1
|
Liebermann P, Defrin R. Opposite effects of isometric exercise on pain sensitivity of healthy individuals: the role of pain modulation. Pain Rep 2024; 9:e1195. [PMID: 39399304 PMCID: PMC11469836 DOI: 10.1097/pr9.0000000000001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Exercise-induced hypoalgesia (EIHypo) among healthy individuals is well documented; however, the opposite effect of exercise, ie, exercise-induced hyperalgesia (EIHyper), has mainly been described in patients with chronic pain or after intense/painful exercise. Objectives We investigated the extent to which EIHypo and/or EIHyper occur among healthy participants and whether these responses are associated with individuals' pain modulation capacity. Methods Fifty-seven participants (mean age 29.20 ± 5.21 years) underwent testing of pressure pain threshold as an index of EIHypo/EIHyper: pain adaptation, offset analgesia (OA), and conditioned pain modulation as indices of pain modulation, prior to and immediately postsubmaximal isometric exercise (n = 40) or rest (n = 17, control group). Body awareness and exercise-evoked stress were also evaluated. Test-retest repeatability of the pain modulation indices was performed as well. Results Twenty-four participants (60%) exhibited EIHypo, whereas 16 (40%) exhibited EIHyper. Pressure pain threshold did not change in the control group. Baseline (preexercise) OA efficacy predicted EIHypo/EIHyper. Furthermore, OA significantly decreased postexercise in the EIHyper subgroup and slightly increased in the EIHypo subgroup. Exercise-induced hypoalgesia was associated with magnitude of daily exercise while EIHyper was associated with increased exercise-evoked stress and body awareness. Conclusion Submaximal isometric exercise can induce opposite effects on pain sensitivity among healthy participants-EIHypo or EIHyper. Descending pain inhibition pathways, and top-down influences over these pathways, seem to be involved in EIHypo/EIHyper effects. As such isometric exercise is often preferred in early stages of rehabilitation, preliminary screening individuals' vulnerability to this exercise is important; OA test may be used for this purpose.
Collapse
Affiliation(s)
- Paz Liebermann
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Defrin
- Department of Physical Therapy, School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Niwa Y, Shimo K, Ohga S, Hattori T, Dokita A, Matsubara T. Effects of motor imagery using virtual reality on pain sensitivity and affect in healthy individuals: a prospective randomized crossover study. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:612-619. [PMID: 38833679 DOI: 10.1093/pm/pnae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Exercise induces a hypoalgesic response and improves affect. However, some individuals are unable to exercise for various reasons. Motor imagery, involving kinesthetic and visual imagery without physical movement, activates brain regions associated with these benefits and could be an alternative for those unable to exercise. Virtual reality also enhances motor imagery performance because of its illusion and embodiment. Therefore, we examined the effects of motor imagery combined with virtual reality on pain sensitivity and affect in healthy individuals. DESIGN Randomized crossover study. SETTING Laboratory. SUBJECTS Thirty-six participants (women: 18) were included. METHODS Each participant completed three 10-min experimental sessions, comprising actual exercise, motor imagery only, and motor imagery combined with virtual reality. Hypoalgesic responses and affective improvement were assessed using the pressure-pain threshold and the Positive and Negative Affect Schedule, respectively. RESULTS All interventions significantly increased the pressure-pain threshold at the thigh (P < .001). Motor imagery combined with virtual reality increased the pressure-pain threshold more than motor imagery alone, but the threshold was similar to that of actual exercise (both P ≥ .05). All interventions significantly decreased the negative affect of the Positive and Negative Affect Schedule (all P < .05). CONCLUSIONS Motor imagery combined with virtual reality exerted hypoalgesic and affective-improvement effects similar to those of actual exercise. CLINICAL TRIALS REGISTRATION The study was enrolled in the UMIN Clinical Trials Registry (registration number: UMIN000046095). The website for registration information is https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000052614.
Collapse
Affiliation(s)
- Yuto Niwa
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, Kobe, Hyogo 651-2180, Japan
| | - Kazuhiro Shimo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo 651-2180, Japan
| | - Satoshi Ohga
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo 651-2180, Japan
| | - Takafumi Hattori
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo 651-2180, Japan
| | - Ayaka Dokita
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, Kobe, Hyogo 651-2180, Japan
| | - Takako Matsubara
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, Kobe, Hyogo 651-2180, Japan
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo 651-2180, Japan
| |
Collapse
|
3
|
Balezina OP, Tarasova EO, Bogacheva PO. Myogenic Classical Endocannabinoids, Their Targets and Activity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1759-1778. [PMID: 39523114 DOI: 10.1134/s0006297924100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses. Role of muscle contractions in regulation of activity balance between the enzymes catalyzing synthesis and degradation of myoECs and, therefore, in the release of myoECs and exertion of their specific effects is thoroughly considered. Increasingly popular hypotheses about the prominent role of myoECs (AEA and/or 2-AG) in the rise of the overall level of ECs in the blood during muscle exercise and the development of "runner's high" and about the role of myoECs in the correction of a number of psychophysiological conditions (pain syndrome, stress, etc.) are discussed here. Thus, this review presents information about the myoEC pool from a totally new viewpoint, underlining its possible independent and non-trivial regulatory role in the body, in contrast to the traditional and well-known activity of neurogenic ECs.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Polina O Bogacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Naugle KE, Cervantes XA, Boone CL, Wind B, Naugle KM. The acute hypoalgesic effects of active head-mounted display virtual reality games. PLoS One 2024; 19:e0308064. [PMID: 39141608 PMCID: PMC11324122 DOI: 10.1371/journal.pone.0308064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The purpose of this study was to determine: (1) whether physically active virtual reality (VR) games exert an acute hypoaglesic effect on the thigh and bicep compared to a non-active VR game and an exercise only condition matched for exercise intensity in healthy individuals, and (2) whether movement variables during gameplay are associated with the hypoalgesic effect of the games. Twenty young adults completed five separate study sessions, with each session devoted to playing one head-mounted display VR game or stationary cycling for 15 minutes. The games included Holopoint at level 2 and level 3, Hot Squat, and Relax Walk. Pressure pain thresholds at the thigh and bicep were measured pre and post VR gameplay and cycling. Participants wore a heart rate monitor and accelerometers on the wrist and thigh during play to measure the intensity and quantity of movement. Repeated measures ANOVAs revealed that pressure pain thresholds on the bicep increased from pre to posttest for each condition. The results also revealed that pressure pain thresholds on the thigh increased only for the conditions eliciting the greatest cardiovascular response, which included Holopoint at level 3, Hot Squat, and cycling. Bivariate correlations indicated that moderate to vigorous physical activity of the thigh was associated with pain reduction at the thigh during Holopoint. These results revealed that active VR games and exercise exerted a more widespread hypoalgesic effect compared to the non-active VR game, which was likely driven in part by the intensity and quantity of movement during gameplay.
Collapse
Affiliation(s)
- Keith E. Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States of America
| | - Xzaliya A. Cervantes
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States of America
| | - Carolyn L. Boone
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States of America
| | - Brandon Wind
- College of Osteopathic Medicine, University of Pikeville, Pikeville, Kentucky, United States of America
| | - Kelly M. Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
5
|
Wilson JM, Franqueiro AR, Rosado E, Falso VR, Muñoz-Vergara D, Smith MT, Klerman EB, Shen S, Schreiber KL. Preoperative decreased physical activity is associated with greater postoperative pain: the mediating role of preoperative sleep disturbance. Support Care Cancer 2024; 32:429. [PMID: 38872065 DOI: 10.1007/s00520-024-08625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Engagement in physical activity (PA) is often associated with better sleep quality and less pain severity among patients diagnosed with breast cancer. However, less research has focused on whether patients' PA prior to breast surgery, including their perceived decrease in PA level, is associated with worse preoperative sleep quality, and subsequently, greater postoperative pain. This longitudinal study investigated whether patients' preoperative PA was associated with their postoperative pain. We also explored whether preoperative sleep disturbance partially mediated the relationship between preoperative PA and postoperative pain. METHODS Prior to breast surgery, patients self-reported both their overall level of PA and whether they perceived a decrease in their PA since the diagnosis/onset of treatment for cancer. Patients also completed a measure of preoperative sleep disturbance. Two weeks after surgery, patients completed a measure of postoperative surgical-area pain severity. RESULTS Our results showed that preoperatively perceiving a decrease in PA level was significantly associated with greater preoperative sleep disturbance and postoperative pain. A mediation analysis revealed that the association between preoperative decreased PA and postoperative pain was partially mediated by preoperative sleep disturbance. Notably, patients' overall preoperative level of PA was not related to preoperative sleep disturbance or postoperative pain. CONCLUSION These findings suggest that maintaining, or even increasing, PA after diagnosis/treatment may be more important than the absolute amount of PA that women engage in during the preoperative period. Potentially, some patients with breast cancer may benefit from a preoperative intervention focused on both maintaining PA and bolstering sleep quality.
Collapse
Affiliation(s)
- Jenna M Wilson
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA.
| | - Angelina R Franqueiro
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA
| | - Emily Rosado
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA
| | - Victoria R Falso
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA
| | - Dennis Muñoz-Vergara
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Osher Center for Integrative Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael T Smith
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Lyons KM, Stock MS, Hanney WJ, Anderson AW. The effect of resistance exercise on multimodal pain thresholds in local and systemic muscle sites. Physiol Rep 2024; 12:e16123. [PMID: 38890005 PMCID: PMC11187916 DOI: 10.14814/phy2.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Dynamic resistance exercise may produce reductions in pain locally at the exercising muscle and systemically at non-exercising sites. However, limited research has examined these changes with multiple noxious stimuli. This study examined changes in heat pain threshold (HPT) and pressure pain threshold (PPT) on different musculature after an upper and lower body exercise to compare local and systemic effects. A crossover design with 28 participants (mean age: 21 ± 4 years, 21 female) completed three sessions. Visit one included baseline quantitative sensory testing and 5-repetition maximum (RM) testing for upper (shoulder press) and lower (leg extension) body. In subsequent sessions, participants performed upper or lower body exercises using an estimated 75% 1-RM with pre/post assessment of HPT and PPT at three sites: deltoid, quadriceps, and low back. A significant three-way interaction was observed for HPT (F (1.71, 3.80) = 2.19, p = 0.036, η2p = 0.12) with significant increases in HPT over the quadriceps (p = 0.043) after leg extension and over the deltoid (p = 0.02) after shoulder press. Significant systemic changes were not observed for HPT or PPT. Local but not systemic effects were demonstrated after an acute bout of exercise. Peripheral pain sensitivity may be more responsive to heat stimuli after resistance exercise.
Collapse
Affiliation(s)
- Kaitlyn M. Lyons
- School of Kinesiology and Rehabilitation Sciences, College of Health Professions and SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Matt S. Stock
- School of Kinesiology and Rehabilitation Sciences, College of Health Professions and SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - William J. Hanney
- School of Kinesiology and Rehabilitation Sciences, College of Health Professions and SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Abigail W. Anderson
- School of Kinesiology and Rehabilitation Sciences, College of Health Professions and SciencesUniversity of Central FloridaOrlandoFloridaUSA
| |
Collapse
|
7
|
Tomschi F, Schmidt A, Soffner M, Hilberg T. Hypoalgesia after aerobic exercise in healthy subjects: A systematic review and meta-analysis. J Sports Sci 2024; 42:574-588. [PMID: 38726662 DOI: 10.1080/02640414.2024.2352682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Exercise-Induced Hypoalgesia (EIH) refers to an acute reduced pain perception after exercise. This systematic review and meta-analysis investigated the effect of a single aerobic exercise session on local and remote EIH in healthy individuals, examining the role of exercise duration, intensity, and modality. Pressure pain thresholds (PPT) are used as the main measure, applying the Cochrane risk of bias tool and GRADE approach for certainty of evidence assessment. Mean differences (MD; Newton/cm²) for EIH effects were analysed. Thirteen studies with 23 exercises and 14 control interventions are included (498 participants). Most studies used bicycling, with only two including running/walking and one including rowing. EIH occurred both locally (MD = 3.1) and remotely (MD = 1.8), with high-intensity exercise having the largest effect (local: MD = 7.5; remote: MD = 3.0) followed by moderate intensity (local: MD = 3.1; remote: MD = 3.0). Low-intensity exercise had minimal impact. Neither long nor short exercise duration induced EIH. Bicycling was found to be effective in eliciting EIH, in contrast to the limited research observed in other modalities. The overall evidence quality was moderate with many studies showing unclear risk biases.
Collapse
Affiliation(s)
- Fabian Tomschi
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Alexander Schmidt
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Markus Soffner
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
8
|
Rêgo DSB, Calió ML, Filev R, Mello LE, Leslie ATFS. Long-term Effects of Cannabidiol and/or Fentanyl Exposure in Rats Submitted to Neonatal Pain. THE JOURNAL OF PAIN 2024; 25:715-729. [PMID: 37820846 DOI: 10.1016/j.jpain.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.
Collapse
Affiliation(s)
- Débora S B Rêgo
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Michele Longoni Calió
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Filev
- Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Ana T F S Leslie
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
9
|
Boecker H, Daamen M, Maurer A, Bodensohn L, Werkhausen J, Lohaus M, Manunzio C, Manunzio U, Radbruch A, Attenberger U, Dukart J, Upadhyay N. Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts. FRONTIERS IN NEUROIMAGING 2024; 3:1332384. [PMID: 38455686 PMCID: PMC10917966 DOI: 10.3389/fnimg.2024.1332384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and μ-opioidergic receptor distributions within the 'reward' network. Discussion These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Luisa Bodensohn
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Judith Werkhausen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marvin Lohaus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christian Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Ursula Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Boruch A, Branchaw G, O'Connor PJ, Cook DB. Physical Activity and Fatigue Symptoms: Neurotypical Adults and People with Chronic Multisymptom Illnesses. Curr Top Behav Neurosci 2024; 67:281-308. [PMID: 39037494 DOI: 10.1007/7854_2024_502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For neurotypical adults, a single bout of low-to-moderate intensity physical activity usually transiently improves feelings of energy. Similar bouts of exercise have the opposite effect of increased feelings of fatigue when performed by samples with chronic multisymptom illnesses (CMIs) such as Long-COVID, Gulf War Illness (GWI), or Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). The short-term adoption of regular moderate intensity physical activity (typical experiments are 1 to 6 months) among neurotypical adults results in small-to-moderate improvements in self-reported feelings of fatigue, energy, and vitality. Small improvements in these feelings, or no change at all, occur for CMIs, but limited data precludes strong conclusions. The mechanisms of exercise effects on fatigue, whether acute or chronic, are poorly understood but likely involve multiple neural circuits and associated transmitters. For CMIs, the mechanisms of acute worsening of fatigue with exercise may be driven by the yet unknown pathophysiological mechanisms of the disease (perhaps involving brain, immune and autonomic system dysfunction, and their interactions). Likewise, fatigue improvements may depend on whether chronic physical activity is a disease-modifying treatment.
Collapse
Affiliation(s)
- Alex Boruch
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace Branchaw
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Dane B Cook
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Goldfarb AH, Kraemer RR, Baiamonte BA. Endogenous Opioids and Exercise-Related Hypoalgesia: Modern Models, Measurement, and Mechanisms of Action. ADVANCES IN NEUROBIOLOGY 2024; 35:137-155. [PMID: 38874722 DOI: 10.1007/978-3-031-45493-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This chapter will focus on the role exercise appears to have on activation and modulating factors within the central nervous system related to endogenous like opioids and its possible contribution to exercise-induced hypoalgesia. The implications for the exercise-mediated alterations of CNS activation factors related to opioids, specifically endorphins and enkephalins, will be presented. In this update, we discuss utilization of new technology and methods to monitor mechanisms of opioid involvement to suggest their contribution with exercise mediated hypoalgesia as well as their relationships to alterations of perceptions of pain and mood. Several special populations were included to suggest that not all individuals will respond to the exercise by mediating hypoalgesia. Factors that may confound the current understanding and suggestions from the recent literature will be presented as well as suggestions for future investigations.
Collapse
Affiliation(s)
- Allan H Goldfarb
- University of North Carolina Greensboro, Department of Kinesiology, Greensboro, NC, USA.
| | - Robert R Kraemer
- Southeastern Louisiana University, Department of Kinesiology and Health Studies, Hammond, LA, USA
| | - Brandon A Baiamonte
- Southeastern Louisiana University, Department of Psychology, Hammond, LA, USA
| |
Collapse
|
12
|
Naugle KM, Naugle KE, Teegardin M, Kaleth AS. Physical Activity to Prevent the Age-Related Decline of Endogenous Pain Modulation. Exerc Sport Sci Rev 2023; 51:169-175. [PMID: 37462564 DOI: 10.1249/jes.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As humans age, the capacity of the central nervous system to endogenously modulate pain significantly deteriorates, thereby increasing the risk for the development of chronic pain. Older adults are the least physically active cohort of all age groups. We hypothesize that a sedentary lifestyle and decreased physical activity may contribute to the decline of endogenous pain modulation associated with aging.
Collapse
Affiliation(s)
- Kelly M Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN
| | | | | | | |
Collapse
|
13
|
Zi‐Han X, Nan A, Rui CJ, Yong‐Long Y. Modulation of pain perceptions following treadmill running with different intensities in females. Physiol Rep 2023; 11:e15831. [PMID: 37749050 PMCID: PMC10519819 DOI: 10.14814/phy2.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to compare the effects of three intensities of treadmill running on exercise-induced hypoalgesia (EIH) in healthy individuals. We anticipated that the primary and secondary changes in pain perception and modulation may differ between running intensities. Sixty-six women were randomly assigned to one of three treadmill running intensities for 35 min: 40% reserved heart rate (HRR), 55% HRR, or 70% HRR. The effects of EIH were assessed using pressure pain thresholds (PPT) and tolerance thresholds (PPTol). We measured conditional pain modulation (CPM). Compared with baseline, PPT and PPTol significantly increased in all groups during running and at the 5-10-min follow-up. The PPT and PPTol changes in the moderate- and low-intensity groups were significantly higher than those in the high-intensity group during running and 24 h after running, while the CPM responses of the high-intensity group were significantly reduced at the 24-h follow-up. Moderate- and low-intensity running may elicit significant primary and secondary (persisting over 24 h) EIH effects and increase CPM responses in females. However, high-intensity running induced only limited analgesic effects and reduced CPM responses, which may be attributed to the activation of endogenous pain modulation.
Collapse
Affiliation(s)
- Xu Zi‐Han
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - An Nan
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - Chang Jeremy Rui
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Yang Yong‐Long
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
14
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
15
|
Cervini GA, Rice M, Jasperse JL. Potential Local Mechanisms for Exercise-Induced Hypoalgesia in Response to Blood Flow Restriction Training. Cureus 2023; 15:e43219. [PMID: 37692724 PMCID: PMC10490383 DOI: 10.7759/cureus.43219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Overall, there is a great need within sports medicine to ensure that athletes can return from injury in an efficient, yet thorough manner. It is crucial to not avoid necessary difficulties in this process but also to ensure time-efficient rehabilitation. One of the more promising techniques to achieve timely recovery is blood flow restriction (BFR) training. BFR training is a growing and novel development that could be a vital tool to lighten the burden of recovery from injury in athletes. BFR utilizes a pneumatic tourniquet to limit blood flow in specific areas of the body. The use of BFR has been shown to potentially enhance the analgesic effects of exercise-induced hypoalgesia (EIH). By limiting pain, athletes will be less burdened by mobility and loading exercises required for them to effectively return to play. In a field where time away from sports can have massive implications, the need for tools to assist in the acceleration of the rehabilitation process is vital. Much of the work that has already been done in the field has been able to exploit the benefits of EIH and further enhance the body's capabilities through BFR. Studies have compared EIH at low- and high-intensity settings utilizing BFR with both resistance and aerobic exercise. The results of these studies show comparable beta-endorphin levels with high-intensity exercise without BFR and low-intensity exercise with BFR. Low-intensity training with BFR had greater local pain relief, perhaps indicating the promising effects of BFR in enhancing EIH. By reviewing the current literature on this topic, we hope that further progress can be made to better understand the mechanism behind BFR and its ability to enhance EIH. Currently, local metabolites are a major focus for the potential mechanism behind these effects. Mas-related G-protein-coupled receptors (Mrgprs) contribute to local pain pathways via mast cell degranulation. Similarly, chemokine receptor 2/chemokine ligand 2 (CCR2/CCL2) triggers mast cell degranulation and inflammation-induced pain. Finally, pain-reducing effects have been linked to anti-inflammatory IL-10 signaling and anaerobic metabolites via transient receptor potential vanilloid 1 (TRPV1). Through a better understanding of these metabolites and their mechanisms, it is possible to further exploit the use of BFR to not only serve athletes recovering from injury but also apply this information to better serve all patients.
Collapse
Affiliation(s)
- Giovanni A Cervini
- Biomedical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Matthew Rice
- Biomedical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Jeffrey L Jasperse
- Biomedical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| |
Collapse
|
16
|
de Oliveira FCL, Cossette C, Mailloux C, Wideman TH, Beaulieu LD, Massé-Alarie H. Within-Session Test-Retest Reliability of Pressure Pain Threshold and Mechanical Temporal Summation in Chronic Low Back Pain. Clin J Pain 2023; 39:217-225. [PMID: 36917769 DOI: 10.1097/ajp.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES To determine the absolute and relative within-session test-retest reliability of pressure pain threshold (PPT) and temporal summation of pain (TSP) at the low back and the forearm in individuals with chronic low back pain (CLBP) and to test the impact of different sequences of measurements on reliability metrics. MATERIALS AND METHODS Twenty-eight adults with CLBP were recruited. Relative (intraclass correlation coefficient [ICC] and coefficient of variation) and absolute reliability (standard error of measurement and minimal detectable changes) were quantified at 4 sites (back: sacrum and lumbar erector spinae; wrist: hand dorsum and wrist flexors) for PPT and 2 sites (hand and low back) for TSP, for various sequences of measurements. RESULTS Systematic differences were found between within test and retest for most PPT sequences at the lumbar erector spinae site and 1 TSP sequence (1-2-3) at back and hand sites, precluding reliability analyses for these data. Within-session PPT relative reliability was excellent at low back (ICC = 0.83 to 0.94) and wrist (ICC = 0.88 to 0.97) sites, whereas TSP showed good to excellent reliability at hand (ICC = 0.80 to 0.90) and low back (ICC = 0.73 to 0.89). In general, 2 and 3 measurements optimized absolute and relative reliability for TSP and PPT, respectively. DISCUSSION Within-session reliability was generally excellent for PPT and TSP at the low back and hand sites among individuals with CLBP. We recommend using 3 measurements for PPT and 2 for TSP to optimize reliability. Caution is recommended when testing PPT of the painful lower back area since a systematic difference was present between the test and retest.
Collapse
Affiliation(s)
- Fábio Carlos Lucas de Oliveira
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Université Laval, Quebec
- Research Unit in Sport and Physical Activity (CIDAF), Universidade de Coimbra, Coimbra, Portugal
| | - Camille Cossette
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Université Laval, Quebec
| | - Catherine Mailloux
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Université Laval, Quebec
| | - Timothy H Wideman
- School of Physical and Occupational Therapy, McGill University, Montreal
| | | | - Hugo Massé-Alarie
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Université Laval, Quebec
| |
Collapse
|
17
|
Johnsen K, Owen PJ, Tagliaferri SD, Van Oosterwijck J, Fitzgibbon BM, Ford JJ, Belavy DL, Miller CT. The Interaction Between Psychosocial Factors and Exercise-Induced Hypoalgesia in Pain-Free Nurses. J Pain Res 2023; 16:529-541. [PMID: 36824499 PMCID: PMC9942496 DOI: 10.2147/jpr.s386440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
Purpose This cross-sectional study aimed to investigate whether psychosocial factors were predictive for exercise-induced hypoalgesia (EIH) in pain-free adults. Methods A sample of 38 pain-free nurses with a mean (SD) age of 26 (6) years were included in this study. Participants completed psychosocial questionnaires prior to physical tests. Pressure pain threshold (PPT) was assessed bilaterally at the calves (local), lower back (semi-local) and forearm (remote) before and immediately after a maximal graded cycling exercise test. Separate linear mixed effects models were used to determine change in PPT before and after cycling exercise (EIH). Multiple linear regression for all psychosocial variables and best subset regression was used to identify predictors of EIH at all locations. Results The relative mean increase in PPT at the forearm, lumbar, calf, and globally (all sites pooled) was 6.0% (p<0.001), 10.1% (p<0.001), 13.9% (p<0.001), and 10.2% (p=0.013), respectively. Separate best subset multiple linear regression models at the forearm (predictors; Multidimensional Scale of Perceived Social Support (MSPSS) total), lumbar (predictors; MSPSS total, Pain Catastrophizing Scale (PCS) total, Depression Anxiety Stress Scale (DASS) depression), calf (predictors; MSPSS friends, PCS total), and global (predictors; MSPSS friends, PCS total) accounted for 7.5% (p=0.053), 13% (p=0.052), 24% (p=0.003), and 17% (p=0.015) of the variance, respectively. Conclusion These findings confirm that cycling exercise produced EIH in young nurses and provided preliminary evidence to support the interaction between perceived social support, pain catastrophizing and EIH. Further investigation is required to better understand psychological and social factors that mediate EIH on a larger sample of adults at high risk of developing chronic musculoskeletal pain.
Collapse
Affiliation(s)
- Kristian Johnsen
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Patrick J Owen
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Scott D Tagliaferri
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium,Research Foundation – Flanders (FWO), Brussels, Belgium
| | - Bernadette M Fitzgibbon
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jon J Ford
- Advance HealthCare, Boronia, VIC, Australia,Low Back Research Team, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
| | - Daniel L Belavy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia,Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit, Bochum, Germany
| | - Clint T Miller
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia,Correspondence: Clint T Miller, Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia, Tel +61 3 9244 6605, Email
| |
Collapse
|
18
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
19
|
Khan J, Wang Q, Korczeniewska OA, McNeil R, Ren Y, Benoliel R, Eliav E. Response profile in a rat model of exercise-induced hypoalgesia is associated with duloxetine, pregabalin and diclofenac effect on constriction-induced neuropathy. Eur J Pain 2023; 27:129-147. [PMID: 36198034 DOI: 10.1002/ejp.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exercise is a known trigger of the inhibitory pain modulation system and its analgesic effect is termed exercise-induced hypoalgesia (EIH). Previous studies have demonstrated that rats with deficient analgesic response following exercise develop more significant hypersensitivity following nerve injury compared to rats with substantial analgesic response following exercise. OBJECTIVES A rat model of EIH as an indicator of the pain inhibitory system's efficiency was used to explore the association between EIH profiles and the effect of pharmacotherapy on rat's neuropathic pain. METHODS EIH profiles were assessed by evaluating paw responses to mechanical stimuli before and after exercise on a rotating rod. Rats with a reduction of ≤33% in responses were classified as low EIH and those with ≥67% as high EIH. Low and high EIH rats underwent sciatic nerve chronic constriction injury (CCI). Paw responses to mechanical stimuli were measured at baseline, following CCI, and after treatment with diclofenac, duloxetine or pregabalin. In a different group of low and high EIH rats, EIH was measured before and following treatment with the same medications. RESULTS Low EIH rats developed more significant hypersensitivity following CCI. Duloxetine and pregabalin successfully reduced hypersensitivity, although significantly more so in low EIH rats. Diclofenac had limited effects, and only on low EIH rats. Four days of duloxetine administration transformed low EIH rats' profiles to high EIH. CONCLUSIONS The findings of this study suggest that EIH profiles in rats can not only predict the development of hypersensitivity following injury but may also support targeted pharmacological treatment. SIGNIFICANCE Exercise is a known trigger of the inhibitory pain modulation. Rats with deficient analgesic response following exercise develop more significant hypersensitivity following nerve injury. Pain modulation profiles in rats can also support targeted pharmacological treatment; rats with deficient analgesic response following exercise benefit more from treatment with duloxetine and gabapentin. Treatment with duloxetine can improve pain modulation profile.
Collapse
Affiliation(s)
- Junad Khan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Qian Wang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - Yanfang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Rafael Benoliel
- Rutgers School of Dental Medicine, Rutgers university, Newark, New Jersey, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
20
|
Xu ZH, An N, Wang ZR. Exercise-Induced Hypoalgesia Following Proprioceptive Neuromuscular Facilitation and Resistance Training Among Individuals With Shoulder Myofascial Pain: Randomized Controlled Trial. JMIRX MED 2022; 3:e40747. [PMID: 37725522 PMCID: PMC10414395 DOI: 10.2196/40747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 09/21/2023]
Abstract
BACKGROUND Various exercises can attenuate pain perception in healthy individuals and may interact with the descending pain modulation in the central nervous system. However, the analgesic effects of exercise in patients with myofascial pain can be disrupted by the pathological changes during chronic pain conditions. Thus, the exercises targeted on the facilitation of the sensory-motor interaction may have a positive impact on the restoration of the descending pain modulation and the analgesia effects. OBJECTIVE This paper estimates the effect of proprioceptive neuromuscular facilitation (PNF) and resistance training on exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) among patients with myofascial pain syndrome. METHODS A total of 76 female patients with myofascial pain syndrome (aged 18-30 years), with the pain in the upper trapezius and a visual analog scale score of greater than 30/100 mm, were enrolled in the study. Participants were randomly assigned into 3 intervention groups, including isometric (n=18, 24%), isotonic (n=19, 25%), and PNF (n=20, 26%) exercises, as well as 1 control group (n=19, 25%) with no intervention. Pressure pain threshold and the CPM responses at the myofascial trigger point, arm, and leg sites were assessed before and after the exercise session. The effective EIH response was reflected in the improvement of pressure pain thresholds. RESULTS There was an increase in pressure pain thresholds and CPM responses at trigger point (P<.001 and P<.001), arm (P<.001 and P<.001), and leg sites (P<.001 and P=.03) in participants who performed PNF and isotonic exercise, while the isometric exercise only increased pressure pain thresholds at leg sites (P=.03). Compared with the control group, both the isotonic (P=.02) and PNF (P<.001) groups showed greater EIH responses at the trigger points. In comparison to the control group, only the PNF exercise (P=.01) significantly improved pressure pain thresholds and CPM responses at arm and leg sites compared to the control group. CONCLUSIONS PNF, isotonic, and isometric exercises could lead to local and global EIH effects. The improvement in CPM response following PNF and isotonic exercises suggested that the EIH mechanisms of different resistance exercises may be attributed to the enhancement of the endogenous pain modulation via the motor-sensory interaction from the additional eccentric and dynamic muscle contraction. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCtr202111090819166165; https://tinyurl.com/2ab93p7n.
Collapse
Affiliation(s)
- Zi-Han Xu
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Nan An
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zi-Ru Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
21
|
Jiang S, Zheng C, Wen G, Bu B, Zhao S, Xu X. Down-regulation of NR2B receptors contributes to the analgesic and antianxiety effects of enriched environment mediated by endocannabinoid system in the inflammatory pain mice. Behav Brain Res 2022; 435:114062. [PMID: 35985400 DOI: 10.1016/j.bbr.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics. It has been reported that enriched environment (EE), as a new way of endogenous pharmacotherapy, is effective in attenuating chronic inflammatory pain. However, the underlying molecular mechanisms are still not fully understood. NMDA NR2B receptor plays a critical role in pain transmission and modulation. Thus, in this study, we aimed at the effect of EE on the NR2B receptors expression in the prefrontal cortex, hippocampus and thalamus in the inflammatory pain mice. The results showed a significant increase of NR2B receptors in the thalamus of mice at 7 d following injection of CFA in the subcutaneous of the bottom of the left hind paw. EE significantly reduced the duration of mechanical hypersensitivity and anxiety-related behavior and the expression of NR2B receptors as compared to the standard condition. Furthermore, EE significantly increased 2-arachidonoylglycero (2-AG) levels at 7 d in the inflammatory pain mice as compared to the standard condition, and the effect of EE on the behavior and the expression of NR2B receptors was abolished by intraperitoneal injection of AM281 (a selective antagonist of CB1 receptor). Elevated 2-AG levels by intraperitoneal injection of JZL184 (a selective inhibitor of MAGL, the enzyme responsible for 2-AG hydrolysis) produced the same effect as EE. Results from this study provide the evidence that EE mimics endocannabinoids to take analgesic and anti-anxiety activities by decreasing the expression of the NR2B receptors via the CB1 receptor in the thalamus, pending further studies.
Collapse
Affiliation(s)
- Shukun Jiang
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Chuanfei Zheng
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Bin Bu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Shuang Zhao
- China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Xiaoming Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| |
Collapse
|
22
|
Ramírez-Vélez R, Oteiza J, de Tejerina JMCF, García-Alonso N, Legarra-Gorgoñon G, Oscoz-Ochandorena S, Arasanz H, García-Alonso Y, Correa-Rodríguez M, Izquierdo M. Resistance training and clinical status in patients with postdischarge symptoms after COVID-19: protocol for a randomized controlled crossover trial "The EXER-COVID Crossover Study". Trials 2022; 23:643. [PMID: 35945634 PMCID: PMC9361270 DOI: 10.1186/s13063-022-06608-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Physical exercise induces a coordinated response of multiple organ systems, including the immune system. In fact, it has been proposed that physical exercise may modulate the immune system. However, the potential effect of an exercise program on COVID-19 survivors has not been investigated. Thus, the aim of this study is to evaluate the modifications in immunological parameters, physical condition, inflammatory profile, and perceived persistent symptoms after 6 weeks of supervised resistance training (RT), in addition to the standard care on the clinical status of patients with persistent COVID-19 symptoms. The objective of this protocol is to describe the scientific rationale in detail and to provide information about the study procedures. METHODS/DESIGN A total of 100 patients with postdischarge symptoms after COVID-19 will be randomly allocated into either a group receiving standard care (control group) or a group performing a multicomponent exercise program two times a week over a period of 6 weeks. The main hypothesis is that a 6-week multicomponent exercise program (EXER-COVID Crossover Study) will improve the immunological and inflammatory profile, physical condition, and persistent perceived symptoms (fatigue/tiredness, musculoskeletal pain, and shortness of breath) in patients with postdischarge symptoms after COVID-19. DISCUSSION Our results will provide insights into the effects of a multicomponent exercise program on immunological parameters, physical condition, inflammatory profile, and persistent perceived symptoms in patients with postdischarge symptoms after COVID-19. Information obtained by this study will inform future guidelines on the exercise training rehabilitation of patients with postdischarge symptoms after COVID-19. TRIAL REGISTRATION NCT04797871 , Version 2. Registered on March 15, 2021.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain. .,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Julio Oteiza
- Servicio de Medicina Interna, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan Manuel Casas Fernández de Tejerina
- Servicio de Medicina Interna, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Nora García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gaizka Legarra-Gorgoñon
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sergio Oscoz-Ochandorena
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Medical Oncology Department, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Yesenia García-Alonso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18016, Granada, Spain.,Biosanitary Research Institute (ibs.GRANADA), Granada, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Desai S, Borg B, Cuttler C, Crombie KM, Rabinak CA, Hill MN, Marusak HA. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res 2022; 7:388-408. [PMID: 34870469 PMCID: PMC9418357 DOI: 10.1089/can.2021.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in maintaining homeostasis, including the regulation of metabolism and stress responses. Chronic stress may blunt eCB signaling, and disruptions in eCB signaling have been linked to stress-related psychiatric disorders and physical health conditions, including anxiety, depression, post-traumatic stress disorder (PTSD), diabetes, and obesity. Pharmacological and nonpharmacological behavioral interventions (e.g., exercise) that target the eCB system may be promising therapeutic approaches for the prevention and treatment of stress-related diseases. In this study, we perform a systematic review and the first meta-analysis to examine the impact of exercise on circulating eCB concentrations. Materials and Methods: We performed a review of the MEDLINE (PubMed) database for original articles examining the impact of exercise on eCBs in humans and animal models. A total of 262 articles were screened for initial inclusion. Results: Thirty-three articles (reporting on 57 samples) were included in the systematic review and 10 were included in the meta-analysis. The majority of samples that measured anandamide (AEA) showed a significant increase in AEA concentrations following acute exercise (74.4%), whereas effects on 2-arachidonoylglycerol (2-AG) were inconsistent. The meta-analysis, however, revealed a consistent increase in both AEA and 2-AG following acute exercise across modalities (e.g., running, cycling), species (e.g., humans, mice), and in those with and without pre-existing health conditions (e.g., PTSD, depression). There was substantial heterogeneity in the magnitude of the effect across studies, which may relate to exercise intensity, physical fitness, timing of measurement, and/or fasted state. Effects of chronic exercise were inconsistent. Conclusions: Potential interpretations and implications of exercise-induced mobilization of eCBs are discussed, including refilling of energy stores and mediating analgesic and mood elevating effects of exercise. We also offer recommendations for future work and discuss therapeutic implications for exercise in the prevention and treatment of stress-related psychopathology.
Collapse
Affiliation(s)
- Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Breanna Borg
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Kevin M. Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Christine A. Rabinak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
Peterson JA, Lohman C, Larson RD, Bemben MG, Black CD. Body Composition does not influence Conditioned Pain Modulation and Exercise Induced Hyperalgesia in Healthy Males and Females. Eur J Pain 2022; 26:1800-1810. [PMID: 35802068 DOI: 10.1002/ejp.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/09/2022] [Accepted: 07/03/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Obese individuals report a higher susceptibility to chronic pain. Females are more likely to have chronic pain and excess adipose tissue. Chronic pain is associated with dysfunctional pain modulatory mechanisms. Body composition differences may be associated with pain modulation differences in males and females. The purpose of this study was to investigate body composition (lean vs fat mass) differences and pain modulatory functioning in healthy males and females. METHODS Pressure pain thresholds (PPT) of 96 participants (47M; 49F) were assessed in both arms and legs before and after a double footed ice bath (2°C) for 1min and an isometric knee extension, time to failure task. The difference between post and pre measures was defined conditioned pain modulatory (CPM) response (ice bath) and exercise induced hypoalgesia (EIH) response. Whole body and site-specific fat and lean tissue were assessed via DXA scan. RESULTS Sex differences were found in whole body lean mass (61.5±6.7kg vs 41.2±5.4kg; P<0.001) but not fat mass amount (17.2±10.5kg vs 21.0±9.7kg; P=0.068). No effect of sex was found between limb CPM (P=0.237) and limb EIH (P=0.512). When controlling for lean mass there was no significant effect of sex on CPM (P=0.732) or EIH (P=0.474) response. Similar findings were found for fat mass. CONCLUSION The lack of difference suggests that males and females have similar modulatory functioning. It appears that in healthy adults free from chronic pain, neither fat mass nor lean mass has an influence on endogenous pain modulatory function.
Collapse
Affiliation(s)
- Jessica A Peterson
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK.,Department of Community Dentistry and Behavioral Science, University of Florida Gainesville, FL
| | - Cameron Lohman
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| | - Rebecca D Larson
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| |
Collapse
|
25
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
26
|
Mailloux C, Wideman TH, Massé-Alarie H. Wrist, but Not Back, Isometric Contraction Induced Widespread Hypoalgesia in Healthy Participants. FRONTIERS IN PAIN RESEARCH 2022; 2:701830. [PMID: 35295510 PMCID: PMC8915648 DOI: 10.3389/fpain.2021.701830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: Exercise may reduce pain sensitivity. This phenomenon called exercise-induced hypoalgesia is observed in different types of exercises and involves the activation of endogenous pain modulation systems. Although the effect of limb exercise on pain sensitivity has often been tested, few studies explored the impact of back exercises that are often used to treat low back pain. The main objective is to measure the effect of back-muscle exercise on pain sensitivity and compare it to the effect of a limb-muscle exercise. Methods: Twenty-three participants who were pain-free performed a 4-min wrist flexion isometric contraction followed by a 4-min low back extension, separated by a 20-min break. Pressure pain thresholds were tested at two low back (S1 spinous process, lumbar erector spinae muscle) and two wrist (capitate bone, wrist flexor muscles) sites before and after each exercise. For each exercise, sites were considered as remote or local in relation to the muscles contracted during the exercise. An independent sample of 11 participants was recruited to confirm the influence of low back extension on pain sensitivity. Results: Wrist exercise induced a larger increase in pain sensitivity than back exercise at the remote site. Only wrist exercise induced a hypoalgesia effect at both the local and the remote sites. Back exercise induced a similar effect in the independent sample. Conclusions: This study showed that back and wrist exercises induced a distinct effect on pain sensitivity in participants who were pain-free. The wrist exercise induced a systemic reduction in pain sensitivity (locally and remotely), whereas the back exercise did not. This differential effect may be present because wrist exercise induced most fatigue compared with the back exercise.
Collapse
Affiliation(s)
- Catherine Mailloux
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec City, QC, Canada
| | - Timothy H Wideman
- Lethbridge-Layton-Mackay Rehabilitation Centre, School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Hugo Massé-Alarie
- Département de réadaptation, Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
27
|
The Endocannabinoid System and Physical Activity—A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063083. [PMID: 35328503 PMCID: PMC8948925 DOI: 10.3390/ijms23063083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Rapidly increasing worldwide prevalence of obesity and related pathologies encompassing coronary heart disease, hypertension, metabolic syndrome, or type 2 diabetes constitute serious threats to global health and are associated with a significantly elevated risk of premature death. Considering the enormous burden of these pathologies, novel therapeutic and preventive patterns are indispensable. Dysregulation of one of the most complex biological systems in the human body namely, the endocannabinoid system (ECS) may result in metabolic imbalance and development of insulin resistance, type 2 diabetes, or non-alcoholic fatty liver disease. Furthermore, many studies showed that physical exercises, depending on their type, intensity, and frequency, exert various alterations within the ECS. Emerging evidence suggests that targeting the ECS via physical activity may produce robust beneficial effects on the course of metabolic pathologies. However, the data showing a direct correlation between the ECS and physical activity in the aspect of metabolic health are very scarce. Therefore, the aim of this review was to provide the most up-to-date state of knowledge about the interplay between the ECS activity and physical exercises in the novel therapeutic and preventive approach toward metabolic pathologies. We believe that this paper, at least in part, will fulfill the existing gap in knowledge and encourage researchers to further explore this very complex yet interesting link between the ECS, its action in physical activity, and subsequent positive outcomes for metabolic health.
Collapse
|
28
|
Jaleel G, Shaphe MA, Khan AR, Malhotra D, Khan H, Parveen S, Qasheesh M, Beg RA, Chahal A, Ahmad F, Ahmad MF. Effect of Exercises on Central and Endocrine System for Pain Modulation in Primary Dysmenorrhea. J Lifestyle Med 2022; 12:15-25. [PMID: 35300040 PMCID: PMC8918380 DOI: 10.15280/jlm.2022.12.1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/12/2021] [Indexed: 11/22/2022] Open
Abstract
Dysmenorrhea is the term for describing complex menstrual flow and painful spasmodic cramps during menstruation, and pain without any pathology is considered Primary Dysmenorrhea (PD). It is the most frequent ailment among women of all ages and races. The pain is dull and throbbing in character and occurs in the lower back and abdomen. Symptoms commonly appear 6 to 12 months after menarche, with the most significant incidence in the late teen and early twenties. Physical exercise is nearly a new non-medical intervention to relieve PD associated pain. Aerobics, stretching and Resistive exercises for 8-12 weeks, either supervised or unsupervised, relieves pain. Exercises are believed to cause hormonal changes in the uterine lining, which reduces PD symptoms. Researchers have presumed different pain-relieving methods, ranging from non-opioids to opioids to hormonal for variations in pain sensitivity. Exercise-induced analgesia provides the central pathway as the primary mechanism for pain reduction while, another way to reducing pain in PD may be a hormonal interaction. The hormonal changes causing exercise-induced pain modulation during the menstruation cycle is not clearly understood and the interaction and activation of all the central and endocrine components, which is a complex mechanism, is also not explained clearly. This study briefly reviews the physiological mechanism of Exercise-induced analgesia and its potent roles in controlling the pathogenesis of PD for pain relief.
Collapse
Affiliation(s)
- Ghufran Jaleel
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India
| | - Muhammad Abu Shaphe
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Deepak Malhotra
- Department of Rehabilitation, School of Nursing Sciences and Allied Health, Jamia Hamdard, Delhi, India
| | - Huma Khan
- Department of Rehabilitation, School of Nursing Sciences and Allied Health, Jamia Hamdard, Delhi, India
| | - Sana Parveen
- Ayurvedic and Unani Tibbia College, Karol Bagh, India
| | - Mohammed Qasheesh
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Rashid Ali Beg
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aksh Chahal
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Haryana, India
| | - Fuzail Ahmad
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
29
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Yamada Y, Spitz RW, Wong V, Bell ZW, Song JS, Abe T, Loenneke JP. The impact of isometric handgrip exercise and training on health‐related factors: A review. Clin Physiol Funct Imaging 2022; 42:57-87. [DOI: 10.1111/cpf.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yujiro Yamada
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| | - Robert W. Spitz
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| | - Vickie Wong
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| | - Zachary W. Bell
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| | - Jun Seob Song
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| | - Takashi Abe
- Graduate School of Health and Sports Science Juntendo University Inzai Chiba Japan
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management The University of Mississippi Oxford Mississippi USA
| |
Collapse
|
31
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
32
|
Song JS, Yamada Y, Wong V, Bell ZW, Spitz RW, Abe T, Loenneke JP. Hypoalgesia following isometric handgrip exercise with and without blood flow restriction is not mediated by discomfort nor changes in systolic blood pressure. J Sports Sci 2021; 40:518-526. [PMID: 34823439 DOI: 10.1080/02640414.2021.2003569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose was to examine the effect of isometric handgrip exercise with and without blood flow restriction on exercise-induced hypoalgesia at a local and non-local site, and its underlying mechanisms. Sixty participants (21 males & 39 females, 18-35 years old) completed 3 trials: four sets of 2-minute isometric handgrip exercise at 30% of maximum handgrip strength; isometric handgrip exercise with blood flow restriction at 50% of arterial occlusion pressure; and a non-exercise time-matched control. Pain thresholds increased similarly in both exercise conditions at a local (exercise conditions: ~0.45 kg/cm2, control: ~-0.04 kg/cm2) and non-local site (exercise conditions: ~0.37 kg/cm2, control: ~-0.16 kg/cm2). Blood flow restriction induced greater feelings of discomfort compared to exercise alone [median difference (95% credible interval) of 4.5 (0.5, 8.6) arbitrary units]. Blood pressure increased immediately after exercise (systolic: 10.3 mmHg, diastolic: 7.7 mmHg) and decreased in recovery. There was no within participant correlation between changes in discomfort and pressure pain threshold. A bout of isometric handgrip exercise with or without blood flow restriction can provide exercise-induced hypoalgesia at a local and non-local site. However, discomfort and changes in systolic blood pressure do not explain this response.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Yujiro Yamada
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Vickie Wong
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Zachary W Bell
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Robert W Spitz
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Takashi Abe
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
33
|
Escriche-Escuder A, Cuesta-Vargas AI, Casaña J. Effect of a common exercise programme with an individualised progression criterion based on the measurement of neuromuscular capacity versus current best practice for lower limb tendinopathies (MaLaGa trial): a protocol for a randomised clinical trial. BMJ Open 2021; 11:e046729. [PMID: 34404699 PMCID: PMC8372811 DOI: 10.1136/bmjopen-2020-046729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION High-load resistance training has shown positive effects in pain and function in lower limb tendinopathies. However, some authors suggest that current exercise programmes produce an increase in tolerance to load and exercise in general but without fixing some existing issues in tendinopathy. This may indicate the need to include training aspects not currently taken into account in the current programmes. The main objective of this study will be to compare the effect of a common exercise protocol for the three predominant lower limb tendinopathies (Achilles, patellar and gluteal), based on an individualised control of the dose and training of specific aspects of the neuromuscular system versus the current best practice for each location. METHODS AND ANALYSIS This study will be conducted among people with mid-portion Achilles, patellar or gluteal tendinopathy. The participants allocated to the experimental group will perform a 14-week innovative common therapeutic exercise programme. Participants allocated to the control group will carry out a 14-week exercise programme based on the best current practice for each of the studied locations. The Victorian Institute of Sports Assessment questionnaire will be considered the primary outcome. Pain, central sensitisation, fear avoidance behaviour, quality of life, treatment satisfaction, lower-limb strength and function, and high-density electromyography profile will be evaluated as secondary outcomes. Outcomes will be assessed at baseline, 7 weeks, after the intervention (week 14), 26 weeks and 52 weeks. ETHICS AND DISSEMINATION The study has been approved by the Portal de Ética de la Investigación Biomédica de Andalucía Ethics Committee (1221-N-19). All participants will be informed about the purpose and content of the study and written informed consent will be completed. The results of this study will be published in a peer-reviewed journal and will be disseminated electronically and in print. TRIAL REGISTRATION NUMBER NCT03853122; Pre-results.
Collapse
Affiliation(s)
- Adrian Escriche-Escuder
- Department of Physiotherapy, University of Malaga, Malaga, Spain
- Grupo Clinimetría (F-14), Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Antonio I Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, Malaga, Spain
- Grupo Clinimetría (F-14), Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Health, Queensland University Technology, Brisbane, Queensland, Australia
| | - Jose Casaña
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
34
|
Abstract
Although the automatic attraction to effort minimization has been evidenced in multiple fields, its potential role in explaining the pandemic of physical inactivity has been overlooked. The theory of effort minimization in physical activity (TEMPA) fills this gap. TEMPA seeks to obtain a more accurate understanding of the neuropsychological determinants of movement-based behaviors.
Collapse
Affiliation(s)
- Boris Cheval
- Swiss Center for Affective Sciences
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Matthieu P. Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa
- Bruyère Research Institute, Ottawa, ON, Canada
| |
Collapse
|
35
|
Gaisberger M, Fuchs J, Riedl M, Edtinger S, Reischl R, Grasmann G, Hölzl B, Landauer F, Dobias H, Eckstein F, Offenbächer M, Ritter M, Winklmayr M. Endogenous anandamide and self-reported pain are significantly reduced after a 2-week multimodal treatment with and without radon therapy in patients with knee osteoarthritis: a pilot study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1151-1160. [PMID: 33649972 PMCID: PMC8213596 DOI: 10.1007/s00484-021-02095-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
Multimodal therapies comprising spa applications are widely used as non-pharmaceutical treatment options for musculoskeletal diseases. The purpose of this randomized, controlled, open pilot study was to elucidate the involvement of the endocannabinoid system in a multimodal therapy approach. Twenty-five elderly patients with knee osteoarthritis (OA) received a 2-week spa therapy with or without combination of low-dose radon therapy in the Bad Gastein radon gallery. A 10-point numerical rating scale (pain in motion and at rest), WOMAC questionnaire, and the EuroQol-5D (EQ-5D) questionnaire were recorded at baseline, and during treatment period at weeks one and two, and at 3-month and 6-month follow-ups. Plasma levels of the endocannabinoid anandamide (AEA) were determined at baseline and at 2 weeks, and serum levels of several cartilage metabolism markers at all five time-points. A significant and sustained reduction of self-reported knee pain was observed in the study population, but no further significant effect of the additional radon therapy up and above base therapy. This pain reduction was accompanied by a significant reduction of AEA plasma levels during treatment in both groups. No significant differences were seen in serum marker concentrations between the groups treated with or without radon, but a small reduction of serum cartilage degradation markers was observed during treatment in both groups. This is the first study investigating AEA levels in the context of a non-pharmacological OA treatment. Since the endocannabinoid system represents a potential target for the development of new therapeutics, further studies will have to elucidate its involvement in OA pain.
Collapse
Affiliation(s)
- M. Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - J. Fuchs
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - M. Riedl
- Dept. of Orthopaedics and Traumatology, Paracelsus Medical University, Salzburg, Austria
| | - S. Edtinger
- Department of Physical Medicine and Rehabilitation, Kardinal Schwarzenberg Klinikum, Schwarzach im Pongau, Austria
| | - R. Reischl
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - G. Grasmann
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - B. Hölzl
- Department of Internal Med., Landesklinik St. Veit im Pongau, SALK, Paracelsus Med. Univ., Salzburg, Austria
| | - F. Landauer
- Dept. of Orthopaedics and Traumatology, Paracelsus Medical University, Salzburg, Austria
| | - H. Dobias
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - F. Eckstein
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | | | - M. Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - M. Winklmayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
36
|
Jacksteit R, Stöckel T, Behrens M, Feldhege F, Bergschmidt P, Bader R, Mittelmeier W, Skripitz R, Mau-Moeller A. Low-Load Unilateral and Bilateral Resistance Training to Restore Lower Limb Function in the Early Rehabilitation After Total Knee Arthroplasty: A Randomized Active-Controlled Clinical Trial. Front Med (Lausanne) 2021; 8:628021. [PMID: 34239883 PMCID: PMC8257942 DOI: 10.3389/fmed.2021.628021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Continuous passive motion (CPM) is frequently used during rehabilitation following total knee arthroplasty (TKA). Low-load resistance training (LLRT) using continuous active motion (CAM) devices is a promising alternative. We investigated the effectiveness of CPM compared to LLRT using the affected leg (CAMuni) and both legs (CAMbi) in the early post-operative rehabilitation. Hypotheses: (I) LLRT (CAMuni and CAMbi) is superior to CPM, (II) additional training of the unaffected leg (CAMbi) is more effective than unilateral training (CAMuni). Materials and Methods: Eighty-five TKA patients were randomly assigned to three groups, respectively: (i) unilateral CPM of the operated leg; (ii) unilateral CAM of the operated leg (CAMuni); (iii) bilateral alternating CAM (CAMbi). Patients were assessed 1 day before TKA (pre-test), 1 day before discharge (post-test), and 3 months post-operatively (follow-up). Primary outcome: active knee flexion range of motion (ROMFlex). Secondary outcomes: active knee extension ROM (ROMExt), swelling, pain, C-reactive protein, quality of life (Qol), physical activity, timed-up-and-go performance, stair-climbing performance, quadriceps muscle strength. Analyses of covariances were performed (modified intention-to-treat and per-protocol). Results: Hypothesis I: Primary outcome: CAMbi resulted in a higher ROMFlex of 9.0° (95%CI −18.03–0.04°, d = 0.76) and 6.3° (95%CI −14.31–0.99°, d = 0.61) compared to CPM at post-test and follow-up, respectively. Secondary outcomes: At post-test, C-reactive protein was lower in both CAM groups compared with CPM. Knee pain was lower in CAMuni compared to CPM. Improved ROMExt, reduced swelling, better stair-climbing and timed-up-and-go performance were observed for CAMbi compared to CPM. At follow-up, both CAM groups reported higher Qol and CAMbi showed a better timed-up-and-go performance. Hypothesis II: Primary outcome: CAMbi resulted in a higher knee ROMFlex of 6.5° (95%CI −2.16–15.21°, d = 0.56) compared to CAMuni at post-test. Secondary outcomes: At post-test, improved ROMExt, reduced swelling, and better timed-up-and-go performance were observed in CAMbi compared to CAMuni. Conclusions: Additional LLRT of the unaffected leg (CAMbi) seems to be more effective for recovery of function than training of the affected leg only (CAMuni), which may be mediated by positive transfer effects from the unaffected to the affected limb (cross education) and/or preserved neuromuscular function of the trained, unaffected leg. Trial Registration:ClinicalTrials.gov Identifier: NCT02062138.
Collapse
Affiliation(s)
- Robert Jacksteit
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | - Tino Stöckel
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Martin Behrens
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany.,Department of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Frank Feldhege
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Traumatology, Orthopaedics and Hand Surgery, Klinikum Südstadt, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | | | - Ralf Skripitz
- Department of Orthopaedics, Roland Klinik, Bremen, Germany
| | | |
Collapse
|
37
|
Are endogenous opioid mechanisms involved in the effects of aerobic exercise training on chronic low back pain? A randomized controlled trial. Pain 2021; 161:2887-2897. [PMID: 32569082 DOI: 10.1097/j.pain.0000000000001969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aerobic exercise is believed to be an effective chronic low back pain (CLBP) intervention, although its mechanisms remain largely untested. This study evaluated whether endogenous opioid (EO) mechanisms contributed to the analgesic effects of an aerobic exercise intervention for CLBP. Individuals with CLBP were randomized to a 6-week, 18-session aerobic exercise intervention (n = 38) or usual activity control (n = 44). Before and after the intervention, participants underwent separate laboratory sessions to assess responses to evoked heat pain after receiving saline placebo or intravenous naloxone (opioid antagonist) in a double-blinded, crossover fashion. Chronic pain intensity and interference were assessed before and after the intervention. Endogenous opioid analgesia was indexed by naloxone-placebo condition differences in evoked pain responses (blockade effects). Relative to controls, exercise participants reported significantly greater pre-post intervention decreases in chronic pain intensity and interference (Ps < 0.04) and larger reductions in placebo condition evoked pain responsiveness (McGill Pain Questionnaire-Short Form [MPQ]-Total). At the group level, EO analgesia (MPQ-Total blockade effects) increased significantly pre-post intervention only among female exercisers (P = 0.03). Dose-response effects were suggested by a significant positive association in the exercise group between exercise intensity (based on meeting heart rate targets) and EO increases (MPQ-Present Pain Intensity; P = 0.04). Enhanced EO analgesia (MPQ-Total) was associated with a significantly greater improvement in average chronic pain intensity (P = 0.009). Aerobic exercise training in the absence of other interventions appears effective for CLBP management. Aerobic exercise-related enhancements in endogenous pain inhibition, in part EO-related, likely contribute to these benefits.
Collapse
|
38
|
Siebers M, Biedermann SV, Bindila L, Lutz B, Fuss J. Exercise-induced euphoria and anxiolysis do not depend on endogenous opioids in humans. Psychoneuroendocrinology 2021; 126:105173. [PMID: 33582575 DOI: 10.1016/j.psyneuen.2021.105173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A runner's high describes a sense of well-being during endurance exercise characterized by euphoria and anxiolysis. It has been a widespread belief that the release of endogenous opioids, such as endorphins, underlie a runner's high. However, exercise leads to the release of two classes of rewarding molecules, endocannabinoids (eCBs) and opioids. In mice, we have shown that core features of a runner's high depend on cannabinoid receptors but not opioid receptors. In the present study, we aimed to corroborate in humans that endorphins do not play a significant role in the underlying mechanism of a runner's high. Thus, we investigated whether the development of two core features of a runner's high, euphoria and reduced anxiety levels, depend on opioid signaling by using the opioid receptor antagonist naltrexone (NAL) in a double-blind, randomized, placebo (PLA)-controlled experiment. Participants (N = 63) exhibited increased euphoria and decreased anxiety after 45 min of running (RUN) on a treadmill in a moderate-intensity range compared to walking (WALK). RUN led to higher plasma levels of the eCBs anandamide (AEA) and 2-arachidonoglycerol (2-AG). Opioid blockade did not prevent the development of euphoria and reduced anxiety as well as elevation of eCB levels following exercise. Moreover, the fraction of participants reporting a subjective runner's high was comparable in the NAL and PLA-treated group. Therefore, this study indicates that the development of a runner's high does not depend on opioid signaling in humans, but makes eCBs strong candidates in humans, as previously shown in mice.
Collapse
Affiliation(s)
- Michael Siebers
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Fuss
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
39
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
40
|
Connor C, Hamilton J, Robison L, Hadjiargyrou M, Komatsu D, Thanos P. Abstinence from chronic methylphenidate exposure modifies cannabinoid receptor 1 levels in the brain in a dose-dependent manner. Curr Pharm Des 2021; 28:331-338. [PMID: 33504296 DOI: 10.2174/1381612827666210127120411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Methylphenidate (MP) is a widely used psychostimulant prescribed for Attention Deficit Hyperactivity Disorder, and is also used illicitly by healthy individuals. Chronic exposure to MP has been shown to affect physiology, behavior, and neurochemistry. METHODS The present study examined its effect on the endocannabinoid system. Adolescent rats had daily oral access to either water (control), low dose MP (4/10 mg/kg), or high dose MP (30/60 mg/kg). After 13 weeks of exposure, half of the rats in each group were euthanized, however the remaining rats underwent a four-week long abstinence period. Cannabinoid receptor 1 binding (CB1) was measured with in vitro autoradiography using [3H] SR141716A. RESULTS Rats who underwent a 4-week abstinence period after exposure to chronic HD MP showed increased binding compared to rats with no abstinence period in several cortical and basal ganglia regions of the brain. In contrast to this, rats who underwent a 4-week abstinence period after exposure to chronic LD MP showed lower binding compared to rats with no abstinence period in mainly the basal ganglia regions and in the hindlimb region of the somatosensory cortex. Following 4 weeks of drug abstinence, rats who were previously given HD MP showed higher [ 3H] SR141716A binding than rats given LD MP in many of the cortical and basal ganglia regions examined. These results highlight biphasic effects of MP treatment on cannabinoid receptor levels. Abstinence from HD MP seemed to increase CB1 receptor levels while abstinence from LD MP seemed to decrease CB1 levels. CONCLUSION Given the prolific expression of cannabinoid receptors throughout the brain, many types of behaviors may be affected as a result of MP abstinence. Further research will be needed to help identify these behavioral changes.
Collapse
Affiliation(s)
- Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - Lisa Robison
- Department of Neuroscience and Experimental Techniques, Albany Medical College, Albany, NY. United States
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY. United States
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY. United States
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| |
Collapse
|
41
|
Mailloux C, Beaulieu LD, Wideman TH, Massé-Alarie H. Within-session test-retest reliability of pressure pain threshold and mechanical temporal summation in healthy subjects. PLoS One 2021; 16:e0245278. [PMID: 33434233 PMCID: PMC7802960 DOI: 10.1371/journal.pone.0245278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
Objective To determine the absolute and relative intra-rater within-session test-retest reliability of pressure pain threshold (PPT) and mechanical temporal summation of pain (TSP) at the low back and the forearm in healthy participants and to test the influence of the number and sequence of measurements on reliability metrics. Methods In 24 participants, three PPT and TSP measures were assessed at four sites (2 at the low back, 2 at the forearm) in two blocks of measurements separated by 20 minutes. The standard error of measurement, the minimal detectable change (MDC) and the intraclass correlation coefficient (ICC) were investigated for five different sequences of measurements (e.g. measurement 1, 1–2, 1-2-3). Results The MDC for the group (MDCgr) for PPT ranged from 28.71 to 50.56 kPa across the sites tested, whereas MDCgr for TSP varied from 0.33 to 0.57 out of 10 (numeric scale). Almost all ICC showed an excellent relative reliability (between 0.80 and 0.97), except when only the first measurement was considered (moderate). Although minimal differences in absolute PPT reliability were present between the different sequences, in general, using only the first measurement increase measurement error. Three TSP measures reduced the measurement error. Discussion We established that two measurements of PPT and three of TSP reduced the measurement error and demonstrated an excellent relative reliability. Our results could be used in future pain research to confirm the presence of true hypo/hyperalgesia for paradigms such as conditioned pain modulation or exercise-induced hypoalgesia, indicated by a change exceeding the measurement variability.
Collapse
Affiliation(s)
- Catherine Mailloux
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Quebec, Canada
| | | | - Timothy H. Wideman
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Hugo Massé-Alarie
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
42
|
Larouche MC, Camiré Bernier S, Racine R, Collin O, Desmons M, Mailloux C, Massé-Alarie H. Stretch-induced hypoalgesia: a pilot study. Scand J Pain 2020; 20:837-845. [PMID: 32881712 DOI: 10.1515/sjpain-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023]
Abstract
Objectives Stretching is an intervention often used in various kinds of rehabilitation protocols and the effects on pain sensitivity has sparsely been investigated, especially when addressing potential effects on pain. The objective is to investigate the immediate effects of an axial and peripheral prolonged stretch on pressure pain sensitivity (PPT) and temporal summation (TS) on local and distal sites in healthy subjects. Methods Twenty-two healthy volunteers were recruited to participate in this pilot study. Two prolonged stretching protocols were performed: low back and wrist extensors stretches. PPT and pinprick TS were measured pre- and post-intervention at local and remote sites. Repeated measures analysis of variance (ANOVA) was used to examine the effects and significance of the interventions. Results The low back stretch induced an increase in PPT for both local and remote sites, and the wrist stretch produced a PPT increase only at the local site. TS did not change. Conclusions Low back stretching induced an increase in PPT at both local and remote sites whereas the wrist stretch only increased PPT locally, suggesting hypoalgesia at these sites. Further studies are needed to confirm the effect and mechanisms using randomised, controlled and parallel study design. Considering that pain sensitivity is different than clinical pain, results are difficult to extrapolate to clinical practice. Future studies testing clinical pain are needed to better understand the clinical implication of these results.
Collapse
Affiliation(s)
| | | | - Rosalie Racine
- McGill University, School of Occupational and Physical Therapy, Montreal, Canada
| | - Olivier Collin
- McGill University, School of Occupational and Physical Therapy, Montreal, Canada
| | - Mikaël Desmons
- Cirris research centre, Université Laval, Quebec City, Canada
| | | | - Hugo Massé-Alarie
- Cirris research centre, Université Laval, Quebec City, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Canada
| |
Collapse
|
43
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
44
|
Gomolka S, Vaegter HB, Nijs J, Meeus M, Gajsar H, Hasenbring MI, Titze C. Assessing Endogenous Pain Inhibition: Test-Retest Reliability of Exercise-Induced Hypoalgesia in Local and Remote Body Parts After Aerobic Cycling. PAIN MEDICINE 2020; 20:2272-2282. [PMID: 31211385 DOI: 10.1093/pm/pnz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Acute exercise can trigger a hypoalgesic response (exercise-induced hypoalgesia [EIH]) in healthy subjects. Despite promising application possibilities of EIH in the clinical context, its reliability has not been sufficiently examined. This study therefore investigated the between-session and within-subject test-retest reliability of EIH at local and remote body parts after aerobic cycling at a heart rate-controlled intensity. METHODS Thirty healthy adults (15 women) performed 15 minutes of aerobic cycling in two sessions. Pressure pain thresholds (PPTs) were assessed at the leg (local), the back (semilocal), and the hand (remote) before, immediately after, and 15 minutes after exercise. Intraclass correlation coefficients (ICCs) were calculated for absolute and percent changes in PPT from baseline to immediately postexercise, and between-session agreement of EIH responders was examined. RESULTS PPTs significantly increased at the leg during both sessions (all P < 0.001) and at the back during session 2 (P < 0.001), indicating EIH. Fair between-session reliability was shown for absolute changes at the leg (ICC = 0.54) and the back (ICC = 0.40), whereas the reliability of percent changes was poor (ICC < 0.33). Reliability at the hand was poor for both absolute and percent changes (ICC < 0.33). Agreement in EIH responders was not significant for EIH at the leg or the back (all P > 0.05). CONCLUSIONS Our results suggest fair test-retest reliability of EIH after aerobic cycling for local and semilocal body parts, but only in men, demonstrating the need for more standardized methodological approaches to improve EIH as a clinical parameter.
Collapse
Affiliation(s)
- Stefan Gomolka
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Henrik Bjarke Vaegter
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Pain Research Group, Pain Center South, University Hospital Odense, Odense, Denmark
| | - Jo Nijs
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Pain in Motion International Research Group
| | - Mira Meeus
- Pain in Motion International Research Group.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hannah Gajsar
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Monika I Hasenbring
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Christina Titze
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
45
|
Exercise-induced hypoalgesia after acute and regular exercise: experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep 2020; 5:e823. [PMID: 33062901 PMCID: PMC7523781 DOI: 10.1097/pr9.0000000000000823] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
This review describes methodology used in the assessment of the manifestations of exercise-induced hypoalgesia in humans and previous findings in individuals with and without pain. Possible mechanisms and future directions are discussed. Exercise and physical activity is recommended treatment for a wide range of chronic pain conditions. In addition to several well-documented effects on physical and mental health, 8 to 12 weeks of exercise therapy can induce clinically relevant reductions in pain. However, exercise can also induce hypoalgesia after as little as 1 session, which is commonly referred to as exercise-induced hypoalgesia (EIH). In this review, we give a brief introduction to the methodology used in the assessment of EIH in humans followed by an overview of the findings from previous experimental studies investigating the pain response after acute and regular exercise in pain-free individuals and in individuals with different chronic pain conditions. Finally, we discuss potential mechanisms underlying the change in pain after exercise in pain-free individuals and in individuals with different chronic pain conditions, and how this may have implications for clinical exercise prescription as well as for future studies on EIH.
Collapse
|
46
|
Lesnak JB, Sluka KA. Mechanism of exercise-induced analgesia: what we can learn from physically active animals. Pain Rep 2020; 5:e850. [PMID: 33490844 PMCID: PMC7808683 DOI: 10.1097/pr9.0000000000000850] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Kortenjann AC, Banzer W, Fleckenstein J. Sub-maximal endurance exercise does not mediate alterations of somatosensory thresholds. Sci Rep 2020; 10:10782. [PMID: 32612194 PMCID: PMC7329805 DOI: 10.1038/s41598-020-67700-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
Physical exercise has been shown to alter sensory functions, such as sensory detection or perceived pain. However, most contributing studies rely on the assessment of single thresholds, and a systematic testing of the sensory system is missing. This randomised, controlled cross-over study aims to determine the sensory phenotype of healthy young participants and to assess if sub-maximal endurance exercise can impact it. We investigated the effects of a single bout of sub-maximal running exercise (30 min at 80% heart rate reserve) compared to a resting control in 20 healthy participants. The sensory profile was assessed applying quantitative sensory testing (QST) according to the protocol of the German Research Network on Neuropathic Pain. QST comprises a broad spectrum of thermal and mechanical detection and pain thresholds. It was applied to the forehead of study participants prior and immediately after the intervention. Time between cross-over sessions was one week. Sub-maximal endurance exercise did not significantly alter thermal or mechanical sensory function (time × group analysis) in terms of detection and pain thresholds. The sensory phenotypes did not indicate any clinically meaningful deviation of sensory function. The alteration of sensory thresholds needs to be carefully interpreted, and only systematic testing allows an improved understanding of mechanism. In this context, sub-maximal endurance exercise is not followed by a change of thermal and mechanical sensory function at the forehead in healthy volunteers.
Collapse
Affiliation(s)
- Ann-Christin Kortenjann
- Department of Sports Medicine, Institute of Sports Sciences, Goethe-University of Frankfurt, Ginnheimer Landstr. 39, 60487, Frankfurt am Main, Germany
| | - Winfried Banzer
- Department of Sports Medicine, Institute of Sports Sciences, Goethe-University of Frankfurt, Ginnheimer Landstr. 39, 60487, Frankfurt am Main, Germany.,Institute of Occupational, Social and Environmental Medicine, Goethe-University, 60590, Frankfurt, Germany
| | - Johannes Fleckenstein
- Department of Sports Medicine, Institute of Sports Sciences, Goethe-University of Frankfurt, Ginnheimer Landstr. 39, 60487, Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Stensson N, Grimby-Ekman A. Altered relationship between anandamide and glutamate in circulation after 30 min of arm cycling: A comparison of chronic pain subject with healthy controls. Mol Pain 2020; 15:1744806919898360. [PMID: 31838922 PMCID: PMC6964246 DOI: 10.1177/1744806919898360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The insufficient knowledge of biochemical mechanisms behind the emergence and
maintenance of chronic musculoskeletal pain conditions constrains the
development of diagnostic and therapeutic tools for clinical use. However,
physical activity and exercise may improve pain severity and physical function
during chronic pain conditions. Nevertheless, the biochemical consequences of
physical activity and exercise in chronic pain need to be elucidated to increase
the precision of this therapeutic tool in chronic pain treatment. The
endocannabinoid system has been suggested to play an important role in
exercise-induced reward and pain inhibition. Moreover, glutamatergic signalling
has been suggested as an important factor for sensation and transmission of
pain. In addition, a link has been established between the endocannabinoid
system and glutamatergic pathways. This study examines the effect of dynamic
load arm cycling (30 min) on levels of lipid mediators related to the
endocannabinoid system and glutamate in plasma of chronic pain subjects and
pain-free controls. Pain assessments and plasma levels of
arachidonoylethanolamide (anandamide), 2-aracidonoylglycerol,
oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide and glutamate
from 21 subjects with chronic neck pain (chronic pain group) and 11 healthy
controls were analysed pre and post intervention of dynamic load arm cycling.
Pain intensity was significantly different between groups pre and post exercise.
Post exercise, anandamide levels were significantly decreased in health controls
but not in the chronic pain group. A strong positive correlation existed between
anandamide and glutamate in the control group post exercise but not in the
chronic pain group. Moreover, the glutamate/anandamide ratio increased
significantly in the control group and differed significantly with the chronic
pain group post exercise. The altered relationship between anandamide and
glutamate after the intervention in the chronic pain group might reflect
alterations in the endocannabinoid-glutamate mechanistic links in the chronic
pain group compared to the pain-free control group.
Collapse
Affiliation(s)
- Niclas Stensson
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Grimby-Ekman
- Health Metrics, Department of Medicine, School of Public Health and Community Medicine, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
49
|
Charytoniuk T, Zywno H, Konstantynowicz-Nowicka K, Berk K, Bzdega W, Chabowski A. Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders? Int J Mol Sci 2020; 21:E4221. [PMID: 32545780 PMCID: PMC7352563 DOI: 10.3390/ijms21124221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer's disease, has spread extensively throughout the last decades, becoming an enormous health issue. Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue. Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies. Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (H.Z.); (K.K.-N.); (K.B.); (W.B.); (A.C.)
| | | | | | | | | | | |
Collapse
|
50
|
Pain can be conditioned to voluntary movements through associative learning: an experimental study in healthy participants. Pain 2020; 161:2321-2329. [PMID: 32404653 DOI: 10.1097/j.pain.0000000000001919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Experimental data suggest that associative learning can influence defensive avoidance behavior and pain perception in humans. However, whether voluntary movements can become conditioned stimuli (CSs) and influence pain responses is yet to be evaluated. Forty healthy volunteers participated in this study. Electrocutaneous stimuli applied to the shoulder at pain threshold level (US) and at pain tolerance level (US) were determined before a movement-conditioning paradigm. First, reaching movements to visual cues shown on one side of a computer screen were associated with the US (CS+ movements) on 80% of trials, whereas reaching movements to visual stimuli shown on the other side were never associated with the nociceptive-US (CS- movements). Next, participants underwent a test phase in which movements to visual cues on both sides were paired with the US on 50% of trials. During the test phase, participants were asked to evaluate whether the movement was painful (yes/no) and to rate pain intensity after each trial. Movement onset and duration as well as skin conductance responses were collected. The US stimuli were more likely to be perceived as painful and were also rated as more painful during CS+ movements. Movement onset latency and skin conductance responses were significantly higher in anticipation of the CS+ movement as compared to the CS- movement. These findings suggest that pain can be conditioned to voluntary movements.
Collapse
|