1
|
Hermann A, Benke C, Blecker CR, de Haas B, He Y, Hofmann SG, Iffland JR, Jengert-Stahl J, Kircher T, Leinweber K, Linka M, Mulert C, Neudert MK, Noll AK, Melzig CA, Rief W, Rothkopf C, Schäfer A, Schmitter CV, Schuster V, Stark R, Straube B, Zimmer RI, Kirchner L. Study protocol TransTAM: Transdiagnostic research into emotional disorders and cognitive-behavioral therapy of the adaptive mind. BMC Psychiatry 2024; 24:657. [PMID: 39369190 PMCID: PMC11456249 DOI: 10.1186/s12888-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Emotional disorders such as depression and anxiety disorders share substantial similarities in their etiology and treatment. In recent decades, these commonalities have been increasingly recognized in classification systems and treatment programs crossing diagnostic boundaries. METHODS To examine the prospective effects of different transdiagnostic markers on relevant treatment outcomes, we plan to track a minimum of N = 200 patients with emotional disorders during their routine course of cognitive behavioral therapy at two German outpatient clinics. We will collect a wide range of transdiagnostic markers, ranging from basic perceptual processes and self-report measures to complex behavioral and neurobiological indicators, before entering therapy. Symptoms and psychopathological processes will be recorded before entering therapy, between the 20th and 24th therapy session, and at the end of therapy. DISCUSSION Our results could help to identify transdiagnostic markers with high predictive power, but also provide deeper insights into which patient groups with which symptom clusters are less likely to benefit from therapy, and for what reasons. TRIAL REGISTRATION The trial was preregistered at the German Clinical Trial Register (DRKS-ID: DRKS00031206; 2023-05-09).
Collapse
Affiliation(s)
- Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
| | - Christoph Benke
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Carlo R Blecker
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Jona R Iffland
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
| | - Johanna Jengert-Stahl
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Marcel Linka
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Mulert
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Ann-Kathrin Noll
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Christiane A Melzig
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Constantin Rothkopf
- Institute of Psychology, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Axel Schäfer
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Christina V Schmitter
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Raphaela I Zimmer
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Lukas Kirchner
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Tsui HTC, Chan WS. Daily Associations Between Sleep Parameters and Depressive Symptoms in Individuals with Insomnia: Investigating Emotional Reactivity and Regulation as Mediators. Behav Sleep Med 2024:1-16. [PMID: 39262137 DOI: 10.1080/15402002.2024.2399620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Previous research suggests that insomnia and depressive symptoms might be causally related. Emotional reactivity and regulation have been proposed to explain the potential causal relationship between insomnia and depression. However, longitudinal evaluations of their mediating effects are limited. Hence, the current study aimed to examine the mediating effects of emotional reactivity and regulation on the longitudinal associations between daily sleep parameters and depressive symptoms over 14 days in individuals with insomnia. METHODS Participants were sixty adults aged 18-65 who had clinically significant insomnia. They filled out a survey each morning and evening and wore actigraphy watches for 14 consecutive days. The five sleep parameters were measured by sleep diary in the morning survey (subjective total sleep time, subjective sleep efficiency, and sleep quality) and actigraphy watches (objective total sleep time and objective sleep efficiency). Emotional reactivity and emotion regulation strategy use during the day were assessed in the evening survey using the International Positive and Negative Affect Schedule Short Form, Emotion Regulation Questionnaire, and Cognitive Emotion Regulation Questionnaire. Depressive symptoms of the day were evaluated in the evening survey with the Center for Epidemiologic Studies Depression Scale. RESULTS Results showed that sleep quality and depressive symptoms, as well as actigraphy-measured sleep efficiency and depressive symptoms, predicted each other in individuals with insomnia, mediated by negative reactivity but not emotion regulation. CONCLUSIONS The present findings support the mediating role of negative emotional reactivity in the bidirectional, daily relationship between sleep parameters and depression in individuals with insomnia.
Collapse
Affiliation(s)
- Helen Tsz Ching Tsui
- Sleep, Self-regulation and Health Research Laboratory, Department of Psychology, University of Hong Kong, Hong Kong, China
| | - Wai Sze Chan
- Sleep, Self-regulation and Health Research Laboratory, Department of Psychology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
4
|
Desai S, Zundel CG, Evanski JM, Gowatch LC, Bhogal A, Ely S, Carpenter C, Shampine M, O'Mara E, Rabinak CA, Marusak HA. Genetic variation in endocannabinoid signaling: Anxiety, depression, and threat- and reward-related brain functioning during the transition into adolescence. Behav Brain Res 2024; 463:114925. [PMID: 38423255 PMCID: PMC10977105 DOI: 10.1016/j.bbr.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The endocannabinoid system modulates neural activity throughout the lifespan. In adults, neuroimaging studies link a common genetic variant in fatty acid amide hydrolase (FAAH C385A)-an enzyme that regulates endocannabinoid signaling-to reduced risk of anxiety and depression, and altered threat- and reward-related neural activity. However, limited research has investigated these associations during the transition into adolescence, a period of substantial neurodevelopment and increased psychopathology risk. METHODS This study included FAAH genotype and longitudinal neuroimaging and neurobehavioral data from 4811 youth (46% female; 9-11 years at Baseline, 11-13 years at Year 2) from the Adolescent Brain Cognitive DevelopmentSM Study. Linear mixed models examined the effects of FAAH and the FAAH x time interaction on anxiety and depressive symptoms, amygdala reactivity to threatening faces, and nucleus accumbens (NAcc) response to happy faces during the emotional n-back task. RESULTS A significant main effect of FAAH on depressive symptoms was observed, such that depressive symptoms were lower across both timepoints in those with the AA genotype compared to both AC and CC genotypes (p's<0.05). There were no significant FAAH x time interactions for anxiety, depression, or neural responses (p's>0.05). Additionally, there were no main effects of FAAH on anxiety or neural responses (p's>0.05). CONCLUSIONS Our findings add to emerging evidence linking the FAAH C385A variant to lower risk of psychopathology, and extend these findings to a developmental sample. In particular, we found lower depressive symptoms in FAAH AA genotypes compared to AC and CC genotypes. Future research is needed to characterize the role of the FAAH variant and the eCB system more broadly in neurodevelopment and psychiatric risk.
Collapse
Affiliation(s)
- Shreya Desai
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Clara G Zundel
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Julia M Evanski
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Leah C Gowatch
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Amanpreet Bhogal
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Samantha Ely
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Carmen Carpenter
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - MacKenna Shampine
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Emilie O'Mara
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Christine A Rabinak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacy Practice, Wayne State University, USA
| | - Hilary A Marusak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacology, Wayne State University School of Medicine, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, USA.
| |
Collapse
|
5
|
Deng K, Jin W, Jiang K, Li Z, Im H, Chen S, Du H, Guan S, Ge W, Wei C, Zhang B, Wang P, Zhao G, Chen C, Liu L, Wang Q. Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:21. [PMID: 38041182 PMCID: PMC10690991 DOI: 10.1186/s12993-023-00223-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
This study explored whether amygdala reactivity predicted the greed personality trait (GPT) using both task-based and resting-state functional connectivity analyses (ntotal = 452). In Cohort 1 (n = 83), task-based functional magnetic resonance imaging (t-fMRI) results from a region-of-interest (ROI) analysis revealed no direct correlation between amygdala reactivity to fearful and angry faces and GPT. Instead, whole-brain analyses revealed GPT to robustly negatively vary with activations in the right ventromedial prefrontal cortex (vmPFC), supramarginal gyrus, and angular gyrus in the contrast of fearful + angry faces > shapes. Moreover, task-based psychophysiological interaction (PPI) analyses showed that the high GPT group showed weaker functional connectivity of the vmPFC seed with a top-down control network and visual pathways when processing fearful or angry faces compared to their lower GPT counterparts. In Cohort 2, resting-state functional connectivity (rs-FC) analyses indicated stronger connectivity between the vmPFC seed and the top-down control network and visual pathways in individuals with higher GPT. Comparing the two cohorts, bilateral amygdala seeds showed weaker associations with the top-down control network in the high group via PPI analyses in Cohort 1. Yet, they exhibited distinct rs-FC patterns in Cohort 2 (e.g., positive associations of GPT with the left amygdala-top-down network FC but negative associations with the right amygdala-visual pathway FC). The study underscores the role of the vmPFC and its functional connectivity in understanding GPT, rather than amygdala reactivity.
Collapse
Affiliation(s)
- Kun Deng
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Weipeng Jin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300060, China
| | - Keying Jiang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Zixi Li
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Hohjin Im
- Department of Psychological Science, University of California, Irvine, CA, 92697-7085, USA
| | - Shuning Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Hanxiao Du
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Shunping Guan
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Wei Ge
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Chuqiao Wei
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Bin Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Pinchun Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Guang Zhao
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Liqing Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China.
| |
Collapse
|
6
|
Giglberger M, Peter HL, Henze GI, Kraus E, Bärtl C, Konzok J, Kreuzpointner L, Kirsch P, Kudielka BM, Wüst S. Neural responses to acute stress predict chronic stress perception in daily life over 13 months. Sci Rep 2023; 13:19990. [PMID: 37968323 PMCID: PMC10651906 DOI: 10.1038/s41598-023-46631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The importance of amygdala, hippocampus, and medial prefrontal cortex (mPFC) for the integration of neural, endocrine, and affective stress processing was shown in healthy participants and patients with stress-related disorders. The present manuscript which reports on one study-arm of the LawSTRESS project, aimed at investigating the predictive value of acute stress responses in these regions for biopsychological consequences of chronic stress in daily life. The LawSTRESS project examined law students either in preparation for their first state examination (stress group [SG]) or in the mid-phase of their study program (control group [CG]) over 13 months. Ambulatory assessments comprising perceived stress measurements and the cortisol awakening response (CAR) were administered on six sampling points (t1 = - 1 year, t2 = - 3 months, t3 = - 1 week, t4 = exam, t5 = + 1 week, t6 = + 1 month). In a subsample of 124 participants (SG: 61; CG: 63), ScanSTRESS was applied at baseline. In the SG but not in the CG, amygdala, hippocampus, and (post-hoc analyzed) right mPFC activation changes during ScanSTRESS were significantly associated with the trajectory of perceived stress but not with the CAR. Consistent with our finding in the total LawSTRESS sample, a significant increase in perceived stress and a blunted CAR over time could be detected in the SG only. Our findings suggest that more pronounced activation decreases of amygdala, hippocampus, and mPFC in response to acute psychosocial stress at baseline were related to a more pronounced increase of stress in daily life over the following year.
Collapse
Affiliation(s)
- Marina Giglberger
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hannah L Peter
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gina-Isabelle Henze
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisabeth Kraus
- Department of Psychology, Computational Modeling in Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christoph Bärtl
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julian Konzok
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ludwig Kreuzpointner
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Brigitte M Kudielka
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Stefan Wüst
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Stevens JS, van Rooij SJ, Stenson AF, Ely TD, Powers A, Clifford A, Kim YJ, Hinrichs R, Tottenham N, Jovanovic T. Amygdala responses to threat in violence-exposed children depend on trauma context and maternal caregiving. Dev Psychopathol 2023; 35:1159-1170. [PMID: 34689856 PMCID: PMC9069569 DOI: 10.1017/s0954579421001085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early life adversity (ELA) has been linked with increased arousal responses to threat, including increased amygdala reactivity. Effects of ELA on brain function are well recognized, and emerging evidence suggests that caregivers may influence how environmental stressors impact children's brain function. We investigated the hypothesis that positive interaction between mother and child can buffer against ELA effects on children's neural responses to threat, and related symptoms. N = 53 mother-child pairs (children ages 8-14 years) were recruited from an urban population at high risk for violence exposure. Maternal caregiving was measured using the Parenting Questionnaire and in a cooperation challenge task. Children viewed fearful and neutral face stimuli during functional magnetic resonance imaging. Children who experienced greater violence at home showed amygdala sensitization, whereas children experiencing more school and community violence showed amygdala habituation. Sensitization was in turn linked with externalizing symptoms. However, maternal warmth was associated with a normalization of amygdala sensitization in children, and fewer externalizing behaviors prospectively up to 1 year later. Findings suggested that the effects of violence exposure on threat-related neural circuitry depend on trauma context (inside or outside the home) and that primary caregivers can increase resilience.
Collapse
Affiliation(s)
- Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Sanne J.H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Anais F. Stenson
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Aimee Clifford
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ye Ji Kim
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Rebecca Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY
| | - Tanja Jovanovic
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI
| |
Collapse
|
8
|
Hardi FA, Goetschius LG, McLoyd V, Lopez‐Duran NL, Mitchell C, Hyde LW, Beltz AM, Monk CS. Adolescent functional network connectivity prospectively predicts adult anxiety symptoms related to perceived COVID-19 economic adversity. J Child Psychol Psychiatry 2023; 64:918-929. [PMID: 36579796 PMCID: PMC9880614 DOI: 10.1111/jcpp.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Stressful events, such as the COVID-19 pandemic, are major contributors to anxiety and depression, but only a subset of individuals develop psychopathology. In a population-based sample (N = 174) with a high representation of marginalized individuals, this study examined adolescent functional network connectivity as a marker of susceptibility to anxiety and depression in the context of adverse experiences. METHODS Data-driven network-based subgroups were identified using an unsupervised community detection algorithm within functional neural connectivity. Neuroimaging data collected during emotion processing (age 15) were extracted from a priori regions of interest linked to anxiety and depression. Symptoms were self-reported at ages 15, 17, and 21 (during COVID-19). During COVID-19, participants reported on pandemic-related economic adversity. Differences across subgroup networks were first examined, then subgroup membership and subgroup-adversity interaction were tested to predict change in symptoms over time. RESULTS Two subgroups were identified: Subgroup A, characterized by relatively greater neural network variation (i.e., heterogeneity) and density with more connections involving the amygdala, subgenual cingulate, and ventral striatum; and the more homogenous Subgroup B, with more connections involving the insula and dorsal anterior cingulate. Accounting for initial symptoms, subgroup A individuals had greater increases in symptoms across time (β = .138, p = .042), and this result remained after adjusting for additional covariates (β = .194, p = .023). Furthermore, there was a subgroup-adversity interaction: compared with Subgroup B, Subgroup A reported greater anxiety during the pandemic in response to reported economic adversity (β = .307, p = .006), and this remained after accounting for initial symptoms and many covariates (β = .237, p = .021). CONCLUSIONS A subgrouping algorithm identified young adults who were susceptible to adversity using their personalized functional network profiles derived from a priori brain regions. These results highlight potential prospective neural signatures involving heterogeneous emotion networks that predict individuals at the greatest risk for anxiety when experiencing adverse events.
Collapse
Affiliation(s)
| | | | - Vonnie McLoyd
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
| | | | - Colter Mitchell
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
- Population Studies Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | - Luke W. Hyde
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | | | - Christopher S. Monk
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate Program University of MichiganAnn ArborMIUSA
- Department of PsychiatryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
9
|
Neural underpinnings of emotion regulation subgroups in remitted patients with recently diagnosed bipolar disorder. Eur Neuropsychopharmacol 2022; 60:7-18. [PMID: 35550452 DOI: 10.1016/j.euroneuro.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023]
Abstract
Neuroimaging studies of bipolar disorder (BD) generally involve comparison with healthy controls (HC), which may mask neurobiological variability within the disorder. This study aims to assess the neural underpinnings of potential subgroups of BD patients based on functional activity in the emotion regulation network and its relation to illness characteristics and relapse risk. Eighty-seven remitted patients with recently diagnosed BD and 66 HC underwent functional magnetic resonance imaging (fMRI) while performing an emotion regulation task. Patients were re-assessed with clinical interviews after 16 (±5) months. Data-driven hierarchical cluster analysis was employed to investigate 'neuronal subgroups' of patients based on their neuronal activity in a pre-defined emotion regulation network. Relations between neuronal subgroups and illness characteristics and relapse rates were examined. Patients were allocated into two subgroups. Subgroup 1 (n=62, 75%) was characterized by exaggerated bilateral amygdala reactivity but normal prefrontal and temporo-parietal activation. Subgroup 2 (n= 22, 25%) showed widespread hypo-activity within all emotion regulation regions. Both subgroups were less successful at down-regulating their emotions than HC (F(2,146)=5.33, p=.006, ηp2=.07). Patients in subgroup 2 had a history of more and longer mixed episodes (ps≤.01). Importantly, heightened amygdala activity across all patients was associated with increased risk of relapse during a 16-month follow-up period (β=3.36, 95% CI [1.49;550.35], N=60, p=.03). The identified neuronal subgroups of patients with either amygdala hyper-activity or broad network hypo-activity during emotion regulation points to neurobiological heterogeneity among remitted patients with BD. Heightened amygdala reactivity may be a neuronal target for personalized treatments to prevent relapse.
Collapse
|
10
|
Holt-Gosselin B, Keller AS, Chesnut M, Ling R, Grisanzio KA, Williams LM. Greater baseline connectivity of the salience and negative affect circuits are associated with natural improvements in anxiety over time in untreated participants. J Affect Disord 2021; 295:366-376. [PMID: 34492429 DOI: 10.1016/j.jad.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is limited research examining the natural trajectories of depression and anxiety, how these trajectories relate to baseline neural circuit function, and how symptom trajectory-circuit relationships are impacted by engagement in lifestyle activities including exercise, hobbies, and social interactions. To address these gaps, we assessed these relations over three months in untreated participants. METHODS 262 adults (59.5% female, mean age 35) with symptoms of anxiety and depression, untreated with pharmacotherapy or behavioral therapy, completed the DASS-42, WHOQOL, and custom surveys at baseline and follow-up to assess symptoms, psychosocial function, and lifestyle activity engagement. At baseline, participants underwent fMRI under task-free and task-evoked conditions. We quantified six circuits implicated in these symptoms: default mode, salience, negative and positive affect, attention, and cognitive control. RESULTS From baseline to 3 months, some participants demonstrated a natural improvement in anxiety (24%) and depression (26%) symptoms. Greater baseline salience circuit connectivity (pFDR=0.045), specifically between the left and right insula (pFDR=0.045), and greater negative affect circuit connectivity elicited by sad faces (pFDR=0.030) were associated with anxiety symptom improvement. While engagement in lifestyle activities were not associated with anxiety improvements, engagement in hobbies moderated the association between negative affect circuit connectivity and anxiety symptom improvement (p = 0.048). LIMITATIONS The observational design limits causal inference. CONCLUSIONS Our findings highlight the role of the salience and negative affect circuits as potential circuit markers of natural anxiety symptom improvements over time. Future studies that identify biomarkers associated with symptom improvements are critical for the development of personalized treatment targets.
Collapse
Affiliation(s)
- Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Interdepartmental Neuroscience Graduate Program, Yale University, New Haven, CT, United States
| | - Arielle S Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Neurosciences PhD Program, Stanford University, Stanford CA, United States
| | - Megan Chesnut
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Ruth Ling
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Katherine A Grisanzio
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research, Education and Clinical Center, Palo Alto VA Healthcare System, Palo Alto, CA, United States.
| |
Collapse
|
11
|
Neural vulnerability and hurricane-related media are associated with post-traumatic stress in youth. Nat Hum Behav 2021; 5:1578-1589. [PMID: 34795422 DOI: 10.1038/s41562-021-01216-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
The human toll of disasters extends beyond death, injury and loss. Post-traumatic stress (PTS) can be common among directly exposed individuals, and children are particularly vulnerable. Even children far removed from harm's way report PTS, and media-based exposure may partially account for this phenomenon. In this study, we examine this issue using data from nearly 400 9- to 11-year-old children collected before and after Hurricane Irma, evaluating whether pre-existing neural patterns moderate associations between hurricane experiences and later PTS. The 'dose' of both self-reported objective exposure and media exposure predicted PTS, the latter even among children far from the hurricane. Furthermore, neural responses in brain regions associated with anxiety and stress conferred particular vulnerability. For example, heightened amygdala reactivity to fearful stimuli moderated the association between self-reported media exposure and PTS. Collectively, these findings show that for some youth with measurable vulnerability, consuming extensive disaster-related media may offer an alternative pathway to disaster exposure that transcends geography and objective risk.
Collapse
|
12
|
Roeckner AR, Oliver KI, Lebois LAM, van Rooij SJH, Stevens JS. Neural contributors to trauma resilience: a review of longitudinal neuroimaging studies. Transl Psychiatry 2021; 11:508. [PMID: 34611129 PMCID: PMC8492865 DOI: 10.1038/s41398-021-01633-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Resilience in the face of major life stressors is changeable over time and with experience. Accordingly, differing sets of neurobiological factors may contribute to an adaptive stress response before, during, and after the stressor. Longitudinal studies are therefore particularly effective in answering questions about the determinants of resilience. Here we provide an overview of the rapidly-growing body of longitudinal neuroimaging research on stress resilience. Despite lingering gaps and limitations, these studies are beginning to reveal individual differences in neural circuit structure and function that appear protective against the emergence of future psychopathology following a major life stressor. Here we outline a neural circuit model of resilience to trauma. Specifically, pre-trauma biomarkers of resilience show that an ability to modulate activity within threat and salience networks predicts fewer stress-related symptoms. In contrast, early post-trauma biomarkers of subsequent resilience or recovery show a more complex pattern, spanning a number of major circuits including attention and cognitive control networks as well as primary sensory cortices. This novel synthesis suggests stress resilience may be scaffolded by stable individual differences in the processing of threat cues, and further buttressed by post-trauma adaptations to the stressor that encompass multiple mechanisms and circuits. More attention and resources supporting this work will inform the targets and timing of mechanistic resilience-boosting interventions.
Collapse
Affiliation(s)
- Alyssa R. Roeckner
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Katelyn I. Oliver
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Lauren A. M. Lebois
- grid.240206.20000 0000 8795 072XDivision of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Sanne J. H. van Rooij
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Jennifer S. Stevens
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
13
|
Chahal R, Gotlib IH, Guyer AE. Research Review: Brain network connectivity and the heterogeneity of depression in adolescence - a precision mental health perspective. J Child Psychol Psychiatry 2020; 61:1282-1298. [PMID: 32458453 PMCID: PMC7688558 DOI: 10.1111/jcpp.13250] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Adolescence is a period of high risk for the onset of depression, characterized by variability in symptoms, severity, and course. During adolescence, the neurocircuitry implicated in depression continues to mature, suggesting that it is an important period for intervention. Reflecting the recent emergence of 'precision mental health' - a person-centered approach to identifying, preventing, and treating psychopathology - researchers have begun to document associations between heterogeneity in features of depression and individual differences in brain circuitry, most frequently in resting-state functional connectivity (RSFC). METHODS In this review, we present emerging work examining pre- and post-treatment measures of network connectivity in depressed adolescents; these studies reveal potential intervention-specific neural markers of treatment efficacy. We also review findings from studies examining associations between network connectivity and both types of depressive symptoms and response to treatment in adults, and indicate how this work can be extended to depressed adolescents. Finally, we offer recommendations for research that we believe will advance the science of precision mental health of adolescence. RESULTS Nascent studies suggest that linking RSFC-based pathophysiological variation with effects of different types of treatment and changes in mood following specific interventions will strengthen predictions of prognosis and treatment response. Studies with larger sample sizes and direct comparisons of treatments are required to determine whether RSFC patterns are reliable neuromarkers of treatment response for depressed adolescents. Although we are not yet at the point of using RSFC to guide clinical decision-making, findings from research examining the stability and reliability of RSFC point to a favorable future for network-based clinical phenotyping. CONCLUSIONS Delineating the correspondence between specific clinical characteristics of depression (e.g., symptoms, severity, and treatment response) and patterns of network-based connectivity will facilitate the development of more tailored and effective approaches to the assessment, prevention, and treatment of depression in adolescents.
Collapse
Affiliation(s)
- Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Amanda E. Guyer
- Department of Human Ecology, University of California, Davis, Davis, CA, USA,Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| |
Collapse
|
14
|
Zhou Z, Fu S, Liu Y, Wang Y, Bu H, Mei Y, Tong Y, Yu C. Study of efficacy and safety of Jiaotai pill in the treatment of depression. Medicine (Baltimore) 2020; 99:e19999. [PMID: 32358376 PMCID: PMC7440333 DOI: 10.1097/md.0000000000019999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Depression is a common affective disorder characterized by marked and lasting melancholia, with corresponding thought and behavior changes. Due to an accelerated pace of life and increased work pressure, the incidence of depression has risen sharply, causing great harm to family and social life. Jiaotai pill (JTP) is a Chinese herbal formula that is commonly prescribed for depression and insomnia in clinical treatment, and exhibits antidepressant effects as shown in animal experimental research. However, there are no standard clinical trials to confirm its efficacy in treating depression. OBJECTIVE This study aims to assess the efficacy and safety of JTP in the treatment of depression, so as to tap the clinical efficacy advantages of JTP and provide data support for its clinical application. METHODS A randomized, multicenter clinical trial with parallel groups was designed in this study. A total of 40 patients with depression were included and randomly divided to either the treatment or the control group with a ratio of 1:1. The patients received JTP plus fluoxetine or fluoxetine alone once per day for 8 weeks. The primary outcome included the Hamilton Depression Rating Scale score for patients and brain structure and function by functional magnetic resonance imaging. The secondary outcomes included Traditional Chinese medicine syndrome integral scale scores, Wisconsin Card Sorting Test, blood metabonomics, urine metabonomics. CONCLUSION The results of this trial will find changes in brain structure, brain function, and metabolism in patients with depression, and provide critical evidence for JTP in the treatment of depression.
Collapse
Affiliation(s)
| | - Shufei Fu
- College of Traditional Chinese Medicine
| | - Yijia Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine
| | - Yuhan Wang
- Department of Psychosomatic Disease, Tianjin Hospital of ITCWM Nankai Hospital
| | - Huaien Bu
- College of Traditional Chinese Medicine
| | - Yan Mei
- Department of Psychosomatic Disease, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital
| | - Yi Tong
- Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
| | - Chunquan Yu
- Editorial Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Rakesh D, Allen NB, Whittle S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use - A systematic review of functional neuroimaging studies. Dev Cogn Neurosci 2020; 42:100775. [PMID: 32452461 PMCID: PMC7139159 DOI: 10.1016/j.dcn.2020.100775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Both depression and substance use problems have their highest incidence during youth (i.e., adolescence and emerging adulthood), and are characterized by emotion regulation deficits. Influential neurodevelopmental theories suggest that alterations in the function of limbic and frontal regions render youth susceptible to these deficits. However, whether depression and substance use in youth are associated with similar alterations in emotion regulation neural circuitry is unknown. In this systematic review we synthesized the results of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of emotion regulation in youth depression and substance use. Resting-state fMRI studies focusing on limbic connectivity were also reviewed. While findings were largely inconsistent within and between studies of depression and substance use, some patterns emerged. First, youth depression appears to be associated with exaggerated amygdala activity in response to negative stimuli; second, both depression and substance use appear to be associated with lower functional connectivity between the amygdala and prefrontal cortex during rest. Findings are discussed in relation to support for existing neurodevelopmental models, and avenues for future work are suggested, including studying neurodevelopmental trajectories from a network perspective.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Murphy JE, Yanes JA, Kirby LAJ, Reid MA, Robinson JL. Left, right, or bilateral amygdala activation? How effects of smoothing and motion correction on ultra-high field, high-resolution functional magnetic resonance imaging (fMRI) data alter inferences. Neurosci Res 2020; 150:51-59. [PMID: 30763590 PMCID: PMC7566741 DOI: 10.1016/j.neures.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/10/2023]
Abstract
Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala.
Collapse
Affiliation(s)
- Jerry E Murphy
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.
| | - Julio A Yanes
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States
| | - Lauren A J Kirby
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States
| | - Meredith A Reid
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, United States; Alabama Advanced Imaging Consortium, United States
| | - Jennifer L Robinson
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, United States; Alabama Advanced Imaging Consortium, United States; Center for Neuroscience, Auburn University, AL, 36849, United States
| |
Collapse
|
17
|
Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl Psychiatry 2019; 9:293. [PMID: 31712555 PMCID: PMC6848107 DOI: 10.1038/s41398-019-0644-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Many neuroimaging studies have investigated reward processing dysfunction in major depressive disorder. These studies have led to the common idea that major depressive disorder is associated with blunted responses within the reward circuit, particularly in the ventral striatum. Yet, the link between major depressive disorder and reward-related responses in other regions remains inconclusive, thus limiting our understanding of the pathophysiology of major depressive disorder. To address this issue, we performed a coordinate-based meta-analysis of 41 whole-brain neuroimaging studies encompassing reward-related responses from a total of 794 patients with major depressive disorder and 803 healthy controls. Our findings argue against the common idea that major depressive disorder is primarily linked to deficits within the reward system. Instead, our results demonstrate that major depressive disorder is associated with opposing abnormalities in the reward circuit: hypo-responses in the ventral striatum and hyper-responses in the orbitofrontal cortex. The current findings suggest that dysregulated corticostriatal connectivity may underlie reward-processing abnormalities in major depressive disorder, providing an empirical foundation for a more refined understanding of abnormalities in the reward circuitry in major depressive disorder.
Collapse
|
18
|
Toenders YJ, van Velzen LS, Heideman IZ, Harrison BJ, Davey CG, Schmaal L. Neuroimaging predictors of onset and course of depression in childhood and adolescence: A systematic review of longitudinal studies. Dev Cogn Neurosci 2019; 39:100700. [PMID: 31426010 PMCID: PMC6969367 DOI: 10.1016/j.dcn.2019.100700] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Major depressive disorder (MDD) often emerges during adolescence with detrimental effects on development as well as lifetime consequences. Identifying neurobiological markers that are associated with the onset or course of this disorder in childhood and adolescence is important for early recognition and intervention and, potentially, for the prevention of illness onset. In this systematic review, 68 longitudinal neuroimaging studies, from 34 unique samples, that examined the association of neuroimaging markers with onset or changes in paediatric depression published up to 1 February 2019 were examined. These studies employed different imaging modalities at baseline; structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) or electroencephalography (EEG). Most consistent evidence across studies was found for blunted reward-related (striatal) activity (fMRI and EEG) as a potential biological marker for both MDD onset and course. With regard to structural brain measures, the results were highly inconsistent, likely caused by insufficient power to detect complex mediating effects of genetic and environmental factors in small sample sizes. Overall, there were a limited number of samples, and confounding factors such as sex and pubertal development were often not considered, whereas these factors are likely to be relevant especially in this age range.
Collapse
Affiliation(s)
- Yara J Toenders
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Ivonne Z Heideman
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Victoria 3053, Australia
| | - Christopher G Davey
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
Gerin MI, Viding E, Pingault JB, Puetz VB, Knodt AR, Radtke SR, Brigidi BD, Swartz JR, Hariri AR, McCrory EJ. Heightened amygdala reactivity and increased stress generation predict internalizing symptoms in adults following childhood maltreatment. J Child Psychol Psychiatry 2019; 60:752-761. [PMID: 30933355 PMCID: PMC6594878 DOI: 10.1111/jcpp.13041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Childhood maltreatment is one of the most potent predictors of future psychopathology, including internalizing disorders. It remains unclear whether heightened amygdala reactivity to threat and elevated stress exposure may be implicated in the pathogenesis and maintenance of internalizing disorders among individuals with a history of childhood maltreatment. METHODS Using data from a sample of 1,144 young adults, we investigated the contribution of baseline threat-related amygdala reactivity and prospective major stressful life events to internalizing symptoms severity 1 year later (on average) in individuals with a history of maltreatment (n = 100) and propensity score matched nonmaltreated peers (n = 96). RESULTS Even after stringently matching for several potentially confounding variables - including baseline internalizing symptoms, socioeconomic status and IQ - childhood maltreatment status predicted increased amygdala reactivity at baseline, elevated post-baseline exposure to major stressful life events and internalizing symptoms at follow-up. We also showed, for the first time, that amygdala reactivity at baseline and also post-baseline exposure to major stressful life events mediated the association between a history of maltreatment and future internalizing symptoms. CONCLUSIONS These findings provide support for the view that maltreatment is a potent developmental insult leading to long-lasting neurocognitive recalibrations of the threat processing system. It is possible that such alterations, over time, may impact mental health functioning by compromising the ability to effectively negotiate everyday challenges (stress susceptibility). These alterations were not, however, found to sensitize an individual to the impact of major stressful life events. The results of this study also lend compelling support to the view that increased psychiatric risk, in the context of childhood maltreatment, follows from an increased propensity to experience major stressful life events (stress generation).
Collapse
Affiliation(s)
- Mattia I Gerin
- Division of Psychology and Language Science, Department of Clinical Educational and Health Psychology, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| | - Essi Viding
- Division of Psychology and Language Science, Department of Clinical Educational and Health Psychology, University College London, London, UK
| | - Jean-Baptiste Pingault
- Division of Psychology and Language Science, Department of Clinical Educational and Health Psychology, University College London, London, UK
- Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- CESP, Univ. Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
| | - Vanessa B Puetz
- Division of Psychology and Language Science, Department of Clinical Educational and Health Psychology, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Spenser R Radtke
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Bartholomew D Brigidi
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Johnna R Swartz
- Department of Human Ecology, University of California at Davis, Davis, CA, USA
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Eamon J McCrory
- Division of Psychology and Language Science, Department of Clinical Educational and Health Psychology, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| |
Collapse
|
20
|
Price T, Brust TF. Adenylyl cyclase 7 and neuropsychiatric disorders: A new target for depression? Pharmacol Res 2019; 143:106-112. [PMID: 30904753 DOI: 10.1016/j.phrs.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Adenylyl cyclases (ACs) are enzymes that catalyze the production of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Humans express nine isoforms of membranous ACs and a soluble AC. Studies with genetic knockout or overexpression rodent models have indicated that AC isoforms may be targeted to achieve specific therapeutic outcomes. AC1, for instance, has been suggested and pursued as a target for relieving pain. Notably, previous studies examining genetically modified mice as well as human genetic polymorphisms have suggested a link between AC7 activity and depressive disorders. In the present review we present an overview on AC function and discuss the most recent developments to target AC isoforms for drug therapies. We next focus on discussing the available literature on the molecular and animal pharmacology of AC7 highlighting the available studies on the role of AC7 in depressive disorders. In addition, we discuss other possible physiological functions of AC7 relating to ethanol effects and the immune system and conclude with considerations about pharmacological modulation of AC7.
Collapse
Affiliation(s)
- Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States..
| |
Collapse
|
21
|
Waller R, Murray L, Shaw DS, Forbes EE, Hyde LW. Accelerated alcohol use across adolescence predicts early adult symptoms of alcohol use disorder via reward-related neural function. Psychol Med 2019; 49:675-684. [PMID: 29871712 PMCID: PMC7066874 DOI: 10.1017/s003329171800137x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alcohol use is commonly initiated during adolescence, with earlier onset known to increase the risk for alcohol use disorder (AUD). Altered function in neural reward circuitry is thought to increase the risk for AUD. To test the hypothesis that adolescent alcohol misuse primes the brain for alcohol-related psychopathology in early adulthood, we examined whether adolescent alcohol consumption rates predicted reward responsivity in the ventral striatum (VS), and in turn, AUD symptoms in adulthood. METHODS A total of 139 low income, racially diverse urban males reported on their alcohol use at ages 11, 12, 15, and 17; completed self-reports of personality, psychiatric interviews, and a functional magnetic resonance imaging (fMRI) scan at age 20; and completed a psychiatric interview at age 22. We measured adolescent alcohol use trajectories using latent growth curve modeling and measured neural responses to monetary reward using a VS region of interest. We tested indirect effects of adolescent alcohol use on AUD symptoms at age 22 via VS reward-related reactivity at age 20. RESULTS Greater acceleration in adolescent alcohol use predicted increased VS response during reward anticipation at age 20. VS reactivity to reward anticipation at age 20 predicted AUD symptoms at age 22, over and above concurrent symptoms. Accelerated adolescent alcohol use predicted AUD symptoms in early adulthood via greater VS reactivity to reward anticipation. CONCLUSIONS Prospective findings support a pathway through which adolescent alcohol use increases the risk for AUD in early adulthood by impacting reward-related neural functioning. These results highlight increased VS reward-related reactivity as a biomarker for AUD vulnerability.
Collapse
Affiliation(s)
- Rebecca Waller
- Department of Psychology, University of Michigan, Ann Arbor, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Laura Murray
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, USA
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, USA
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, USA
| |
Collapse
|
22
|
Gard AM, Waller R, Swartz JR, Shaw DS, Forbes EE, Hyde LW. Amygdala functional connectivity during socioemotional processing prospectively predicts increases in internalizing symptoms in a sample of low-income, urban, young men. Neuroimage 2018; 178:562-573. [PMID: 29860084 PMCID: PMC6046277 DOI: 10.1016/j.neuroimage.2018.05.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 12/01/2022] Open
Abstract
Functional connectivity between the amygdala and the prefrontal cortex is critical for socioemotional processing, particularly during face processing. Though processing others' emotions is important for a myriad of complex social behaviors, more research is needed to understand how different types of emotional facial expressions differentially elicit connectivity of the amygdala with widespread neural regions. Moreover, though prior studies have reported cross-sectional associations between altered amygdala-prefrontal cortex functional connectivity and internalizing symptoms (e.g., depression, anxiety), few studies have examined whether amygdala functional connectivity is prospectively related to changes in these symptoms, with little work focusing on low-income men living in stressful contexts. The current study used psycho-physiological interaction analyses at the within-subjects level to examine how amygdala connectivity differed while participants viewed fearful, angry, and neutral faces. We used structural equation modeling at the between-subjects level, using extracted parameter estimates, to test whether amygdala connectivity during face processing predicted increases in internalizing psychopathology over time, controlling for earlier symptoms. An urban sample of 167 young men from low-income families was employed. Results indicated that negative connectivity between the amygdala and prefrontal regions was modulated by emotional face type. Neuronal activity in the cingulate and frontal cortices was connected to amygdala reactivity during fearful and neutral, but not angry, face processing. Moreover, weaker left amygdala-left middle frontal gyrus negative connectivity when viewing fearful faces and stronger right amygdala-left inferior frontal gyrus negative connectivity when viewing neutral faces at age 20 both predicted increases in internalizing behaviors from age 20 to age 22. Our findings show that amygdala-prefrontal cortex connectivity can predict the persistence of internalizing symptoms among high-risk participants over time but suggest that these patterns may differ depending on the emotional stimuli examined.
Collapse
Affiliation(s)
- Arianna M Gard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Waller
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, Davis, CA, USA
| | - Daniel S Shaw
- Department of Psychology, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika E Forbes
- Department of Psychology, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Center for Human Growth and Development & Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Avinun R, Nevo A, Knodt AR, Elliott ML, Hariri AR. Replication in Imaging Genetics: The Case of Threat-Related Amygdala Reactivity. Biol Psychiatry 2018; 84:148-159. [PMID: 29279201 PMCID: PMC5955809 DOI: 10.1016/j.biopsych.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Low replication rates are a concern in most, if not all, scientific disciplines. In psychiatric genetics specifically, targeting intermediate brain phenotypes, which are more closely associated with putative genetic effects, was touted as a strategy leading to increased power and replicability. In the current study, we attempted to replicate previously published associations between single nucleotide polymorphisms and threat-related amygdala reactivity, which represents a robust brain phenotype not only implicated in the pathophysiology of multiple disorders, but also used as a biomarker of future risk. METHODS We conducted a literature search for published associations between single nucleotide polymorphisms and threat-related amygdala reactivity and found 37 unique findings. Our replication sample consisted of 1117 young adult volunteers (629 women, mean age 19.72 ± 1.25 years) for whom both genetic and functional magnetic resonance imaging data were available. RESULTS Of the 37 unique associations identified, only three replicated as previously reported. When exploratory analyses were conducted with different model parameters compared to the original findings, significant associations were identified for 28 additional studies: eight of these were for a different contrast/laterality; five for a different gender and/or race/ethnicity; and 15 in the opposite direction and for a different contrast, laterality, gender, and/or race/ethnicity. No significant associations, regardless of model parameters, were detected for six studies. Notably, none of the significant associations survived correction for multiple comparisons. CONCLUSIONS We discuss these patterns of poor replication with regard to the general strategy of targeting intermediate brain phenotypes in genetic association studies and the growing importance of advancing the replicability of imaging genetics findings.
Collapse
Affiliation(s)
- Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.
| | - Adam Nevo
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Annchen R. Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Maxwell L. Elliott
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Farber MJ, Romer AL, Kim MJ, Knodt AR, Elsayed NM, Williamson DE, Hariri AR. Paradoxical associations between familial affective responsiveness, stress, and amygdala reactivity. ACTA ACUST UNITED AC 2018; 19:645-654. [PMID: 29999382 DOI: 10.1037/emo0000467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of early life extremes such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in the development of brain circuits supporting emotional behavior and mental health. The impact of normative variability in caregiving on such biobehavioral processes, however, is poorly understood. Here, we provide initial evidence that even subtle variability in normative caregiving maps onto individual differences in threat-related brain function and, potentially, associated psychopathology in adolescence. Specifically, we report that greater familial affective responsiveness is associated with heightened amygdala reactivity to interpersonal threat, particularly in adolescents having experienced relatively low recent stress. These findings extend the literature on the effects of caregiving extremes on brain function to subtle, normative variability but suggest that presumably protective factors may be associated with increased risk-related amygdala reactivity. We consider these paradoxical associations with regard to studies of basic associative threat learning and further consider their relevance for understanding potential effects of caregiving on psychological development. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
25
|
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:255-266. [PMID: 28433458 DOI: 10.1016/j.pnpbp.2017.04.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Abstract
The pathophysiological underpinnings of neuroprogressive processes in recurrent major depressive disorder (rMDD) are reviewed. A wide array of biochemical processes underlie MDD presentations and their shift to a recurrent, neuroprogressive course, including: increased immune-inflammation, tryptophan catabolites (TRYCATs), mitochondrial dysfunction, aryl hydrocarbonn receptor activation, and oxidative and nitrosative stress (O&NS), as well as decreased sirtuins and melatonergic pathway activity. These biochemical changes may have their roots in central, systemic and/or peripheral sites, including in the gut, as well as in developmental processes, such as prenatal stressors and breastfeeding consequences. Consequently, conceptualizations of MDD have dramatically moved from simple psychological and central biochemical models, such as lowered brain serotonin, to a conceptualization that incorporates whole body processes over a lifespan developmental timescale. However, important hubs are proposed, including the gut-brain axis, and mitochondrial functioning, which may provide achievable common treatment targets despite considerable inter-individual variability in biochemical changes. This provides a more realistic model of the complexity of MDD and the pathophysiological processes that underpin the shift to rMDD and consequent cognitive deficits. Such accumulating data on the pathophysiological processes underpinning MDD highlights the need in psychiatry to shift to a classification system that is based on biochemical processes, rather than subjective phenomenology.
Collapse
|
26
|
Lichenstein SD, Musselman S, Shaw DS, Sitnick S, Forbes EE. Nucleus accumbens functional connectivity at age 20 is associated with trajectory of adolescent cannabis use and predicts psychosocial functioning in young adulthood. Addiction 2017; 112:1961-1970. [PMID: 28547854 PMCID: PMC5633503 DOI: 10.1111/add.13882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/29/2016] [Accepted: 05/23/2017] [Indexed: 01/05/2023]
Abstract
AIMS (1) To identify trajectories of cannabis use across adolescence, (2) to measure the influence of cannabis use characteristics on functional connectivity of the nucleus accumbens (NAcc) and (3) to assess whether patterns of functional connectivity related to cannabis use are associated with psychosocial functioning 2 years later. DESIGN The Pitt Mother and Child Project (PMCP) is a prospective, longitudinal study of male youth at high risk for psychopathology based on family income and gender. SETTING Participants were recruited between age 6 and 17 months from the Women, Infants and Children Nutritional Supplement program (WIC) in the Pittsburgh, Pennsylvania area. PARTICIPANTS A total of 158 PMCP young men contributed functional magnetic resonance imaging (fMRI) and substance use data at age 20 years. MEASUREMENTS Latent class growth analysis was used to determine trajectories of cannabis use frequency from age 14 to 19 years. Psychophysiological interaction (PPI) analysis was used to measure functional connectivity between the NAcc and prefrontal cortex (PFC). Adolescent cannabis use trajectory, recent frequency of use and age of initiation were considered as developmental factors. We also tested whether functional connectivity was associated with depressive symptoms, anhedonia and educational attainment at age 22. FINDINGS We identified three distinct trajectories of adolescent cannabis use, characterized by stable high, escalating or stable low use. The cannabis use trajectory group had a significant effect on NAcc functional connectivity to the medial PFC (F = 11.32, Z = 4.04, Pfamily-wise error-corrected (FWE-corr) = 0.000). The escalating trajectory group displayed a pattern of negative NAcc-mPFC connectivity that was linked to higher levels of depressive symptoms (r = -0.17, P < .05), anhedonia (r = -0.19, P < .05) and lower educational attainment (t = -2.77, P < .01) at age 22. CONCLUSIONS Pattern of cannabis use frequency across adolescence in US youth could have consequences for mood symptoms and educational attainment in early adulthood via altered function in neural reward circuitry.
Collapse
Affiliation(s)
- Sarah D. Lichenstein
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Center for the Neural Bases of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Samuel Musselman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Stephanie Sitnick
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Center for the Neural Bases of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| |
Collapse
|
27
|
Forster SE, Finn PR, Brown JW. Neural responses to negative outcomes predict success in community-based substance use treatment. Addiction 2017; 112:884-896. [PMID: 28029198 PMCID: PMC5382058 DOI: 10.1111/add.13734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Patterns of brain activation have demonstrated promise as prognostic indicators in substance dependent individuals (SDIs) but have not yet been explored in SDIs typical of community-based treatment settings. DESIGN Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes. SETTING Community-based substance use programs in Bloomington, Indiana, USA. PARTICIPANTS Twenty-three SDIs (17 male, aged 18-43 years) in an intensive outpatient or residential treatment program; abstinent 1-4 weeks at baseline. MEASUREMENTS Event-related brain response, BART performance and self-report scores at treatment onset, substance use outcome measure (based on days of use). FINDINGS Using voxel-level predictive modeling and leave-one-out cross-validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) at baseline successfully predicted greater substance use during the 3-month study interval (P ≤ 0.006, cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to negative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback (r(23) = -0.544, P = 0.007; r(23) = -0.588, P = 0.003). A model including Amyg/aHipp activation, faster reward-seeking after negative feedback and significant self-report scores accounted for 45% of the variance in substance use outcomes in our sample. CONCLUSIONS An elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based treatment.
Collapse
Affiliation(s)
- Sarah E. Forster
- Indiana University, Department of Psychological and Brain Sciences,VA Pittsburgh Healthcare System,University of Pittsburgh, Department of Psychiatry
| | - Peter R. Finn
- Indiana University, Department of Psychological and Brain Sciences
| | - Joshua W. Brown
- Indiana University, Department of Psychological and Brain Sciences
| |
Collapse
|
28
|
Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proc Natl Acad Sci U S A 2016; 113:11955-11960. [PMID: 27791054 DOI: 10.1073/pnas.1606671113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amygdala circuitry and early life stress (ELS) are both strongly and independently implicated in the neurobiology of depression. Importantly, animal models have revealed that the contribution of ELS to the development and maintenance of depression is likely a consequence of structural and physiological changes in amygdala circuitry in response to stress hormones. Despite these mechanistic foundations, amygdala engagement and ELS have not been investigated as biobehavioral targets for predicting functional remission in translational human studies of depression. Addressing this question, we integrated human neuroimaging and measurement of ELS within a controlled trial of antidepressant outcomes. Here we demonstrate that the interaction between amygdala activation engaged by emotional stimuli and ELS predicts functional remission on antidepressants with a greater than 80% cross-validated accuracy. Our model suggests that in depressed people with high ELS, the likelihood of remission is highest with greater amygdala reactivity to socially rewarding stimuli, whereas for those with low-ELS exposure, remission is associated with lower amygdala reactivity to both rewarding and threat-related stimuli. This full model predicted functional remission over and above the contribution of demographics, symptom severity, ELS, and amygdala reactivity alone. These findings identify a human target for elucidating the mechanisms of antidepressant functional remission and offer a target for developing novel therapeutics. The results also offer a proof-of-concept for using neuroimaging as a target for guiding neuroscience-informed intervention decisions at the level of the individual person.
Collapse
|