1
|
Wang H, Kovaleski AP, Londo JP. Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes. PHYSIOLOGIA PLANTARUM 2024; 176:e14607. [PMID: 39489599 DOI: 10.1111/ppl.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.
Collapse
Affiliation(s)
- Hongrui Wang
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| | - Al P Kovaleski
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason P Londo
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
2
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
4
|
Hsiang TF, Chen YY, Nakano R, Oikawa A, Matsuura T, Ikeda Y, Yamane H. Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission. PLANT MOLECULAR BIOLOGY 2024; 114:99. [PMID: 39285107 DOI: 10.1007/s11103-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yue-Yu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto, 619-0812, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Hadizadeh I, Peivastegan B, Nielsen KL, Auvinen P, Sipari N, Pirhonen M. Transcriptome analysis unravels the biocontrol mechanism of Serratia plymuthica A30 against potato soft rot caused by Dickeya solani. PLoS One 2024; 19:e0308744. [PMID: 39240997 PMCID: PMC11379202 DOI: 10.1371/journal.pone.0308744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Faculty of Biological and Environmental Sciences, Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Xia W, Wang S, Liu X, Chen Y, Lin C, Liu R, Liu H, Li J, Zhu J. Chromosome-level genome provides new insight into the overwintering process of Korla pear (Pyrus sinkiangensis Yu). BMC PLANT BIOLOGY 2024; 24:773. [PMID: 39138412 PMCID: PMC11323677 DOI: 10.1186/s12870-024-05490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Korla pear has a unique taste and aroma and is a breeding parent of numerous pear varieties. It is susceptible to Valsa mali var. pyri, which invades bark wounded by freezing injury. Its genetic relationships have not been fully defined and could offer insight into the mechanism for freezing tolerance and disease resistance. We generated a high-quality, chromosome-level genome assembly for Korla pear via the Illumina and PacBio circular consensus sequencing (CCS) platforms and high-throughput chromosome conformation capture (Hi-C). The Korla pear genome is ~ 496.63 Mb, and 99.18% of it is assembled to 17 chromosomes. Collinearity and phylogenetic analyses indicated that Korla might be derived from Pyrus pyrifolia and that it diverged ~ 3.9-4.6 Mya. During domestication, seven late embryogenesis abundant (LEA), two dehydrin (DHN), and 54 disease resistance genes were lost from Korla pear compared with P. betulifolia. Moreover, 21 LEA and 31 disease resistance genes were common to the Korla pear and P. betulifolia genomes but were upregulated under overwintering only in P. betulifolia because key cis elements were missing in Korla pear. Gene deletion and downregulation during domestication reduced freezing tolerance and disease resistance in Korla pear. These results could facilitate the breeding of novel pear varieties with high biotic and abiotic stress resistance.
Collapse
Affiliation(s)
- Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Saisai Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xiaoyan Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Yifei Chen
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Caixia Lin
- Xinjiang Production and Construction Crops, Institute of Agricultural Sciences, Tiemenguan, 841007, China
| | - Ruina Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Hailiang Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China.
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
7
|
Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, Tian X, Zeng RF, Huang XM. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi ( Litchi chinensis Sonn.). HORTICULTURE RESEARCH 2024; 11:uhae150. [PMID: 38988620 PMCID: PMC11233856 DOI: 10.1093/hr/uhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
SHORT VEGETATIVE PHASE (SVP), a member of the MADS-box transcription factor family, has been reported to regulate bud dormancy in deciduous perennial plants. Previously, three LcSVPs (LcSVP1, LcSVP2 and LcSVP3) were identified from litchi genome, and LcSVP2 was highly expressed in the terminal buds of litchi during growth cessation or dormancy stages and down-regulated during growth stages. In this study, the role of LcSVP2 in governing litchi bud dormancy was examined. LcSVP2 was highly expressed in the shoots, especially in the terminal buds at growth cessation stage, whereas low expression was showed in roots, female flowers and seeds. LcSVP2 was found to be located in the nucleus and have transcription inhibitory activity. Overexpression of LcSVP2 in Arabidopsis thaliana resulted in a later flowering phenotype compared to the wild-type control. Silencing LcSVP2 in growing litchi terminal buds delayed re-entry of dormancy, resulting in significantly lower dormancy rate. The treatment also significantly up-regulated litchi FLOWERING LOCUS T2 (LcFT2). Further study indicates that LcSVP2 interacts with an AP2-type transcription factor, SMALL ORGAN SIZE1 (LcSMOS1). Silencing LcSMOS1 promoted budbreak and delayed bud dormancy. Abscisic acid (200 mg/L), which enforced bud dormancy, induced a short-term increase in the expression of LcSVP2 and LcSMOS1. Our study reveals that LcSVP2 may play a crucial role, likely together with LcSMOS1, in dormancy onset of the terminal bud and may also serve as a flowering repressor in evergreen perennial litchi.
Collapse
|
8
|
Hsiang TF, Yamane H, Gao-Takai M, Tao R. Regulatory role of Prunus mume DAM6 on lipid body accumulation and phytohormone metabolism in the dormant vegetative meristem. HORTICULTURE RESEARCH 2024; 11:uhae102. [PMID: 38883329 PMCID: PMC11179725 DOI: 10.1093/hr/uhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024]
Abstract
Bud dormancy is a crucial process in the annual growth cycle of woody perennials. In Rosaceae fruit tree species, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factor genes regulating bud dormancy have been identified, but their molecular roles in meristematic tissues have not been thoroughly characterized. In this study, molecular and physiological analyses of transgenic apple plants overexpressing the Japanese apricot DAM6 gene (PmDAM6) and Japanese apricot cultivars and F1 individuals with contrasting dormancy characteristics revealed the metabolic pathways controlled by PmDAM6. Our transcriptome analysis and transmission electron microscopy examination demonstrated that PmDAM6 promotes the accumulation of lipid bodies and inhibits cell division in the dormant vegetative meristem by down-regulating the expression of lipid catabolism genes (GDSL ESTERASE/LIPASE and OIL BODY LIPASE) and CYCLIN genes, respectively. Our findings also indicate PmDAM6 promotes abscisic acid (ABA) accumulation and decreases cytokinin (CTK) accumulation in vegetative buds by up-regulating the expression of the ABA biosynthesis gene ARABIDOPSIS ALDEHYDE OXIDASE and the CTK catabolism gene CYTOKININ DEHYDROGENASE, while also down-regulating the expression of the CTK biosynthesis genes ISOPENTENYL TRANSFERASE (IPT) and CYP735A. Additionally, PmDAM6 modulates gibberellin (GA) metabolism by up-regulating GA2-OXIDASE expression and down-regulating GA3-OXIDASE expression. Furthermore, PmDAM6 may also indirectly promote lipid accumulation and restrict cell division by limiting the accumulation of CTK and GA in buds. In conclusion, using our valuable genetic platform, we clarified how PmDAM6 modifies diverse cellular processes, including lipid catabolism, phytohormone (ABA, CTK, and GA) biosynthesis and catabolism, and cell division, in the dormant vegetative meristem.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mei Gao-Takai
- Experimental Farm, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
10
|
Yuan Y, Zeng L, Kong D, Mao Y, Xu Y, Wang M, Zhao Y, Jiang CZ, Zhang Y, Sun D. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release. PLANT PHYSIOLOGY 2024; 194:2449-2471. [PMID: 38206196 PMCID: PMC10980420 DOI: 10.1093/plphys/kiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.
Collapse
Affiliation(s)
- Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxiang Mao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
12
|
Chu X, Wang M, Fan Z, Li J, Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int J Mol Sci 2024; 25:1666. [PMID: 38338945 PMCID: PMC10855862 DOI: 10.3390/ijms25031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.
Collapse
Affiliation(s)
- Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| |
Collapse
|
13
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
14
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Zhang M, Cheng W, Wang J, Cheng T, Lin X, Zhang Q, Li C. Genome-Wide Identification of Callose Synthase Family Genes and Their Expression Analysis in Floral Bud Development and Hormonal Responses in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2023; 12:4159. [PMID: 38140486 PMCID: PMC10748206 DOI: 10.3390/plants12244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon-intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Wenhui Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Xinlian Lin
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Cuiling Li
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| |
Collapse
|
16
|
Chen Z, Chen Y, Shi L, Wang L, Li W. Interaction of Phytohormones and External Environmental Factors in the Regulation of the Bud Dormancy in Woody Plants. Int J Mol Sci 2023; 24:17200. [PMID: 38139028 PMCID: PMC10743443 DOI: 10.3390/ijms242417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bud dormancy and release are essential phenomena that greatly assist in adapting to adverse growing conditions and promoting the holistic growth and development of perennial plants. The dormancy and release process of buds in temperate perennial trees involves complex interactions between physiological and biochemical processes influenced by various environmental factors, representing a meticulously orchestrated life cycle. In this review, we summarize the role of phytohormones and their crosstalk in the establishment and release of bud dormancy. External environmental factors, such as light and temperature, play a crucial role in regulating bud germination. We also highlight the mechanisms of how light and temperature are involved in the regulation of bud dormancy by modulating phytohormones. Moreover, the role of nutrient factors, including sugar, in regulating bud dormancy is also discussed. This review provides a foundation for enhancing our understanding of plant growth and development patterns, fostering agricultural production, and exploring plant adaptive responses to adversity.
Collapse
Affiliation(s)
| | | | | | | | - Weixing Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.C.); (Y.C.); (L.S.); (L.W.)
| |
Collapse
|
17
|
Bie H, Li Y, Zhao Y, Fang W, Chen C, Wang X, Wu J, Wang L, Cao K. Genome-wide presence/absence variation discovery and its application in Peach (Prunus persica). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111778. [PMID: 37353009 DOI: 10.1016/j.plantsci.2023.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Gene presence/absence variation (PAV) is an important contributor to the studies of genetic diversity, gene identification, and molecular marker development in plants. In the present study, 100 peach (Prunus persica) accessions were used for genome resequencing to identify PAVs. Alignmentwith a reference genome yielded a total of 2.52 Mb non-reference sequences and 923 novel genes were identified. The dispensable PAVs were enriched in resistance, perhaps reflecting their roles in plant adaptation to various environments. Furthermore, selection sweeps associated with peach domestication and improvement were identified based on PAV data. Only 4.3% and 13.4% of domestication and improvement sweeps, respectively, were identified simultaneously using single nucleotide polymorphism (SNP) data, suggesting flexible identification between the different methods. To further verify the applicability of PAV identification, a genome-wide association study was conducted using 21 agronomic traits. Some of the identified loci were consistent with those reported in previous studies, while some were mapped for the first time; the latter included petiole length, petiole gland shape, and petiole gland number. Through tissue-specific expression analysis and gene transformation experiments, a novel gene, evm.model.Contig322_A94.1, was identified and found to be involved in chilling requirements. We speculated that this novel gene might regulate the trait by participating in the ABA signaling pathway. The PAVs identified in P. persica provide valuable resources for mapping the entire gene set and identifying optional markers for molecular selection in future studies.
Collapse
Affiliation(s)
- Hangling Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China; The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yalin Zhao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China; The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
18
|
Yu S, Amaral D, Brown PH, Ferguson L, Tian L. Temporal transcriptome and metabolite analyses provide insights into the biochemical and physiological processes underlying endodormancy release in pistachio ( Pistacia vera L.) flower buds. FRONTIERS IN PLANT SCIENCE 2023; 14:1240442. [PMID: 37810399 PMCID: PMC10556704 DOI: 10.3389/fpls.2023.1240442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Pistachio (Pistacia vera L.), an economically and nutritionally important tree crop, relies on winter chill for bud endodormancy break and subsequent blooming and nut production. However, insufficient winter chill poses an increasing challenge in pistachio growing regions. To gain a better understanding of the physiological and biochemical responses of endodormant pistachio buds to chilling accumulation, we investigated the global gene expression changes in flower buds of pistachio cv. Kerman that were cultivated at three different orchard locations and exposed to increasing durations of winter chill. The expression of genes encoding β-1,3-glucanase and β-amylase, enzymes responsible for breaking down callose (β-1,3-glucan) and starch (α-1,4-glucan), respectively, increased during the endodormancy break of pistachio buds. This result suggested that the breakdown of callose obstructing stomata as well as the release of glucose from starch enables symplasmic trafficking and provides energy for bud endodormancy break and growth. Interestingly, as chilling accumulation increased, there was a decrease in the expression of nine-cis-epoxycarotenoid dioxygenase (NCED), encoding an enzyme that uses carotenoids as substrates and catalyzes the rate-limiting step in abscisic acid (ABA) biosynthesis. The decrease in NCED expression suggests ABA biosynthesis is suppressed, thus reducing inhibition of endodormancy break. The higher levels of carotenoid precursors and a decrease in ABA content in buds undergoing endodormancy break supports this suggestion. Collectively, the temporal transcriptome and biochemical analyses revealed that the degradation of structural (callose) and non-structural (starch) carbohydrates, along with the attenuation of ABA biosynthesis, are critical processes driving endodormancy break in pistachio buds.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Douglas Amaral
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- University of California Cooperative Extension Kings County, Hanford, CA, United States
| | - Patrick H. Brown
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Louise Ferguson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Gui FF, Jiang GG, Bin Dong, Zhong SW, Xiao Z, Qiu Fang, Wang YG, Yang LY, Zhao H. Genome-wide identification and analysis of MIKC-type MADS-box genes expression in Chimonanthus salicifolius. Genes Genomics 2023; 45:1127-1141. [PMID: 37438657 DOI: 10.1007/s13258-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND MIKC type MADS-box transcription factors are one of the largest gene families and play a pivotal role in flowering time and flower development. Chimonanthus salicifolius belongs to the family Calycanthaceae and has a unique flowering time and flowering morphology compared to other Chimonanthus species, but the research on MIKC type MADS-box gene family of C. salicifolius has not been reported. OBJECTIVE Identification, comprehensive bioinformatic analysis, the expression pattern of MIKC-type MADS-box gene family from different tissues of C. salicifolius. METHODS Genome-wide investigation and expression pattern under different tissues of the MIKC-type MADS-box gene family in C. salicifolius, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element were performed. RESULTS A total of 29 MIKC-type MADS-box genes were identified from the whole genome sequencing. Interspecies synteny analysis revealed more significant collinearity between C. salicifolius and the magnoliids species compared to eudicots and monocots. MIKC-type MADS-box genes from the same subfamily share similar distribution patterns, gene structure, and expression patterns. Compared with Arabidopsis thaliana, Nymphaea colorata, and Chimonanthus praecox, the FLC genes were absent in C. salicifolius, while the AGL6 subfamily was expanded in C. salicifolius. The selectively expanded promoter (AGL6) and lack of repressor (FLC) genes may explain the earlier flowering in C. salicifolius. The loss of the AP3 homologous gene in C. salicifolius is probably the primary cause of the morphological distinction between C. salicifolius and C. praecox. The csAGL6a gene is specifically expressed in the flowering process and indicates the potential function of promoting flowering. CONCLUSION This study offers a genome-wide identification and expression profiling of the MIKC-types MADS-box genes in the C. salicifolius, and establishes the foundation for screening flowering development genes and understanding the potential function of the MIKC-types MADS-box genes in the C. salicifolius.
Collapse
Affiliation(s)
- Fang-Fang Gui
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Ge-Ge Jiang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Shi-Wei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Zheng Xiao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qiu Fang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yi-Guang Wang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Li-Yuan Yang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Hongbo Zhao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
20
|
Ma F, Zhang S, Yao Y, Chen M, Zhang N, Deng M, Chen W, Ma C, Zhang X, Guo C, Huang X, Zhang Z, Li Y, Li T, Zhou J, Sun Q, Sun J. Jujube witches' broom phytoplasmas inhibit ZjBRC1-mediated abscisic acid metabolism to induce shoot proliferation. HORTICULTURE RESEARCH 2023; 10:uhad148. [PMID: 37691966 PMCID: PMC10483173 DOI: 10.1093/hr/uhad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023]
Abstract
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Wei Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chi Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xinyue Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chenglong Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiang Huang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhenyuan Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Tingyi Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Junyong Zhou
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
21
|
Zhao YL, Li Y, Cao K, Yao JL, Bie HL, Khan IA, Fang WC, Chen CW, Wang XW, Wu JL, Guo WW, Wang LR. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. PLANT PHYSIOLOGY 2023; 193:448-465. [PMID: 37217835 PMCID: PMC10469376 DOI: 10.1093/plphys/kiad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.
Collapse
Affiliation(s)
- Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wen-Wu Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
22
|
Sapkota S, Salem M, Jahed KR, Artlip TS, Sherif SM. From endodormancy to ecodormancy: the transcriptional landscape of apple floral buds. FRONTIERS IN PLANT SCIENCE 2023; 14:1194244. [PMID: 37521930 PMCID: PMC10375413 DOI: 10.3389/fpls.2023.1194244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
This study endeavors to explore the transcriptomic profiles of two apple cultivars, namely, 'Honeycrisp' and 'Cripps Pink,' which represent late and early-blooming cultivars, respectively. Using RNA-sequencing technology, we analyzed floral bud samples collected at five distinct time intervals during both endodormancy and ecodormancy. To evaluate the transcriptomic profiles of the 30 sequenced samples, we conducted principal component analysis (PCA). PC1 explained 43% of the variance, separating endodormancy and ecodormancy periods, while PC2 explained 16% of the variance, separating the two cultivars. The number of differentially expressed genes (DEGs) increased with endodormancy progression and remained elevated during ecodormancy. The majority of DEGs were unique to a particular time point, with only a few overlapping among or between the time points. This highlights the temporal specificity of gene expression during the dormancy transition and emphasizes the importance of sampling at multiple time points to capture the complete transcriptomic dynamics of this intricate process. We identified a total of 4204 upregulated and 7817 downregulated DEGs in the comparison of endodormancy and ecodormancy, regardless of cultivar, and 2135 upregulated and 2413 downregulated DEGs in the comparison of 'Honeycrisp' versus 'Cripps Pink,' regardless of dormancy stage. Furthermore, we conducted a co-expression network analysis to gain insight into the coordinated gene expression profiles across different time points, dormancy stages, and cultivars. This analysis revealed the most significant module (ME 14), correlated with 1000 GDH and consisting of 1162 genes. The expression of the genes within this module was lower in 'Honeycrisp' than in 'Cripps Pink.' The top 20 DEGs identified in ME 14 were primarily related to jasmonic acid biosynthesis and signaling, lipid metabolism, oxidation-reduction, and transmembrane transport activity. This suggests a plausible role for these pathways in governing bud dormancy and flowering time in apple.
Collapse
Affiliation(s)
- Sangeeta Sapkota
- Virginia Agricultural Research and Extension Center, Virginia Tech, Winchester, VA, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Mohamed Salem
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Khalil R. Jahed
- Virginia Agricultural Research and Extension Center, Virginia Tech, Winchester, VA, United States
| | - Timothy S. Artlip
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Sherif M. Sherif
- Virginia Agricultural Research and Extension Center, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
23
|
Puertes A, Polat H, Ramón-Núñez LA, González M, Ancillo G, Zuriaga E, Ríos G. Single-Bud Expression Analysis of Bud Dormancy Factors in Peach. PLANTS (BASEL, SWITZERLAND) 2023; 12:2601. [PMID: 37514216 PMCID: PMC10385799 DOI: 10.3390/plants12142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory DORMANCY-ASSOCIATED MADS-BOX (DAM) factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance. This analysis provides a close view on gene-specific, single-bud variability throughout the developmental shift from dormant to dormancy-released stages, contributing to the characterization of putative co-expression modules and other regulatory aspects in this particular tissue.
Collapse
Affiliation(s)
- Ana Puertes
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Helin Polat
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | | | - Matilde González
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gema Ancillo
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Elena Zuriaga
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| | - Gabino Ríos
- Valencian Institute for Agricultural Research (IVIA), 46113 Valencia, Spain
| |
Collapse
|
24
|
Ahsan MU, Barbier F, Hayward A, Powell R, Hofman H, Parfitt SC, Wilkie J, Beveridge CA, Mitter N. Molecular Cues for Phenological Events in the Flowering Cycle in Avocado. PLANTS (BASEL, SWITZERLAND) 2023; 12:2304. [PMID: 37375929 DOI: 10.3390/plants12122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado are not fully understood or documented. In this study, we investigated the potential molecular cues regulating the yearly flowering cycle in avocado for two consecutive crop cycles. Homologues of flowering-related genes were identified and assessed for their expression profiles in various tissues throughout the year. Avocado homologues of known floral genes FT, AP1, LFY, FUL, SPL9, CO and SEP2/AGL4 were upregulated at the typical time of floral induction for avocado trees growing in Queensland, Australia. We suggest these are potential candidate markers for floral initiation in these crops. In addition, DAM and DRM1, which are associated with endodormancy, were downregulated at the time of floral bud break. In this study, a positive correlation between CO activation and FT in avocado leaves to regulate flowering was not seen. Furthermore, the SOC1-SPL4 model described in annual plants appears to be conserved in avocado. Lastly, no correlation of juvenility-related miRNAs miR156, miR172 with any phenological event was observed.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosanna Powell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen Hofman
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - Siegrid Carola Parfitt
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - John Wilkie
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | | | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Lu W, Wei X, Han X, Chen R, Xiao C, Zheng X, Mao L. Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods 2023; 12:1802. [PMID: 37174341 PMCID: PMC10177999 DOI: 10.3390/foods12091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Abscisic acid (ABA) plays a crucial role in regulating the ripening of non-climacteric strawberry fruit. In the present study, ABA was confirmed to promote strawberry ripening and induce the down-regulation of FaMADS1. The transient silence of FaMADS1 in strawberries promoted fruit ripening and induced the content of anthocyanin and soluble pectin but reduced firmness and protopectin through a tobacco rattle virus-induced gene silencing technique. In parallel with the accelerated ripening, the genes were significantly induced in the transiently modified fruit, including anthocyanin-related PAL6, C4H, 4CL, DFR, and UFGT, softening-related PL and XTH, and aroma-related QR and AAT2. In addition, the interaction between FaMADS1 and ABA-related transcription factors was researched. Yeast one-hybrid analysis indicated that the FaMADS1 promoter could interact with FaABI5-5, FaTRAB1, and FaABI5. Furthermore, dual-luciferase assay suggested that FaTRAB1 could actively bind with the FaMADS1 promoter, resulting in the decreased expression of FaMADS1. In brief, these results suggest that the ABA-dependent ripening of strawberry fruit was probably inhibited through inhibiting FaMADS1 expression by the active binding of transcript FaTRAB1 with the FaMADS1 promoter.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China; (W.L.); (C.X.)
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
| | - Xiaopeng Wei
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xueyuan Han
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Renchi Chen
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China; (W.L.); (C.X.)
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Linchun Mao
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
26
|
Small RNA and Degradome Sequencing in Floral Bud Reveal Roles of miRNAs in Dormancy Release of Chimonanthus praecox. Int J Mol Sci 2023; 24:ijms24044210. [PMID: 36835618 PMCID: PMC9964840 DOI: 10.3390/ijms24044210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Chimonanthus praecox (wintersweet) is highly valued ornamentally and economically. Floral bud dormancy is an important biological characteristic in the life cycle of wintersweet, and a certain period of chilling accumulation is necessary for breaking floral bud dormancy. Understanding the mechanism of floral bud dormancy release is essential for developing measures against the effects of global warming. miRNAs play important roles in low-temperature regulation of flower bud dormancy through mechanisms that are unclear. In this study, small RNA and degradome sequencing were performed for wintersweet floral buds in dormancy and break stages for the first time. Small RNA sequencing identified 862 known and 402 novel miRNAs; 23 differentially expressed miRNAs (10 known and 13 novel) were screened via comparative analysis of breaking and other dormant floral bud samples. Degradome sequencing identified 1707 target genes of 21 differentially expressed miRNAs. The annotations of the predicted target genes showed that these miRNAs were mainly involved in the regulation of phytohormone metabolism and signal transduction, epigenetic modification, transcription factors, amino acid metabolism, and stress response, etc., during the dormancy release of wintersweet floral buds. These data provide an important foundation for further research on the mechanism of floral bud dormancy in wintersweet.
Collapse
|
27
|
Growth Cessation and Dormancy Induction in Micropropagated Plantlets of Rheum rhaponticum 'Raspberry' Influenced by Photoperiod and Temperature. Int J Mol Sci 2022; 24:ijms24010607. [PMID: 36614049 PMCID: PMC9820587 DOI: 10.3390/ijms24010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Dormancy development in micropropagated plantlets at the acclimatization stage and early growth ex vitro is undesirable as it lowers their survival rate and restricts the efficient year-round production of planting material. Thus far, little is known about the factors and mechanisms involved in the dormancy development of micropropagated herbaceous perennials, including rhubarb. This study determined physiological and molecular changes in the Rheum rhaponticum (culinary rhubarb) 'Raspberry' planting material in response to photoperiod and temperature. We found that the rhubarb plantlets that were grown under a 16-h photoperiod (LD) and a temperature within the normal growth range (17-23 °C) showed active growth of leaves and rhizomes and did not develop dormancy. Rapid growth cessation and dormancy development were observed in response to a 10-h photoperiod (SD) or elevated temperature under LD. These morphological changes were accompanied by enhanced abscisic acid (ABA) and starch levels and also the upregulation of various genes involved in carbohydrate synthesis and transport (SUS3, AMY3, BMY3, BGLU17) and ABA synthesis and signaling (ZEP and ABF2). We also found enhanced expression levels of heat shock transcription factors (HSFA2 and HSFA6B), heat shock proteins (HSP22, HSP70.1, HSP90.2 and HSP101) and antioxidant enzymes (PRX12, APX2 and GPX). This may suggest that dormancy induction in micropropagated rhubarb plantlets is a stress response to light deficiency and high temperatures and is endogenously coordinated by the ABA, carbohydrate and ROS pathways.
Collapse
|
28
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
29
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Li D, Shao L, Zhang J, Wang X, Zhang D, Horvath DP, Zhang L, Zhang J, Xia Y. MADS-box transcription factors determine the duration of temporary winter dormancy in closely related evergreen and deciduous Iris spp. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1429-1449. [PMID: 34752617 DOI: 10.1093/jxb/erab484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Winter dormancy (WD) is a crucial strategy for plants coping with potentially deadly environments. In recent decades, this process has been extensively studied in economically important perennial eudicots due to changing climate. However, in evergreen monocots with no chilling requirements, dormancy processes are so far a mystery. In this study, we compared the WD process in closely related evergreen (Iris japonica) and deciduous (I. tectorum) iris species across crucial developmental time points. Both iris species exhibit a 'temporary' WD process with distinct durations, and could easily resume growth under warm conditions. To decipher transcriptional changes, full-length sequencing for evergreen iris and short read RNA sequencing for deciduous iris were applied to generate respective reference transcriptomes. Combining results from a multipronged approach, SHORT VEGETATIVE PHASE and FRUITFULL (FUL) from MADS-box was associated with a dormancy- and a growth-related module, respectively. They were co-expressed with genes involved in phytohormone signaling, carbohydrate metabolism, and environmental adaptation. Also, gene expression patterns and physiological changes in the above pathways highlighted potential abscisic acid and jasmonic acid antagonism in coordinating growth and stress responses, whereas differences in carbohydrate metabolism and reactive oxygen species scavenging might lead to species-specific WD durations. Moreover, a detailed analysis of MIKCCMADS-box in irises revealed common features described in eudicots as well as possible new roles for monocots during temporary WD, such as FLOWERING LOCUS C and FUL. In essence, our results not only provide a portrait of temporary WD in perennial monocots but also offer new insights into the regulatory mechanism underlying WD in plants.
Collapse
Affiliation(s)
- Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiao Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Horticulture, Graduate School of Horticulture, Chiba University, Chiba, 271-8510, Japan
| | - Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - David P Horvath
- USDA-ARS, Sunflower and Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102-2765, USA
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Tominaga A, Ito A, Sugiura T, Yamane H. How Is Global Warming Affecting Fruit Tree Blooming? "Flowering (Dormancy) Disorder" in Japanese Pear ( Pyrus pyrifolia) as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 12:787638. [PMID: 35211129 PMCID: PMC8861528 DOI: 10.3389/fpls.2021.787638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Recent climate change has resulted in warmer temperatures. Warmer temperatures from autumn to spring has negatively affected dormancy progression, cold (de)acclimation, and cold tolerance in various temperate fruit trees. In Japan, a physiological disorder known as flowering disorder, which is an erratic flowering and bud break disorder, has recently emerged as a serious problem in the production of the pome fruit tree, Japanese (Asian) pear (Pyrus pyrifolia Nakai). Due to global warming, the annual temperature in Japan has risen markedly since the 1990s. Surveys of flowering disorder in field-grown and greenhouse-grown Japanese pear trees over several years have indicated that flowering disorder occurs in warmer years and cultivation conditions, and the risk of flowering disorder occurrence is higher at lower latitudes than at higher latitudes. Susceptibility to flowering disorder is linked to changes in the transcript levels of putative dormancy/flowering regulators such as DORMANCY-ASSOCIATED MADS-box (DAM) and FLOWERING LOCUS T (FT). On the basis of published studies, we conclude that autumn-winter warm temperatures cause flowering disorder through affecting cold acclimation, dormancy progression, and floral bud maturation. Additionally, warm conditions also decrease carbohydrate accumulation in shoots, leading to reduced tree vigor. We propose that all these physiological and metabolic changes due to the lack of chilling during the dormancy phase interact to cause flowering disorder in the spring. We also propose that the process of chilling exposure rather than the total amount of chilling may be important for the precise control of dormancy progression and robust blooming, which in turn suggests the necessity of re-evaluation of the characteristics of cultivar-dependent chilling requirement trait. A full understanding of the molecular and metabolic regulatory mechanisms of both dormancy completion (floral bud maturation) and dormancy break (release from the repression of bud break) will help to clarify the physiological basis of dormancy-related physiological disorder and also provide useful strategies to mitigate or overcome it under global warming.
Collapse
Affiliation(s)
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshihiko Sugiura
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Regulation of the Bud Dormancy Development and Release in Micropropagated Rhubarb 'Malinowy'. Int J Mol Sci 2022; 23:ijms23031480. [PMID: 35163404 PMCID: PMC8835828 DOI: 10.3390/ijms23031480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Culinary rhubarb is a vegetable crop, valued for its stalks, very rich in different natural bioactive ingredients. In commercial rhubarb stalk production, the bud dormancy development and release are crucial processes that determine the yields and quality of stalks. To date, reports on rhubarb bud dormancy regulation, however, are lacking. It is known that dormancy status depends on cultivars. The study aimed to determine the dormancy regulation in a valuable selection of rhubarb ‘Malinowy’. Changes in carbohydrate, total phenolic, endogenous hormone levels, and gene expression levels during dormancy development and release were studied in micropropagated rhubarb plantlets. Dormancy developed at high temperature (25.5 °C), and long day. Leaf senescence and dying were consistent with a significant increase in starch, total phenolics, ABA, IAA and SA levels. Five weeks of cooling at 4 °C were sufficient to break dormancy, but rhizomes stored for a longer duration showed faster and more uniformity leaf growing, and higher stalk length. No growth response was observed for non-cooled rhizomes. The low temperature activated carbohydrate and hormone metabolism and signalling in the buds. The increased expression of AMY3, BMY3, SUS3, BGLU17, GAMYB genes were consistent with a decrease in starch and increase in soluble sugars levels during dormancy release. Moreover, some genes (ZEP, ABF2, GASA4, GA2OX8) related to ABA and GA metabolism and signal transduction were activated. The relationship between auxin (IAA, IBA, 5-Cl-IAA), and phenolic, including SA levels and dormancy status was also observed.
Collapse
|
33
|
Fang ZZ, Lin-Wang K, Dai H, Zhou DR, Jiang CC, Espley RV, Deng C, Lin YJ, Pan SL, Ye XF. The genome of low-chill Chinese plum 'Sanyueli' (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Mol Ecol Resour 2022; 22:1919-1938. [PMID: 35032338 DOI: 10.1111/1755-0998.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Chinese plum (Prunus salicina Lindl.) is a stone fruit that belongs to the Prunus genus and plays an important role in the global production of plum. In this study, we report the genome sequence of the Chinese plum 'Sanyueli', which is known to have a low-chill requirement for flower bud break. The assembled genome size was 282.38 Mb, with a contig N50 of 1.37 Mb. Over 99% of the assembly was anchored to eight pseudochromosomes, with a scaffold N50 of 34.46Mb. A total of 29,708 protein-coding genes were predicted from the genome and 46.85% (132.32 Mb) of the genome was annotated as repetitive sequence. Bud dormancy is influenced by chilling requirement in plum and partly controlled by DORMANCY ASSOCIATED MADS-box (DAM) genes. Six tandemly arrayed PsDAM genes were identified in the assembled genome. Sequence analysis of PsDAM6 in 'Sanyueli' revealed the presence of large insertions in the intron and exon regions. Transcriptome analysis indicated that the expression of PsDAM6 in the dormant flower buds of 'Sanyueli' was significantly lower than that in the dormant flower buds of the high chill requiring 'Furongli' plum. In addition, the expression of PsDAM6 was repressed by chilling treatment. The genome sequence of 'Sanyueli' plum provides a valuable resource for elucidating the molecular mechanisms responsible for the regulation of chilling requirements, and it is also useful for the identification of the genes involved in the control of other important agronomic traits and molecular breeding in plum.
Collapse
Affiliation(s)
- Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - He Dai
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Private Bag, Auckland, 92169, New Zealand
| | - Yan-Juan Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.,Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| |
Collapse
|
34
|
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, Sarah G, Farrera I, Leclercq J, Grynberg P, Coiti Togawa R, Mota do Carmo Costa M, Costes E, Andrés F. The Identification of Small RNAs Differentially Expressed in Apple Buds Reveals a Potential Role of the Mir159-MYB Regulatory Module during Dormancy. PLANTS (BASEL, SWITZERLAND) 2021; 10:2665. [PMID: 34961136 PMCID: PMC8703471 DOI: 10.3390/plants10122665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.
Collapse
Affiliation(s)
- Julio Garighan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Etienne Dvorak
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Joan Estevan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Karine Loridon
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany;
| | - Gautier Sarah
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Isabelle Farrera
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Julie Leclercq
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
- UMR AGAP Institute, CIRAD, F-34398 Montpellier, France
| | - Priscila Grynberg
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Roberto Coiti Togawa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Marcos Mota do Carmo Costa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Evelyne Costes
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Fernando Andrés
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| |
Collapse
|
35
|
Wang J, Liu X, Sun W, Xu Y, Sabir IA, Abdullah M, Wang S, Jiu S, Zhang C. Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111061. [PMID: 34763854 DOI: 10.1016/j.plantsci.2021.111061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The flower buds continue to develop during the whole winter in tree fruit species, which is affected by environmental factors and hormones. However, little is known about the molecular mechanism of flower development during dormancy phase of sweet cherry in response to light, temperature and ABA. Therefore, we identified two cold induced gene (CIG) PavCIG1 and PavCIG2 from sweet cherry, which were closely to PpCBF and PyDREB from Prunus persica and Prunus yedoensis by using phylogenetic analysis, suggesting conserved functions with these evolutionarily closer DREB subfamily genes. Subcellular localization analysis indicated that, PavCIG1 and PavCIG2 were both localized in the nucleus. The seasonal expression levels of PavCIG1 and PavCIG2 were higher at the stage of endodormancy in winter, and induced by low temperature. Ectopic expression of PavCIG1 and PavCIG2 resulted in a delayed flowering in Arabidopsis. Furthermore, PavCIG2 increased light-responsive gene PavHY5 transcriptional activity by binding to its promoter, meanwhile, PavHY5-mediated positive feedback regulated PavCIG2. Moreover, ABA-responsive protein PavABI5-like could also increase transcriptional activity of PavCIG and PavCIG2. In addition, PavCIG and PavCIG2 target gene PavCAL-like was involved in floral initiation, demonstrated by ectopic expression in Arabidopsis. These findings provide evidences to better understand the molecular mechanism of CIG-mediated flower development and dormancy in fruit species, including sweet cherry.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
36
|
Lloret A, Quesada-Traver C, Conejero A, Arbona V, Gómez-Mena C, Petri C, Sánchez-Navarro JA, Zuriaga E, Leida C, Badenes ML, Ríos G. Regulatory circuits involving bud dormancy factor PpeDAM6. HORTICULTURE RESEARCH 2021; 8:261. [PMID: 34848702 PMCID: PMC8632999 DOI: 10.1038/s41438-021-00706-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | | | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castello de la Plana, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - César Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, 46113, Moncada, Valencia, Spain.
| |
Collapse
|
37
|
Nakajima N, Inoue H, Koshita Y. Effects of exogenous methyl jasmonate and light condition on grape berry coloration and endogenous abscisic acid content. JOURNAL OF PESTICIDE SCIENCE 2021; 46:322-332. [PMID: 34908892 PMCID: PMC8640711 DOI: 10.1584/jpestics.d21-027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Suitable postharvest treatment methods were investigated to improve the color of grape berries. Culture solutions containing jasmonic acid (JA), methyl jasmonate (MeJA), and prohydrojasmon (PDJ) enhanced the skin coloration of grape berries ('Pione') harvested at the initial stage of coloration. MeJA vapor treatment under sealed conditions increased anthocyanin accumulation in grape berries ('AkiQueen' and 'Pione') harvested at the early stage of skin coloration. Furthermore, promoting skin coloration by MeJA vapor treatment was as effective in mature clusters as it was in detached berries. These effects were confirmed in light conditions but not in constant darkness. Our results showed that postharvest MeJA vapor treatment improved skin coloration in grapes. In addition, postharvest treatment with MeJA was found to have no effect on the endogenous abscisic acid content of grape berry skins. Therefore, we suggest that MeJA vapor treatment can be a useful and labor-saving method for the horticultural industry.
Collapse
Affiliation(s)
- Naoko Nakajima
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Hiromichi Inoue
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Yoshiko Koshita
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- NARO Headquarters, Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| |
Collapse
|
38
|
Wu K, Duan X, Zhu Z, Sang Z, Zhang Y, Li H, Jia Z, Ma L. Transcriptomic Analysis Reveals the Positive Role of Abscisic Acid in Endodormancy Maintenance of Leaf Buds of Magnolia wufengensis. FRONTIERS IN PLANT SCIENCE 2021; 12:742504. [PMID: 34858449 PMCID: PMC8632151 DOI: 10.3389/fpls.2021.742504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
Magnolia wufengensis (Magnoliaceae) is a deciduous landscape species, known for its ornamental value with uniquely shaped and coloured tepals. The species has been introduced to many cities in south China, but low temperatures limit the expansion of this species in cold regions. Bud dormancy is critical for plants to survive in cold environments during the winter. In this study, we performed transcriptomic analysis of leaf buds using RNA sequencing and compared their gene expression during endodormancy, endodormancy release, and ecodormancy. A total of 187,406 unigenes were generated with an average length of 621.82 bp (N50 = 895 bp). In the transcriptomic analysis, differentially expressed genes involved in metabolism and signal transduction of hormones especially abscisic acid (ABA) were substantially annotated during dormancy transition. Our results showed that ABA at a concentration of 100 μM promoted dormancy maintenance in buds of M. wufengensis. Furthermore, the expression of genes related to ABA biosynthesis, catabolism, and signalling pathway was analysed by qPCR. We found that the expression of MwCYP707A-1-2 was consistent with ABA content and the dormancy transition phase, indicating that MwCYP707A-1-2 played a role in endodormancy release. In addition, the upregulation of MwCBF1 during dormancy release highlighted the enhancement of cold resistance. This study provides new insights into the cold tolerance of M. wufengensis in the winter from bud dormancy based on RNA-sequencing and offers fundamental data for further research on breeding improvement of M. wufengensis.
Collapse
Affiliation(s)
- Kunjing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaojing Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhonglong Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Ziyang Sang
- Forestry Science Research Institute of Wufeng County, Yichang, China
| | - Yutong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Haiying Li
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Zhongkui Jia
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
- College of Forestry, Engineering Technology Research Center of Pinus tabuliformis of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Luyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| |
Collapse
|
39
|
Li L, Liu J, Liang Q, Feng Y, Wang C, Wu S, Li Y. Downregulation of lncRNA PpL-T31511 and Pp-miRn182 Promotes Hydrogen Cyanamide-Induced Endodormancy Release through the PP2C-H 2O 2 Pathway in Pear ( Pyrus pyrifolia). Int J Mol Sci 2021; 22:ijms222111842. [PMID: 34769273 PMCID: PMC8584160 DOI: 10.3390/ijms222111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bud endodormancy is an important, complex process subject to both genetic and epigenetic control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA) and its signaling pathway play important roles in the endodormancy process, in which the type 2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182 reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in pear plants through the PP2C-H2O2 pathway.
Collapse
Affiliation(s)
- Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Jinan District, Fuzhou 350013, China
| | - Jinhang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Qin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yu Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Chao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Correspondence:
| |
Collapse
|
40
|
Zhang X, Shen H, Wen B, Li S, Xu C, Gai Y, Meng X, He H, Wang N, Li D, Chen X, Xiao W, Fu X, Tan Q, Li L. BTB-TAZ Domain Protein PpBT3 modulates peach bud endodormancy by interacting with PpDAM5. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110956. [PMID: 34315582 DOI: 10.1016/j.plantsci.2021.110956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The dormancy-associated MADS-box (DAM) gene DAM5 has crucial roles in bud endodormancy; however, the molecular regulatory mechanism of PpDAM5 in peach (Prunus persica) has not been elucidated. In this study, using yeast two-hybrid screening, we isolated a BTB-TAZ Domain Protein PpBT3, which interacts with PpDAM5 protein, in the peach cultivar 'Chun xue'. As expected, we found that abscisic acid (ABA) maintained bud endodormancy and induced expression of the PpDAM5 gene, and that over-expressing PpDAM5 in Arabidopsis thaliana repressed seed germination. In contrast, over-expressing PpBT3 in A. thaliana promoted seed germination, and conferred resistance to ABA-mediated germination inhibition. Additionally, a qRT-PCR (quantitative real-time polymerase chain reaction) experiment suggested that the transcript level of PpBT3 gradually increased towards the endodormancy release period, which is the opposite trend of the expression pattern of PpDAM5. Our results suggest that PpBT3 modulates peach bud endodormancy by interacting with PpDAM5, thus revealing a new mechanism for regulating bud dormancy of perennial deciduous trees.
Collapse
Affiliation(s)
- Xinhao Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Hongyan Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Chen Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Yu Gai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China; College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, PR China.
| |
Collapse
|
41
|
Wu R, Cooney J, Tomes S, Rebstock R, Karunairetnam S, Allan AC, Macknight RC, Varkonyi-Gasic E. RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. TREE PHYSIOLOGY 2021; 41:1510-1523. [PMID: 33564851 DOI: 10.1093/treephys/tpab007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/14/2021] [Indexed: 05/23/2023]
Abstract
DORMANCY-ASSOCIATED MADS-box (DAM) and SHORT VEGETATIVE PHASE (SVP) genes have been implicated in the regulation of winter dormancy in perennials. Ectopic expression of apple (Malus × domestica Borkh. 'Royal Gala') DAM and SVP genes delays budbreak and constrains lateral shoot outgrowth. In this study, we used RNA interference (RNAi) to simultaneously target all apple DAM and SVP genes in order to study their role and mode of action in the regulation of bud dormancy, budbreak and flowering. A synthetic construct carrying a hairpin fragment assembled from sequences specific to coding regions of three DAM and two SVP genes was used to generate transgenic lines. Reduced expression of DAM/SVP genes resulted in delayed leaf senescence and abscission in autumn, failure to enter bud dormancy in winter and continual growth of new leaves regardless of the season for over 3 years. Precocious flowering but normal flower morphology, fertility and fruit development were observed. The non-dormant phenotype was associated with modified phytohormone composition. The content of gibberellins (GAs) and jasmonates (JAs) was significantly increased in terminal buds of RNAi lines compared with wildtype plants, accompanied by elevated expression of the key GA biosynthesis pathway gene GIBBERELLIN 20 OXIDASE-2 (MdGA20ox-2) along with the FLOWERING LOCUS T gene MdFT2. The key mediator of plasmodesmatal closure, MdCALLOSE SYNTHASE 1 (MdCALS1), was repressed in RNAi lines. This study provides functional evidence for the role of DAM/SVP genes in vegetative phenology of apple and paves the way for production of low-chill varieties suitable for growth in warming climates.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Ruakura Campus, Hamilton 3214, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Sandringham, Auckland 1025, New Zealand
| |
Collapse
|
42
|
Chilling Requirement Validation and Physiological and Molecular Responses of the Bud Endodormancy Release in Paeonia lactiflora 'Meiju'. Int J Mol Sci 2021; 22:ijms22168382. [PMID: 34445086 PMCID: PMC8395073 DOI: 10.3390/ijms22168382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora 'Meiju', a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of 'Meiju' was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when 'Meiju' bud endodormancy was released. This study reveals the endodormancy regulation mechanism of 'Meiju' buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.
Collapse
|
43
|
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, Teng Y. Bud endodormancy in deciduous fruit trees: advances and prospects. HORTICULTURE RESEARCH 2021; 8:139. [PMID: 34078882 PMCID: PMC8172858 DOI: 10.1038/s41438-021-00575-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
Bud endodormancy is a complex physiological process that is indispensable for the survival, growth, and development of deciduous perennial plants. The timely release of endodormancy is essential for flowering and fruit production of deciduous fruit trees. A better understanding of the mechanism of endodormancy will be of great help in the artificial regulation of endodormancy to cope with climate change and in creating new cultivars with different chilling requirements. Studies in poplar have clarified the mechanism of vegetative bud endodormancy, but the endodormancy of floral buds in fruit trees needs further study. In this review, we focus on the molecular regulation of endodormancy induction, maintenance and release in floral buds of deciduous fruit trees. We also describe recent advances in quantitative trait loci analysis of chilling requirements in fruit trees. We discuss phytohormones, epigenetic regulation, and the detailed molecular network controlling endodormancy, centered on SHORT VEGETATIVE PHASE (SVP) and Dormancy-associated MADS-box (DAM) genes during endodormancy maintenance and release. Combining previous studies and our observations, we propose a regulatory model for bud endodormancy and offer some perspectives for the future.
Collapse
Affiliation(s)
- Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Takaya Moriguchi
- Shizuoka Professional University of Agriculture, Iwata, Shizuoka, 438-0803, Japan
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
44
|
Li L, Liu J, Liang Q, Zhang Y, Kang K, Wang W, Feng Y, Wu S, Yang C, Li Y. Genome-wide analysis of long noncoding RNAs affecting floral bud dormancy in pears in response to cold stress. TREE PHYSIOLOGY 2021; 41:771-790. [PMID: 33147633 DOI: 10.1093/treephys/tpaa147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/29/2020] [Indexed: 05/08/2023]
Abstract
The versatile role of long noncoding RNAs (lncRNAs) in plant growth and development has been established, but a systematic identification and analysis of lncRNAs in the pear has not been reported. Bud dormancy is a crucial and complicated protective mechanism for plants in winter. The roles of lncRNAs in the dormancy process remain largely unclear. In this study, we induced pear floral buds to enter into different dormant statuses by simulating four different chilling accumulation conditions. Then, a time series of RNA-seq analysis was performed and we identified 7594 lncRNAs in Pyrus pyrifolia (Burm. F.) Nakai that have not been identified. The sequence and expression of the lncRNAs were confirmed by PCR analysis. In total, 6253 lncRNAs were predicted to target protein-coding genes including 692 cis-regulated pairs (596 lncRNAs) and 13,158 trans-regulated pairs (6181 lncRNAs). Gene Ontology analysis revealed that most of lncRNAs' target genes were involved in catalytic activity, metabolic processes and cellular processes. In the trend analysis, 124 long-term cold response lncRNAs and 80 short-term cold response lncRNAs were predicted. Regarding the lncRNA-miRNA regulatory networks, 59 lncRNAs were identified as potential precursors for miRNA members of 20 families, 586 lncRNAs were targets of 261 pear miRNAs and 53 lncRNAs were endogenous target mimics for 26 miRNAs. In addition, three cold response lncRNAs, two miRNAs and their target genes were selected for expression confirmed. The trend of their expression was consistent with the predicted relationships among them and suggested possible roles of lncRNAs in ABA metabolic pathway. Our findings not only suggest the potential roles of lncRNAs in regulating the dormancy of pear floral buds but also provide new insights into the lncRNA-miRNA-mRNA regulatory network in plants.
Collapse
Affiliation(s)
- Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Jinhang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Qin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yanhui Zhang
- Economic Crop Station, Agricultural and Rural Bureau of Yongtai County, 32 Tashan Road, Yongtai Country, Fuzhou 350700, China
| | - Kaiquan Kang
- Lianjiang State-Owned Forest Farm in Fujian Province, 31 Xifeng Road, Lianjiang Country, Fuzhou 350500, China
| | - Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yu Feng
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
45
|
Vimont N, Schwarzenberg A, Domijan M, Donkpegan ASL, Beauvieux R, le Dantec L, Arkoun M, Jamois F, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. TREE PHYSIOLOGY 2021; 41:544-561. [PMID: 32975290 DOI: 10.1093/treephys/tpaa122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/10/2019] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
In temperate trees, optimal timing and quality of flowering directly depend on adequate winter dormancy progression, regulated by a combination of chilling and warm temperatures. Physiological, genetic and functional genomic studies have shown that hormones play a key role in bud dormancy establishment, maintenance and release. We combined physiological and transcriptional analyses, quantification of abscisic acid (ABA) and gibberellins (GAs), and modeling to further investigate how these signaling pathways are associated with dormancy progression in the flower buds of two sweet cherry cultivars. Our results demonstrated that GA-associated pathways have distinct functions and may be differentially related with dormancy. In addition, ABA levels rise at the onset of dormancy, associated with enhanced expression of ABA biosynthesis PavNCED genes, and decreased prior to dormancy release. Following the observations that ABA levels are correlated with dormancy depth, we identified PavUG71B6, a sweet cherry UDP-GLYCOSYLTRANSFERASE gene that up-regulates active catabolism of ABA to ABA glucosyl ester (ABA-GE) and may be associated with low ABA content in the early cultivar. Subsequently, we modeled ABA content and dormancy behavior in three cultivars based on the expression of a small set of genes regulating ABA levels. These results strongly suggest the central role of ABA pathway in the control of dormancy progression and open up new perspectives for the development of molecular-based phenological modeling.
Collapse
Affiliation(s)
- Noémie Vimont
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Adrian Schwarzenberg
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Mirela Domijan
- Dept. of Mathematical Sciences, University of Liverpool, Peach St., Liverpool L69 7ZL, United Kingdom
| | - Armel S L Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Rémi Beauvieux
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Loïck le Dantec
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Mustapha Arkoun
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Frank Jamois
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ), Department for Plant Adaptation, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Bénédicte Wenden
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| |
Collapse
|
46
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
47
|
Yamane H, Singh AK, Cooke JEK. Plant dormancy research: from environmental control to molecular regulatory networks. TREE PHYSIOLOGY 2021; 41:523-528. [PMID: 33834235 DOI: 10.1093/treephys/tpab035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Affiliation(s)
- Hisayo Yamane
- Graduate school of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834 003 India
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Alberta, Canada
| |
Collapse
|
48
|
Ito A, Tuan PA, Saito T, Bai S, Kita M, Moriguchi T. Changes in phytohormone content and associated gene expression throughout the stages of pear (Pyrus pyrifolia Nakai) dormancy. TREE PHYSIOLOGY 2021; 41:529-543. [PMID: 31595966 DOI: 10.1093/treephys/tpz101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/09/2019] [Indexed: 05/26/2023]
Abstract
To elucidate the role of phytohormones during bud dormancy progression in the Japanese pear (Pyrus pyrifolia Nakai), we investigated changes in phytohormone levels of indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and trans-zeatin (tZ). Using ultra-performance liquid chromatography/mass spectrometry/mass spectrometry, we monitored phytohormone levels in the buds of field-grown and potted trees that were artificially heated to modify the timing of dormancy and flowering (spring flush) progression. We also analyzed the expression of GA- and ABA-metabolic genes during dormancy. Indole acetic acid and tZ levels were low during dormancy and increased toward the flowering stage. Gibberellic acid levels were maintained at relatively high concentrations during the dormancy induction stage, then decreased before slightly increasing prior to flowering. The low GA concentration in potted trees compared with field-grown trees indicated that GA functions in regulating tree vigor. Abscisic acid levels increased from the dormancy induction stage, peaked near endodormancy release and steadily decreased before increasing again before the flowering stage. The ABA peak levels did not always coincide with endodormancy release, but peak height correlated with flowering uniformity, suggesting that a decline in ABA concentration was not necessary for resumption of growth but the abundance of ABA might be associated with dormancy depth. From monitoring the expression of genes related to GA and ABA metabolism, we inferred that phytohormone metabolism changed significantly during dormancy, even though the levels of bioactive molecules were consistently low. Phytohormones regulate dormancy progression not only upon the reception of internal signals but also upon sensing ambient conditions.
Collapse
Affiliation(s)
- Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Masayuki Kita
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
49
|
Hernández JA, Díaz-Vivancos P, Acosta-Motos JR, Alburquerque N, Martínez D, Carrera E, García-Bruntón J, Barba-Espín G. Interplay among Antioxidant System, Hormone Profile and Carbohydrate Metabolism during Bud Dormancy Breaking in a High-Chill Peach Variety. Antioxidants (Basel) 2021; 10:560. [PMID: 33916531 PMCID: PMC8066612 DOI: 10.3390/antiox10040560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.
Collapse
Affiliation(s)
- José A. Hernández
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Pedro Díaz-Vivancos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - José Ramón Acosta-Motos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Nuria Alburquerque
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Domingo Martínez
- Department of Food Technology, University Miguel Hernandez, 03202 Orihuela, Spain;
| | - Esther Carrera
- Group of Hormonal Metabolism and Plant Development Regulation, IBMCP-CSIC, 46011 Valencia, Spain;
| | | | - Gregorio Barba-Espín
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| |
Collapse
|
50
|
Boldizsár Á, Soltész A, Tanino K, Kalapos B, Marozsán-Tóth Z, Monostori I, Dobrev P, Vankova R, Galiba G. Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. BMC PLANT BIOLOGY 2021; 21:111. [PMID: 33627081 PMCID: PMC7905644 DOI: 10.1186/s12870-021-02828-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions. RESULTS Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The 'Okanese' hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The 'Walker' cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of 'Okanese'. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in 'Walker', peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in 'Okanese' compared to 'Walker'. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in 'Okanese'. CONCLUSIONS Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Balázs Kalapos
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Zsuzsa Marozsán-Tóth
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - István Monostori
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
- Festetics Doctoral School, Georgikon Campus, Szent István University, Keszthely, H-8360 Hungary
| |
Collapse
|