1
|
Nocchi G, Whiting JR, Yeaman S. Repeated global adaptation across plant species. Proc Natl Acad Sci U S A 2024; 121:e2406832121. [PMID: 39705310 DOI: 10.1073/pnas.2406832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Global adaptation occurs when all populations of a species undergo selection toward a common optimum. This can occur by a hard selective sweep with the emergence of a new globally advantageous allele that spreads throughout a species' natural range until reaching fixation. This evolutionary process leaves a temporary trace in the region affected, which is detectable using population genomic methods. While selective sweeps have been identified in many species, there have been few comparative and systematic studies of the genes involved in global adaptation. Building upon recent findings showing repeated genetic basis of local adaptation across independent populations and species, we asked whether certain genes play a more significant role in driving global adaptation across plant species. To address this question, we scanned the genomes of 17 plant species to identify signals of repeated global selective sweeps. Despite the substantial evolutionary distance between the species analyzed, we identified several gene families with strong evidence of repeated positive selection. These gene families tend to be enriched for reduced pleiotropy, consistent with predictions from Fisher's evolutionary model and the cost of complexity hypothesis. We also found that genes with repeated sweeps exhibit elevated levels of gene duplication. Our findings contrast with recent observations of increased pleiotropy in genes driving local adaptation, consistent with predictions based on the theory of migration-selection balance.
Collapse
Affiliation(s)
- Gabriele Nocchi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Taylor T, Zhu HV, Moorthy SD, Khader N, Mitchell JA. The cells are all-right: Regulation of the Lefty genes by separate enhancers in mouse embryonic stem cells. PLoS Genet 2024; 20:e1011513. [PMID: 39671433 DOI: 10.1371/journal.pgen.1011513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024] Open
Abstract
Enhancers play a critical role in regulating precise gene expression patterns essential for development and cellular identity; however, how gene-enhancer specificity is encoded within the genome is not clearly defined. To investigate how this specificity arises within topologically associated domains (TAD), we performed allele-specific genome editing of sequences surrounding the Lefty1 and Lefty2 paralogs in mouse embryonic stem cells. The Lefty genes arose from a tandem duplication event and these genes interact with each other in chromosome conformation capture assays which place these genes within the same TAD. Despite their physical proximity, we demonstrate that these genes are primarily regulated by separate enhancer elements. Through CRISPR-Cas9 mediated deletions to remove the intervening chromatin between the Lefty genes, we reveal a distance-dependent dosage effect of the Lefty2 enhancer on Lefty1 expression. These findings indicate a role for chromatin distance in insulating gene expression domains in the Lefty locus in the absence of architectural insulation.
Collapse
Affiliation(s)
- Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Hongyu Vicky Zhu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
4
|
Silva-Arias GA, Gagnon E, Hembrom S, Fastner A, Khan MR, Stam R, Tellier A. Patterns of presence-absence variation of NLRs across populations of Solanum chilense are clade-dependent and mainly shaped by past demographic history. THE NEW PHYTOLOGIST 2024. [PMID: 39582196 DOI: 10.1111/nph.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Understanding the evolution of pathogen resistance genes (nucleotide-binding site-leucine-rich repeats, NLRs) within a species requires a comprehensive examination of factors that affect gene loss and gain. We present a new reference genome of Solanum chilense, which leads to an increased number and more accurate annotation of NLRs. Using a target capture approach, we quantify the presence-absence variation (PAV) of NLR loci across 20 populations from different habitats. We build a rigorous pipeline to validate the identification of PAV of NLRs and then show that PAV is larger within populations than between populations, suggesting that maintenance of NLR diversity is linked to population dynamics. The amount of PAV appears not to be correlated with the NLR presence in gene clusters in the genome, but rather with the past demographic history of the species, with loss of NLRs in diverging (smaller) populations at the distribution edges. Finally, using a redundancy analysis, we find limited evidence of PAV being linked to environmental gradients. Our results suggest that random processes (genetic drift and demography) and weak positive selection for local adaptation shape the evolution of NLRs at the single nucleotide polymorphism and PAV levels in an outcrossing plant with high nucleotide diversity.
Collapse
Affiliation(s)
- Gustavo A Silva-Arias
- Professorship for Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, Freising, 85354, Germany
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia - Sede Bogotá, Ciudad Universitaria, Bogotá, 111321, Colombia
| | - Edeline Gagnon
- Department of Integrative Biology, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramman-St. 2, Freising, 85354, Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of Phytopathology, Christian Albrechts University, Hermann Rodewald Str 9, Kiel, 24118, Germany
| | - Surya Hembrom
- Professorship for Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, Freising, 85354, Germany
| | - Alexander Fastner
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of Phytopathology, Christian Albrechts University, Hermann Rodewald Str 9, Kiel, 24118, Germany
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Rd, Islamabad Capital Territory, Islamabad, Pakistan
- PARC Institute for Advanced Studies in Agriculture, NARC, Park Rd, Islamabad Capital Territory, Islamabad, Pakistan
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramman-St. 2, Freising, 85354, Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of Phytopathology, Christian Albrechts University, Hermann Rodewald Str 9, Kiel, 24118, Germany
| | - Aurélien Tellier
- Professorship for Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, Freising, 85354, Germany
| |
Collapse
|
5
|
Madhani H, Nejad Kourki A. The Evolution of Complex Multicellularity in Land Plants. Genes (Basel) 2024; 15:1472. [PMID: 39596672 PMCID: PMC11593340 DOI: 10.3390/genes15111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The evolution of complex multicellularity in land plants represents a pivotal event in the history of life on Earth, characterized by significant increases in biological complexity. This transition, classified as a Major Evolutionary Transition (MET), is best understood through the framework of Evolutionary Transitions in Individuality (ETIs), which focuses on formerly independent entities forming higher-level units that lose their reproductive autonomy. While much of the ETI literature has concentrated on the early stages of multicellularity, such as the formation and maintenance stages, this paper seeks to address the less explored transformation stage. To do so, we apply an approach that we call Transitions in Structural Complexity (TSCs), which focuses on the emergence of new units of organization via the three key evolutionary processes of modularization, subfunctionalization, and integration to the evolution of land plants. To lay the groundwork, we first explore the relationships between sex, individuality, and units of selection to highlight a sexual life cycle-based perspective on ETIs by examining the early stages of the transition to multicellularity (formation) in the sexual life cycle of the unicellular common ancestor of land plants, emphasizing the differences between the transition to multicellularity in eumetazoans and land plants. We then directly apply the TSC approach in this group, identifying key evolutionary events such as the distinct evolutionary innovations like shoot, root, vascular systems, and specialized reproductive structures, arguing that bringing these under the broader rubric of TSCs affords a degree of explanatory unification. By examining these evolutionary processes, this paper provides a new perspective on the evolution of multicellularity in land plants, highlighting both parallels and distinctions with the animal kingdom.
Collapse
Affiliation(s)
- Hossein Madhani
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Arsham Nejad Kourki
- The Francis Crick Institute, London NW1 1AT, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| |
Collapse
|
6
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
7
|
Cai L, Xiang R, Jiang Y, Li W, Yang Q, Gan G, Li W, Yu C, Wang Y. Genome-Wide Identification and Expression Profiling Analysis of the CCT Gene Family in Solanum lycopersicum and Solanum melongena. Genes (Basel) 2024; 15:1385. [PMID: 39596585 PMCID: PMC11593657 DOI: 10.3390/genes15111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
CCT family genes play crucial roles in photoperiodic flowering and environmental stress response; however, there are limited reports in Solanum species with considerable edible and medicinal value. In this study, we conducted genome-wide characterization and expression profiling analysis of the CCT gene family in two Solanum species: tomato (Solanum lycopersicum L.) and eggplant (Solanum melongena L.). A total of 27 SlCCT and 29 SmCCT genes were identified in the tomato and eggplant genomes, respectively. Phylogenetic analysis showed that the CCT gene family could be divided into six subgroups (COL I, COL II, COL III, PRR, CMF I, and CMF II) in Oryza sativa and Arabidopsis thaliana. The similarity in the distribution of exon-intron structures and conserved motifs within the same subgroup indicated the conservation of SlCCT and SmCCT genes during evolution. Intraspecies collinearity analysis revealed that six pairs of SlCCT genes and seven pairs of SmCCT genes showed collinear relationships, suggesting that segmental duplication played a vital role in the expansion of the SlCCT and SmCCT family genes. Cis-acting element prediction indicated that SlCCT and SmCCT were likely to be involved in multiple responses stimulated by light, phytohormones, and abiotic stress. RT-qPCR analysis revealed that SmCCT15, SlCCT6/SlCCT14, and SlCCT23/SmCCT9 responded significantly to salt, drought, and cold stress, respectively. Our comprehensive analysis of the CCT gene family in tomato and eggplant provides a basis for further studies on its molecular role in regulating flowering and resistance to abiotic stress, and provides valuable candidate gene resources for tomato and eggplant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (R.X.); (Y.J.); (W.L.); (Q.Y.); (G.G.); (W.L.); (C.Y.)
| |
Collapse
|
8
|
Lu J, Chen YN, Yin TM. Expression and functional divergence of a type-A response regulator paralog pair formed by dispersed duplication during Populus deltoides evolution. Commun Biol 2024; 7:1367. [PMID: 39438601 PMCID: PMC11496517 DOI: 10.1038/s42003-024-07091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Gene duplication and divergence are essential to plant evolution. The Arabidopsis type-A response regulator (ARR) family, negative regulators in cytokinin signaling, exemplifies gene expansion and differential retention. Despite extensive research, the understanding of type-A RR homologs in woody plants remains limited. In this study, the evolution history of type-A RR gene families across four rosids and one monocot has been comprehensively investigated. Focusing on Populus deltoides, a unique pair of dispersed duplicates, PdRR8 and PdFERR, is identified, and their duplication is estimated to have occurred in the common ancestor of the four rosids. The duplication remnants corresponding to PdRR8 have been retained in all rosids but the counterpart of PdFERR has been lost. In poplar, PdRR8 shows the highest expression levels in leaves, while PdFERR is specifically expressed in female floral buds. Among various external stimuli, cold strongly represses PdRR8 promoter activity, whereas 6-BA markedly inhibits that of PdFERR. Overexpression of PdRR8 in the Arabidopsis arr16arr17 double-mutant fully complements the reduced hydrotropic response. In contrast, PdFERR fails to rescue the hydrotropic defects of the mutant. Results of evolutionary, expression and functional analyses indicate that PdRR8, rather than PdFERR, is the true ortholog of the ARR16-ARR17 paralogs. Though PdRR8 and PdFERR originate from a common ancestral gene and evolve under strong negative selection, these two dispersed duplicates have exhibited differential expression and some degree of functional divergence.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Ying-Nan Chen
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tong-Ming Yin
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Ferreira Neres D, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential auxin response candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1463438. [PMID: 39421145 PMCID: PMC11484095 DOI: 10.3389/fpls.2024.1463438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Introduction Throughout domestication, crop plants have gone through strong genetic bottlenecks, dramatically reducing the genetic diversity in today's available germplasm. This has also reduced the diversity in traits necessary for breeders to develop improved varieties. Many strategies have been developed to improve both genetic and trait diversity in crops, from backcrossing with wild relatives, to chemical/radiation mutagenesis, to genetic engineering. However, even with recent advances in genetic engineering we still face the rate limiting step of identifying which genes and mutations we should target to generate diversity in specific traits. Methods Here, we apply a comparative evolutionary approach, pairing phylogenetic and expression analyses to identify potential candidate genes for diversifying soybean (Glycine max) canopy cover development via the nuclear auxin signaling gene families, while minimizing pleiotropic effects in other tissues. In soybean, rapid canopy cover development is correlated with yield and also suppresses weeds in organic cultivation. Results and discussion We identified genes most specifically expressed during early canopy development from the TIR1/AFB auxin receptor, Aux/IAA auxin co-receptor, and ARF auxin response factor gene families in soybean, using principal component analysis. We defined Arabidopsis thaliana and model legume species orthologs for each soybean gene in these families allowing us to speculate potential soybean phenotypes based on well-characterized mutants in these model species. In future work, we aim to connect genetic and functional diversity in these candidate genes with phenotypic diversity in planta allowing for improvements in soybean rapid canopy cover, yield, and weed suppression. Further development of this and similar algorithms for defining and quantifying tissue- and phenotype-specificity in gene expression may allow expansion of diversity in valuable phenotypes in important crops.
Collapse
Affiliation(s)
- Deisiany Ferreira Neres
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Joseph S. Taylor
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John A. Bryant
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Bastiaan O. R. Bargmann
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - R. Clay Wright
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
11
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Centre for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Tran TC, Mähl K, Kappel C, Dakhiya Y, Sampathkumar A, Sicard A, Lenhard M. Altered interactions between cis-regulatory elements partially resolve BLADE-ON-PETIOLE genetic redundancy in Capsella rubella. THE PLANT CELL 2024; 36:4637-4657. [PMID: 39158598 PMCID: PMC11448885 DOI: 10.1093/plcell/koae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Duplicated genes are thought to follow one of three evolutionary trajectories that resolve their redundancy: neofunctionalization, subfunctionalization, or pseudogenization. Differences in expression patterns have been documented for many duplicated gene pairs and interpreted as evidence of subfunctionalization and a loss of redundancy. However, little is known about the functional impact of such differences and about their molecular basis. Here, we investigate the genetic and molecular basis for the partial loss of redundancy between the two BLADE-ON-PETIOLE genes BOP1 and BOP2 in red shepherd's purse (Capsella rubella) compared to Arabidopsis (Arabidopsis thaliana). While both genes remain almost fully redundant in A. thaliana, BOP1 in C. rubella can no longer ensure wild-type floral organ numbers and suppress bract formation, due to an altered expression pattern in the region of the cryptic bract primordium. We use two complementary approaches, transgenic rescue of A. thaliana atbop1 atbop2 double mutants and deletions in the endogenous AtBOP1 promoter, to demonstrate that several BOP1 promoter regions containing conserved noncoding sequences interact in a nonadditive manner to control BOP1 expression in the bract primordium and that changes in these interactions underlie the evolutionary divergence between C. rubella and A. thaliana BOP1 expression and activity. Similarly, altered interactions between cis-regulatory regions underlie the divergence in functional promoter architecture related to the control of floral organ abscission by BOP1. These findings highlight the complexity of promoter architecture in plants and suggest that changes in the interactions between cis-regulatory elements are key drivers for evolutionary divergence in gene expression and the loss of redundancy.
Collapse
Affiliation(s)
- Thi Chi Tran
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Karoline Mähl
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Yuri Dakhiya
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm D-14476, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| |
Collapse
|
13
|
Duan AQ, Deng YJ, Liu H, Xu ZS, Xiong AS. An anthocyanin activation gene underlies the purple central flower pigmentation in wild carrot. PLANT PHYSIOLOGY 2024; 196:1147-1162. [PMID: 39046113 DOI: 10.1093/plphys/kiae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Many organisms have complex pigmentation patterns. However, how these patterns are formed remains largely unknown. In wild carrot (Daucus carota subsp. carota), which is also known as Queen Anne's lace, one or several purple central flowers occur in white umbels. Here, we investigated the unique central flower pigmentation pattern in wild carrot umbels. Using wild and cultivated carrot (D. carota subsp. sativus L.) accessions, transcriptome analysis, protein interaction, stable transformation, and CRISPR/Cas9-mediated knockout, an anthocyanin-activating R2R3-myeloblastosis (MYB) gene, Purple Central Flower (DcPCF), was identified as the causal gene that triggers only central flowers to possess the purple phenotype. The expression of DcPCF was only detected in tiny central flowers. We propose that the transition from purple to nonpurple flowers in the center of the umbel occurred after 3 separate adverse events: insertion of transposons in the promoter region, premature termination of the coding sequence (caused by a C-T substitution in the open reading frame), and the emergence of unknown anthocyanin suppressors. These 3 events could have occurred either consecutively or independently. The intriguing purple central flower pattern and its underlying mechanism may provide evidence that it is a remnant of ancient conditions of the species, reflecting the original appearance of Umbelliferae (also called Apiaceae) when a single flower was present.
Collapse
Affiliation(s)
- Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Goeckeritz CZ, Zheng X, Harkess A, Dresselhaus T. Widespread application of apomixis in agriculture requires further study of natural apomicts. iScience 2024; 27:110720. [PMID: 39280618 PMCID: PMC11399699 DOI: 10.1016/j.isci.2024.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any major crop species, yet the phenomenon has captivated researchers for decades given its potential for clonal seed production and plant breeding. A discussion on whether this field will benefit from the continued study of natural apomicts is warranted given the recent outstanding progress in engineering apomixis. Here, we summarize what is known about its genetic control and the status of applying synthetic apomixis in agriculture. We argue there is still much to be learned from natural apomicts, and learning from them is necessary to improve on current progress and guarantee the effective application of apomixis beyond the few genera it has shown promise in so far. Specifically, we stress the value of studying the repeated evolution of natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify outstanding questions in the field and discuss how technological advancements can be used to help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and this must be remedied for widespread use of apomixis in agriculture.
Collapse
Affiliation(s)
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
15
|
He Z, Ma X, Zhu QH, Cheng S, Liu F, Zhang T, Zhang C, Li J, Xiong X, Sun J. Genome‑wide analysis of cotton SCAMP genes and functional characterization of GhSCAMP2 and GhSCAMP4 in salt tolerance. BMC PLANT BIOLOGY 2024; 24:870. [PMID: 39289615 PMCID: PMC11409686 DOI: 10.1186/s12870-024-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Secretory carrier membrane proteins (SCAMPs) form a family of integral membrane proteins and play a crucial role in mediating exocytosis in both animals and plants. While SCAMP genes have been studied in several plant species, their functions in cotton, particularly in response to abiotic stress, have not yet been reported. RESULTS In this study, a total of 53 SCAMP genes were identified in G. arboreum, G. raimondii, G. hirsutum, and G. barbadense. These genes were classified into five groups based on a phylogenetic analysis with SCAMPs from Arabidopsis thaliana. The main factor driving the expansion of the SCAMP gene family in G. hirsutum is tandem and segmental duplication events. Using MEME, in addition to the conserved SCAMP domain, we identified 3-13 other domains in each GhSCAMP. The cis-element analysis suggested that GhSCAMPs were widely involved in cotton growth and development, and responses to abiotic stresses. RNA sequencing (RNA-Seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results showed that most GhSCAMPs were expressed highly in many tissues and had differential expression responses to drought, cold, and heat stresses. Knock-down of GhSCAMP2 and GhSCAMP4 by virus-induced gene silencing (VIGS) lead to a salt-sensitive phenotype and had a lower content of CAT, POD, and SOD. CONCLUSIONS This study identified SCAMP genes in four cotton species, enhancing our understanding of the potential biological functions of SCAMPs. Additionally, we demonstrated that GhSCAMP2 and GhSCAMP4 positively regulate cotton tolerance to salt stress.
Collapse
Affiliation(s)
- Zhaojie He
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xiaohu Ma
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Shuaishuai Cheng
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Feng Liu
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Tao Zhang
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Caixia Zhang
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianbin Li
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jie Sun
- The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
16
|
Schacksen PS, Nielsen JL. Unraveling the genetic potential of nitrous oxide reduction in wastewater treatment: insights from metagenome-assembled genomes. Appl Environ Microbiol 2024; 90:e0217723. [PMID: 39136491 PMCID: PMC11409646 DOI: 10.1128/aem.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.
Collapse
Affiliation(s)
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
McElroy KE, Masonbrink R, Chudalayandi S, Severin AJ, Serb JM. A chromosome-level genome assembly of the disco clam, Ctenoides ales. G3 (BETHESDA, MD.) 2024; 14:jkae115. [PMID: 38805695 PMCID: PMC11373642 DOI: 10.1093/g3journal/jkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The bivalve subclass Pteriomorphia, which includes the economically important scallops, oysters, mussels, and ark clams, exhibits extreme ecological, morphological, and behavioral diversity. Among this diversity are five morphologically distinct eye types, making Pteriomorphia an excellent setting to explore the molecular basis for the evolution of novel traits. Of pteriomorphian bivalves, Limida is the only order lacking genomic resources, greatly limiting the potential phylogenomic analyses related to eyes and phototransduction. Here, we present a limid genome assembly, the disco clam, Ctenoides ales (C. ales), which is characterized by invaginated eyes, exceptionally long tentacles, and a flashing light display. This genome assembly was constructed with PacBio long reads and Dovetail Omni-CTM proximity-ligation sequencing. The final assembly is ∼2.3Gb and over 99% of the total length is contained in 18 pseudomolecule scaffolds. We annotated 41,064 protein coding genes and reported a BUSCO completeness of 91.9% for metazoa_obd10. Additionally, we report a complete and annotated mitochondrial genome, which also had been lacking from Limida. The ∼20Kb mitogenome has 12 protein coding genes, 22 tRNAs, 2 rRNA genes, and a 1,589 bp duplicated sequence containing the origin of replication. The C. ales nuclear genome size is substantially larger than other pteriomorphian genomes, mainly accounted for by transposable element sequences. We inventoried the genome for opsins, the signaling proteins that initiate phototransduction, and found that, unlike its closest eyed-relatives, the scallops, C. ales lacks duplication of the rhabdomeric Gq-protein-coupled opsin that is typically used for invertebrate vision. In fact, C. ales has uncharacteristically few opsins relative to the other pteriomorphian families, all of which have unique expansions of xenopsins, a recently discovered opsin subfamily. This chromosome-level assembly, along with the mitogenome, is a valuable resource for comparative genomics and phylogenetics in bivalves and particularly for the understudied but charismatic limids.
Collapse
Affiliation(s)
- Kyle E McElroy
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rick Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | | | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Jeanne M Serb
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Kalhor R, Beslon G, Lafond M, Scornavacca C. A Rigorous Framework to Classify the Postduplication Fate of Paralogous Genes. J Comput Biol 2024; 31:815-833. [PMID: 39088355 DOI: 10.1089/cmb.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Gene duplication has a central role in evolution; still, little is known on the fates of the duplicated copies, their relative frequency, and on how environmental conditions affect them. Moreover, the lack of rigorous definitions concerning the fate of duplicated genes hinders the development of a global vision of this process. In this paper, we present a new framework aiming at characterizing and formally differentiating the fate of duplicated genes. Our framework has been tested via simulations, where the evolution of populations has been simulated using aevol, an in silico experimental evolution platform. Our results show several patterns that confirm some of the conclusions from previous studies, while also exhibiting new tendencies; this may open up new avenues to better understand the role of duplications as a driver of evolution.
Collapse
Affiliation(s)
- Reza Kalhor
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Manuel Lafond
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
| | - Celine Scornavacca
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| |
Collapse
|
19
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
20
|
Tian Z, Wei M, Xue R, Song L, Li H, Ji H, Xiao P, Sun J. Comparative study on the transcriptional activities of grass carp (Ctenopharyngodon idellus) peroxisome proliferator-activated receptors induced by different fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111021. [PMID: 39151662 DOI: 10.1016/j.cbpb.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (Ctenopharyngodon idellus). The complete coding sequences of pparαa, pparαb, pparγ, pparδa, and pparδb were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. Pparα showed the highest expression in the liver, pparγ was mainly expressed in abdominal adipose tissue, and pparδ exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only pparδa was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 μM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.
Collapse
Affiliation(s)
- Zhiqi Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peizhen Xiao
- Beijing Sunpu Biochemical and Technology Co., Ltd., Beijing 100126, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
21
|
Beringer M, Choudhury RR, Mandáková T, Grünig S, Poretti M, Leitch IJ, Lysak MA, Parisod C. Biased Retention of Environment-Responsive Genes Following Genome Fractionation. Mol Biol Evol 2024; 41:msae155. [PMID: 39073781 PMCID: PMC11306978 DOI: 10.1093/molbev/msae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.
Collapse
Affiliation(s)
- Marc Beringer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Sandra Grünig
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel Poretti
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
22
|
Yuan J, Zhang X, Zhang X, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Wang M, Xiang J, Li F. An ancient whole-genome duplication in barnacles contributes to their diversification and intertidal sessile life adaptation. J Adv Res 2024; 62:91-103. [PMID: 37734567 PMCID: PMC11331182 DOI: 10.1016/j.jare.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Whole-genome duplication (WGD) is one of the most sudden and dramatic events rarely reported in invertebrates, but its occurrence can lead to physiological, morphological, and behavioral diversification. WGD has also never been reported in barnacles, which is one of the most unique groups of crustaceans with extremely speciallized morphology (calcareous shells) and habits (intertidal sessile lifestyle). OBJECTIVES To investigate whether WGD has occurred in barnacles and examine its potential role in driving the adaptive evolution and diversification of barnacles. METHODS Based on a newly sequenced and assembled chromosome-level barnacle genome, a novel WGD event has been identified in barnacles through a comprehensive analysis of interchromosomal synteny, the Hox gene cluster, and synonymous substitution distribution. RESULTS We provide ample evidences for WGD in the barnacle genomes. Comparative genomic analysis indicates that this WGD event predates the divergence of Thoracicalcarea, occurring more than 247 million years ago. The retained ohnologs from the WGD are primarily enriched in various pathways related to environmental information processing, shedding light on the adaptive evolution and diversification of intertidal sessile lifestyle. In addition, transcriptomic analyses show that most of these ohnologs were differentially expressed following the ebb of tide. And the cytochrome P450 ohnologs with differential expression patterns are subject to subfunctionalization and/or neofunctionalization for intertidal adaptation. Besides WGD, parallel evolution underlying intertidal adaptation has also occurred in barnacles. CONCLUSION This study revealed an ancient WGD event in the barnacle genomes, which is potentially associated with the origin and diversification of thoracican barnacles, and may have contributed to the adaptive evolution of their intertidal sessile lifestyle.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
23
|
Thomas SK, Hoek KV, Ogoti T, Duong H, Angelovici R, Pires JC, Mendoza-Cozatl D, Washburn J, Schenck CA. Halophytes and heavy metals: A multi-omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima. AMERICAN JOURNAL OF BOTANY 2024; 111:e16310. [PMID: 38600732 DOI: 10.1002/ajb2.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 04/12/2024]
Abstract
PREMISE The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole-genome triplication with closely related salt-sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. METHODS Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. RESULTS Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. CONCLUSIONS These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.
Collapse
Affiliation(s)
- Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Tasha Ogoti
- Department of Computer Science, University of Missouri, Columbia, 65211, MO, USA
| | - Ha Duong
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, Fort Collins, 80523-1170, CO, USA
| | - David Mendoza-Cozatl
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, MO, USA
| | - Jacob Washburn
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Plant Genetics Research Unit, USDA-ARS, Columbia, 65211, MO, USA
| | - Craig A Schenck
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
24
|
Yue Z, Deng C, Zeng Y, Shang H, Wang S, Liu S, Liu H. Phyllostachys edulis argonaute genes function in the shoot architecture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112114. [PMID: 38735397 DOI: 10.1016/j.plantsci.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.
Collapse
Affiliation(s)
- Zhiqiang Yue
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Chu Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Yuxue Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Hongna Shang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China.
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China.
| |
Collapse
|
25
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
26
|
Lyu H, Moya ND, Andersen EC, Chamberlin HM. Gene duplication and evolutionary plasticity of lin-12/Notch gene function in Caenorhabditis. Genetics 2024; 227:iyae064. [PMID: 38809718 PMCID: PMC11492284 DOI: 10.1093/genetics/iyae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene duplication is an important substrate for the evolution of new gene functions, but the impacts of gene duplicates on their own activities and on the developmental networks in which they act are poorly understood. Here, we use a natural experiment of lin-12/Notch gene duplication within the nematode genus Caenorhabditis, combined with characterization of loss- and gain-of-function mutations, to uncover functional distinctions between the duplicate genes in 1 species (Caenorhabditis briggsae) and their single-copy ortholog in Caenorhabditis elegans. First, using improved genomic sequence and gene model characterization, we confirm that the C. briggsae genome includes 2 complete lin-12 genes, whereas most other genes encoding proteins that participate in the LIN-12 signaling pathway retain a one-to-one orthology with C. elegans. We use CRISPR-mediated genome editing to introduce alleles predicted to cause gain-of-function (gf) or loss-of-function (lf) into each C. briggsae gene and find that the gf mutations uncover functional distinctions not apparent from the lf alleles. Specifically, Cbr-lin-12.1(gf), but not Cbr-lin-12.2(gf), causes developmental defects similar to those observed in Cel-lin-12(gf). In contrast to Cel-lin-12(gf), however, the Cbr-lin-12.1(gf) alleles do not cause dominant phenotypes as compared to the wild type, and the mutant phenotype is observed only when 2 gf alleles are present. Our results demonstrate that gene duplicates can exhibit differential capacities to compensate for each other and to interfere with normal development, and uncover coincident gene duplication and evolution of developmental sensitivity to LIN-12/Notch activity.
Collapse
Affiliation(s)
- Haimeng Lyu
- Department of Molecular Genetics, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Bascom UTL 383, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Bascom UTL 383, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Mateo-Bonmatí E, Montez M, Maple R, Fiedler M, Fang X, Saalbach G, Passmore LA, Dean C. A CPF-like phosphatase module links transcription termination to chromatin silencing. Mol Cell 2024; 84:2272-2286.e7. [PMID: 38851185 PMCID: PMC7616277 DOI: 10.1016/j.molcel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Miguel Montez
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Maple
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Xiaofeng Fang
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gerhard Saalbach
- Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
28
|
Yan X, Shi G, Sun M, Shan S, Chen R, Li R, Wu S, Zhou Z, Li Y, Liu Z, Hu Y, Liu Z, Soltis PS, Zhang J, Soltis DE, Ning G, Bao M. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proc Natl Acad Sci U S A 2024; 121:e2319679121. [PMID: 38830106 PMCID: PMC11181145 DOI: 10.1073/pnas.2319679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Collapse
Affiliation(s)
- Xu Yan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Gehui Shi
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Songlin Wu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Yuhan Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | | | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai201602, China
| | - Zhongjian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
29
|
Chen J, Li Q, Xia S, Arsala D, Sosa D, Wang D, Long M. The Rapid Evolution of De Novo Proteins in Structure and Complex. Genome Biol Evol 2024; 16:evae107. [PMID: 38753069 PMCID: PMC11149777 DOI: 10.1093/gbe/evae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Recent studies in the rice genome-wide have established that de novo genes, evolving from noncoding sequences, enhance protein diversity through a stepwise process. However, the pattern and rate of their evolution in protein structure over time remain unclear. Here, we addressed these issues within a surprisingly short evolutionary timescale (<1 million years for 97% of Oryza de novo genes) with comparative approaches to gene duplicates. We found that de novo genes evolve faster than gene duplicates in the intrinsically disordered regions (such as random coils), secondary structure elements (such as α helix and β strand), hydrophobicity, and molecular recognition features. In de novo proteins, specifically, we observed an 8% to 14% decay in random coils and intrinsically disordered region lengths and a 2.3% to 6.5% increase in structured elements, hydrophobicity, and molecular recognition features, per million years on average. These patterns of structural evolution align with changes in amino acid composition over time as well. We also revealed higher positive charges but smaller molecular weights for de novo proteins than duplicates. Tertiary structure predictions showed that most de novo proteins, though not typically well folded on their own, readily form low-energy and compact complexes with other proteins facilitated by extensive residue contacts and conformational flexibility, suggesting a faster-binding scenario in de novo proteins to promote interaction. These analyses illuminate a rapid evolution of protein structure in de novo genes in rice genomes, originating from noncoding sequences, highlighting their quick transformation into active, protein complex-forming components within a remarkably short evolutionary timeframe.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Qingrong Li
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Martin RA, Tate AT. Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signalling networks. Proc Biol Sci 2024; 291:20240446. [PMID: 38835275 DOI: 10.1098/rspb.2024.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Collapse
Affiliation(s)
- Reese A Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
31
|
López-Fernández H, Pinto M, Vieira CP, Duque P, Reboiro-Jato M, Vieira J. Auto-phylo v2 and auto-phylo-pipeliner: building advanced, flexible, and reusable pipelines for phylogenetic inferences, estimation of variability levels and identification of positively selected amino acid sites. J Integr Bioinform 2024; 21:jib-2023-0046. [PMID: 38529929 PMCID: PMC11378518 DOI: 10.1515/jib-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024] Open
Abstract
The vast amount of genome sequence data that is available, and that is predicted to drastically increase in the near future, can only be efficiently dealt with by building automated pipelines. Indeed, the Earth Biogenome Project will produce high-quality reference genome sequences for all 1.8 million named living eukaryote species, providing unprecedented insight into the evolution of genes and gene families, and thus on biological issues. Here, new modules for gene annotation, further BLAST search algorithms, further multiple sequence alignment methods, the adding of reference sequences, further tree rooting methods, the estimation of rates of synonymous and nonsynonymous substitutions, and the identification of positively selected amino acid sites, have been added to auto-phylo (version 2), a recently developed software to address biological problems using phylogenetic inferences. Additionally, we present auto-phylo-pipeliner, a graphical user interface application that further facilitates the creation and running of auto-phylo pipelines. Inferences on S-RNase specificity, are critical for both cross-based breeding and for the establishment of pollination requirements. Therefore, as a test case, we develop an auto-phylo pipeline to identify amino acid sites under positive selection, that are, in principle, those determining S-RNase specificity, starting from both non-annotated Prunus genomes and sequences available in public databases.
Collapse
Affiliation(s)
- Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Pinto
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- 26706 Faculdade de Ciências da Universidade do Porto (FCUP) , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cristina P Vieira
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Duque
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- 26706 Faculdade de Ciências da Universidade do Porto (FCUP) , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Jorge Vieira
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
32
|
Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Tardif FJ, Page E. The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed. THE PLANT GENOME 2024; 17:e20442. [PMID: 38481294 DOI: 10.1002/tpg2.20442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 07/02/2024]
Abstract
Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.
Collapse
Affiliation(s)
- Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Katherine Bisaillon
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Brahim Soufiane
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sydney Meloche
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - François J Tardif
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| |
Collapse
|
33
|
Richman JA, Davis LR, Phelps MP. Gene Function is a Driver of Activin Signaling Pathway Evolution Following Whole-Genome Duplication in Rainbow Trout (Oncorhynchus mykiss). Genome Biol Evol 2024; 16:evae096. [PMID: 38701021 PMCID: PMC11110936 DOI: 10.1093/gbe/evae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The genomes of plant and animal species are influenced by ancestral whole-genome duplication (WGD) events, which have profound impacts on the regulation and function of gene networks. To gain insight into the consequences of WGD events, we characterized the sequence conservation and expression patterns of ohnologs in the highly duplicated activin receptor signaling pathway in rainbow trout (RBT). The RBT activin receptor signaling pathway is defined by tissue-specific expression of inhibitors and ligands and broad expression of receptors and Co-Smad signaling molecules. Signaling pathway ligands exhibited shared expression, while inhibitors and Smad signaling molecules primarily express a single dominant ohnolog. Our findings suggest that gene function influences ohnolog evolution following duplication of the activin signaling pathway in RBT.
Collapse
Affiliation(s)
- Jasmine A Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Leah R Davis
- College of the Environment, University of Washington, Seattle, WA, USA
| | - Michael P Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
34
|
Garber AI, Sano EB, Gallagher AL, Miller SR. Duplicate Gene Expression and Possible Mechanisms of Paralog Retention During Bacterial Genome Expansion. Genome Biol Evol 2024; 16:evae089. [PMID: 38670115 PMCID: PMC11086944 DOI: 10.1093/gbe/evae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emiko B Sano
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Gallagher
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
35
|
Edema H, Bawin T, Olsen S, Krause K, Karppinen K. Parasitic dodder expresses an arsenal of secreted cellulases with multi-substrate specificity during host invasion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108633. [PMID: 38663263 DOI: 10.1016/j.plaphy.2024.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Cuscuta campestris is a common and problematic parasitic plant which relies on haustoria to connect to and siphon nutrients from host plants. Glycoside hydrolase family 9 (GH9) cellulases (EC 3.2.1.4) play critical roles in plant cell wall biosynthesis and disassembly, but their roles during Cuscuta host invasion remains underexplored. In this study, we identified 22 full-length GH9 cellulase genes in C. campestris genome, which encoded fifteen secreted and seven membrane-anchored cellulases that showed distinct phylogenetic relationships. Expression profiles suggested that some of the genes are involved in biosynthesis and remodeling of the parasite's cell wall during haustoriogenesis, while other genes encoding secreted B- and C-type cellulases are tentatively associated with degrading host cell walls during invasion. Transcriptomic data in a host-free system and in the presence of susceptible or partially resistant tomato hosts, showed for especially GH9B7, GH9B11 and GH9B12 a shift in expression profiles in the presence of hosts, being more highly expressed during host attachment, indicating that Cuscuta can tune cellulase expression in response to a host. Functional analyses of recombinant B- and C-type cellulases showed endoglucanase activities over wide pH and temperature conditions, and activities towards multiple cellulose and hemicellulose substrates. These findings improve our understanding of host cell wall disassembly by Cuscuta, and cellulase activity towards broad substrate range potentially explain its wide host range. This is the first study to provide a broad biochemical insight into Cuscuta GH9 cellulases, which based on our study may have potential applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Hilary Edema
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| |
Collapse
|
36
|
Li C, Zhang L, Li H, Duan Y, Wen X, Yang Y, Sun X. BrrTCP4b interacts with BrrTTG1 to suppress the development of trichomes in Brassica rapa var. rapa. PLANT DIVERSITY 2024; 46:416-420. [PMID: 38798727 PMCID: PMC11119518 DOI: 10.1016/j.pld.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/29/2024]
Abstract
The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip (Brassica rapa var. rapa) plants. However, the underlying molecular mechanism remains to be uncovered. In this study, we performed the Y2H screen using BrrTCP4b as the bait, which unveiled an interaction between BrrTCP4b and BrrTTG1, a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40 (MBW) complex. This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation. Furthermore, it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex, resulting in decreased expression of BrrGL2, a positive regulator of trichomes development. In contrast, AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana. Overall, this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip, indicating a divergence from the mechanisms observed in model plant A. thaliana. The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.
Collapse
Affiliation(s)
- Cheng Li
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Li
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanwen Duan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xuemei Wen
- Tibet Plateau Institute of Biology, Lhasa 850001, Tibet, China
| | - Yongping Yang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
37
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Chen D, Xu Y, Li J, Shiba H, Ezura H, Wang N. ERECTA Modulates Seed Germination and Fruit Development via Auxin Signaling in Tomato. Int J Mol Sci 2024; 25:4754. [PMID: 38731974 PMCID: PMC11084166 DOI: 10.3390/ijms25094754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.
Collapse
Affiliation(s)
- Daoyun Chen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Yuqing Xu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Jiawei Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Hiroshi Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Ning Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
39
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
40
|
Peng Z, Song L, Chen M, Liu Z, Yuan Z, Wen H, Zhang H, Huang Y, Peng Z, Yang H, Li G, Zhang H, Hu Z, Li W, Wang X, Larkin RM, Deng X, Xu Q, Chen J, Xu J. Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus. Proc Natl Acad Sci U S A 2024; 121:e2321615121. [PMID: 38530892 PMCID: PMC10998556 DOI: 10.1073/pnas.2321615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.
Collapse
Affiliation(s)
- Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Minghua Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zeyang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Ziyu Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Haipeng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- College of Horticulture, Henan Agricultural University, Zhengzhou450046, People’s Republic of China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhaowen Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Hongbin Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Wenyun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang550006, People’s Republic of China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| |
Collapse
|
41
|
Zhou C, Yang N, Tian C, Wen S, Zhang C, Zheng A, Hu X, Fang J, Zhang Z, Lai Z, Lin Y, Guo Y. The miR166 targets CsHDZ3 genes to negatively regulate drought tolerance in tea plant (Camellia sinensis). Int J Biol Macromol 2024; 264:130735. [PMID: 38471611 DOI: 10.1016/j.ijbiomac.2024.130735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.
Collapse
Affiliation(s)
- Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaowen Hu
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Fang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhendong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
42
|
Li S, Wei L, Gao Q, Xu M, Wang Y, Lin Z, Holford P, Chen ZH, Zhang L. Molecular and phylogenetic evidence of parallel expansion of anion channels in plants. PLANT PHYSIOLOGY 2024; 194:2533-2548. [PMID: 38142233 DOI: 10.1093/plphys/kiad687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Aluminum-activated malate transporters (ALMTs) and slow anion channels (SLACs) are important in various physiological processes in plants, including stomatal regulation, nutrient uptake, and in response to abiotic stress such as aluminum toxicity. To understand their evolutionary history and functional divergence, we conducted phylogenetic and expression analyses of ALMTs and SLACs in green plants. Our findings from phylogenetic studies indicate that ALMTs and SLACs may have originated from green algae and red algae, respectively. The ALMTs of early land plants and charophytes formed a monophyletic clade consisting of three subgroups. A single duplication event of ALMTs was identified in vascular plants and subsequent duplications into six clades occurred in angiosperms, including an identified clade, 1-1. The ALMTs experienced gene number losses in clades 1-1 and 2-1 and expansions in clades 1-2 and 2-2b. Interestingly, the expansion of clade 1-2 was also associated with higher expression levels compared to genes in clades that experienced apparent loss. SLACs first diversified in bryophytes, followed by duplication in vascular plants, giving rise to three distinct clades (I, II, and III), and clade II potentially associated with stomatal control in seed plants. SLACs show losses in clades II and III without substantial expansion in clade I. Additionally, ALMT clade 2-2 and SLAC clade III contain genes specifically expressed in reproductive organs and roots in angiosperms, lycophytes, and mosses, indicating neofunctionalization. In summary, our study demonstrates the evolutionary complexity of ALMTs and SLACs, highlighting their crucial role in the adaptation and diversification of vascular plants.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lanlan Wei
- College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Min Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St.Louis, MO 63104, USA
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Liangsheng Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
43
|
Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol 2024; 22:15. [PMID: 38273274 PMCID: PMC10809612 DOI: 10.1186/s12915-024-01824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
44
|
Katayama N, Yamamoto T, Aiuchi S, Watano Y, Fujiwara T. Subgenome evolutionary dynamics in allotetraploid ferns: insights from the gene expression patterns in the allotetraploid species Phegopteris decursivepinnata (Thelypteridacea, Polypodiales). FRONTIERS IN PLANT SCIENCE 2024; 14:1286320. [PMID: 38264021 PMCID: PMC10803465 DOI: 10.3389/fpls.2023.1286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Allopolyploidization often leads to disruptive conflicts among more than two sets of subgenomes, leading to genomic modifications and changes in gene expression. Although the evolutionary trajectories of subgenomes in allopolyploids have been studied intensely in angiosperms, the dynamics of subgenome evolution remain poorly understood in ferns, despite the prevalence of allopolyploidization. In this study, we have focused on an allotetraploid fern-Phegopteris decursivepinnata-and its diploid parental species, P. koreana (K) and P. taiwaniana (T). Using RNA-seq analyses, we have compared the gene expression profiles for 9,540 genes among parental species, synthetic F1 hybrids, and natural allotetraploids. The changes in gene expression patterns were traced from the F1 hybrids to the natural allopolyploids. This study has revealed that the expression patterns observed in most genes in the F1 hybrids are largely conserved in the allopolyploids; however, there were substantial differences in certain genes between these groups. In the allopolyploids compared with the F1 hybrids, the number of genes showing a transgressive pattern in total expression levels was increased. There was a slight reduction in T-dominance and a slight increase in K-dominance, in terms of expression level dominance. Interestingly, there is no obvious bias toward the T- or K-subgenomes in the number and expression levels overall, showing the absence of subgenome dominance. These findings demonstrated the impacts of the substantial transcriptome change after hybridization and the moderate modification during allopolyploid establishment on gene expression in ferns and provided important insights into subgenome evolution in polyploid ferns.
Collapse
Affiliation(s)
- Natsu Katayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Takuya Yamamoto
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Sakura Aiuchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Tao Fujiwara
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
45
|
Li J, Zhang Z, Shi G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int J Mol Sci 2024; 25:613. [PMID: 38203784 PMCID: PMC10779257 DOI: 10.3390/ijms25010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The heavy metal ATPase (HMA) family belongs to the P-type ATPase superfamily and plays an essential role in the regulation of metal homeostasis in plants. However, the gene family has not been fully investigated in peanut. Here, a genome-wide identification and bioinformatics analysis was performed on AhHMA genes in peanut, and the expression of 12 AhHMA genes in response to Cu, Zn, and Cd was evaluated in two peanut cultivars (Silihong and Fenghua 1) differing in Cd accumulation. A total of 21 AhHMA genes were identified in the peanut genome, including ten paralogous gene pairs derived from whole-genome duplication, and an additional gene resulting from tandem duplication. AhHMA proteins could be divided into six groups (I-VI), belonging to two clades (Zn/Co/Cd/Pb-ATPases and Cu/Ag-ATPases). Most AhHMA proteins within the same clade or group generally have a similar structure. However, significant divergence exists in the exon/intron organization even between duplicated gene pairs. RNA-seq data showed that most AhHMA genes are preferentially expressed in roots, shoots, and reproductive tissues. qRT-PCR results revealed that AhHMA1.1/1.2, AhHMA3.1/3.2, AhHMA7.1/7.4, and AhHMA8.1 might be involved in Zn transport in peanut plants, while AhHMA3.2 and AhHMA7.5 might be involved in Cd transport. Our findings provide clues to further characterize the functions of AhHMA genes in metal uptake and translocation in peanut plants.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (J.L.); (Z.Z.)
| |
Collapse
|
46
|
Alves RM, de Abreu VAC, Oliveira RP, Almeida JVDA, de Oliveira MDM, Silva SR, Paschoal AR, de Almeida SS, de Souza PAF, Ferro JA, Miranda VFO, Figueira A, Domingues DS, Varani AM. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience 2024; 13:giae027. [PMID: 38837946 PMCID: PMC11152179 DOI: 10.1093/gigascience/giae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.
Collapse
Affiliation(s)
| | - Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Rafaely Pantoja Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - João Victor dos Anjos Almeida
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Mauro de Medeiros de Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Saura R Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Alexandre R Paschoal
- Departamento de Ciência da Computação (DACOM), Grupo de e Bioinformática e Reconhecimento de Padrões (bioinfo-cp), Universidade Tecnológica Federal do Paraná (UTFPR), 80230-901 Cornélio Procópio, PR, Brazil
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, OX110QX Didcot, UK
| | - Sintia S de Almeida
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Pedro A F de Souza
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jesus A Ferro
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor F O Miranda
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13416-000 Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900 Piracicaba, SP, Brazil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
47
|
Pan X, Zheng Y, Lei K, Tao W, Zhou N. Systematic analysis of Heat Shock Protein 70 (HSP70) gene family in radish and potential roles in stress tolerance. BMC PLANT BIOLOGY 2024; 24:2. [PMID: 38163888 PMCID: PMC10759535 DOI: 10.1186/s12870-023-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The 70 kD heat shock proteins (HSP70s) represent a class of molecular chaperones that are widely distributed in all kingdoms of life, which play important biological roles in plant growth, development, and stress resistance. However, this family has not been systematically characterized in radish (Raphanus sativus L.). In this study, we identified 34 RsHSP70 genes unevenly distributed within nine chromosomes of R. sativus. Phylogenetic and multiple sequence alignment analyses classified the RsHSP70 proteins into six distinct groups (Group A-F). The characteristics of gene structures, motif distributions, and corresponding cellular compartments were more similar in closely linked groups. Duplication analysis revealed that segmental duplication was the major driving force for the expansion of RsHSP70s in radish, particularly in Group C. Synteny analysis identified eight paralogs (Rs-Rs) in the radish genome and 19 orthologs (Rs-At) between radish and Arabidopsis, and 23 orthologs (Rs-Br) between radish and Chinese cabbage. RNA-seq analysis showed that the expression change of some RsHSP70s were related to responses to heat, drought, cadmium, chilling, and salt stresses and Plasmodiophora brassicae infection, and the expression patterns of these RsHSP70s were significantly different among 14 tissues. Furthermore, we targeted a candidate gene, RsHSP70-23, the product of which is localized in the cytoplasm and involved in the responses to certain abiotic stresses and P. brassicae infection. These findings provide a reference for further molecular studies to improve yield and stress tolerance of radish.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Yang Zheng
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Weilin Tao
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Na Zhou
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China.
| |
Collapse
|
48
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
49
|
Xu Y, Yao Z, Cheng Y, Ruan M, Ye Q, Wang R, Zhou G, Liu J, Liu C, Wan H. Divergent Retention of Sucrose Metabolism Genes after Whole Genome Triplication in the Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:4145. [PMID: 38140472 PMCID: PMC10747743 DOI: 10.3390/plants12244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Sucrose, the primary carbon transport mode and vital carbohydrate for higher plants, significantly impacts plant growth, development, yield, and quality formation. Its metabolism involves three key steps: synthesis, transport, and degradation. Two genome triplication events have occurred in Solanaceae, which have resulted in massive gene loss. In this study, a total of 48 and 65 genes from seven sucrose metabolism gene families in Vitis vinifera and Solanum lycopersicum were identified, respectively. The number of members comprising the different gene families varied widely. And there were significant variations in the pattern of gene duplication and loss in the tomato following two WGD events. Tandem duplication is a major factor in the expansion of the SWEET and Acid INV gene families. All the genes are irregularly distributed on the chromosomes, with the majority of the genes showing collinearity with the grape, particularly the CIN family. And the seven gene families were subjected to a purifying selection. The expression patterns of the different gene families exhibited notable variations. This study presents basic information about the sucrose metabolism genes in the tomato and grape, and paves the way for further investigations into the impact of SCT events on the phylogeny, gene retention duplication, and function of sucrose metabolism gene families in the tomato or Solanaceae, and the adaptive evolution of the tomato.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Jia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| |
Collapse
|
50
|
Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int J Mol Sci 2023; 24:17384. [PMID: 38139213 PMCID: PMC10744133 DOI: 10.3390/ijms242417384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Zeng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|