1
|
Barrett KE, Mixdorf JC, Svedjehed J, Batterton J, Eagleburger J, Yan Y, Gagnon K, Aluicio-Sarduy E, Barnhart TE, Engle JW. Solid phase extraction chromatography-based radiochemical isolation of cyclotron-produced 51Mn from enriched 54Fe targets. Nucl Med Biol 2024; 142-143:108989. [PMID: 39729887 DOI: 10.1016/j.nucmedbio.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
We report DGA extraction chromatography isolation of 51Mn from isotopically enriched 54Fe. The method has been studied in semi-automated and automated realizations. The former achieves a decay corrected radiochemical yield of 78 ± 1 % (n = 3) and a separation factor of (1.0 ± 0.8) x 105 (n = 3). With GE HealthCare's Solid Target Platform (STP) and FASTlab the latter, fully automated method achieves a decay corrected radiochemical yield of 87 ± 1 % (n = 3) and a separation factor of (2.7 ± 0.9) x 104 (n = 3). Both setups efficiently isolate cyclotron-produced 51MnCl2 suitable for human administration as determined by developed Chemistry, Manufacturing, and Controls (CMC) acceptance criteria, and support exploration of 51Mn as a clinical diagnostic tool.
Collapse
Affiliation(s)
- Kendall E Barrett
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Jason C Mixdorf
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | | | - Jeanine Batterton
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | - Jennifer Eagleburger
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | - Yongjun Yan
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | | | - Eduardo Aluicio-Sarduy
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Todd E Barnhart
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Jonathan W Engle
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America; University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America.
| |
Collapse
|
2
|
Hailai Y, Liu Y, Yang Z, Li Y, Feng J, Li W, Sheng H. Silicon regulation of manganese homeostasis in plants: mechanisms and future prospective. FRONTIERS IN PLANT SCIENCE 2024; 15:1465513. [PMID: 39703551 PMCID: PMC11655192 DOI: 10.3389/fpls.2024.1465513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Manganese (Mn), a plant micronutrient element, is an important component of metalloprotein involved in multiple metabolic processes, such as photosynthesis and scavenging reactive oxygen species (ROS). Its disorder (deficiency or excess) affects the Mn-dependent metabolic processes and subsequent growth and development of plants. The beneficial element of Si has a variety of applications in agricultural fields for plant adaptation to various environmental stresses, including Mn disorder. The probable mechanisms for Si alleviation of Mn toxicity in plants are summarized as follows: (1) Si alters the rhizosphere acidification, root exudates and microorganisms to decrease the bioavailability of Mn in the rhizosphere; (2) Si down-regulates Mn transporter gene and reinforces the apoplastic barriers for inhibiting the Mn uptake and translocation; and (3) Si promotes the Mn deposition onto cell wall and Mn compartmentation into vacuole. Under Mn-deficient conditions, the probable mechanisms for Si promotion of Mn absorption in some plants remain an open question. Moreover, scavenging ROS is a common mechanism for Si alleviating Mn disorder. This minireview highlights the current understanding and future perspectives of Si regulation of manganese homeostasis in plants.
Collapse
Affiliation(s)
- Yuebu Hailai
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ying Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingqiu Feng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Xu FQ, Meng LL, Kuča K, Wu QS. The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108808. [PMID: 38865805 DOI: 10.1016/j.plaphy.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.
Collapse
Affiliation(s)
- Fu-Qi Xu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Lu-Lu Meng
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuča
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Qiang-Sheng Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, Yangtze University, Jingzhou, 434025, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China; Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
5
|
Kunz HH, Armbruster U, Mühlbauer S, de Vries J, Davis GA. Chloroplast ion homeostasis - what do we know and where should we go? THE NEW PHYTOLOGIST 2024; 243:543-559. [PMID: 38515227 DOI: 10.1111/nph.19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ute Armbruster
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Mühlbauer
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Geoffry A Davis
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Zhai Y, Chen Z, Malik K, Wei X, Li C, Chen T. Regulation of mineral elements in Hordeum brevisubulatum by Epichloë bromicola under Cd stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1253-1268. [PMID: 38305734 DOI: 10.1080/15226514.2024.2307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In this study, wild barley (Hordeum brevisubulatum) infected (E+) and uninfected (E-) by Epichloë bromicola were used for hydroponic experiments during the seedling stage. Various attributes, such as the effect of fungal endophyte on the growth and development of wild barley, the absorption of cadmium (Cd) and mineral elements (Ca, Mg, Fe, Mn, Cu, Zn), subcellular distribution, and chemical forms were investigated under CdCl2 stress. The results showed that the fungal endophy significantly reduced the Ca content and percentage of plant roots under Cd stress. The Fe and Mn content of roots, the mineral element content of soluble fractions, and the stems in the pectin acid or protein-chelated state increased significantly in response to fungal endophy. Epichloë endophyte helped Cd2+ to enter into plants; and reduced the positive correlation of Ca-Fe and Ca-Mn in roots. In addition, it also decreased the correlation of soluble components Cd-Cu, Cd-Ca, Cd-Mg in roots, and the negative correlation between pectin acid or protein-chelated Cd in stems and mineral elements, to increase the absorbance of host for mineral elements. In conclusion, fungal endophy regulated the concentration and distribution of mineral elements, while storing more Cd2+ to resist the damage caused by Cd stress. The study could provide a ground for revealing the Cd tolerance mechanism of endophytic fungal symbionts.
Collapse
Affiliation(s)
- Yurun Zhai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuekai Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Taixiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Jing T, Li J, He Y, Shankar A, Saxena A, Tiwari A, Maturi KC, Solanki MK, Singh V, Eissa MA, Ding Z, Xie J, Awasthi MK. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108602. [PMID: 38608506 DOI: 10.1016/j.plaphy.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.
Collapse
Affiliation(s)
- Tao Jing
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jingyang Li
- Tropical Crops Genetic and Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yingdui He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Mamdouh A Eissa
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Zheli Ding
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
8
|
Wang W, Cheng HY, Zhou JM. New insight into Ca 2+ -permeable channel in plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:623-631. [PMID: 38289015 DOI: 10.1111/jipb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Calcium ions (Ca2+ ) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+ -permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+ -permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+ -permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
9
|
Li C, Liu H, Qin M, Tan YJ, Ou XL, Chen XY, Wei Y, Zhang ZJ, Lei M. RNA editing events and expression profiles of mitochondrial protein-coding genes in the endemic and endangered medicinal plant, Corydalis saxicola. FRONTIERS IN PLANT SCIENCE 2024; 15:1332460. [PMID: 38379941 PMCID: PMC10876856 DOI: 10.3389/fpls.2024.1332460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Corydalis saxicola, an endangered medicinal plant endemic to karst habitats, is widely used in Traditional Chinese Medicine to treat hepatitis, abdominal pain, bleeding hemorrhoids and other conditions. However, to date, the mitochondrial (mt) genome of C. saxicola has not been reported, which limits our understanding of the genetic and biological mechanisms of C. saxicola. Here, the mt genome of C. saxicola was assembled by combining the Nanopore and Illumina reads. The mt genome of C. saxicola is represented by a circular chromosome which is 587,939 bp in length, with an overall GC content of 46.50%. 40 unique protein-coding genes (PCGs), 22 tRNA genes and three rRNA genes were identified. Codon usage of the PCGs was investigated and 167 simple sequence repeats were identified. Twelve homologous fragments were identified between the mt and ct genomes of C. saxicola, accounting for 1.04% of the entire mt genome. Phylogenetic examination of the mt genomes of C. saxicola and 30 other taxa provided an understanding of their evolutionary relationships. We also predicted 779 RNA editing sites in 40 C. saxicola mt PCGs and successfully validated 506 (65%) of these using PCR amplification and Sanger sequencing. In addition, we transcriptionally profiled 24 core mt PCGs in C. saxicola roots treated with different concentrations of CaCl2, as well as in other organs. These investigations will be useful for effective utilization and molecular breeding, and will also provide a reference for further studies of the genus Corydalis.
Collapse
Affiliation(s)
- Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Han Liu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yao-jing Tan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xia-lian Ou
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiao-ying Chen
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhan-jiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
10
|
Xu E, Zou Y, Yang G, Zhang P, Ha MN, Mai Le Q, Zhang W, Chen X. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111935. [PMID: 38049038 DOI: 10.1016/j.plantsci.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn), an indispensable plant micronutrient, functions as a vital enzyme co-factor in numerous biochemical reactions. In rice, the Golgi-localized PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 3 (OsPML3), a member of the UNCHARACTERIZED PROTEIN FAMILY (UPF0016), plays a pivotal role in Mn homeostasis, particularly in rapidly developing tissues. This study focused on the functional characterization of another UPF0016 family member in rice, OsPML4, to elucidate its involvement in Mn homeostasis. OsPML4 had a 73% sequence identity with OsPML3 and exhibited expression in both shoots and roots, albeit at a lower transcriptional level than OsPML3. Furthermore, subcellular localization studies confirmed that OsPML4 localizes in the Golgi apparatus. Notably, heterologous expression of OsPML4 restored growth in the Mn uptake-deficient yeast strain Δsmf1 under Mn-limited conditions. Under Mn-deficient conditions, OsPML4 knockout exacerbated the decline in shoot dry weight and intensified necrosis in young leaves of OsPML3 knockout lines, which displayed stunted growth. The Mn concentration in OsPML3PML4 double knockout lines was lower than in wild-type (WT) and OsPML3 knockout lines. At the reproductive phase, OsPML3PML4 double knockout lines exhibited reduced fertility and grain yield compared to WT and OsPML3 knockout lines. Notably, reductions were observed in the deposition of cell wall polysaccharides and the content of Lea (Lewis A structure)-containing N-glycans in the young leaves of OsPML3PML4 double knockout lines, surpassing the reductions in WT and OsPML3 knockout lines. These findings underscore the significance of OsPML4 in Mn homeostasis in the Golgi apparatus, where it co-functions with OsPML3 to regulate cell wall polysaccharide deposition and late-stage Golgi N-glycosylation.
Collapse
Affiliation(s)
- Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
11
|
Kanamori K, Nishimura K, Horie T, Sato MH, Kajino T, Koyama T, Ariga H, Tanaka K, Yotsui I, Sakata Y, Taji T. Golgi apparatus-localized CATION CALCIUM EXCHANGER4 promotes osmotolerance of Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1166-1180. [PMID: 37878763 PMCID: PMC10828203 DOI: 10.1093/plphys/kiad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Kanamori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kohji Nishimura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takashi Koyama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirotaka Ariga
- Department of Plant Sciences, Institute of Agrobiological Science, NARO, Ibaraki 305-8602, Japan
| | - Keisuke Tanaka
- NODAI Genome Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
12
|
De Oliveira VH, Mazzafera P, Faleiro R, Mayer JLS, Hesterberg D, Pérez CA, Andrade SAL. Tissue-level distribution and speciation of foliar manganese in Eucalyptus tereticornis by µ-SXRF and µ-XANES shed light on its detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132555. [PMID: 37769448 DOI: 10.1016/j.jhazmat.2023.132555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
This study is the first to investigate the speciation and spatial distribution patterns of manganese (Mn) accumulated at elevated concentrations in Eucalyptus leaves by X-ray fluorescence (µ-XRF) and absorption near-edge spectroscopy (µ-XANES). Eucalyptus tereticornis is a tree species with great economic value and potential to accumulate and tolerate high Mn despite not being considered a hyperaccumulator. Seedlings grown under glasshouse conditions were irrigated with two Mn treatments: control Mn (9 µM) and high Mn solution (1000 µM). Biomass and total nutrient concentrations were assessed in roots, stems and leaves. Manganese, calcium (Ca) and potassium (K) spatial patterns were imaged by µ-SXRF in different foliar structures, and Mn speciation was conducted in these compartments by µ-XANES. Under high supply, Mn was distributed across the leaf mesophyll suggesting vacuolar sequestration in these cells. High Mn decreased cytosolic Ca by almost 50% in mesophyll cells, but K remained unaltered. Speciation suggests that a majority of the Mn fraction was complexed by organic ligands modeled as Mn-bound malate and citrate, instead of as free aqueous Mn2+ or oxidised forms. These two detoxification mechanisms: effective vacuolar sequestration and organic acid complexation, may be responsible for the impressively high Mn tolerance found in eucalypts.
Collapse
Affiliation(s)
- Vinicius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Rodrigo Faleiro
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Juliana Lischka Sampaio Mayer
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Dean Hesterberg
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Carlos Alberto Pérez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Sara Adrián L Andrade
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
13
|
Gutiérrez-Mireles ER, Páez-Franco JC, Rodríguez-Ruíz R, Germán-Acacio JM, López-Aquino MC, Gutiérrez-Aguilar M. An Arabidopsis mutant line lacking the mitochondrial calcium transport regulator MICU shows an altered metabolite profile. PLANT SIGNALING & BEHAVIOR 2023; 18:2271799. [PMID: 37879964 PMCID: PMC10601504 DOI: 10.1080/15592324.2023.2271799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
Collapse
Affiliation(s)
- Emilia R. Gutiérrez-Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Raúl Rodríguez-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M. Casandra López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Wang X, Huang R, Wang Y, Zhou W, Hu Y, Yao Y, Cheng K, Li X, Xu B, Zhang J, Xu Y, Zeng F, Zhu Y, Chen XW. Manganese regulation of COPII condensation controls circulating lipid homeostasis. Nat Cell Biol 2023; 25:1650-1663. [PMID: 37884645 DOI: 10.1038/s41556-023-01260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Precise control of circulating lipids is instrumental in health and disease. Bulk lipids, carried by specialized lipoproteins, are secreted into the circulation, initially via the coat protein complex II (COPII). How the universal COPII machinery accommodates the abundant yet unconventional lipoproteins remains unclear, let alone its therapeutic translation. Here we report that COPII uses manganese-tuning, self-constrained condensation to selectively drive lipoprotein delivery and set lipid homeostasis in vivo. Serendipitously, adenovirus hijacks the condensation-based transport mechanism, thus enabling the identification of cytosolic manganese as an unexpected control signal. Manganese directly binds the inner COPII coat and enhances its condensation, thereby shifting the assembly-versus-dynamics balance of the transport machinery. Manganese can be mobilized from mitochondria stores to signal COPII, and selectively controls lipoprotein secretion with a distinctive, bell-shaped function. Consequently, dietary titration of manganese enables tailored lipid management that counters pathological dyslipidaemia and atherosclerosis, implicating a condensation-targeting strategy with broad therapeutic potential for cardio-metabolic health.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Runze Huang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yawei Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenjing Zhou
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yating Hu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yuanhang Yao
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Kunlun Cheng
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xin Li
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Bolin Xu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Yaowen Xu
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Yuangang Zhu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
15
|
Wang Y, Li J, Pan Y, Chen J, Liu Y. Metabolic Responses to Manganese Toxicity in Soybean Roots and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3615. [PMID: 37896078 PMCID: PMC10610265 DOI: 10.3390/plants12203615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Soybean is one of the most crucial beans in the world. Although Mn (manganese) is a kind of important nutritive element helpful to plant growth and health, excess Mn is harmful to crops. Nevertheless, the effect of Mn toxicity on soybean roots and leaves metabolism is still not clear. To explore this, water culture experiments were conducted on the development, activity of enzyme, and metabolic process of soybeans under varying levels of Mn treatment (5 and 100 μM). Compared with the control, the soybeans under Mn stress showed inhibited growth and development. Moreover, the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and the soluble protein content in leaves and roots of soybean were all increased. However, soluble sugar and proline contents in soybean roots and leaves showed the opposite trend. In addition, the Mg (magnesium) and Fe (iron) ion contents in soybean leaves significantly decreased, and the Mn ion content greatly increased. In roots, the Mn and Fe ion content increased, whereas the Mg ion content decreased. Furthermore, the metabolomic analysis based on nontargeted liquid chromatography-mass spectrometry identified 136 and 164 differential metabolites (DMs) that responded to Mn toxicity in roots and leaves of soybean, respectively. These DMs might participate in five different primary metabolic pathways in soybean leaves and roots, suggesting that soybean leaves and roots demonstrate different kinds of reactions in response to Mn toxicity. These findings indicate that Mn toxicity will result in enzymes activity being changed and the metabolic pathway being seriously affected, hence inhibiting the development of soybean.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.)
| |
Collapse
|
16
|
Khan MI, Pandith SA, Shah MA, Reshi ZA. Calcium Oxalate Crystals, the Plant 'Gemstones': Insights into Their Synthesis and Physiological Implications in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1124-1138. [PMID: 37498947 DOI: 10.1093/pcp/pcad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
From simple algal forms to the most advanced angiosperms, calcium oxalate (CaOx) crystals (CRs) occur in the majority of taxonomic groups of photosynthetic organisms. Various studies have demonstrated that this biomineralization is not a simple or random event but a genetically regulated coordination between calcium uptake, oxalate (OX) synthesis and, sometimes, environmental stresses. Certainly, the occurrence of CaOx CRs is old; however, questions related to their genesis, biosynthesis, significance and genetics exhibit robust evolution. Moreover, their speculated roles in bulk calcium regulation, heavy metal/OX detoxification, light reflectance and photosynthesis, and protection against grazing and herbivory, besides other characteristics, are gaining much interest. Thus, it is imperative to understand their synthesis and regulation in relation to the ascribed key functions to reconstruct future perspectives in harnessing their potential to achieve nutritious and pest-resistant crops amid anticipated global climatic perturbations. This review critically addresses the basic and evolving concepts of the origin (and recycling), synthesis, significance, regulation and fate vis-à-vis various functional aspects of CaOx CRs in plants (and soil). Overall, insights and conceptual future directions present them as potential biominerals to address future climate-driven issues.
Collapse
Affiliation(s)
- Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Shahzad A Pandith
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
17
|
Costa A, Resentini F, Buratti S, Bonza MC. Plant Ca 2+-ATPases: From biochemistry to signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119508. [PMID: 37290725 DOI: 10.1016/j.bbamcr.2023.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy.
| | - Francesca Resentini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
18
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Esteves SM, Jadoul A, Iacono F, Schloesser M, Bosman B, Carnol M, Druet T, Cardol P, Hanikenne M. Natural variation of nutrient homeostasis among laboratory and field strains of Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5198-5217. [PMID: 37235689 DOI: 10.1093/jxb/erad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Sara M Esteves
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Fabrizio Iacono
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics (GIGA), University of Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| |
Collapse
|
20
|
Song R, Li Z, Su X, Liang M, Li W, Tang X, Li J, Qiao X. The Malus domestica metal tolerance protein MdMTP11.1 was involved in the detoxification of excess manganese in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154056. [PMID: 37562313 DOI: 10.1016/j.jplph.2023.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Ion homeostasis is maintained in plant cells by specialized transporters. However, functional studies on Mn transporters in apple trees have not been reported. MdMTP11.1, which encodes a putative Mn-MTP transporter in Malus domestica, was expressed highly in leaves and induced by Mn stress. Subcellular localization analysis of the MdMTP11.1-GFP fusion protein indicated that MdMTP11.1 was targeted to the Golgi. Meanwhile, overexpression of MdMTP11.1 in Arabidopsis thaliana conferred increased resistance to plants under toxic Mn levels, as evidenced by increased biomass of whole plant and length of primary root. Analysis of Mn bioaccumulation indicated that overexpression of MdMTP11.1 effectively reduced the content of Mn in every subcellular component and chemical forms when the plants were subjected with Mn stress. The majority of Mn of action were bound to cell wall and combined with un-dissolved phosphate. Besides, contents of malondialdehyde (MDA), proline and hydrogen peroxide (H2O2) were significantly lower, while content of chlorophyll and activities of CAT, SOD, POD and APX were significantly higher in MdMTP11.1-over-expressing plants compared with that in wild type plants under Mn stress. Taken together, these results suggest that MdMTP11.1 is a Mn specific transporter localized to the Golgi can maintain the phenotype, reduce the Mn accumulation and alleviate damage of oxidative stress, conferring the positive role of Mn tolerance.
Collapse
Affiliation(s)
- Ruoxuan Song
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Zhiyuan Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xintong Su
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Meixia Liang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Weihuan Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xiaoli Tang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Jianzhao Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xuqiang Qiao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
21
|
Kosuth T, Leskova A, Castaings L, Curie C. Golgi in and out: multifaceted role and journey of manganese. THE NEW PHYTOLOGIST 2023; 238:1795-1800. [PMID: 36856330 DOI: 10.1111/nph.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is pivotal for plant growth and development but little is known about the processes that control its homeostasis in the cell. A spotlight on the pools of intracellular manganese and their cellular function has recently been gained through the characterization of new Mn transporters. In particular, transporters catalyzing the ins and outs of Mn at the various Golgi membranes have revealed the central role of the Golgi pool of Mn in the synthesis of the cell wall and as a reservoir for the numerous cellular Mn-dependent pathways whose calibration relies on a set of Golgi-resident transporters of the BICAT and NRAMP families.
Collapse
Affiliation(s)
- Thibault Kosuth
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandra Leskova
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Loren Castaings
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
22
|
Alejandro S, Meier B, Hoang MTT, Peiter E. Cation diffusion facilitator proteins of Beta vulgaris reveal diversity of metal handling in dicotyledons. PLANT, CELL & ENVIRONMENT 2023; 46:1629-1652. [PMID: 36698321 DOI: 10.1111/pce.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Manganese (Mn), iron (Fe), and zinc (Zn) are essential for diverse processes in plants, but their availability is often limiting or excessive. Cation diffusion facilitator (CDF) proteins have been implicated in the allocation of those metals in plants, whereby most of our mechanistic understanding has been obtained in Arabidopsis. It is unclear to what extent this can be generalized to other dicots. We characterized all CDFs/metal tolerance proteins of sugar beet (Beta vulgaris spp. vulgaris), which is phylogenetically distant from Arabidopsis. Analysis of subcellular localization, substrate selectivities, and transcriptional regulation upon exposure to metal deficiencies and toxicities revealed unexpected deviations from their Arabidopsis counterparts. Localization and selectivity of some members were modulated by alternative splicing. Notably, unlike in Arabidopsis, Mn- and Zn-sequestrating members were not induced in Fe-deficient roots, pointing to differences in the Fe acquisition machinery. This was supported by low Zn and Mn accumulation under Fe deficiency and a strikingly increased Fe accumulation under Mn and Zn excess, coinciding with an induction of BvIRT1. High Zn load caused a massive upregulation of Zn-BvMTPs. The results suggest that the employment of the CDF toolbox is highly diverse amongst dicots, which questions the general applicability of metal homeostasis models derived from Arabidopsis.
Collapse
Affiliation(s)
- Santiago Alejandro
- Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bastian Meier
- Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Minh Thi Thanh Hoang
- Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
23
|
Bhar A, Chakraborty A, Roy A. The captivating role of calcium in plant-microbe interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1138252. [PMID: 36938033 PMCID: PMC10020633 DOI: 10.3389/fpls.2023.1138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Homologs of Ancestral CNNM Proteins Affect Magnesium Homeostasis and Circadian Rhythmicity in a Model Eukaryotic Cell. Int J Mol Sci 2023; 24:ijms24032273. [PMID: 36768595 PMCID: PMC9916543 DOI: 10.3390/ijms24032273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Biological rhythms are ubiquitous across organisms and coordinate key cellular processes. Oscillations of Mg2+ levels in cells are now well-established, and due to the critical roles of Mg2+ in cell metabolism, they are potentially fundamental for the circadian control of cellular activity. The identity of the transport proteins responsible for sustaining Mg2+ levels in eukaryotic cells remains hotly debated, and several are restricted to specific groups of higher eukaryotes. Here, using the eukaryotic minimal model cells of Ostreococcus tauri, we report two homologs of common descents of the Cyclin M (CNNM)/CorC protein family. Overexpression of these proteins leads to a reduction in the overall magnesium content of cells and a lengthening of the period of circadian gene expression rhythms. However, we observed a paradoxical increase in the magnesium content of the organelle fraction. The chemical inhibition of Mg2+ transport has a synergistic effect on circadian period lengthening upon the overexpression of one CNNM homolog, but not the other. Finally, both homologs rescue the deleterious effect of low extracellular magnesium on cell proliferation rates. Overall, we identified two CNNM proteins that directly affect Mg2+ homeostasis and cellular rhythms.
Collapse
|
25
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
26
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
27
|
Guo J, Long L, Chen A, Dong X, Liu Z, Chen L, Wang J, Yuan L. Tonoplast-localized transporter ZmNRAMP2 confers root-to-shoot translocation of manganese in maize. PLANT PHYSIOLOGY 2022; 190:2601-2616. [PMID: 36111860 PMCID: PMC9706481 DOI: 10.1093/plphys/kiac434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 05/16/2023]
Abstract
Almost all living organisms require manganese (Mn) as an essential trace element for survival. To maintain an irreplaceable role in the oxygen-evolving complex of photosynthesis, plants require efficient Mn uptake in roots and delivery to above-ground tissues. However, the underlying mechanisms of root-to-shoot Mn translocation remain unclear. Here, we identified an Natural Resistance Associated Macrophage Protein (NRAMP) family member in maize (Zea mays), ZmNRAMP2, which localized to the tonoplast in maize protoplasts and mediated transport of Mn in yeast (Saccharomyces cerevisiae). Under Mn deficiency, two maize mutants defective in ZmNRAMP2 exhibited remarkable reduction of root-to-shoot Mn translocation along with lower shoot Mn contents, resulting in substantial decreases in Fv/Fm and plant growth inhibition compared to their corresponding wild-type (WT) plants. ZmNRAMP2 transcripts were highly expressed in xylem parenchyma cells of the root stele. Compared to the WT, the zmnramp2-1 mutant displayed lower Mn concentration in xylem sap accompanied with retention of Mn in root stele. Furthermore, the overexpression of ZmNRAMP2 in transgenic maize showed enhanced root-to-shoot translocation of Mn and improved tolerance to Mn deficiency. Taken together, our study reveals a crucial role of ZmNRAMP2 in root-to-shoot translocation of Mn via accelerating vacuolar Mn release in xylem parenchyma cells for adaption of maize plants to low Mn stress and provides a promising transgenic approach to develop low Mn-tolerant crop cultivars.
Collapse
Affiliation(s)
- Jingxuan Guo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Lizhi Long
- Tea Research Institute of Chinese Academy of Agricultural Sciences and Key Laboratory of Tea Biology and Resources Utilization, MOA, Hangzhou 310008, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaonan Dong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Zhipeng Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Wang
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Olt P, Alejandro-Martinez S, Fermum J, Ramos E, Peiter E, Ludewig U. The vacuolar transporter LaMTP8.1 detoxifies manganese in leaves of Lupinus albus. PHYSIOLOGIA PLANTARUM 2022; 174:e13807. [PMID: 36270730 DOI: 10.1111/ppl.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.
Collapse
Affiliation(s)
- Philipp Olt
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Santiago Alejandro-Martinez
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johann Fermum
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edith Ramos
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
29
|
Binding ability of L-carnosine towards Cu2+, Mn2+ and Zn2+ in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Ca 2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2204574119. [PMID: 36161952 DOI: 10.1073/pnas.2204574119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Collapse
|
31
|
Nadig APR, Huwaimel B, Alobaida A, Khafagy ES, Alotaibi HF, Moin A, Lila ASA, Suman, M S, Krishna KL. Manganese chloride (MnCl 2) induced novel model of Parkinson's disease in adult Zebrafish; Involvement of oxidative stress, neuroinflammation and apoptosis pathway. Biomed Pharmacother 2022; 155:113697. [PMID: 36137406 DOI: 10.1016/j.biopha.2022.113697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder imposing a severe health and socioeconomic burden worldwide. Existing pharmacological approaches for developing PD are poorly developed and do not represent all the characteristics of disease pathology. Developing cost-effective, reliable Zebrafish (ZF) model will meet this gap. The present study was conceived to develop a reliable PD model in the ZF using manganese chloride (MnCl2). Here, we report that chronic exposure to 2 mM MnCl2 for 21 days produced non-motor and motor PD-like symptoms in adult ZF. Compared with control fish, MnCl2-treated fish showed reduced locomotory activity, indicating a deficit in motor function. In the light-dark box test, MnCl2-treated fish exhibited anxiety and depression-like behavior. MnCl2-treated fish exhibited a less olfactory preference for amino acids, indicating olfactory dysfunction. These behavioral symptoms were associated with decreased dopamine and increased DOPAC levels. Furthermore, oxidative stress-mediated apoptotic pathway, decreased brain derived neurotropic factor (BDNF) and increased pro-inflammatory cytokines levels were observed upon chronic exposure to MnCl2 in the brain of ZF. Thus, MnCl2-induced PD in ZF can be a cost-effective PD model in the drug discovery process. Moreover, this model could be potentially utilized to investigate the molecular pathways underlying the multifaceted pathophysiology which leads to PD using relatively inexpensive species. MnCl2 being heavy metal may have other side effects in addition to neurotoxicity. Our model recapitulates most of the hallmarks of PD, but not all pathological processes are involved. Future studies are required to recapitulate the complete pathophysiology of PD.
Collapse
Affiliation(s)
- Abhishek P R Nadig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh 11671, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Suman
- Department of Dravyaguna, Govt. Ayurvedic Medical College & Hospital, New Sayyajirao Road, Mysuru 570 001, India
| | - Sahyadri M
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India.
| |
Collapse
|
32
|
Giridhar M, Meier B, Imani J, Kogel KH, Peiter E, Vothknecht UC, Chigri F. Comparative analysis of stress-induced calcium signals in the crop species barley and the model plant Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:447. [PMID: 36114461 PMCID: PMC9482192 DOI: 10.1186/s12870-022-03820-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.
Collapse
Affiliation(s)
- Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany.
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
33
|
Blocking Rice Shoot Gravitropism by Altering One Amino Acid in LAZY1. Int J Mol Sci 2022; 23:ijms23169452. [PMID: 36012716 PMCID: PMC9409014 DOI: 10.3390/ijms23169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tiller angle is an important trait that determines plant architecture and yield in cereal crops. Tiller angle is partially controlled during gravistimulation by the dynamic re-allocation of LAZY1 (LA1) protein between the nucleus and plasma membrane, but the underlying mechanism remains unclear. In this study, we identified and characterized a new allele of LA1 based on analysis of a rice (Oryza sativa L.) spreading-tiller mutant la1G74V, which harbors a non-synonymous mutation in the predicted transmembrane (TM) domain-encoding region of this gene. The mutation causes complete loss of shoot gravitropism, leading to prostrate growth of plants. Our results showed that LA1 localizes not only to the nucleus and plasma membrane but also to the endoplasmic reticulum. Removal of the TM domain in LA1 showed spreading-tiller phenotype of plants similar to la1G74V but did not affect the plasma membrane localization; thus, making it distinct from its ortholog ZmLA1 in Zea mays. Therefore, we propose that the TM domain is indispensable for the biological function of LA1, but this domain does not determine the localization of the protein to the plasma membrane. Our study provides new insights into the LA1-mediated regulation of shoot gravitropism.
Collapse
|
34
|
Abubakari F, Fernando DR, Nkrumah PN, Harris HH, Erskine PD, van der Ent A. Cellular-level distribution of manganese in Macadamia integrifolia, M. ternifolia, and M. tetraphylla from Australia. Metallomics 2022; 14:mfac045. [PMID: 35731589 PMCID: PMC9344856 DOI: 10.1093/mtomcs/mfac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
Macadamia integrifolia and M. tetraphylla, unlike M. ternifolia, are known for their edible nuts. All three species over-accumulate the trace metal nutrient manganese (Mn) in their shoots. This study seeks to examine tissue- and cellular-level distribution of Mn and other plant nutrients in the three Macadamia species. The distribution of Mn, calcium, iron, and potassium were investigated in whole leaves and cross-sections of roots, petioles, and leaves using synchrotron-based X-ray fluorescence microscopy (XFM) in M. integrifolia, M. tetraphylla, and M. ternifolia. The results show Mn sequestration primarily in the leaf and midrib palisade mesophyll cells of all three species. Leaf interveinal regions, root cortical cells, and phloem cells were also found to be Mn loaded. The current study confirms earlier findings but further reveals that Mn is concentrated in the vacuoles of mesophyll cells owing to the exceptional resolution of the synchrotron XFM data, and the fact that fresh hydrated samples were used. New insights gained here into Mn compartmentalization in these highly Mn-tolerant Macadamias expand knowledge about potentially toxic over-accumulation of an essential micronutrient, which ultimately stands to inform strategies around farming edible species in particular.
Collapse
Affiliation(s)
- Farida Abubakari
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Denise R Fernando
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | - Peter D Erskine
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Wu C, Guo Z, Zhang M, Chen H, Peng M, Abubakar YS, Zheng H, Yun Y, Zheng W, Wang Z, Zhou J. Golgi-localized calcium/manganese transporters FgGdt1 and FgPmr1 regulate fungal development and virulence by maintaining Ca 2+ and Mn 2+ homeostasis in Fusarium graminearum. Environ Microbiol 2022; 24:4623-4640. [PMID: 35837846 DOI: 10.1111/1462-2920.16128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Calcium and manganese transporters play important roles in regulating Ca2+ and Mn2+ homeostasis in cells, which is necessary for the normal physiological activities of eukaryotes. Gdt1 and Pmr1 function as calcium/manganese transporters in the Golgi apparatus. However, the functions of Gdt1 and Pmr1 have not been previously characterized in the plant pathogenic fungus Fusarium graminearum. Here, we identified and characterized the biological functions of FgGdt1 and FgPmr1 in F. graminearum. Our study shows that FgGdt1 and FgPmr1 are both localized to the cis- and medial-Golgi. Disruption of FgGdt1 or FgPmr1 in F. graminearum caused serious defects in vegetative growth, conidiation, sexual development and significantly decreased virulence in wheat but increased deoxynivalenol (DON) production. Importantly, FgGdt1 is involved in Ca2+ and Mn2+ homeostasis and the severe phenotypic defects of the ΔFggdt1 mutant were largely due to loss of FgGdt1 function in Mn2+ transportation. FgGdt1-mCherry colocalizes with FgPmr1-GFP at the Golgi, and FgGDT1 exerts its biological function upstream of FgPMR1. Taken together, our results collectively demonstrate that the cis- and medial-Golgi-localized proteins FgGdt1 and FgPmr1 regulate Ca2+ and Mn2+ homeostasis of the Golgi apparatus, and this function is important in modulating the growth, development, DON biosynthesis and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Congxian Wu
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongkun Guo
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiru Zhang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huilin Chen
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
37
|
Numan M, Guo W, Choi S, Wang X, Du B, Jin W, Bhandari RK, Ligaba‐Osena A. Analysis of miRNAs responsive to long-term calcium deficiency in tef ( Eragrostis tef (Zucc.) Trotter). PLANT DIRECT 2022; 6:e400. [PMID: 35582629 PMCID: PMC9090557 DOI: 10.1002/pld3.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play an important role in growth, development, stress resilience, and epigenetic modifications of plants. However, the effect of calcium (Ca2+) deficiency on miRNA expression in the orphan crop tef (Eragrostis tef) remains unknown. In this study, we analyzed expression of miRNAs in roots and shoots of tef in response to Ca2+ treatment. miRNA-seq followed by bioinformatic analysis allowed us to identify a large number of small RNAs (sRNAs) ranging from 17 to 35 nt in length. A total of 1380 miRNAs were identified in tef experiencing long-term Ca2+ deficiency while 1495 miRNAs were detected in control plants. Among the miRNAs identified in this study, 161 miRNAs were similar with those previously characterized in other plant species and 348 miRNAs were novel, while the remaining miRNAs were uncharacterized. Putative target genes and their functions were predicted for all the known and novel miRNAs that we identified. Based on gene ontology (GO) analysis, the predicted target genes are known to have various biological and molecular functions including calcium uptake and transport. Pairwise comparison of differentially expressed miRNAs revealed that some miRNAs were specifically enriched in roots or shoots of low Ca2+-treated plants. Further characterization of the miRNAs and their targets identified in this study may help in understanding Ca2+ deficiency responses in tef and related orphan crops.
Collapse
Affiliation(s)
- Muhammad Numan
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Wanli Guo
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Sang‐Chul Choi
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Xuegeng Wang
- Laboratory of Environmental Epigenetics, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
- Institute of Modern Aquaculture Science and Engineering, College of Life SciencesSouth China Normal UniversityGuangzhouP. R. China
| | - Boxuan Du
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Weibo Jin
- Present address:
Department of Biotechnology, College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Ramji Kumar Bhandari
- Laboratory of Environmental Epigenetics, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Ayalew Ligaba‐Osena
- Present address:
Laboratory of Plant Molecular Biology and Biotechnology, Department of BiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
38
|
Iqbal Z, Memon AG, Ahmad A, Iqbal MS. Calcium Mediated Cold Acclimation in Plants: Underlying Signaling and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:855559. [PMID: 35574126 PMCID: PMC9094111 DOI: 10.3389/fpls.2022.855559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
Exposure of plants to low temperatures adversely affects plant growth, development, and productivity. Plant response to cold stress is an intricate process that involves the orchestration of various physiological, signaling, biochemical, and molecular pathways. Calcium (Ca2+) signaling plays a crucial role in the acquisition of several stress responses, including cold. Upon perception of cold stress, Ca2+ channels and/or Ca2+ pumps are activated, which induces the Ca2+ signatures in plant cells. The Ca2+ signatures spatially and temporally act inside a plant cell and are eventually decoded by specific Ca2+ sensors. This series of events results in the molecular regulation of several transcription factors (TFs), leading to downstream gene expression and withdrawal of an appropriate response by the plant. In this context, calmodulin binding transcription activators (CAMTAs) constitute a group of TFs that regulate plant cold stress responses in a Ca2+ dependent manner. The present review provides a catalog of the recent progress made in comprehending the Ca2+ mediated cold acclimation in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Anjuman Gul Memon
- Department of Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Lucknow, Lucknow, India
| | | |
Collapse
|
39
|
Guo J, He J, Dehesh K, Cui X, Yang Z. CamelliA-based simultaneous imaging of Ca2+ dynamics in subcellular compartments. PLANT PHYSIOLOGY 2022; 188:2253-2271. [PMID: 35218352 PMCID: PMC8968278 DOI: 10.1093/plphys/kiac020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Jiangman He
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Xinping Cui
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Statistics, University of California, Riverside, 92521 California, USA
| | | |
Collapse
|
40
|
Tsay YF, Blatt MR, Gilliham M, Maurel C, von Wirén N. Integrating membrane transport, signaling, and physiology. PLANT PHYSIOLOGY 2022; 188:921-923. [PMID: 34908141 PMCID: PMC8825422 DOI: 10.1093/plphys/kiab585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Christophe Maurel
- BPMP, University Montpellier, CNRS, INRAE, Institute Agro, Montpellier, France
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
41
|
Höller S, Küpper H, Brückner D, Garrevoet J, Spiers K, Falkenberg G, Andresen E, Peiter E. Overexpression of METAL TOLERANCE PROTEIN8 reveals new aspects of metal transport in Arabidopsis thaliana seeds. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:23-29. [PMID: 34546650 DOI: 10.1111/plb.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
METAL TOLERANCE PROTEIN8 (MTP8) of Arabidopsis thaliana is a member of the CATION DIFFUSION FACILITATOR (CDF) family of proteins that transports primarily manganese (Mn), but also iron (Fe). MTP8 mediates Mn allocation to specific cell types in the developing embryo, and Fe re-allocation as well as Mn tolerance during imbibition. We analysed if an overexpression of MTP8 driven by the CaMV 35S promoter has an effect on Mn tolerance during imbibition and on Mn and Fe storage in seeds, which would render it a biofortification target. Fe, Mn and Zn concentrations in MTP8-overexpressing lines in wild type and vit1-1 backgrounds were analysed by ICP-MS. Distribution of metals in intact seeds was determined by synchrotron µXRF tomography. MTP8 overexpression led to a strongly increased Mn tolerance of seeds during imbibition, supporting its effectiveness in loading excess Mn into the vacuole. In mature seeds, MTP8 overexpression did not cause a consistent increase in Mn and Fe accumulation, and it did not change the allocation pattern of these metals. Zn concentrations were consistently increased in bulk samples. The results demonstrate that Mn and Fe allocation is not determined primarily by the MTP8 expression pattern, suggesting either a cell type-specific provision of metals for vacuolar sequestration by upstream transport processes, or the determination of MTP8 activity by post-translational regulation.
Collapse
Affiliation(s)
- S Höller
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - H Küpper
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - D Brückner
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - J Garrevoet
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - K Spiers
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - E Andresen
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - E Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
42
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
43
|
Thomine S, Merlot S. Manganese matters: feeding manganese into the secretory system for cell wall synthesis. THE NEW PHYTOLOGIST 2021; 231:2107-2109. [PMID: 34237160 DOI: 10.1111/nph.17545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Sylvain Merlot
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| |
Collapse
|