbers, respectively, in the mtn1 mutant compared to the wild type. The photosynthetic rate increased by 31.44%, while the starch, soluble sugar, and sucrose contents in the tiller buds and stem node showed increases of 13.79%, 39.10%, 97.64%, 37.97%, 55.64%, and 7.68%, respectively, compared to the wild type. Two groups comprising 438 and 589 protein species, respectively, were differentially accumulated in the tiller buds and stem node in the mtn1 mutant. Consistent with the physiological characteristics, sucrose and starch metabolism as well as plant hormone signaling were found to be enriched with differentially abundant proteins (DAPs) in the mtn1 mutant. These results revealed that sugars and plant hormones may play important regulatory roles in the tiller development in centipedegrass. These results expanded our understanding of tiller development in clonal plants.
Collapse
Affiliation(s)
- Chenming Xie
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Rongrong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Dongli Hao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Junqin Zong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Hailin Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Jianxiu Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Ling Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| |
Collapse
|
12
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
13
|
Kelly JH, Brewer PB. How do brassinosteroids fit in bud outgrowth models? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:13-16. [PMID: 37846132 PMCID: PMC10735685 DOI: 10.1093/jxb/erad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
A network of plant hormonal signals coordinates plant branching. Brassinosteroids are important in this network, acting as repressors of the strigolactone pathway and TEOSINTE BRANCHED1 .
Collapse
Affiliation(s)
- Jack H Kelly
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Philip B Brewer
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
- Australian Research Council Training Centre for Future Crops Development, The University of Adelaide, Adelaide, SA 5064, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Tian H, Tang B, Fan W, Pan Z, Peng J, Wang Y, Liu F, Liu G. The role of strigolactone analog (GR24) in endogenous hormone metabolism and hormone-related gene expression in tobacco axillary buds. PLANT CELL REPORTS 2023; 43:21. [PMID: 38150090 DOI: 10.1007/s00299-023-03081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Strigolactone has the potential to influence hormone metabolism, in addition to having a role in inhibiting axillary bud elongation, which could be regulated by the expression of phytohormones-related genes. The elongation of axillary buds affects the economic benefits of tobacco. In this study, it was investigated the effect of strigolactone (SL) on the elongation of tobacco axillary buds and its endogenous hormone metabolism and related gene expression by applying the artificial analog of SL, GR24, and an inhibitor of SL synthesis, TIS-108, to the axillary buds. The results showed that the elongation of axillary buds was significantly inhibited by GR24 on day 2 and day 9. Ultra-high-performance liquid-chromatography-mass spectrometry results further showed that SL significantly affected the metabolism of endogenous plant hormones, altering both their levels and the ratios between each endogenous hormone. Particularly, the levels of auxin (IAA), trans-zeatin-riboside (tZR), N6-(∆2-isopentenyl) adenine (iP), gibberellin A4 (GA4), jasmonic acid (JA), and jasmonoyl isoleucine (JA-Ile) were decreased after GR24 treatment on day 9, but the levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and gibberellin A1 (GA1) were significantly increased. Further analysis of endogenous hormonal balance revealed that after the treatment with GR24 on day 9, the ratio of IAA to cytokinin (CTK) was markedly increased, but the ratios of IAA to abscisic acid (ABA), salicylic acid (SA), ACC, JAs, and, GAs were notably decreased. In addition, according to RNA-seq analysis, multiple differentially expressed genes were found, such as GH3.1, AUX/IAA, SUAR20, IPT, CKX1, GA2ox1, ACO3, ERF1, PR1, and HCT, which may play critical roles in the biosynthesis, deactivation, signaling pathway of phytohormones, and the biosynthesis of flavonoids to regulate the elongation of axillary buds in tobacco. This work lays the certain theoretical foundation for the application of SL in regulating the elongation of axillary buds of tobacco.
Collapse
Affiliation(s)
- Huiyuan Tian
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Boxi Tang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Wuwei Fan
- Yimen County Branch of Yuxi Tobacco Company, Yimen, 651100, Yunnan, People's Republic of China
| | - Zhiyan Pan
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Jiantao Peng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Yuanxiu Wang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Fan Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Guoqin Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
15
|
Tang J, Chen Y, Huang C, Li C, Feng Y, Wang H, Ding C, Li N, Wang L, Zeng J, Yang Y, Hao X, Wang X. Uncovering the complex regulatory network of spring bud sprouting in tea plants: insights from metabolic, hormonal, and oxidative stress pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1263606. [PMID: 37936941 PMCID: PMC10627156 DOI: 10.3389/fpls.2023.1263606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
The sprouting process of tea buds is an essential determinant of tea quality and taste, thus profoundly impacting the tea industry. Buds spring sprouting is also a crucial biological process adapting to external environment for tea plants and regulated by complex transcriptional and metabolic networks. This study aimed to investigate the molecular basis of bud sprouting in tea plants firstly based on the comparisons of metabolic and transcriptional profiles of buds at different developmental stages. Results notably highlighted several essential processes involved in bud sprouting regulation, including the interaction of plant hormones, glucose metabolism, and reactive oxygen species scavenging. Particularly prior to bud sprouting, the accumulation of soluble sugar reserves and moderate oxidative stress may have served as crucial components facilitating the transition from dormancy to active growth in buds. Following the onset of sprouting, zeatin served as the central component in a multifaceted regulatory mechanism of plant hormones that activates a range of growth-related factors, ultimately leading to the promotion of bud growth. This process was accompanied by significant carbohydrate consumption. Moreover, related key genes and metabolites were further verified during the entire overwintering bud development or sprouting processes. A schematic diagram involving the regulatory mechanism of bud sprouting was ultimately proposed, which provides fundamental insights into the complex interactions involved in tea buds.
Collapse
Affiliation(s)
- Junwei Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Congcong Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Feng
- Zhejiang Provincial Seed Management Station, Hangzhou, China
| | - Haoqian Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Zhang Y, Du D, Wei H, Xie S, Tian X, Yang J, Xiao S, Tang Z, Li D, Liu Y. Transcriptomic and Hormone Analyses Provide Insight into the Regulation of Axillary Bud Outgrowth of Eucommia ulmoides Oliver. Curr Issues Mol Biol 2023; 45:7304-7318. [PMID: 37754246 PMCID: PMC10528246 DOI: 10.3390/cimb45090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
An essential indicator of Eucommia ulmoides Oliver (E. ulmoides) is the axillary bud; the growth and developmental capacity of axillary buds could be used to efficiently determine the structural integrity of branches and plant regeneration. We obtained axillary buds in different positions on the stem, including upper buds (CK), tip buds (T1), and bottom buds (T2), which provided optimal materials for the study of complicated regulatory networks that control bud germination. This study used transcriptomes to analyze the levels of gene expression in three different types of buds, and the results showed that 12,131 differentially expressed genes (DEGs) were discovered via the pairwise comparison of transcriptome data gathered from CK to T2, while the majority of DEGs (44.38%) were mainly found between CK and T1. These DEGs were closely related to plant hormone signal transduction and the amino acid biosynthesis pathway. We also determined changes in endogenous hormone contents during the process of bud germination. Interestingly, except for indole-3-acetic acid (IAA) content, which showed a significant upward trend (p < 0.05) in tip buds on day 4 compared with day 0, the other hormones showed no significant change during the process of germination. Then, the expression patterns of genes involved in IAA biosynthesis and signaling were examined through transcriptome analysis. Furthermore, the expression levels of genes related to IAA biosynthesis and signal transduction were upregulated in tip buds. Particularly, the expression of the IAA degradation gene Gretchen Hagen 3 (GH3.1) was downregulated on day 4, which may support the concept that endogenous IAA promotes bud germination. Based on these data, we propose that IAA synthesis and signal transduction lead to morphological changes in tip buds during the germination process. On this basis, suggestions to improve the efficiency of the production and application of E. ulmoides are put forward to provide guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Dandan Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Shengnan Xie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Xuchen Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| |
Collapse
|
17
|
Wang T, Li J, Jiang Y, Zhang J, Ni Y, Zhang P, Yao Z, Jiao Z, Li H, Li L, Niu Y, Li Q, Yin G, Niu J. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 2023; 11:e15924. [PMID: 37671358 PMCID: PMC10476609 DOI: 10.7717/peerj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.
Collapse
Affiliation(s)
- Ting Wang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China, Shangqiu, China
| | - Peipei Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yufan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guihong Yin
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Cao D, Chabikwa T, Barbier F, Dun EA, Fichtner F, Dong L, Kerr SC, Beveridge CA. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. PLANT PHYSIOLOGY 2023; 192:1420-1434. [PMID: 36690819 PMCID: PMC10231355 DOI: 10.1093/plphys/kiad034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.
Collapse
Affiliation(s)
- Da Cao
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tinashe Chabikwa
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Franziska Fichtner
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lili Dong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Wu Y, Zhang J, Li C, Deng X, Wang T, Dong L. Genome-wide analysis of TCP transcription factor family in sunflower and identification of HaTCP1 involved in the regulation of shoot branching. BMC PLANT BIOLOGY 2023; 23:222. [PMID: 37101166 PMCID: PMC10134548 DOI: 10.1186/s12870-023-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Sunflower is an important ornamental plant, which can be used for fresh cut flowers and potted plants. Plant architecture regulation is an important agronomic operation in its cultivation and production. As an important aspect of plant architecture formation, shoot branching has become an important research direction of sunflower. RESULTS TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are essential in regulating various development process. However, the role of TCPs in sunflowers has not yet been studied. This study, 34 HaTCP genes were identified and classified into three subfamilies based on the conservative domain and phylogenetic analysis. Most of the HaTCPs in the same subfamily displayed similar gene and motif structures. Promoter sequence analysis has demonstrated the presence of multiple stress and hormone-related cis-elements in the HaTCP family. Expression patterns of HaTCPs revealed several HaTCP genes expressed highest in buds and could respond to decapitation. Subcellular localization analysis showed that HaTCP1 was located in the nucleus. Paclobutrazol (PAC) and 1-naphthylphthalamic acid (NPA) administration significantly delayed the formation of axillary buds after decapitation, and this suppression was partially accomplished by enhancing the expression of HaTCP1. Furthermore, HaTCP1 overexpressed in Arabidopsis caused a significant decrease in branch number, indicating that HaTCP1 played a key role in negatively regulating sunflower branching. CONCLUSIONS This study not only provided the systematic analysis for the HaTCP members, including classification, conserved domain and gene structure, expansion pattern of different tissues or after decapitation. But also studied the expression, subcellular localization and function of HaTCP1. These findings could lay a critical foundation for further exploring the functions of HaTCPs.
Collapse
Affiliation(s)
- Yu Wu
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Jianbin Zhang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Chaoqun Li
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Xinyi Deng
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Tian Wang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
21
|
Wu W, Zhu L, Wang P, Liao Y, Duan L, Lin K, Chen X, Li L, Xu J, Hu H, Xu ZF, Ni J. Transcriptome-Based Construction of the Gibberellin Metabolism and Signaling Pathways in Eucalyptus grandis × E. urophylla, and Functional Characterization of GA20ox and GA2ox in Regulating Plant Development and Abiotic Stress Adaptations. Int J Mol Sci 2023; 24:ijms24087051. [PMID: 37108215 PMCID: PMC10138970 DOI: 10.3390/ijms24087051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Gibberellins (GAs) are the key regulators controlling plant growth, wood production and the stress responses in perennial woody plants. The role of GA in regulating the above-mentioned processes in Eucalyptus remain largely unclear. There is still a lack of systematic identification and functional characterization of GA-related genes in Eucalyptus. In this study, a total of 59,948 expressed genes were identified from the major vegetative tissues of the E. grandis × E. urophylla using transcriptome sequencing. Then, the key gene families in each step of GA biosynthesis, degradation and signaling were investigated and compared with those of Arabidopsis, rice, and Populus. The expression profile generated using Real-time quantitative PCR showed that most of these genes exhibited diverse expression patterns in different vegetative organs and in response to abiotic stresses. Furthermore, we selectively overexpressed EguGA20ox1, EguGA20ox2 and EguGA2ox1 in both Arabidopsis and Eucalyptus via Agrobacterium tumefaciens or A. rhizogenes-mediated transformation. Though both Arabidopsis EguGA20ox1- and EguGA20ox2-overexpressing (OE) lines exhibited better vegetative growth performance, they were more sensitive to abiotic stress, unlike EguGA2ox1-OE plants, which exhibited enhanced stress resistance. Moreover, overexpression of EguGA20ox in Eucalyptus roots caused significantly accelerated hairy root initiation and elongation and improved root xylem differentiation. Our study provided a comprehensive and systematic study of the genes of the GA metabolism and signaling and identified the role of GA20ox and GA2ox in regulating plant growth, stress tolerance, and xylem development in Eucalyptus; this could benefit molecular breeding for obtaining high-yield and stress-resistant Eucalyptus cultivars.
Collapse
Affiliation(s)
- Wenfei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Linhui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Pan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jiajing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
Spectral light quality regulates the morphogenesis, architecture, and flowering in pepper (Capsicum annuum L.). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112673. [PMID: 36889195 DOI: 10.1016/j.jphotobiol.2023.112673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Transparent plastic films with poor light transmittance seriously affect the mass composition of visible light in many greenhouses, which leads to the reduction of photosynthesis in vegetable crops. Understanding the regulatory mechanisms of monochromatic light in the vegetative and reproductive growth of vegetable crops is of great importance for the application of light-emitting diodes (LEDs) in the greenhouse. In this study, three monochromatic light treatments (red-, green- and blue-light) were simulated by using LEDs to explore light quality-dependent regulation from the stage of seedling to flowering in pepper (Capsicum annuum L.). The results showed that light quality-dependent regulation guides the growth and morphogenesis in pepper plants. Red- and blue-light played opposite roles in determining the plant height, stomatal density, axillary bud growth, photosynthetic characteristics, flowering time and hormone metabolism, while green light treatment resulted in taller plants and fewer branches, which was similar to the red-light treatment. The weighted correlation network analysis (WGCNA) based on mRNA-seq results revealed that the two modules named "MEred" and "MEmidnightblue" were positively correlated with red- and blue-light treatment, respectively, exhibiting high correlations with the traits such as plant hormone content, branching and flowering. Moreover, our results suggest that the light response factor ELONGATED HYPOCOTYL 5 (HY5) is essential for blue light-induced plant growth and development by regulating photosynthesis in pepper plants. Hence, this study uncovers crucial molecular mechanisms of how light quality determines the morphogenesis, architecture, and flowering in pepper plants, thus providing a basic concept of manipulating light quality to regulate pepper plant growth and flowering under greenhouse conditions.
Collapse
|
23
|
The Strigolactone Pathway Is a Target for Modifying Crop Shoot Architecture and Yield. BIOLOGY 2023; 12:biology12010095. [PMID: 36671787 PMCID: PMC9855930 DOI: 10.3390/biology12010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Due to their sessile nature, plants have developed the ability to adapt their architecture in response to their environment. Branching is an integral component of plant architecture, where hormonal signals tightly regulate bud outgrowth. Strigolactones (SLs), being a novel class of phytohormone, are known to play a key role in branching decisions, where they act as a negative regulator of bud outgrowth. They can achieve this by modulating polar auxin transport to interrupt auxin canalisation, and independently of auxin by acting directly within buds by promoting the key branching inhibitor TEOSINTE BRANCHED1. Buds will grow out in optimal conditions; however, when conditions are sub-optimal, SL levels increase to restrict branching. This can be a problem in agricultural applications, as reductions in branching can have deleterious effects on crop yield. Variations in promoter elements of key SL-related genes, such as IDEAL PLANT ARCHITECTURE1, have been identified to promote a phenotype with enhanced yield performance. In this review we highlight how this knowledge can be applied using new technologies to develop new genetic variants for improving crop shoot architecture and yield.
Collapse
|
24
|
Jan R, Khan M, Adnan M, Asaf S, Asif S, Kim KM, Murad W. Exogenous Phytohormones and Fertilizers Enhance Jatropha curcas L. Growth through the Regulation of Physiological, Morphological, and Biochemical Parameters. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243584. [PMID: 36559696 PMCID: PMC9782854 DOI: 10.3390/plants11243584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
Jatropha curcas L. is a perennial plant, that emerged as a biodiesel crop attracting the great interest of researchers. However, it is considered a semi-wild plant and needed to apply crop-improving practices to enhance its full yield potential. This study was conducted to improve the growth and development of the J. curcas plant by exogenous application of Gibberellic acid (GA), indole acetic acid (IAA), and fertilizer (nitrogen, phosphorus, potassium (NPK)). The experiment was conducted in pots in triplicate and 100 ppm and 250 ppm of GA and IAA were applied separately while NPK was applied in two levels (30 and 60 g/pot). The results revealed a significant difference in growth parameters with the application of hormones and fertilizer. The highest shoot length (47%), root length (63%), root fresh weight (72%), and root dry weight (172%) were shown by plants treated with GA 250 ppm. While plants treated with NPK 60 g showed the highest increases in shoot fresh weight and shoot dry weight compared to control plants. The highest increase in leaves number (274%) and branches number (266%) were shown by the plants treated with GA 100 ppm and GA 250 ppm, respectively, while GA 250 ppm and IAA 250 ppm highly increased stem diameter (123%) and stem diameter was also shown by GA 250 ppm-treated plants. NPK 60 g highly increased proximate composition (protein content, carbohydrate, fat, moisture content, and ash content) compare with hormones and control plants. Our results concluded the optimized concentration of IAA, GA, and NPK significantly increases J. curcas growth vigor.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
25
|
Wan Z, Liu Y, Guo D, Fan R, Liu Y, Xu K, Zhu J, Quan L, Lu W, Bai X, Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1066820. [PMID: 36589055 PMCID: PMC9794841 DOI: 10.3389/fpls.2022.1066820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The distribution of elite soybean (Glycine max) cultivars is limited due to their highly sensitive to photoperiod, which affects the flowering time and plant architecture. The recent emergence of CRISPR/Cas9 technology has uncovered new opportunities for genetic manipulation of soybean. The major maturity gene E1 of soybean plays a critical role in soybean photoperiod response. Here, we performed CRISPR/Cas9-mediated targeted mutation of E1 gene in soybean cultivar Tianlong1 carrying the dominant E1 to investigate its precise function in photoperiod regulation, especially in plant architecture regulation. Four types of mutations in the E1 coding region were generated. No off-target effects were observed, and homozygous trans-clean mutants without T-DNA were obtained. The photoperiod sensitivity of e1 mutants decreased relative to the wild type plants; however, e1 mutants still responded to photoperiod. Further analysis revealed that the homologs of E1, E1-La, and E1-Lb, were up-regulated in the e1 mutants, indicating a genetic compensation response of E1 and its homologs. The e1 mutants exhibited significant changes in the architecture, including initiation of terminal flowering, formation of determinate stems, and decreased branch numbers. To identify E1-regulated genes related to plant architecture, transcriptome deep sequencing (RNA-seq) was used to compare the gene expression profiles in the stem tip of the wild-type soybean cultivar and the e1 mutants. The expression of shoot identity gene Dt1 was significantly decreased, while Dt2 was significantly upregulated. Also, a set of MADS-box genes was up-regulated in the stem tip of e1 mutants which might contribute to the determinate stem growth habit.
Collapse
Affiliation(s)
- Zhao Wan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingxiang Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Dandan Guo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Rong Fan
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yang Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jinlong Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Le Quan
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Hong Zhai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
26
|
Zhang X, Lai C, Liu M, Xue X, Zhang S, Chen Y, Xiao X, Zhang Z, Chen Y, Lai Z, Lin Y. Whole Genome Analysis of SLs Pathway Genes and Functional Characterization of DlSMXL6 in Longan Early Somatic Embryo Development. Int J Mol Sci 2022; 23:ijms232214047. [PMID: 36430536 PMCID: PMC9695034 DOI: 10.3390/ijms232214047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Strigolactones (SLs), a new class of plant hormones, are implicated in the regulation of various biological processes. However, the related family members and functions are not identified in longan (Dimocarpus longan Lour.). In this study, 23 genes in the CCD, D27, and SMXL family were identified in the longan genome. The phylogenetic relationships, gene structure, conserved motifs, promoter elements, and transcription factor-binding site predictions were comprehensively analysed. The expression profiles indicated that these genes may play important roles in longan organ development and abiotic stress responses, especially during early somatic embryogenesis (SE). Furthermore, GR24 (synthetic SL analogue) and Tis108 (SL biosynthesis inhibitor) could affect longan early SE by regulating the levels of endogenous IAA (indole-3-acetic acid), JA (jasmonic acid), GA (gibberellin), and ABA (abscisic acid). Overexpression of SMXL6 resulted in inhibition of longan SE by regulating the synthesis of SLs, carotenoids, and IAA levels. This study establishes a foundation for further investigation of SL genes and provides novel insights into their biological functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Correspondence: (Z.L.); (Y.L.); Tel.: +86-0591-83789484 (Y.L.); Fax: +86-0591-83789484 (Y.L.)
| | - Yuling Lin
- Correspondence: (Z.L.); (Y.L.); Tel.: +86-0591-83789484 (Y.L.); Fax: +86-0591-83789484 (Y.L.)
| |
Collapse
|
27
|
Li L, Xie C, Zong J, Guo H, Li D, Liu J. Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass ( Eremochloa ophiuroides (Munro) Hack.). Int J Mol Sci 2022; 23:ijms231911580. [PMID: 36232880 PMCID: PMC9569434 DOI: 10.3390/ijms231911580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.
Collapse
|
28
|
Geng X, Zhang C, Wei L, Lin K, Xu ZF. Genome-Wide Identification and Expression Analysis of Cytokinin Response Regulator (RR) Genes in the Woody Plant Jatropha curcas and Functional Analysis of JcRR12 in Arabidopsis. Int J Mol Sci 2022; 23:ijms231911388. [PMID: 36232689 PMCID: PMC9570446 DOI: 10.3390/ijms231911388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The cytokinin (CK) response regulator (RR) gene family plays a pivotal role in regulating the developmental and environmental responses of plants. Axillary bud outgrowth in the perennial woody plant Jatropha curcas is regulated by the crosstalk between CK and gibberellins (GA). In this study, we first analyzed the effects of gibberellin A3 (GA3), lovastatin (a CK synthesis inhibitor), decapitation, and their interaction, on the outgrowth of axillary buds. The results indicate that lovastatin completely inhibited GA-promoted axillary bud outgrowth and partially weakened the decapitation-promoted axillary bud outgrowth. To further characterize and understand the role of CK signaling in promoting the development of female flowers and branches, we performed bioinformatics and expression analyses to characterize the CK RR gene (JcRR) family in J. curcas. A total of 14 members of the JcRR family were identified; these genes were distributed on 10 chromosomes. Phylogenetic analysis indicated that the corresponding RR proteins are evolutionarily conserved across different plant species, and the Myb-like DNA-binding domain divides the 14 members of the JcRR family into type-A and type-B proteins. Further analysis of cis-acting elements in the promoter regions of JcRRs suggests that JcRRs are expressed in response to phytohormones, light, and abiotic stress factors; thus, JcRRs may be involved in some plant development processes. Genomic sequence comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcRR gene family, and five pairs of duplicated genes were all subjected to purifying selection. By analyzing RNA sequencing (RNA-seq) and quantitative reverse transcription-polymerase chain reaction (qRT–PCR) data, we characterized that the temporospatial expression patterns of JcRRs during the development of various tissues and the response of these genes to phytohormones and abiotic stress. The JcRRs were mainly expressed in the roots, while they also exhibited differential expression patterns in other tissues. The expression levels of all six type-A and one type-B JcRRs increased in response to 6-benzylaminopurine (6-BA), while the four type-B JcRRs levels decreased. The expression levels of two type-B JcRRs increased in response to exogenous GA3 treatment, while those of three type-A and three type-B JcRRs decreased. We found that type-A JcRRs may play a positive role in the continuous growth of axillary buds, while the role of type-B JcRRs might be the opposite. In response to abiotic stress, the expression levels of two type-A and three type-B JcRRs strongly increased. The overexpression of JcRR12 in Arabidopsis thaliana slightly increased the numbers of rosette branches after decapitation, but not under normal conditions. In conclusion, our results provide detailed knowledge of JcRRs for further analysis of CK signaling and JcRR functions in J. curcas.
Collapse
Affiliation(s)
- Xianchen Geng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Chun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lida Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
29
|
Li J, Sun M, Li H, Ling Z, Wang D, Zhang J, Shi L. Full-length transcriptome-referenced analysis reveals crucial roles of hormone and wounding during induction of aerial bulbils in lily. BMC PLANT BIOLOGY 2022; 22:415. [PMID: 36030206 PMCID: PMC9419401 DOI: 10.1186/s12870-022-03801-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
Aerial bulbils are important vegetative reproductive organs in Lilium. They are often perpetually dormant in most Lilium species, and little is known about the induction of these vegetative structures. The world-famous Oriental hybrid lily cultivar 'Sorbonne', which blooms naturally devoid of aerial bulbils, is known for its lovely appearance and sweet fragrance. We found that decapitation stimulated the outgrowth of aerial bulbils at lower stems (LSs) and then application of low and high concentrations of IAA promoted aerial bulbils emergence around the wound at upper stems (USs) of 'Sorbonne'. However, the genetic basis of aerial bulbil induction is still unclear. Herein, 'Sorbonne' transcriptome has been sequenced for the first time using the combination of third-generation long-read and next-generation short-read technology. A total of 46,557 high-quality non-redundant full-length transcripts were generated. Transcriptomic profiling was performed on seven tissues and stems with treatments of decapitation and application of low and high concentrations of IAA, respectively. Functional annotation of 1918 DEGs within stem samples of different treatments showed that hormone signaling, sugar metabolism and wound-induced genes were crucial to bulbils outgrowth. The expression pattern of auxin-, shoot branching hormone-, plant defense hormone- and wound-inducing-related genes indicated their crucial roles in bulbil induction. Then we established five hormone- and wounding-regulated co-expression modules and identified some candidate transcriptional factors, such as MYB, bZIP, and bHLH, that may function in inducing bulbils. High connectivity was observed among hormone signaling genes, wound-induced genes, and some transcriptional factors, suggesting wound- and hormone-invoked signals exhibit extensive cross-talk and regulate bulbil initiation-associated genes via multilayered regulatory cascades. We propose that the induction of aerial bulbils at LSs after decapitation can be explained as the release of apical dominance. In contrast, the induction of aerial bulbils at the cut surface of USs after IAA application occurs via a process similar to callus formation. This study provides abundant candidate genes that will deepen our understanding of the regulation of bulbil outgrowth, paving the way for further molecular breeding of lily.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Zhengyi Ling
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China.
| |
Collapse
|
30
|
Zhang L, Wang D, Zhang L, Fu J, Yan P, Ge S, Li Z, Ahammed GJ, Han W, Li X. Expression and functional analysis of CsA-IPT5 splice variants during shoot branching in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:977086. [PMID: 36072311 PMCID: PMC9444062 DOI: 10.3389/fpls.2022.977086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a process by which several functional splice variants are generated from the same precursor mRNA. In our recent study, five CsA-IPT5 splice variants with various numbers of ATTTA motifs in the untranslated regions (UTRs) were cloned. Meanwhile, their transient expression, as well as the expression and functional analysis in the two shoot branching processes were studied. Here, we examined how these splice variants regulate the other three important shoot branching processes, including the spring tea development, the distal branching of new shoots, and the shoot branching induced by 2,3,5-triiodobenzoic acid (TIBA) spraying, and thus unraveling the key CsA-IPT5 transcripts which play the most important roles in the shoot branching of tea plants. The results showed that the increased expression of 5' UTR AS3, 3' UTR AS1 and 3' UTR AS2 could contribute to the increased synthesis of tZ/iP-type cytokinins (CKs), thus promoting the spring tea development. Meanwhile, in the TIBA-induced shoot branching or in the distal branching of the new shoots, CsA-IPT5 transcripts regulated the synthesis of CsA-IPT5 protein and CKs through transcriptional regulation of the ratios of its splice variants. Moreover, 3' UTR AS1 and 3' UTR AS2 both play key roles in these two processes. In summary, it is revealed that 3' UTR AS1 and 3' UTR AS2 of CsA-IPT5 might act as the predominant splice variants in shoot branching of the tea plant, and they both can serve as gene resources for tea plant breeding.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Donghui Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhengzhen Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Golam Jalal Ahammed
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Wenyan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
31
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Yang L, Zhu S, Xu J. Roles of auxin in the inhibition of shoot branching in 'Dugan' fir. TREE PHYSIOLOGY 2022; 42:1411-1431. [PMID: 35088089 DOI: 10.1093/treephys/tpac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching substantially impacts vegetative and reproductive growth as well as wood characteristics in perennial woody species by shaping the shoot system architecture. Although plant hormones have been shown to play a fundamental role in shoot branching in annual species, their corresponding actions in perennial woody plants are largely unknown, in part due to the lack of branching mutants. Here, we demonstrated the role of plant hormones in bud dormancy transition toward activation and outgrowth in woody plants by comparing the physiological and molecular changes in the apical shoot stems of 'Yangkou' 020 fir and 'Dugan' fir, two Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) clones with normal and completely abolished branching phenotypes, respectively. Our studies showed that the defect in bud outgrowth was the cause of failed shoot branching in 'Dugan' fir whereas apically derived signals acted as triggers of this ectopic bud activity. Further studies indicated that auxin played a key role in inhibiting bud outgrowth in 'Dugan' fir. During bud dormancy release, the differential auxin resistant 1/Like AUX1 (AUX1/LAX) and PIN-formed (PIN) activity resulted in an ectopic auxin/indole-3-acetic acid (IAA) accumulation in the apical shoot stem of 'Dugan' fir, which could inhibit the cell cycle in the axillary meristem by decreasing cytokinin (CK) biosynthesis but increasing abscisic acid (ABA) production and response through the signaling pathway. In contrast, during bud activation and outgrowth, the striking increase in auxin biosynthesis and PIN activity in the shoot tip of 'Dugan' fir may trigger the correlative inhibition of axillary buds by modulating the polar auxin transport stream (PATS) and connective auxin transport (CAT) in shoots, and by influencing the biosynthesis of secondary messengers, including CK, gibberellin (GA) and ABA, thereby inducing the paradormancy of axillary buds in 'Dugan' fir by apical dominance under favorable conditions. The findings of this study provide important insights into the roles of plant hormones in bud outgrowth control in perennial woody plants.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Sheng Zhu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
- Department of Molecular Biology and Biochemistry, College of Biology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Jin Xu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
33
|
Liang J, Zheng J, Wu Z, Wang H. Time-Course Transcriptomic Profiling of Floral Induction in Cultivated Strawberry. Int J Mol Sci 2022; 23:ijms23116126. [PMID: 35682808 PMCID: PMC9181015 DOI: 10.3390/ijms23116126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The initiation and quality of flowering directly affect the time to market and economic benefit of cultivated strawberries, but the underlying mechanisms of these processes are largely unknown. To investigate the gene activity during the key period of floral induction in strawberries, time-course transcriptome analysis was performed on the shoot apex of the strawberry cultivar ‘Benihoppe.’ A total of 7177 differentially expressed genes (DEGs) were identified through pairwise comparisons. These DEGs were grouped into four clusters with dynamic expression patterns. By analyzing the key genes in the potential flowering pathways and the development of the leaf and flower, at least 73 DEGs that may be involved in the regulatory network of floral induction in strawberries were identified, some of which belong to the NAC, MYB, MADS, and SEB families. A variety of eight hormone signaling pathway genes that might play important roles in floral induction were analyzed. In particular, the gene encoding DELLA, a key inhibitor of the gibberellin signaling pathway, was found to be significantly differentially expressed during the floral induction. Furthermore, the differential expression of some important candidate genes, such as TFL1, SOC1, and GAI-like, was further verified by qRT-PCR. Therefore, we used this time-course transcriptome data for a preliminary exploration of the regulatory network of floral induction and to provide potential candidate genes for future studies of flowering in strawberries.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
- Correspondence: ; Tel.: +86-136-8301-8901
| |
Collapse
|
34
|
Confraria A, Muñoz-Gasca A, Ferreira L, Baena-González E, Cubas P. Shoot Branching Phenotyping in Arabidopsis and Tomato. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2494:47-59. [PMID: 35467200 DOI: 10.1007/978-1-0716-2297-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shoot branching is an important trait that depends on the activity of axillary meristems and buds and their outgrowth into branches. It is remarkably plastic, being influenced by a number of external cues, such as light, temperature, soil nutrients, and mechanical manipulation. These are transduced into an internal hormone signaling network where auxin, cytokinins, and strigolactones play leading regulatory roles. Recently, sugars have also emerged as important signals promoting bud activation. These signals are in part integrated by the bud-specific growth repressor BRANCHED1 (BRC1).To understand how shoot branching is affected by particular growth conditions or in specific plant lines, it is necessary to count the number of branches and/or quantify other branch-related parameters. Here we describe how to perform such quantifications in Arabidopsis and in tomato.
Collapse
Affiliation(s)
- Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Aitor Muñoz-Gasca
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Liliana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Ge H, Li G, Wan S, Zhao A, Huang Y, Ma R, Zhang R, Song Y, Sha G. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple. Gene 2022; 818:146214. [PMID: 35066064 DOI: 10.1016/j.gene.2022.146214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Branch number is an important trait in grafted apple breeding and cultivation. To provide new information on molecular mechanisms of apple branching, whole reduced-representation genomes and transcriptome of a wild-type (WT) apple (Malus spectabilis) and its more-branching (MB) mutant at the branching stage were examined in this study. Comparison of WT and MB genomes against the Malus domestica reference genome identified 14,908,939 single nucleotide polymorphisms (SNPs) and 173,315 insertions and deletions (InDels) in WT and 1,483,221 SNPs and 1,725,977 InDels in MB. Analysis of the genetic variation between MB and WT revealed 1,048,575 SNPs and 37,327 InDels. Among them, 24,303 SNPs and 891 InDels mapped to coding regions of 5,072 and 596 genes, respectively. GO and KEGG functional annotation of 3,846 and 944 genes, respectively, identified 32 variant genes related to plant hormone signal transduction that were involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, and brassinosteroid pathways. The transcriptome pathways of plant hormone signal transduction and zeatin biosynthesis were also significantly enriched during MB branching. Furthermore, transcriptome data suggested the regulatory roles of auxin signaling, increase of cytokinin and genes of cytokinin synthesis and signaling, and the suppressed abscisic acid signaling. Our findings suggest that branching development in apple is regulated by plant hormone signal transduction.
Collapse
Affiliation(s)
- Hongjuan Ge
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Shuwei Wan
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Aihong Zhao
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yue Huang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Rongqun Ma
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Ruifen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yongjun Song
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guangli Sha
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| |
Collapse
|
36
|
Hirakawa T, Tanno S. In Vitro Propagation of Humulus lupulus through the Induction of Axillary Bud Development. PLANTS 2022; 11:plants11081066. [PMID: 35448794 PMCID: PMC9031650 DOI: 10.3390/plants11081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Humulus lupulus (hop) is a necessary material for beer brewing. Improved breeding cultivars of hops with enhanced tolerance to environmental stresses, such as drought and heat stress, accompanying climate change have been developed. However, a propagation system, which is needed for the proliferation of new cultivars, is not currently available for hops. In this study, we found that treatment of stem explants with 0.01–0.05 ppm gibberellic acid (GA3) induced the development of axillary buds in the hop cultivar Kirin-2, resulting in the proliferation of shoot branching. Additionally, 0.01 ppm benzyl adenine (BA) enhanced the development of axillary buds formed in response to 0.05 ppm GA3 in various hop cultivars, particularly Nugget. The development of axillary buds was strongly repressed by the application of 0.05 ppm BA at a concentration equal to the 0.05 ppm GA3 concentration, which showed the possibility that a high concentration of cytokinin preferentially prevents the effect of GA3 on the development of axillary buds in hops. These results indicated that combined treatment of stem explants with GA3 and cytokinin at appropriate concentrations is effective for the propagation of proliferated hop cultivars through shoot branching.
Collapse
|
37
|
Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gibberellins are amongst the main plant growth regulators. Discovered over a century ago, the interest in gibberellins research is growing due to their current and potential applications in crop production and their role in the responses to environmental stresses. In the present review, the current knowledge on gibberellins’ homeostasis and modes of action is outlined. Besides this, the complex interrelations between gibberellins and other plant growth regulators are also described, providing an intricate network of interactions that ultimately drives towards precise and specific gene expression. Thus, genes and proteins identified as being involved in gibberellin responses in model and non-model species are highlighted. Furthermore, the molecular mechanisms governing the gibberellins’ relation to stress responses are also depicted. This review aims to provide a comprehensive picture of the state-of-the-art of the current perceptions of the interactions of gibberellins with other phytohormones, and their responses to plant stresses, thus allowing for the identification of the specific mechanisms involved. This knowledge will help us to improve our understanding of gibberellins’ biology, and might help increase the biotechnological toolbox needed to refine plant resilience, particularly under a climate change scenario.
Collapse
|
38
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
39
|
Ma J, Xie L, Zhao Q, Sun Y, Zhang D. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms23020581. [PMID: 35054767 PMCID: PMC8776233 DOI: 10.3390/ijms23020581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = -0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhang
- Correspondence: ; Tel./Fax: +86-029-87082849
| |
Collapse
|
40
|
Khuvung K, Silva Gutierrez FAO, Reinhardt D. How Strigolactone Shapes Shoot Architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:889045. [PMID: 35903239 PMCID: PMC9315439 DOI: 10.3389/fpls.2022.889045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 05/21/2023]
Abstract
Despite its central role in the control of plant architecture, strigolactone has been recognized as a phytohormone only 15 years ago. Together with auxin, it regulates shoot branching in response to genetically encoded programs, as well as environmental cues. A central determinant of shoot architecture is apical dominance, i.e., the tendency of the main shoot apex to inhibit the outgrowth of axillary buds. Hence, the execution of apical dominance requires long-distance communication between the shoot apex and all axillary meristems. While the role of strigolactone and auxin in apical dominance appears to be conserved among flowering plants, the mechanisms involved in bud activation may be more divergent, and include not only hormonal pathways but also sugar signaling. Here, we discuss how spatial aspects of SL biosynthesis, transport, and sensing may relate to apical dominance, and we consider the mechanisms acting locally in axillary buds during dormancy and bud activation.
Collapse
|
41
|
Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J, Yi M, Gazzarrini S, Wu J. ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes (Basel) 2021; 12:genes12101635. [PMID: 34681029 PMCID: PMC8536057 DOI: 10.3390/genes12101635] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Juanjuan Sui
- Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yanmin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Correspondence:
| |
Collapse
|
42
|
Genome-Wide Identification and Characterization of KNOTTED-Like Homeobox (KNOX) Homologs in Garlic ( Allium sativum L.) and Their Expression Profilings Responding to Exogenous Cytokinin and Gibberellin. Int J Mol Sci 2021; 22:ijms22179237. [PMID: 34502163 PMCID: PMC8430937 DOI: 10.3390/ijms22179237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic (Allium sativum L.) is an important vegetable and is cultivated and consumed worldwide for its economic and medicinal values. Garlic cloves, the major reproductive and edible organs, are derived from the axillary meristems. KNOTTED-like homeobox (KNOX) proteins, such as SHOOT MERISTEM-LESS (STM), play important roles in axillary meristem formation and development. However, the KNOX proteins in garlic are still poorly known. Here, 10 AsKNOX genes, scattered on 5 of the 8 chromosomes, were genome-wide identified and characterized based on the newly released garlic genome. The typical conserved domains of KNOX proteins were owned by all these 10 AsKNOX homologs, which were divided into two Classes (Class I and Class II) based on the phylogenetic analysis. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 10 AsKNOX proteins. Cis-element prediction, tissue expression analysis, and expression profilings in responding to exogenous GA3 and 6-BA showed the potential involvement of AsKNOX genes in the gibberellin and cytokinin signaling pathways. Overall, the results of this work provided a better understanding of AsKNOX genes in garlic and laid an important foundation for their further functional studies.
Collapse
|
43
|
Saidi A, Hajibarat Z. Phytohormones: plant switchers in developmental and growth stages in potato. J Genet Eng Biotechnol 2021; 19:89. [PMID: 34142228 PMCID: PMC8211815 DOI: 10.1186/s43141-021-00192-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Potato is one of the most important food crops worldwide, contributing key nutrients to the human diet. Plant hormones act as vital switchers in the regulation of various aspects of developmental and growth stages in potato. Due to the broad impacts of hormones on many developmental processes, their role in potato growth and developmental stages has been investigated. This review presents a description of hormonal basic pathways, various interconnections between hormonal network and reciprocal relationships, and clarification of molecular events underlying potato growth. In the last decade, new findings have emerged regarding their function during sprout development, vegetative growth, tuber initiation, tuber development, and maturation in potato. Hormones can control the regulation of various aspects of growth and development in potato, either individually or in combination with other hormones. The molecular characterization of interplay between cytokinins (CKs), abscisic acid (ABA), and auxin and/or gibberellins (GAs) during tuber formation requires further undertaking. Recently, new evidences regarding the relative functions of hormones during various stages and an intricate network of several hormones controlling potato tuber formation are emerging. Although some aspects of their functions are widely covered, remarkable breaks in our knowledge and insights yet exist in the regulation of hormonal networks and their interactions during different stages of growth and various aspects of tuber formation. SHORT CONCLUSION The present review focuses on the relative roles of hormones during various developmental stages with a view to recognize their mechanisms of function in potato tuber development. For better insight, relevant evidences available on hormonal interaction during tuber development in other species are also described. We predict that the present review highlights some of the conceptual developments in the interplay of hormones and their associated downstream events influencing tuber formation.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
44
|
Shi J, Zhou H, Liu X, Wang N, Xu Q, Yan G. Correlation analysis of the transcriptome and metabolome reveals the role of the flavonoid biosynthesis pathway in regulating axillary buds in upland cotton (Gossypium hirsutum L.). PLANTA 2021; 254:7. [PMID: 34142246 DOI: 10.1007/s00425-021-03597-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids are involved in axillary bud development in upland cotton. The phenylpropanoid and flavonoid biosynthesis pathways regulate axillary bud growth by promoting the transport of auxin in upland cotton. In cotton production, simplified cultivation and mechanical harvesting are emerging trends that depend on whether the cotton plant type meets production requirements. The axillary bud is an important index of cotton plant-type traits, and the molecular mechanism of axillary bud development in upland cotton has not yet been completely studied. Here, a combined investigation of transcriptome and metabolome analyses in G. hirsutum CCRI 117 at the fourth week (stage 1), fifth week (stage 2) and sixth week (stage 3) after seedling emergence was performed. The metabolome results showed that the total lipid, amino acid and organic acid contents in the first stalk node decreased during axillary bud development. The abundance of 71 metabolites was altered between stage 2 and stage 1, and 32 metabolites exhibited significantly altered abundance between stage 3 and stage 2. According to the correlation analysis of metabolome and transcriptome profiles, we found that phenylpropanoid and flavonoid biosynthesis pathways exhibit high enrichment degrees of both differential metabolites and differential genes in three stages. Based on the verification of hormone, soluble sugar and flavonoid detection, we propose a model for flavonoid-mediated regulation of axillary bud development in upland cotton, revealing that the decrease in secondary metabolites of phenylpropanoid and flavonoid biosynthesis is an essential factor to promote the transport of auxin and subsequently promote the growth of axillary buds. Our findings provide novel insights into the regulation of phenylpropanoid and flavonoid biosynthesis in axillary bud development and could prove useful for cultivating machine-harvested cotton varieties with low axillary buds.
Collapse
Affiliation(s)
- Jianbin Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaohong Liu
- Xinjiang Qianhai Seed Industry Limited Liability Company, Tumsuk, 843901, China
| | - Ning Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinghua Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
45
|
Kotov AA, Kotova LM, Romanov GA. Signaling network regulating plant branching: Recent advances and new challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110880. [PMID: 33902848 DOI: 10.1016/j.plantsci.2021.110880] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
Auxin alone or supplemented with cytokinins and strigolactones were long considered as the main player(s) in the control of apical dominance (AD) and correlative inhibition of the lateral bud outgrowth, the processes that shape the plant phenotype. However, past decade data indicate a more sophisticated pathways of AD regulation, with the involvement of mobile carbohydrates which perform both signal and trophic functions. Here we provide a critical comprehensive overview of the current status of the AD problem. This includes insight into intimate mechanisms regulating directed auxin transport in axillary buds with participation of phytohormones and sugars. Also roles of auxin, cytokinin and sugars in the dormancy or sustained growth of the lateral meristems were assigned. This review not only provides the latest data on implicated phytohormone crosstalk and its relationship with the signaling of sugars and abscisic acid, new AD players, but also focuses on the emerging biochemical mechanisms, at first positive feedback loops involving both sugars and hormones, that ensure the sustained bud growth. Data show that sugars act in concert with cytokinins but antagonistically to strigolactone signaling. A complex bud growth regulating network is demonstrated and unresolved issues regarding the hormone-carbohydrate regulation of AD are highlighted.
Collapse
Affiliation(s)
- Andrey A Kotov
- Timirjazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia.
| | - Liudmila M Kotova
- Timirjazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timirjazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia.
| |
Collapse
|
46
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
47
|
Molecular mechanism of lateral bud differentiation of Pinus massoniana based on high-throughput sequencing. Sci Rep 2021; 11:9033. [PMID: 33907200 PMCID: PMC8079368 DOI: 10.1038/s41598-021-87787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Knot-free timber cultivation is an important goal of forest breeding, and lateral shoots affect yield and stem shape of tree. The purpose of this study was to analyze the molecular mechanism of lateral bud development by removing the apical dominance of Pinus massoniana young seedlings through transcriptome sequencing and identify key genes involved in lateral bud development. We analyzed hormone contents and transcriptome data for removal of apical dominant of lateral buds as well as apical and lateral buds of normal development ones. Data were analyzed using an comprehensive approach of pathway- and gene-set enrichment analysis, Mapman visualization tool, and gene expression analysis. Our results showed that the contents of auxin (IAA), Zea and strigolactone (SL) in lateral buds significantly increased after removal of apical dominance, while abscisic acid (ABA) decreased. Gibberellin (GA) metabolism, cytokinin (CK), jasmonic acid, zeatin pathway-related genes positively regulated lateral bud development, ABA metabolism-related genes basically negatively regulated lateral bud differentiation, auxin, ethylene, SLs were positive and negative regulation, while only A small number of genes of SA and BRASSINOSTEROID, such as TGA and TCH4, were involved in lateral bud development. In addition, it was speculated that transcription factors such as WRKY, TCP, MYB, HSP, AuxIAA, and AP2 played important roles in the development of lateral buds. In summary, our results provided a better understanding of lateral bud differentiation and lateral shoot formation of P. massoniana from transcriptome level. It provided a basis for molecular characteristics of side branch formation of other timber forests, and contributed to knot-free breeding of forest trees.
Collapse
|
48
|
Zhang X, He L, Zhao B, Zhou S, Li Y, He H, Bai Q, Zhao W, Guo S, Liu Y, Chen J. Dwarf and Increased Branching 1 controls plant height and axillary bud outgrowth in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6355-6365. [PMID: 32964922 DOI: 10.1093/jxb/eraa364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retrotransposon Tnt1-tagged mutant collection of M. truncatula and identified dwarf and increased branching 1 (dib1), which exhibited extreme dwarfism and increased numbers of lateral branches. By analysis of the flanking sequences of Tnt1 insertions in different alleles of the tagged lines, we were able to clone DIB1. Linkage analysis and reverse screening of the flanking-sequence tags identified Medtr2g102570 as the gene corresponding to the DIB1 locus in the dib1 loss-of-function mutants. Phylogenetic analysis indicated that DIB1 was the ortholog of PsGA3ox1/Le in Pisum sativum. Expression analysis using a GUS-staining reporter line showed that DIB1 was expressed in the root apex, pods, and immature seeds. Endogenous GA4 concentrations were markedly decreased whilst some of representative GA biosynthetic enzymes were up-regulated in the dib1 mutant. In addition, exogenous application of GA3 rescued the dib1 mutant phenotypes. Overall, our results suggest that DIB1 controls plant height and axillary bud outgrowth via an influence on the biosynthesis of bioactive GAs. DIB1 could therefore be a good candidate gene for breeders to optimize plant architecture for crop improvement.
Collapse
Affiliation(s)
- Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| |
Collapse
|
49
|
Okada K, Wada M, Takebayashi Y, Kojima M, Sakakibara H, Nakayasu M, Mizutani M, Nakajima M, Moriya S, Shimizu T, Abe K. Columnar growth phenotype in apple results from gibberellin deficiency by ectopic expression of a dioxygenase gene. TREE PHYSIOLOGY 2020; 40:1205-1216. [PMID: 32333787 DOI: 10.1093/treephys/tpaa049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The apple cultivar McIntosh Wijcik, which is a mutant of 'McIntosh', exhibits a columnar growth phenotype (short internodes, few lateral branches, many spurs, etc.) that is controlled by a dominant Co gene. The candidate gene (MdDOX-Co), encoding a 2-oxoglutarate-dependent dioxygenase, is located adjacent to an insertion mutation. Non-columnar apples express MdDOX-Co in the roots, whereas columnar apples express MdDOX-Co in the aerial parts as well as in the roots. However, the function of MdDOX-Co remains unknown. Here, we characterized tobacco plants overexpressing MdDOX-Co. The tobacco plants showed the typical dwarf phenotype, which was restored by application of gibberellin A3 (GA3). Moreover, the dwarf tobacco plants had low concentrations of endogenous bioactive gibberellin A1 (GA1) and gibberellin A4 (GA4). Similarly, 'McIntosh Wijcik' contained low endogenous GA4 concentration and its dwarf traits (short main shoot and internodes) were partially reversed by GA3 application. These results indicate that MdDOX-Co is associated with bioactive GA deficiency. Interestingly, GA3 application to apple trees also resulted in an increased number of lateral branches and a decrease in flower bud number, indicating that gibberellin (GA) plays important roles in regulating apple tree architecture by affecting both lateral branch formation (vegetative growth) and flower bud formation (reproductive growth). We propose that a deficiency of bioactive GA by ectopic expression of MdDOX-Co in the aerial parts of columnar apples not only induces dwarf phenotypes but also inhibits lateral branch development and promotes flower bud formation, and assembly of these multiple phenotypes constructs the columnar tree form.
Collapse
Affiliation(s)
- Kazuma Okada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Masato Wada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Masaru Nakayasu
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Moriya
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Taku Shimizu
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Kazuyuki Abe
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| |
Collapse
|
50
|
Liu H, Wen Y, Cui M, Qi X, Deng R, Gao J, Cheng Z. Histological, Physiological and Transcriptomic Analysis Reveal Gibberellin-Induced Axillary Meristem Formation in Garlic ( Allium sativum). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9080970. [PMID: 32751960 PMCID: PMC7464525 DOI: 10.3390/plants9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
The number of cloves in a garlic bulb is controlled by axillary meristem differentiation, which directly determines the propagation efficiency. Our previous study showed that injecting garlic plants with gibberellins (GA3) solution significantly increased clove number per bulb. However, the physiological and molecular mechanism of GA-induced axillary bud formation is still unknown. Herein, dynamic changes in histology, phytohormones, sugars and related genes expression at 2, 4, 8, 16 and 32 days after treatment (DAT) were investigated. Histological results indicated two stages (axillary meristem initiation and dormancy) were in the period of 0-30 days after GA3 treatment. Application of GA3 caused a significant increase of GA3 and GA4, and the downregulation of AsGA20ox expression. Furthermore, the change trends in zeatin riboside (ZR) and soluble sugar were the same, in which a high level of ZR at 2 DAT and high content of soluble sugar, glucose and fructose at 4 DAT were recorded, and a low level of ZR and soluble sugar arose at 16 and 32 DAT. Overall, injection of GA3 firstly caused the downregulation of AsGA20ox, a significant increase in the level of ZR and abscisic acid (ABA), and the upregulation of AsCYP735 and AsAHK to activate axillary meristem initiation. Low level of ZR and soluble sugar and a high level of sucrose maintained axillary meristem dormancy.
Collapse
|