1
|
Abdolizadeh A, Torres-Carmona E, Kambari Y, Amaev A, Song J, Ueno F, Koizumi T, Nakajima S, Agarwal SM, De Luca V, Gerretsen P, Graff-Guerrero A. Evaluation of the Glymphatic System in Schizophrenia Spectrum Disorder Using Proton Magnetic Resonance Spectroscopy Measurement of Brain Macromolecule and Diffusion Tensor Image Analysis Along the Perivascular Space Index. Schizophr Bull 2024; 50:1396-1410. [PMID: 38748498 PMCID: PMC11548937 DOI: 10.1093/schbul/sbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
BACKGROUND AND HYPOTHESIS The glymphatic system (GS), a brain waste clearance pathway, is disrupted in various neurodegenerative and vascular diseases. As schizophrenia shares clinical characteristics with these conditions, we hypothesized GS disruptions in patients with schizophrenia spectrum disorder (SCZ-SD), reflected in increased brain macromolecule (MM) and decreased diffusion-tensor-image-analysis along the perivascular space (DTI-ALPS) index. STUDY DESIGN Forty-seven healthy controls (HCs) and 103 patients with SCZ-SD were studied. Data included 135 proton magnetic resonance spectroscopy (1H-MRS) sets, 96 DTI sets, with 79 participants contributing both. MM levels were quantified in the dorsal-anterior cingulate cortex (dACC), dorsolateral prefrontal cortex, and dorsal caudate (point resolved spectroscopy, echo-time = 35ms). Diffusivities in the projection and association fibers near the lateral ventricle were measured to calculate DTI-ALPS indices. General linear models were performed, adjusting for age, sex, and smoking. Correlation analyses examined relationships with age, illness duration, and symptoms severity. STUDY RESULTS MM levels were not different between patients and HCs. However, left, right, and bilateral DTI-ALPS indices were lower in patients compared with HCs (P < .001). In HCs, age was positively correlated with dACC MM and negatively correlated with left, right, and bilateral DTI-ALPS indices (P < .001). In patients, illness duration was positively correlated with dACC MM and negatively correlated with the right DTI-ALPS index (P < .05). In the entire population, dACC MM and DTI-ALPS indices showed an inverse correlation (P < .01). CONCLUSIONS Our results suggest potential disruptions in the GS of patients with SCZ-SD. Improving brain's waste clearance may offer a potential therapeutic approach for patients with SCZ-SD.
Collapse
Affiliation(s)
- Ali Abdolizadeh
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Edgardo Torres-Carmona
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Teruki Koizumi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sri Mahavir Agarwal
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| |
Collapse
|
2
|
Devine EA, Imami AS, Eby H, Sahay S, Hamoud AR, Golchin H, Ryan W, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. Mol Psychiatry 2024:10.1038/s41380-024-02770-8. [PMID: 39424930 DOI: 10.1038/s41380-024-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
3
|
Joo SW, Kim SK, Lee WH, Kim SH, Lee J. Association of clozapine with structural and resting-state functional abnormalities of the hippocampus in chronic schizophrenia. Front Psychiatry 2024; 15:1464066. [PMID: 39429532 PMCID: PMC11486750 DOI: 10.3389/fpsyt.2024.1464066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Abnormalities in the hippocampus have been extensively reported in schizophrenia research. However, inconsistent findings exist, and how structural and functional abnormalities of the hippocampus are associated with clinical symptoms in schizophrenia, especially concerning clozapine treatment, remains uncertain. Methods We recruited 52 patients with schizophrenia, each with an illness duration of at least 5 years, and categorized them based on clozapine treatment. T1-weighted images and resting-state functional magnetic resonance imaging scans were obtained and analyzed to perform group comparisons of the structural and functional changes in the hippocampus. Volumes of the hippocampal subregions, as well as resting-state functional connectivity maps from these areas were compared between the groups. Associations with clinical symptoms, including the severity of psychiatric symptoms and cognitive functions, were investigated. Results The clozapine group (n=23) exhibited smaller volumes in several hippocampal subregions, including the CA1, CA4, granule cell and molecular layers of the dentate gyrus, compared to the non-clozapine group (n=29). Seven clusters with significant group differences in functional connectivity with these hippocampal subregions were identified, with six of these clusters showing increased functional connectivity in the clozapine group. The reduced volumes of the hippocampal subregions were moderately associated with the severity of negative symptoms, general intelligence, and executive function. Discussion Patients with schizophrenia undergoing clozapine treatment exhibited smaller volumes in the hippocampal subregions, which were moderately associated with negative symptoms and cognitive functions, compared to those without clozapine treatment.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Kyoung Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Koster M, van der Pluijm M, van de Giessen E, Schrantee A, van Hooijdonk CFM, Selten JP, Booij J, de Haan L, Ziermans T, Vermeulen J. The association of tobacco smoking and metabolite levels in the anterior cingulate cortex of first-episode psychosis patients: A case-control and 6-month follow-up 1H-MRS study. Schizophr Res 2024; 271:144-152. [PMID: 39029144 DOI: 10.1016/j.schres.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Tobacco smoking is highly prevalent among patients with psychosis and associated with worse clinical outcomes. Neurometabolites, such as glutamate and choline, are both implicated in psychosis and tobacco smoking. However, the specific associations between smoking and neurometabolites have yet to be investigated in patients with psychosis. The current study examines associations of chronic smoking and neurometabolite levels in the anterior cingulate cortex (ACC) in first-episode psychosis (FEP) patients and controls. Proton magnetic resonance spectroscopy (1H MRS) data of 59 FEP patients and 35 controls were analysed. Associations between smoking status (i.e., smoker yes/no) or cigarettes per day and Glx (glutamate + glutamine, as proxy for glutamate) and total choline (tCh) levels were assessed at baseline in both groups separately. For patients, six months follow-up data were acquired for multi-cross-sectional analysis using linear mixed models. No significant differences in ACC Glx levels were found between smoking (n = 28) and non-smoking (n = 31) FEP patients. Smoking patients showed lower tCh levels compared to non-smoking patients at baseline, although not surving multiple comparisons correction, and in multi-cross-sectional analysis (pFDR = 0.08 and pFDR = 0.044, respectively). Negative associations were observed between cigarettes smoked per day, and ACC Glx (pFDR = 0.02) and tCh levels (pFDR = 0.02) in controls. Differences between patients and controls regarding Glx might be explained by pre-existing disease-related glutamate deficits or alterations at nicotine acetylcholine receptor level, resulting in differences in tobacco-related associations with neurometabolites. Additionally, observed alterations in tCh levels, suggesting reduced cellular proliferation processes, might result from exposure to the neurotoxic effects of smoking.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
5
|
Shao YX, Wang LL, Zhou HY, Yi ZH, Liu S, Yan C. Dampened motivation in schizophrenia: evidence from a novel effort-based decision-making task in social scenarios. Eur Arch Psychiatry Clin Neurosci 2024; 274:1447-1459. [PMID: 38413455 DOI: 10.1007/s00406-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2024] [Indexed: 02/29/2024]
Abstract
Apathy represents a significant manifestation of negative symptoms within individuals diagnosed with schizophrenia (SCZ) and exerts a profound impact on their social relationships. However, the specific implications of this motivational deficit in social scenarios have yet to be fully elucidated. The present study aimed to examine effort-based decision-making in social scenarios and its relation to apathy symptoms in SCZ patients. We initially recruited a group of 50 healthy participants (16 males) to assess the validity of the paradigm. Subsequently, we recruited 45 individuals diagnosed with SCZ (24 males) and 49 demographically-matched healthy controls (HC, 25 males) for the main study. The Mock Job Interview Task was developed to measure effort-based decision-making in social scenarios. The proportion of hard-task choice and a range of subjective ratings were obtained to examine potential between-group differences. SCZ patients were less likely than HC to choose the hard task with strict interviewers, and this group difference was significant when the hard-task reward value was medium and high. More severe apathy symptoms were significantly correlated with an overall reduced likelihood of making a hard-task choice. When dividing the jobs into two categories based on the levels of social engagement needed, SCZ patients were less willing to expend effort to pursue a potential offer for jobs requiring higher social engagement. Our findings indicated impaired effort-based decision-making in SCZ can be generalized from the monetary/nonsocial to a more ecologically social dimension. Our findings affirm the critical role of aberrant effort allocation on negative symptoms, and may facilitate the development of targeted clinical interventions.
Collapse
Affiliation(s)
- Yu-Xin Shao
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Leshan Hi-Tech Zone Jiaxiang Foreign Languages School, Sichuan, China
| | - Ling-Ling Wang
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Liu
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
6
|
Bergstrom JJD, Fu MM. Dysregulation of myelination-related genes in schizophrenia. J Neurochem 2024; 168:2227-2242. [PMID: 39086020 PMCID: PMC11449665 DOI: 10.1111/jnc.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024]
Abstract
Schizophrenic individuals display disrupted myelination patterns, altered oligodendrocyte distribution, and abnormal oligodendrocyte morphology. Schizophrenia is linked with dysregulation of a variety of genes involved in oligodendrocyte function and myelin production. Single-nucleotide polymorphisms (SNPs) and rare mutations in myelination-related genes are observed in certain schizophrenic populations, representing potential genetic risk factors. Downregulation of myelination-related RNAs and proteins, particularly in frontal and limbic regions, is consistently associated with the disorder across multiple studies. These findings support the notion that disruptions in myelination may contribute to the cognitive and behavioral impairments experienced in schizophrenia, although further evidence of causation is needed.
Collapse
Affiliation(s)
| | - Meng-Meng Fu
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Perrottelli A, Giordano GM, Koenig T, Caporusso E, Giuliani L, Pezzella P, Bucci P, Mucci A, Galderisi S. Electrophysiological Correlates of Reward Anticipation in Subjects with Schizophrenia: An ERP Microstate Study. Brain Topogr 2024; 37:1-19. [PMID: 37402859 PMCID: PMC11199294 DOI: 10.1007/s10548-023-00984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
The current study aimed to investigate alterations of event-related potentials (ERPs) microstate during reward anticipation in subjects with schizophrenia (SCZ), and their association with hedonic experience and negative symptoms. EEG data were recorded in thirty SCZ and twenty-three healthy controls (HC) during the monetary incentive delay task in which reward, loss and neutral cues were presented. Microstate analysis and standardized low-resolution electromagnetic tomography (sLORETA) were applied to EEG data. Furthermore, analyses correlating a topographic index (the ERPs score), calculated to quantify brain activation in relationship to the microstate maps, and scales assessing hedonic experience and negative symptoms were performed. Alterations in the first (125.0-187.5 ms) and second (261.7-414.1 ms) anticipatory cue-related microstate classes were observed. In SCZ, reward cues were associated to shorter duration and earlier offset of the first microstate class as compared to the neutral condition. In the second microstate class, the area under the curve was smaller for both reward and loss anticipation cues in SCZ as compared to HC. Furthermore, significant correlations between ERPs scores and the anticipation of pleasure scores were detected, while no significant association was found with negative symptoms. sLORETA analysis showed that hypo-activation of the cingulate cortex, insula, orbitofrontal and parietal cortex was detected in SCZ as compared to HC. Abnormalities in ERPs could be traced already during the early stages of reward processing and were associated with the anticipation of pleasure, suggesting that these dysfunctions might impair effective evaluation of incoming pleasant experiences. Negative symptoms and anhedonia are partially independent results.
Collapse
Affiliation(s)
- A Perrottelli
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - G M Giordano
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - T Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - E Caporusso
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - L Giuliani
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - P Pezzella
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - P Bucci
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - A Mucci
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - S Galderisi
- University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
9
|
Huang H, Chen C, Rong B, Zhou Y, Yuan W, Peng Y, Liu Z, Wang G, Wang H. Distinct resting-state functional connectivity of the anterior cingulate cortex subregions in first-episode schizophrenia. Brain Imaging Behav 2024; 18:675-685. [PMID: 38349504 DOI: 10.1007/s11682-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 07/04/2024]
Abstract
The anterior cingulate cortex (ACC) is a heterogeneous region of the brain's limbic system that regulates cognitive and emotional processing, and is frequently implicated in schizophrenia. This study aims to characterize resting-state functional connectivity (rsFC) profiles of three subregions of ACC in patients with first-episode schizophrenia and healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from 60 first-episode schizophrenia (FES) patients and 60 healthy controls (HC), and the subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC) were selected as seed regions from the newest automated anatomical labeling atlas 3 (AAL3). Seed-based rsFC maps for each ACC subregion were generated and compared between the two groups. The results revealed that compared to the HC group, the FES group showed higher rsFC between the pgACC and bilateral lateral orbitofrontal cortex (lOFC), and lower rsFC between the dACC and right posterior OFC (pOFC), the medial prefrontal gyrus (MPFC), and the precuneus cortex (PCu). These findings point to a selective functional dysconnectivity of pgACC and dACC in schizophrenia and provide more accurate information about the functional role of the ACC in this disorder.
Collapse
Affiliation(s)
- Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yuan
- Department of Psychiatry, Yidu People's Hospital, Yidu, 443300, China
| | - Yunlong Peng
- Department of Psychiatry, Yidu People's Hospital, Yidu, 443300, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Hubei Institute of Neurology and Psychiatry Research, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Nisha Aji K, Cisbani G, Weidenauer A, Koppel A, Hafizi S, Da Silva T, Kiang M, Rusjan PM, Bazinet RP, Mizrahi R. Neurofilament light-chain (NfL) and 18 kDa translocator protein in early psychosis and its putative high-risk. Brain Behav Immun Health 2024; 37:100742. [PMID: 38495956 PMCID: PMC10940889 DOI: 10.1016/j.bbih.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Evidence of elevated peripheral Neurofilament light-chain (NfL) as a biomarker of neuronal injury can be utilized to reveal nonspecific axonal damage, which could reflect altered neuroimmune function. To date, only a few studies have investigated NfL as a fluid biomarker in schizophrenia primarily, though none in its putative prodrome (Clinical High-Risk, CHR) or in untreated first-episode psychosis (FEP). Further, it is unknown whether peripheral NfL is associated with 18 kDa translocator protein (TSPO), a validated neuroimmune marker. In this secondary study, we investigated for the first time (1) serum NfL in early stages of psychosis including CHR and FEP as compared to healthy controls, and (2) examined its association with brain TSPO, using [18F]FEPPA positron emission tomography (PET). Further, in the exploratory analyses, we aimed to assess associations between serum NfL and symptom severity in patient group and cognitive impairment in the combined cohort. A large cohort of 84 participants including 27 FEP (24 antipsychotic-naive), 41 CHR (34 antipsychotic-naive) and 16 healthy controls underwent structural brain MRI and [18F]FEPPA PET scan and their blood samples were obtained and assessed for serum NfL concentrations. We found no significant differences in serum NfL levels across clinical groups, controlling for age. We also found no significant association between NfL levels and brain TSPO in the entire cohort. We observed a negative association between serum NfL and negative symptom severity in CHR. Our findings suggest that neither active neuroaxonal deterioration as measured with NfL nor associated neuroimmune activation (TSPO) is clearly identifiable in an early mostly untreated psychosis sample including its putative high-risk.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Alex Koppel
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Weickert TW, Ji E, Galletly C, Boerrigter D, Morishima Y, Bruggemann J, Balzan R, O’Donnell M, Liu D, Lenroot R, Weickert CS, Kindler J. Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning. Schizophr Bull 2024; 50:403-417. [PMID: 38102721 PMCID: PMC10919782 DOI: 10.1093/schbul/sbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND HYPOTHESES Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Danny Boerrigter
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jason Bruggemann
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, Australia
- Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ryan Balzan
- School of Psychology, Flinders University, Adelaide, SA, Australia
| | - Maryanne O’Donnell
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- Kiloh Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jochen Kindler
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
12
|
Hamzehpour L, Bohn T, Jaspers L, Grimm O. Exploring the link between functional connectivity of ventral tegmental area and physical fitness in schizophrenia and healthy controls. Eur Neuropsychopharmacol 2023; 76:77-86. [PMID: 37562082 DOI: 10.1016/j.euroneuro.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Decreased physical fitness and being overweight are highly prevalent in schizophrenia, represent a major risk factor for comorbid cardio-vascular diseases and decrease the life expectancy of the patients. Thus, it is important to understand the underlying mechanisms that link psychopathology and weight gain. We hypothesize that the dopaminergic reward system plays an important role in this. We analyzed the seed-based functional connectivity (FC) of the ventral tegmental area (VTA) in a group of schizophrenic patients (n=32) and age-, as well as gender-, matched healthy controls (n=27). We then correlated the resting-state results with physical fitness parameters, obtained in a fitness test, and psychopathology. The FC analysis revealed decreased functional connections between the VTA and the anterior cingulate cortex (ACC), as well as the dorsolateral prefrontal cortex, which negatively correlated with psychopathology, and increased FC between the VTA and the middle temporal gyrus in patients compared to healthy controls, which positively correlated with psychopathology. The decreased FC between the VTA and the ACC of the patient group further positively correlated with total body fat (p = .018, FDR-corr.) and negatively correlated with the overall physical fitness (p = .022). This study indicates a link between decreased physical fitness and higher body fat with functional dysconnectivity between the VTA and the ACC. These findings demonstrate that a dysregulated reward system might also be involved in comorbidities and could pave the way for future lifestyle therapy interventions.
Collapse
Affiliation(s)
- Lara Hamzehpour
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany; Goethe University Frankfurt, Faculty 15 Biological Sciences, Frankfurt am Main, Germany.
| | - Tamara Bohn
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Lucia Jaspers
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Oliver Grimm
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Zhu T, Wang Z, Wu W, Ling Y, Wang Z, Zhou C, Fang X, Huang C, Xie C, Chen J, Zhang X. Altered brain functional networks in schizophrenia with persistent negative symptoms: an activation likelihood estimation meta-analysis. Front Hum Neurosci 2023; 17:1204632. [PMID: 37954938 PMCID: PMC10637389 DOI: 10.3389/fnhum.2023.1204632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate brain structural and functional characteristics of three brain functional networks including default mode network (DMN), central executive network (CEN), and salience network (SN) in persistent negative symptoms (PNS) patients. Methods We performed an activation likelihood estimation (ALE) meta-analysis of functional connectivity (FC) studies and voxel-based morphometry (VBM) studies to detect specific structural and functional alterations of brain networks between PNS patients and healthy controls. Results Seventeen VBM studies and twenty FC studies were included. In the DMN, PNS patients showed decreased gray matter in the bilateral medial frontal gyrus and left anterior cingulate gyrus and a significant reduction of FC in the right precuneus. Also, PNS patients had a decrease of gray matter in the left inferior parietal lobules and medial frontal gyrus, and a significant reduction of FC in the bilateral superior frontal gyrus in the CEN. In comparison with healthy controls, PNS patients exhibited reduced gray matter in the bilateral insula, anterior cingulate gyrus, left precentral gyrus and right claustrum and lower FC in these brain areas in the SN, including the left insula, claustrum, inferior frontal gyrus and extra-nuclear. Conclusion This meta-analysis reveals brain structural and functional imaging alterations in the three networks and the interaction among these networks in PNS patients, which provides neuroscientific evidence for more personalized treatment.Systematic Review RegistrationThe PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42022335962).
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zengxiu Wang
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine Southeast University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Dang Y, He Y, Zheng D, Wang X, Chen J, Zhou Y. Heritability of cerebral blood flow in adolescent and young adult twins: an arterial spin labeling perfusion imaging study. Cereb Cortex 2023; 33:10624-10633. [PMID: 37615361 DOI: 10.1093/cercor/bhad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023] Open
Abstract
Blood perfusion is a fundamental physiological property of all organs and is closely linked to brain metabolism. Genetic factors were reported to have important influences on cerebral blood flow. However, the profile of genetic contributions to cerebral blood flow in adolescents or young adults was underexplored. In this study, we recruited a sample of 65 pairs of same-sex adolescent or young adult twins undergoing resting arterial spin labeling imaging to conduct heritability analyses. Our findings indicate that genetic factors modestly affect cerebral blood flow in adolescents or young adults in the territories of left anterior cerebral artery and right posterior cerebral artery, with the primary contribution being to the frontal regions, cingulate gyrus, and striatum, suggesting a profile of genetic contributions to specific brain regions. Notably, the regions in the left hemisphere demonstrate the highest heritability in most regions examined. These results expand our knowledge of the genetic basis of cerebral blood flow in the developing brain and emphasize the importance of regional analysis in understanding the heritability of cerebral blood flow. Such insights may contribute to our understanding of the underlying genetic mechanism of brain functions and altered cerebral blood flow observed in youths with brain disorders.
Collapse
Affiliation(s)
- Yi Dang
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwen He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Center for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China
| | - Dang Zheng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- China National Children's Center, Beijing 100035, China
| | - Xiaoming Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
| | - Jie Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| | - Yuan Zhou
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing 100101, China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
15
|
Alexandros Lalousis P, Schmaal L, Wood SJ, L E P Reniers R, Cropley VL, Watson A, Pantelis C, Suckling J, Barnes NM, Pariante C, Jones PB, Joyce E, Barnes TRE, Lawrie SM, Husain N, Dazzan P, Deakin B, Shannon Weickert C, Upthegrove R. Inflammatory subgroups of schizophrenia and their association with brain structure: A semi-supervised machine learning examination of heterogeneity. Brain Behav Immun 2023; 113:166-175. [PMID: 37423513 DOI: 10.1016/j.bbi.2023.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.
Collapse
Affiliation(s)
- Paris Alexandros Lalousis
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Lianne Schmaal
- Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Stephen J Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Renate L E P Reniers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Institute of Clinical Sciences, University of Birmingham, United Kingdom
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Andrew Watson
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia; NorthWestern Mental Health, Western Hospital Sunshine, St. Albans, Vicroria, Australia
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Nicholas M Barnes
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Peter B Jones
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Eileen Joyce
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas R E Barnes
- Division of Psychiatry, Imperial College London, London United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester & Mersey Care NHS Foundation Trust
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Early Interventions Service, Birmingham Women's and Children's NHS Foundation Trust, United Kingdom
| |
Collapse
|
16
|
Liu Y, Huang H, Qin X, Zheng F, Wang H. Altered functional connectivity in anterior cingulate cortex subregions in treatment-resistant schizophrenia patients. Neurosci Lett 2023; 814:137445. [PMID: 37597741 DOI: 10.1016/j.neulet.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) plays a key role in motor control, attention, and cognitive control. It is well established that schizophrenia is associated with impaired functional connectivity (FC) of the ACC pathway. So far, however, there has been little discussion about the ACC subregions function in patients with treatment-resistant schizophrenia (TRS). AIM This study aims to characterize resting-state functional connectivity (rs-FC) profiles of ACC subregions in patients with TRS. The association between these FC and clinical symptoms, neurocognitive function, and grey matter volume (GMV) was studied as well. METHODS A total of 81 patients with schizophrenia (40 patients with TRS = 40, 41 patients with non-treatment-resistant schizophrenia (NTRS)) and 39 age- and gender-matched healthy controls (HC) were enrolled, and underwent structural magnetic resonance imaging (MRI), resting-state functional MRI (rs-fMRI), clinical evaluation. The ACC subregions, including subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC), were selected as seed regions from the automated anatomical labelling atlas 3 (AAL3). The GMV of the ACC subregions were calculated and seed-based FC maps for all ACC subregions were generated and compared between the TRS and NTRS, HC group. Additionally, correlations between altered FC and clinical symptoms, GMV, and neurocognitive functions in the TRS patients were explored. RESULT Compared with HC, increased FC was observed in TRS and NTRS groups between bilateral sgACC and left cuneus, right cuneus, and left lingual gyrus, while decreased FC was found between bilateral dACC and thalamic. Additionally, compared with NTRS, the TRS group showed increased FC between bilateral dACC and right cuneus and decreased FC between bilateral dACC and thalamic. The TRS group showed decreased GMV in all ACC subregions than the HC group, and there is no significant difference between the TRS group and the NTRS group. CONCLUSION The findings in this study suggest that disrupted FC of subregional ACC has the potential as a marker for TRS. The dysconnectivity of bilateral dACC- right cuneus and bilateral dACC-thalamus, are likely to be the unique FC profiles of TRS. These findings further our understanding of the neurobiological impairments in TRS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanfan Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
17
|
Gaus R, Popal M, Heinsen H, Schmitt A, Falkai P, Hof PR, Schmitz C, Vollhardt A. Reduced cortical neuron number and neuron density in schizophrenia with focus on area 24: a post-mortem case-control study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1209-1223. [PMID: 36350376 PMCID: PMC10449727 DOI: 10.1007/s00406-022-01513-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Structural and functional abnormalities of the anterior cingulate cortex (ACC) have frequently been identified in schizophrenia. Alterations of von Economo neurons (VENs), a class of specialized projection neurons, have been found in different neuropsychiatric disorders and are also suspected in schizophrenia. To date, however, no definitive conclusions can be drawn about quantitative histologic changes in the ACC in schizophrenia because of a lack of rigorous, design-based stereologic studies. In the present study, the volume, total neuron number and total number of VENs in layer V of area 24 were determined in both hemispheres of postmortem brains from 12 male patients with schizophrenia and 11 age-matched male controls. To distinguish global from local effects, volume and total neuron number were also determined in the whole area 24 and whole cortical gray matter (CGM). Measurements were adjusted for hemisphere, age, postmortem interval and fixation time using an ANCOVA model. Compared to controls, patients with schizophrenia showed alterations, with lower mean total neuron number in CGM (- 14.9%, P = 0.007) and in layer V of area 24 (- 21.1%, P = 0.002), and lower mean total number of VENs (- 28.3%, P = 0.027). These data provide evidence for ACC involvement in the pathophysiology of schizophrenia, and complement neuroimaging findings of impaired ACC connectivity in schizophrenia. Furthermore, these results support the hypothesis that the clinical presentation of schizophrenia, particularly deficits in social cognition, is associated with pathology of VENs.
Collapse
Affiliation(s)
- Richard Gaus
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Melanie Popal
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christoph Schmitz
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Alisa Vollhardt
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
18
|
Shen H, Ge L, Cao B, Wei GX, Zhang X. The contribution of the cingulate cortex: treating depressive symptoms in first-episode drug naïve schizophrenia. Int J Clin Health Psychol 2023; 23:100372. [PMID: 36793339 PMCID: PMC9922813 DOI: 10.1016/j.ijchp.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Background Our previous study has shown the cingulate cortex abnormalities in first-episode drug naïve (FEDN) schizophrenia patients with comorbid depressive symptoms. However, it remains largely unknown whether antipsychotics may induce morphometric change in cingulate cortex and its relationship with depressive symptoms. The purpose of this study was to further clarify the important role of cingulate cortex in the treatment on depressive symptoms in FEDN schizophrenia patients. Method In this study, 42 FEDN schizophrenia patients were assigned into depressed patients group (DP, n = 24) and non-depressed patients group (NDP, n = 18) measured by the 24-item Hamilton Depression Rating Scale (HAMD). Clinical assessments and anatomical images were obtained from all patients before and after 12-week treatment with risperidone. Results Although risperidone alleviated psychotic symptoms in all patients, depressive symptoms were decreased only in DP. Significant group by time interaction effects were found in the right rostral anterior cingulate cortex (rACC) and other subcortical regions in the left hemisphere. After risperidone treatment, the right rACC were increased in DP. Further, the increasing volume of right rACC was negatively associated with improvement in depressive symptoms. Conclusion These findings suggested that the abnormality of the rACC is the typical characteristics in schizophrenia with depressive symptoms. It's likely key region contributing to the neural mechanisms underlying the effects of risperidone treatment on depressive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Haoran Shen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Likun Ge
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Alberta, Canada
| | - Gao-Xia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Zhang C, Li X, Zhao L, Guo W, Deng W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Brain transcriptome-wide association study implicates novel risk genes underlying schizophrenia risk. Psychol Med 2023:1-11. [PMID: 37092861 DOI: 10.1017/s0033291723000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND To identify risk genes whose expression are regulated by the reported risk variants and to explore the potential regulatory mechanism in schizophrenia (SCZ). METHODS We systematically integrated three independent brain expression quantitative traits (eQTLs) (CommonMind, GTEx, and BrainSeq Phase 2, a total of 1039 individuals) and GWAS data (56 418 cases and 78 818 controls), with the use of transcriptome-wide association study (TWAS). Diffusion magnetic resonance imaging was utilized to quantify the integrity of white matter bundles and determine whether polygenic risk of novel genes linked to brain structure was present in patients with first-episode antipsychotic SCZ. RESULTS TWAS showed that eight risk genes (CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, PCDHA8, THOC7, and TYW5) reached transcriptome-wide significance (TWS) level. These findings were confirmed by an independent integrative approach (i.e. Sherlock). We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Gene expression analysis showed that several TWS genes (including CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, THOC7 and TYW5) were dysregulated in the dorsolateral prefrontal cortex of SCZ cases compared with controls. TWS genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and microglia. Finally, SCZ cases had a substantially greater TWS genes-based polygenic risk (PRS) compared to controls, and we showed that fractional anisotropy of the cingulum-hippocampus mediates the influence of TWS genes PRS on SCZ. CONCLUSIONS Our findings identified novel SCZ risk genes and highlighted the importance of the TWS genes in frontal-limbic dysfunctions in SCZ, indicating possible therapeutic targets.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, Soochow University's Affiliated Guangji Hospital, Suzhou, Jiangsu, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
21
|
Liang S, Cao B, Deng W, Kong X, Zhao L, Jin Y, Ma X, Wang Y, Li X, Wang Q, Guo W, Du X, Sham PC, Greenshaw AJ, Li T. Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder. Schizophr Res 2023; 254:155-162. [PMID: 36889182 DOI: 10.1016/j.schres.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/20/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
Aberrant resting-state functional connectivity (FC) of anterior cingulate cortex (ACC) has been implicated in the pathophysiology of schizophrenia and bipolar disorder (BP). This study investigated the subregional FC of ACC across schizophrenia and psychotic (PBP) and nonpsychotic BP (NPBP) and the relationship between brain functional alterations and clinical manifestations. A total of 174 first-episode medication-naive patients with schizophrenia (FES), 80 patients with PBP, 77 patients with NPBP and 173 demographically matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Brain-wide FC of ACC subregions was computed for each individual, and compared between the groups. General intelligence was evaluated using the short version of the Wechsler Adult Intelligence Scale. Relationships between FC and various clinical and cognitive variables were estimated using the skipped correlation. The FES, PBP and NPBP groups showed differing connectivity patterns in the left caudal, dorsal and perigenual ACC. Transdiagnostic dysconnectivity was found in the subregional ACC associated with cortical, limbic, striatal and cerebellar regions. Disorder-specific dysconnectivity in FES was identified between the left perigenual ACC and bilateral orbitofrontal cortex, and the left caudal ACC coupling with the default mode network (DMN) and visual processing region was correlated with psychotic symptoms. In the PBP group, FC between the left dorsal ACC and the right caudate was correlated with psychotic symptoms, and FC connected with the DMN was associated with affective symptoms. The current findings confirmed that subregional ACC dysconnectivity could be a key transdiagnostic feature and associated with differing clinical symptomology across schizophrenia and PBP.
Collapse
Affiliation(s)
- Sugai Liang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China; Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Wei Deng
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liansheng Zhao
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Jin
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingcheng Wang
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaojing Li
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Wang
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanjun Guo
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Pak C Sham
- State Key Laboratory of Brain and Cognitive Sciences, Centre for Genomic Sciences, & Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Tao Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China; Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| |
Collapse
|
22
|
Low protein-induced intrauterine growth restriction as a risk factor for schizophrenia phenotype in a rat model: assessing the role of oxidative stress and neuroinflammation interaction. Transl Psychiatry 2023; 13:30. [PMID: 36720849 PMCID: PMC9889339 DOI: 10.1038/s41398-023-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
A large body of evidence suggests that intrauterine growth restriction (IUGR) impedes normal neurodevelopment and predisposes the offspring to cognitive and behavioral deficits later in life. A significantly higher risk rate for schizophrenia (SZ) has been reported in individuals born after IUGR. Oxidative stress and neuroinflammation are both involved in the pathophysiology of SZ, particularly affecting the structural and functional integrity of parvalbumin interneurons (PVI) and their perineuronal nets (PNN). These anomalies have been tightly linked to impaired cognition, as observed in SZ. However, these pathways remain unexplored in models of IUGR. New research has proposed the activation of the MMP9-RAGE pathway to be a cause of persisting damage to PVIs. We hypothesize that IUGR, caused by a maternal protein deficiency during gestation, will induce oxidative stress and neuroinflammation. The activation of these pathways during neurodevelopment may affect the maturation of PVIs and PNNs, leading to long-term consequences in adolescent rats, in analogy to SZ patients. The level of oxidative stress and microglia activation were significantly increased in adolescent IUGR rats at postnatal day (P)35 as compared to control rats. PVI and PNN were decreased in P35 IUGR rats when compared to the control rats. MMP9 protein level and RAGE shedding were also increased, suggesting the involvement of this mechanism in the interaction between oxidative stress and neuroinflammation. We propose that maternal diet is an important factor for proper neurodevelopment of the inhibitory circuitry, and is likely to play a crucial role in determining normal cognition later in life, thus making it a pertinent model for SZ.
Collapse
|
23
|
Barendse MEA, Lara GA, Guyer AE, Swartz JR, Taylor SL, Shirtcliff EA, Lamb ST, Miller C, Ng J, Yu G, Tully LM. Sex and pubertal influences on the neurodevelopmental underpinnings of schizophrenia: A case for longitudinal research on adolescents. Schizophr Res 2023; 252:231-241. [PMID: 36682313 PMCID: PMC10725041 DOI: 10.1016/j.schres.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/08/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023]
Abstract
Sex is a significant source of heterogeneity in schizophrenia, with more negative symptoms in males and more affective symptoms and internalizing comorbidity in females. In this narrative review, we argue that there are likely sex differences in the pathophysiological mechanisms of schizophrenia-spectrum disorders (SZ) that originate during puberty and relate to the sex-specific impacts of pubertal maturation on brain development. Pubertal maturation might also trigger underlying (genetic or other) vulnerabilities in at-risk individuals, influencing brain development trajectories that contribute to the emergence of SZ. This review is the first to integrate links between pubertal development and neural development with cognitive neuroscience research in SZ to form and evaluate these hypotheses, with a focus on the frontal-striatal and frontal-limbic networks and their hypothesized contribution to negative and mood symptoms respectively. To test these hypotheses, longitudinal research with human adolescents is needed that examines the role of sex and pubertal development using large cohorts or high risk samples. We provide recommendations for such studies, which will integrate the fields of psychiatry, developmental cognitive neuroscience, and developmental endocrinology towards a more nuanced understanding of the role of pubertal factors in the hypothesized sex-specific pathophysiological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- M E A Barendse
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - G A Lara
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - A E Guyer
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA
| | - J R Swartz
- Center for Mind and Brain, UC Davis, CA, USA
| | - S L Taylor
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | - E A Shirtcliff
- Human Development and Family Studies, Iowa State University, Ames, IA, USA
| | - S T Lamb
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - C Miller
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - J Ng
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - G Yu
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - L M Tully
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA.
| |
Collapse
|
24
|
Giordano GM, Pezzella P, Giuliani L, Fazio L, Mucci A, Perrottelli A, Blasi G, Amore M, Rocca P, Rossi A, Bertolino A, Galderisi S. Resting-State Brain Activity Dysfunctions in Schizophrenia and Their Associations with Negative Symptom Domains: An fMRI Study. Brain Sci 2023; 13:brainsci13010083. [PMID: 36672064 PMCID: PMC9856573 DOI: 10.3390/brainsci13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to examine the neurobiological correlates of the two negative symptom domains of schizophrenia, the Motivational Deficit domain (including avolition, anhedonia, and asociality) and the Expressive Deficit domain (including blunted affect and alogia), focusing on brain areas that are most commonly found to be associated with negative symptoms in previous literature. Resting-state (rs) fMRI data were analyzed in 62 subjects affected by schizophrenia (SZs) and 46 healthy controls (HCs). The SZs, compared to the HCs, showed higher rs brain activity in the right inferior parietal lobule and the right temporoparietal junction, and lower rs brain activity in the right dorsolateral prefrontal cortex, the bilateral anterior dorsal cingulate cortex, and the ventral and dorsal caudate. Furthermore, in the SZs, the rs brain activity in the left orbitofrontal cortex correlated with negative symptoms (r = -0.436, p = 0.006), in particular with the Motivational Deficit domain (r = -0.424, p = 0.002), even after controlling for confounding factors. The left ventral caudate correlated with negative symptoms (r = -0.407, p = 0.003), especially with the Expressive Deficit domain (r = -0.401, p = 0.003); however, these results seemed to be affected by confounding factors. In line with the literature, our results demonstrated that the two negative symptom domains might be underpinned by different neurobiological mechanisms.
Collapse
Affiliation(s)
- Giulia Maria Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pasquale Pezzella
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-0815666512
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Perrottelli
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Mario Amore
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, 10126 Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | |
Collapse
|
25
|
Xie Y, Guan M, He Y, Wang Z, Ma Z, Fang P, Wang H. The Static and dynamic functional connectivity characteristics of the left temporoparietal junction region in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2023; 14:1071769. [PMID: 36761865 PMCID: PMC9907463 DOI: 10.3389/fpsyt.2023.1071769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a core symptom of schizophrenia. Low-frequency (e.g., 1 Hz) repetitive transcranial magnetic stimulation (rTMS) targeting language processing regions (e.g., left TPJ) has been evident as a potential treatment for AVH. However, the underlying neural mechanisms of the rTMS treatment effect remain unclear. The present study aimed to investigate the effects of 1 Hz rTMS on functional connectivity (FC) of the temporoparietal junction area (TPJ) seed with the whole brain in schizophrenia patients with AVH. METHODS Using a single-blind placebo-controlled randomized clinical trial, 55 patients with AVH were randomly divided into active treatment group (n = 30) or placebo group (n = 25). The active treatment group receive 15-day 1 Hz rTMS stimulation to the left TPJ, whereas the placebo group received sham rTMS stimulation to the same site. Resting-state fMRI scans and clinical measures were acquired for all patients before and after treatment. The seed-based (left TPJ) static and DFC was used to assess the connectivity characteristics during rTMS treatment in patients with AVH. RESULTS Overall, symptom improvement following 1 Hz rTMS treatment was found in the active treatment group, whereas no change occurred in the placebo group. Moreover, decreased static FC (SFC) of the left TPJ with the right temporal lobes, as well as increased SFC with the prefrontal cortex and subcortical structure were observed in active rTMS group. Increased dynamic FC (DFC) of the left TPJ with frontoparietal areas was also found in the active rTMS group. However, seed-based SFC and DFC were reduced to a great extent in the placebo group. In addition, these changed FC (SFC) strengths in the active rTMS group were associated with reduced severity of clinical outcomes (e.g., positive symptoms). CONCLUSION The application of 1 Hz rTMS over the left TPJ may affect connectivity characteristics of the targeted region and contribute to clinical improvement, which shed light on the therapeutic effect of rTMS on schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Huang X, Li Y, Liu H, Xu J, Tan Z, Dong H, Tian B, Wu S, Wang W. Activation of basolateral amygdala to anterior cingulate cortex circuit alleviates MK-801 induced social and cognitive deficits of schizophrenia. Front Cell Neurosci 2022; 16:1070015. [PMID: 36619672 PMCID: PMC9813383 DOI: 10.3389/fncel.2022.1070015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Schizophrenia is a severe psychiatric disorder with a high prevalence worldwide, however, its pathogenesis remains poorly understood. Methods and results In this study, we used the non-competitive NMDA receptor antagonist MK-801 to induce schizophrenia-like behaviors and confirmed that mice exhibited stereotypic rotational behavior and hyperlocomotion, social interaction defects and cognitive dysfunction, similar to the clinical symptoms in patients. Here, the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) were involved in the schizophrenia-like behaviors induced by MK-801. Furthermore, we confirmed BLA sent glutamatergic projection to the ACC. Chemogenetic and optogenetic regulation of BLA-ACC projecting neurons affected social and cognitive deficits but not stereotypic rotational behavior in MK-801-treated mice. Discussion Overall, our study revealed that the BLA-ACC circuit plays a major role and may be a potential target for treating schizophrenia-related symptoms.
Collapse
|
27
|
Morphology of Anterior Cingulate Cortex and Its Relation to Schizophrenia. J Clin Med 2022; 12:jcm12010033. [PMID: 36614833 PMCID: PMC9821645 DOI: 10.3390/jcm12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cortical folding of the anterior cingulate cortex (ACC), particularly the cingulate (CS) and the paracingulate (PCS) sulci, represents a neurodevelopmental marker. Deviations in in utero development in schizophrenia can be traced using CS and PCS morphometry. In the present study, we measured the length of CS, PCS, and their segments on T1 MRI scans in 93 patients with first- episode schizophrenia and 42 healthy controls. Besides the length, the frequency and the left-right asymmetry of CS/PCS were compared in patients and controls. Distribution of the CS and PCS morphotypes in patients was different from controls. Parcellated sulcal pattern CS3a in the left hemisphere was longer in patients (53.8 ± 25.7 mm vs. 32.7 ± 19.4 mm in controls, p < 0.05), while in CS3c it was reversed—longer in controls (52.5 ± 22.5 mm as opposed to 36.2 ± 12.9 mm, n.s. in patients). Non parcellated PCS in the right hemisphere were longer in patients compared to controls (19.4 ± 10.2 mm vs. 12.1 ± 12.4 mm, p < 0.001). Therefore, concurrent presence of PCS1 and CS1 in the left hemisphere and to some extent in the right hemisphere may be suggestive of a higher probability of schizophrenia.
Collapse
|
28
|
Gerritsen CJ, Goldberg JO, Kiang M, Remington G, Foussias G, Eastwood JD. Distinct profiles of psychological and neuropsychological functions underlying goal-directed pursuit in schizophrenia. Aust N Z J Psychiatry 2022; 56:1628-1641. [PMID: 35191327 DOI: 10.1177/00048674221077031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Several components are known to underlie goal-directed pursuit, including executive, motivational and volitional functions. These were explored in schizophrenia spectrum disorders in order to identify subgroups with distinct profiles. METHODS Multiple executive, motivational and volitional tests were administered to a sample of outpatients with schizophrenia spectrum diagnoses (n = 59) and controls (n = 63). Research questions included whether distinct profiles exist and whether some functions are impacted disproportionately. These questions were addressed via cluster analysis and profile analysis, respectively. RESULTS Some such functions were significantly altered in schizophrenia while others were unaffected. Two distinct profiles emerged, one characterized by energizing deficits, reduced reward sensitivity and few subjective complaints; while another was characterized by markedly increased punishment sensitivity, intact reward sensitivity and substantial subjective reporting of avolitional symptoms and boredom susceptibility. CONCLUSION These findings highlight the importance of considering distinct patterns of strengths and deficits in functions governing goal-directed pursuit in schizophrenia that demarcate identifiable subtypes. These distinctions have implications for treatment, assessment and research.
Collapse
Affiliation(s)
- Cory J Gerritsen
- Campbell Family Mental Health Research Institute, Forensic Early Intervention Service, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joel O Goldberg
- Department of Psychology, York University, Toronto, ON, Canada
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - George Foussias
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - John D Eastwood
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
29
|
Xue T, Wang X, Hu Y, Cheng Y, Li H, Shi Y, Wang L, Yin D, Cui D. Embryonic Deletion of TXNIP in GABAergic Neurons Enhanced Oxidative Stress in PV+ Interneurons in Primary Somatosensory Cortex of Aging Mice: Relevance to Schizophrenia. Brain Sci 2022; 12:1395. [PMID: 36291328 PMCID: PMC9599691 DOI: 10.3390/brainsci12101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
The brain is susceptible to perturbations of redox balance, affecting neurogenesis and increasing the risks of psychiatric disorders. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin antioxidant system. Its deletion or inhibition suggests protection for a brain with ischemic stroke or Alzheimer's disease. Combined with conditional knockout mice and schizophrenia samples, we aimed to investigate the function of TXNIP in healthy brain and psychiatric disorders, which are under-studied. We found TXNIP was remarkedly expressed in the prefrontal cortex (PFC) during healthy mice's prenatal and early postnatal periods, whereas it rapidly decreased throughout adulthood. During early life, TXNIP was primarily distributed in inhibitory and excitatory neurons. Contrary to the protective effect, the embryonic deletion of TXNIP in GABAergic (gamma-aminobutyric acid-ergic) neurons enhanced oxidative stress in PV+ interneurons of aging mice. The deleterious impact was brain region-specific. We also investigated the relationship between TXNIP and schizophrenia. TXNIP was significantly increased in the PFC of schizophrenia-like mice after MK801 administration, followed by oxidative stress. First episode and drug naïve schizophrenia patients with a higher level of plasma TXNIP displayed severer psychiatric symptoms than patients with a low level. We indicated a bidirectional function of TXNIP in the brain, whose high expression in the early stage is protective for development but might be harmful in a later period, associated with mental disorders.
Collapse
Affiliation(s)
- Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Xiaodan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Ying Hu
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Han Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Yuan Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Dongmin Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Joe P, Clemente JC, Piras E, Wallach DS, Robinson-Papp J, Boka E, Remsen B, Bonner M, Kimhy D, Goetz D, Hoffman K, Lee J, Ruby E, Fendrich S, Gonen O, Malaspina D. An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophr Res 2022; 247:101-115. [PMID: 34625336 PMCID: PMC8980116 DOI: 10.1016/j.schres.2021.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The mechanism producing psychosis appears to include hippocampal inflammation, which could be associated with the microbiome-gut-brain-axis (MGBS). To test this hypothesis we are conducting a multidisciplinary study, herein described. The procedures are illustrated with testing of a single subject and group level information on the impact of C-section birth are presented. METHOD Study subjects undergo research diagnostic interviews and symptom assessments to be categorized into one of 3 study groups: psychosis, nonpsychotic affective disorder or healthy control. Hippocampal volume and metabolite concentrations are assessed using 3-dimensional, multi-voxel H1 Magnetic Resonance Imaging (MRSI) encompassing all gray matter in the entire hippocampal volume. Rich self-report information is obtained with the PROMIS interview, which was developed by the NIH Commons for research in chronic conditions. Early trauma is assessed and cognition is quantitated using the MATRICS. The method also includes the most comprehensive autonomic nervous system (ANS) battery used to date in psychiatric research. Stool and oral samples are obtained for microbiome assessments and cytokines and other substances are measured in blood samples. RESULTS Group level preliminary data shows that C-section birth is associated with higher concentrations of GLX, a glutamate related hippocampal neurotransmitter in psychotic cases, worse symptoms in affective disorder cases and smaller hippocampal volume in controls. CONCLUSION Mode of birth appears to have persistent influences through adulthood. The methodology described for this study will define pathways through which the MGBA may influence the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Peter Joe
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Jose C Clemente
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Enrica Piras
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - David S Wallach
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | | | - Emeka Boka
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Brooke Remsen
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mharisi Bonner
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Kimhy
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Deborah Goetz
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kevin Hoffman
- Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Jakleen Lee
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Eugene Ruby
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Sarah Fendrich
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Perelman School of Medicine, University of Pennsylvania, Center for Health Care Incentives & Behavioral Economics, Philadelphia, PA, USA
| | - Oded Gonen
- NYU Langone Medical Center, Department of Radiology, New York, NY, USA
| | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
31
|
Kulason S, Ratnanather JT, Miller MI, Kamath V, Hua J, Yang K, Ma M, Ishizuka K, Sawa A. A comparative neuroimaging perspective of olfaction and higher-order olfactory processing: on health and disease. Semin Cell Dev Biol 2022; 129:22-30. [PMID: 34462249 PMCID: PMC9900497 DOI: 10.1016/j.semcdb.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.
Collapse
Affiliation(s)
- Sue Kulason
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
32
|
Luckhoff HK, Asmal L, Scheffler F, Phahladira L, Smit R, van den Heuvel L, Fouche JP, Seedat S, Emsley R, du Plessis S. Associations between BMI and brain structures involved in food intake regulation in first-episode schizophrenia spectrum disorders and healthy controls. J Psychiatr Res 2022; 152:250-259. [PMID: 35753245 DOI: 10.1016/j.jpsychires.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Structural brain differences have been described in first-episode schizophrenia spectrum disorders (FES), and often overlap with those evident in the metabolic syndrome (MetS). We examined the associations between body mass index (BMI) and brain structures involved in food intake regulation in minimally treated FES patients (n = 117) compared to healthy controls (n = 117). The effects of FES diagnosis, BMI and their interactions on our selected prefrontal cortical thickness and subcortical gray matter volume regions of interest (ROIs) were investigated with hierarchical multivariate regressions, followed by post-hoc regressions for the individual ROIs. In a secondary analysis, we examined the relationships of other MetS risk factors and psychopathology with the brain ROIs. Both illness and BMI significantly predicted the grouped prefrontal cortical thickness ROIs, whereas only BMI predicted the grouped subcortical volume ROIs. For the individual ROIs, schizophrenia diagnosis predicted thinner left and right frontal pole and right lateral OFC thickness, and increased BMI predicted thinner left and right caudal ACC thickness. There were no significant main or interaction effects for diagnosis and BMI on any of the individual subcortical volume ROIs. Secondary analyses suggest associations between several brain ROIs and individual MetS risk factors, but not with psychopathology. Our findings indicate differential, independent effects for FES diagnosis and BMI on brain structures. Limited evidence suggests that the BMI effects are more prominent in FES. Exploratory analyses suggest associations between other MetS risk factors and some brain ROIs.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa.
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L van den Heuvel
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - J P Fouche
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| |
Collapse
|
33
|
Haas SS, Ge R, Sanford N, Modabbernia A, Reichenberg A, Whalley HC, Kahn RS, Frangou S. Accelerated Global and Local Brain Aging Differentiate Cognitively Impaired From Cognitively Spared Patients With Schizophrenia. Front Psychiatry 2022; 13:913470. [PMID: 35815015 PMCID: PMC9257006 DOI: 10.3389/fpsyt.2022.913470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Accelerated aging has been proposed as a mechanism underlying the clinical and cognitive presentation of schizophrenia. The current study extends the field by examining both global and regional patterns of brain aging in schizophrenia, as inferred from brain structural data, and their association with cognitive and psychotic symptoms. Methods Global and local brain-age-gap-estimates (G-brainAGE and L-brainAGE) were computed using a U-Net Model from T1-weighted structural neuroimaging data from 84 patients (aged 16-35 years) with early-stage schizophrenia (illness duration <5 years) and 1,169 healthy individuals (aged 16-37 years). Multidomain cognitive data from the patient sample were submitted to Heterogeneity through Discriminative Analysis (HYDRA) to identify cognitive clusters. Results HYDRA classified patients into a cognitively impaired cluster (n = 69) and a cognitively spared cluster (n = 15). Compared to healthy individuals, G-brainAGE was significantly higher in the cognitively impaired cluster (+11.08 years) who also showed widespread elevation in L-brainAGE, with the highest deviance observed in frontal and temporal regions. The cognitively spared cluster showed a moderate increase in G-brainAGE (+8.94 years), and higher L-brainAGE localized in the anterior cingulate cortex. Psychotic symptom severity in both clusters showed a positive but non-significant association with G-brainAGE. Discussion Accelerated aging in schizophrenia can be detected at the early disease stages and appears more closely associated with cognitive dysfunction rather than clinical symptoms. Future studies replicating our findings in multi-site cohorts with larger numbers of participants are warranted.
Collapse
Affiliation(s)
- Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Ruiyang Ge
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Amirhossein Modabbernia
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - René S. Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Smesny S, Gussew A, Schack S, Langbein K, Wagner G, Reichenbach JR. Neurometabolic patterns of an "at risk for mental disorders" syndrome involve abnormalities in the thalamus and anterior midcingulate cortex. Schizophr Res 2022; 243:285-295. [PMID: 32444202 DOI: 10.1016/j.schres.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The ultra-high risk (UHR) paradigm allows the investigation of individuals at increased risk of developing psychotic or other mental disorders with the aim of making prevention and early intervention as specific as possible in terms of the individual outcome. METHODS Single-session 1H-/31P-Chemical Shift Imaging of thalamus, prefrontal (DLPFC) and anterior midcingulate (aMCC) cortices was applied to 69 UHR patients for psychosis and 61 matched healthy controls. N-acetylaspartate (NAA), glutamate/glutamine complex (Glx), energy (PCr, ATP) and phospholipid metabolites were assessed, analysed by ANOVA (or ANCOVA [with covariates]) and correlated with symptomatology (SCL-90R). RESULTS The thalamus showed decreased NAA, inversely correlated with self-rated aggressiveness, as well as increased PCr, and altered phospholipid breakdown. While the aMCC showed a pattern of NAA decrease and PCr increase, the DLPFC showed PCr increase only in the close-to-psychosis patient subgroup. There were no specific findings in transition patients. CONCLUSION The results do not support the notion of a specific pre-psychotic neurometabolic pattern, but likely reflect correlates of an "at risk for mental disorders syndrome". This includes disturbed neuronal (mitochondrial) metabolism in the thalamus and aMCC, with emphasis on left-sided structures, and altered PL remodeling across structures.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Alexander Gussew
- Department of Radiology, Halle University Hospital, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stephan Schack
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
35
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
36
|
Ku BS, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Compton MT, Cornblatt BA, Druss BG, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. The associations between area-level residential instability and gray matter volumes from the North American Prodrome Longitudinal Study (NAPLS) consortium. Schizophr Res 2022; 241:1-9. [PMID: 35066429 PMCID: PMC8960350 DOI: 10.1016/j.schres.2021.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Area-level residential instability (ARI), an index of social fragmentation, has been shown to explain the association between urbanicity and psychosis. Urban upbringing has been shown to be associated with reduced gray matter volumes (GMV)s of brain regions corresponding to the right caudal middle frontal gyrus (CMFG) and rostral anterior cingulate cortex (rACC). We hypothesize that greater ARI will be associated with reduced right CMFG and rACC GMVs. METHODS Data were collected at baseline as part of the North American Prodrome Longitudinal Study Phase 2. Counties where participants resided during childhood were geographically coded using the US Census to area-level factors. ARI was defined as the percentage of residents living in a different house 5 years ago. Generalized linear mixed models tested associations between ARI and GMVs. RESULTS This study included 29 healthy controls (HC)s and 64 clinical high risk for psychosis (CHR-P) individuals who were aged 12 to 24 years, had remained in their baseline residential area, and had magnetic resonance imaging scans. ARI was associated with reduced right CMFG (adjusted β = -0.258; 95% CI = -0.502 to -0.015) and right rACC volumes (adjusted β = -0.318; 95% CI = -0.612 to -0.023). The interaction term (ARI-by-diagnostic group) in the prediction of both brain regions was not significant, indicating that the relationships between ARI and regional brain volumes held for both CHR-P and HCs. CONCLUSIONS ARI may adversely impact similar brain regions as urban upbringing. Further investigation into the potential mechanisms of the relationship between ARI and neurobiology, including social stress, is needed.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States
| | - Michael T Compton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| |
Collapse
|
37
|
Dashtban S, Haj-Nasrolah-Fard F, Kosari Z, Ghamari R, Forouzesh F, Alizadeh F. ANK3 and ZNF804A intronic variants increase risk of schizophrenia in Iranian population: An association study. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Picó-Pérez M, Vieira R, Fernández-Rodríguez M, De Barros MAP, Radua J, Morgado P. Multimodal meta-analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients. Psychol Med 2022; 52:614-624. [PMID: 35129109 DOI: 10.1017/s0033291721005523] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging research has shown that patients with schizophrenia (SCZ) present brain structural and functional alterations, but the results across imaging modalities and task paradigms are difficult to reconcile. Specifically, no meta-analyses have tested whether the same brain systems that are structurally different in SCZ patients are also involved in neurocognitive and social cognitive tasks. To answer this, we conducted separate meta-analyses of voxel-based morphometry, neurocognitive functional magnetic resonance imaging (fMRI), and social cognitive fMRI studies. Next, with a multimodal approach, we identified the common alterations across meta-analyses. Further exploratory meta-analyses were performed taking into account several clinical variables (illness duration, medication status, and symptom severity). A cluster covering the dorsomedial prefrontal cortex (dmPFC) and the supplementary motor area (SMA), and the right inferior frontal gyrus (IFG), presented shared structural and neurocognitive-related activation decreases, while the right angular gyrus presented shared decreases between structural and social cognitive-related activation. The exploratory meta-analyses replicated to some extent these findings, while new regions of alterations appeared in patient subgroups with specific clinical features. In conclusion, we found task-specific correlates of brain structure and function in SCZ, which help summarize and integrate a growing literature.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Marcos Fernández-Rodríguez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Antónia Pereira De Barros
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
39
|
Śmierciak N, Szwajca M, Popiela TJ, Bryll A, Karcz P, Donicz P, Turek A, Krzyściak W, Pilecki M. Redefining the Cut-Off Ranges for TSH Based on the Clinical Picture, Results of Neuroimaging and Laboratory Tests in Unsupervised Cluster Analysis as Individualized Diagnosis of Early Schizophrenia. J Pers Med 2022; 12:jpm12020247. [PMID: 35207735 PMCID: PMC8874519 DOI: 10.3390/jpm12020247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid abnormalities, including mild forms of hypothyroidism and hyperthyroidism, are reported as risk factors for the development of a number of neuropsychiatric disorders, including schizophrenia. The diagnostic process still takes into account the extreme ranges of the accepted reference values for serum TSH since the concentration of free thyroxine in the serum does not change by definition. TSH mU/L cut-off values in psychiatric patients are currently clinically considered in the case of extremely high serum TSH levels (>4.0 mU/L). The results obtained in this study suggest that the clinically significant value has a lower TSH cut-off point with an upper limit of 2–2.5 mU/L. The criteria for the differential diagnosis of patients with schizophrenia, however, mainly take into account statutory reference ranges without a background related to the history of thyroid diseases in the family. The results indicate the need to lower the upper cut-off values for TSH among patients with early psychosis, which is related to the potential clinical significance of the obtained values both in the field of clinical evaluation and neuroimaging and laboratory evaluation parameters. The cut-off points obtained with the prior available knowledge coincided with the values established in the unsupervised clustering method, which further confirms the legitimacy of their use in the individualized diagnosis strategy of schizophrenia.
Collapse
Affiliation(s)
- Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Krakow, Poland
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| |
Collapse
|
40
|
Ochi R, Plitman E, Patel R, Tarumi R, Iwata Y, Tsugawa S, Kim J, Honda S, Noda Y, Uchida H, Devenyi GA, Mimura M, Graff-Guerrero A, Chakravarty MM, Nakajima S. Investigating structural subdivisions of the anterior cingulate cortex in schizophrenia, with implications for treatment resistance and glutamatergic levels. J Psychiatry Neurosci 2022; 47:E1-E10. [PMID: 35027443 PMCID: PMC8842685 DOI: 10.1503/jpn.210113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Abnormalities in the anterior cingulate cortex (ACC) are thought to play an important role in the pathophysiology of schizophrenia. Given regional variations in ACC structure, the present study aimed to examine ACC structural subdivisions and their relationships to treatment resistance and glutamatergic levels in schizophrenia. METHODS This study included 100 patients with schizophrenia and 52 healthy controls from 2 cohorts. We applied non-negative matrix factorization to identify accurate and stable spatial components of ACC structure. Between groups, we compared ACC structural indices in each spatial component based on treatment resistance or response and tested relationships with ACC glutamate + glutamine levels. RESULTS We detected reductions in cortical thickness and increases in mean diffusivity in the spatial components on the surface of the cingulate sulcus, especially in patients with treatment-resistant and clozapine-resistant schizophrenia. Notably, mean diffusivity in these components was higher in patients who did not respond to clozapine compared to those who did. Furthermore, these ACC structural alterations were related to elevated ACC glutamate + glutamine levels but not related to symptomatology or antipsychotic dose. LIMITATIONS Sample sizes, cross-sectional findings and mixed antipsychotic status were limitations of this study. CONCLUSION This study identified reproducible abnormalities in ACC structures in patients with treatment-resistant and clozapine-resistant schizophrenia. Given that these spatial components play a role in inhibitory control, the present study strengthens the notion that glutamate-related disinhibition is a common biological feature of treatment resistance in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shinichiro Nakajima
- From the Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan (Ochi, Tarumi, Tsugawa, Honda, Noda, Uchida, Mimura, Nakajima); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Que., Canada (Plitman, Patel, Devenyi, Chakravarty); the Department of Psychiatry, McGill University, Montreal, Que., Canada (Plitman, Devenyi, Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Que., Canada (Patel, Chakravarty); the Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Iwata, Kim, Graff-Guerrero, Nakajima); and the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Kim, Graff-Guerrero)
| |
Collapse
|
41
|
Reis-de-Oliveira G, Smith BJ, Martins-de-Souza D. Postmortem Brains: What Can Proteomics Tell us About the Sources of Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:1-13. [DOI: 10.1007/978-3-030-97182-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Xie Y, Cai Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. The alternations of nucleus accumbent in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2022; 13:971105. [PMID: 36147981 PMCID: PMC9485869 DOI: 10.3389/fpsyt.2022.971105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023] Open
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce the severity of auditory verbal hallucinations (AVH) and induce beneficial functional and structural alternations of the brain in schizophrenia patients with AVH. The nucleus accumbens (NAcc) as an important component of the ventral striatum is implicated with the pathology in AVH. However, the induced characteristic patterns of NAcc by low-frequency rTMS in schizophrenia with AVH are seldom explored. We investigated the functional and structural characteristic patterns of NAcc by using seed-based functional connectivity (FC) analysis and gray matter volume (GMV) measurement in schizophrenia patients with AVH during 1 Hz rTMS treatment. Although low-frequency rTMS treatment did not affect the volumetric changes of NAcc, the abnormal FC patterns of NAcc, including increased FC of NAcc with the temporal lobes and decreased FC of NAcc with the frontal cortices in the pretreatment patients compared to healthy controls, were normalized or reversed after treatment. These FC changes were associated with improvements in clinical symptoms and neurocognitive functions. Our findings may extend our understanding of the NAcc in the pathology of schizophrenia with AVH and might be a biomarker of clinical effect for low-frequency rTMS treatment in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yun Cai
- Department of Neurodevelopment Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
43
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
44
|
Hua JPY, Mathalon DH. Cortical and Subcortical Structural Morphometric Profiles in Individuals with Nonaffective and Affective Early Illness Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac028. [PMID: 39144757 PMCID: PMC11206002 DOI: 10.1093/schizbullopen/sgac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Research has found strong evidence for common and distinct morphometric brain abnormality profiles in nonaffective psychosis (NAff-P) and affective psychosis (Aff-P). Due to chronicity and prolonged medication exposure confounds, it is crucial to examine structural morphometry early in the course of psychosis. Using Human Connectome Project-Early Psychosis data, multivariate profile analyses were implemented to examine regional profiles for cortical thickness, cortical surface area, subcortical volume, and ventricular volume in healthy control (HC; n = 56), early illness NAff-P (n = 83), and Aff-P (n = 30) groups after accounting for normal aging. Associations with symptom severity, functioning, and cognition were also examined. Group regional profiles were significantly nonparallel and differed in level for cortical thickness (P < .001), with NAff-P having widespread cortical thinning relative to HC and Aff-P and some regions showing greater deficits than others. Significant nonparallelism of group regional profiles was also evident for cortical surface area (P < .006), with Aff-P and N-Aff-P differing from HC and from each other (P < .001). For subcortical volume, there was significant profile nonparallelism with NAff-P having an enlarged left pallidum and smaller accumbens and hippocampus (P < .028), and Aff-P having a smaller accumbens and amygdala (P < .006), relative to HC. NAff-P also had larger basal ganglia compared to Aff-P. Furthermore, NAff-P had enlarged ventricles (P < .055) compared to HC and Aff-P. Additionally, greater ventricular volume was associated with increased manic symptoms in NAff-P and Aff-P. Overall, this study found common and distinct regional morphometric profile abnormalities in early illness NAff-P and Aff-P, providing evidence for both shared and disease-specific pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA,USA
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Wen K, Zhao Y, Gong Q, Zhu Z, Li Q, Pan N, Fu S, Radua J, Vieta E, Kumar P, Kemp GJ, Biswal BB. Cortical thickness abnormalities in patients with first episode psychosis: a meta-analysis of psychoradiologic studies and replication in an independent sample. PSYCHORADIOLOGY 2021; 1:185-198. [PMID: 35156043 PMCID: PMC8826222 DOI: 10.1093/psyrad/kkab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Abnormalities of cortical thickness (CTh) in patients with their first episode psychosis (FEP) have been frequently reported, but findings are inconsistent. OBJECTIVE To define the most consistent CTh changes in patients with FEP by meta-analysis of published whole-brain studies. METHODS The meta-analysis used seed-based d mapping (SDM) software to obtain the most prominent regional CTh changes in FEP, and meta-regression analyses to explore the effects of demographics and clinical characteristics. The meta-analysis results were verified in an independent sample of 142 FEP patients and 142 age- and sex-matched healthy controls (HCs), using both a vertex-wise and a region of interest analysis, with multiple comparisons correction. RESULTS The meta-analysis identified lower CTh in the right middle temporal cortex (MTC) extending to superior temporal cortex (STC), insula, and anterior cingulate cortex (ACC) in FEP compared with HCs. No significant correlations were identified between CTh alterations and demographic or clinical variables. These results were replicated in the independent dataset analysis. CONCLUSION This study identifies a robust pattern of cortical abnormalities in FEP and extends understanding of gray matter abnormalities and pathological mechanisms in FEP.
Collapse
Affiliation(s)
- Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610041, Sichuan, China
| | - Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona 08036, Catalonia, Spain
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Solna 171-77, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona 08036, Catalonia, Spain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona 08036, Catalonia, Spain
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont 02478, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston 02115, MA, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark 07102, NJ, USA
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
46
|
Smucny J, Carter CS, Maddock RJ. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 90:643-651. [PMID: 34344534 PMCID: PMC9303057 DOI: 10.1016/j.biopsych.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies measuring brain glutamate separately from glutamine are helping elucidate schizophrenia pathophysiology. An expanded literature and improved methodologies motivate an updated meta-analysis examining effects of measurement quality and other moderating factors in characterizing abnormal glutamate levels in schizophrenia. METHODS Searching previous meta-analyses and the MEDLINE database identified 83 proton magnetic resonance spectroscopy datasets published through March 25, 2020. Three quality metrics were extracted-Cramér-Rao lower bound (CRLB), line width, and coefficient of variation. Pooled effect sizes (Hedges' g) were calculated with random-effects, inverse variance-weighted models. Moderator analyses were conducted using quality metrics, field strength, echo time, medication, age, and stage of illness. RESULTS Across 36 datasets (2086 participants), medial prefrontal cortex glutamate was significantly reduced in patients (g = -0.19, confidence interval [CI] = -0.07 to -0.32). CRLB and coefficient of variation quality subgroups significantly moderated this effect. Glutamate was significantly more reduced in studies with lower CRLB or coefficient of variation (g = -0.44, CI = -0.29 to -0.60, and g = -0.43, CI = -0.29 to -0.57, respectively). Studies using echo time ≤20 ms also showed significantly greater reduction in glutamate (g = -0.41, CI = -0.26 to -0.55). Across 11 hippocampal datasets, group differences and moderator effects were nonsignificant. Group effects in thalamus and dorsolateral prefrontal cortex were also nonsignificant. CONCLUSIONS High-quality measurements reveal consistently reduced medial prefrontal cortex glutamate in schizophrenia. Stricter CRLB criteria and reduced nuisance variance may increase the sensitivity of future studies examining additional regions and the pathophysiological significance of abnormal glutamate levels in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| |
Collapse
|
47
|
von Deneen KM. Correlations between cognitive function and gray matter alterations in patients with acute lacunar stroke. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Researchers emphasized acute lacunar stroke (ALS) patients suffer from poor social/physical outcomes, cognitive decline, and decreased quality of life. We hypothesized brain abnormalities may occur in ALS during this particular stage and may be associated with cognitive deficits upon evaluation. We investigated structural abnormalities in ALS using magnetic resonance imaging and voxel-based morphometry conducted on 28 healthy controls (HC) and 29 patients with ALS and proximal anterior circulation occlusion within 12 hours of symptom onset. Mini-Mental State Examination (MMSE) scores were used to evaluate cognitive dysfunction. Decreased gray matter (GM) in ALS vs. HC was predominantly in the superior frontal gyrus, inferior frontal gyrus, insula, superior temporal gyrus (STG), heschl gyrus, middle temporal gyrus (MTG), posterior cingulate cortex (PCC), hippocampus (HIP), and others. Positive correlation was found between GM density and MMSE scores in STG ( r = 0.59, p = 0.0007), MTG ( r = 0.46, p = 0.01), PCC ( r = 0.42, p = 0.02), HIP ( r = 0.4, p = 0.03), and medial prefrontal cortex ( r = 0.5, p = 0.005). This study provided further information on pathophysiological/morphological mechanisms related to cognitive impairment in ALS and is the basis for further studies in aging-related diseases.
Collapse
Affiliation(s)
- Karen M. von Deneen
- School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi, China
| |
Collapse
|
48
|
Kambeitz-Ilankovic L, Vinogradov S, Wenzel J, Fisher M, Haas SS, Betz L, Penzel N, Nagarajan S, Koutsouleris N, Subramaniam K. Multivariate pattern analysis of brain structure predicts functional outcome after auditory-based cognitive training interventions. NPJ SCHIZOPHRENIA 2021; 7:40. [PMID: 34413310 PMCID: PMC8376975 DOI: 10.1038/s41537-021-00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Cognitive gains following cognitive training interventions are associated with improved functioning in people with schizophrenia (SCZ). However, considerable inter-individual variability is observed. Here, we evaluate the sensitivity of brain structural features to predict functional response to auditory-based cognitive training (ABCT) at a single-subject level. We employed whole-brain multivariate pattern analysis with support vector machine (SVM) modeling to identify gray matter (GM) patterns that predicted higher vs. lower functioning after 40 h of ABCT at the single-subject level in SCZ patients. The generalization capacity of the SVM model was evaluated by applying the original model through an out-of-sample cross-validation analysis to unseen SCZ patients from an independent validation sample who underwent 50 h of ABCT. The whole-brain GM volume-based pattern classification predicted higher vs. lower functioning at follow-up with a balanced accuracy (BAC) of 69.4% (sensitivity 72.2%, specificity 66.7%) as determined by nested cross-validation. The neuroanatomical model was generalizable to an independent cohort with a BAC of 62.1% (sensitivity 90.9%, specificity 33.3%). In particular, greater baseline GM volumes in regions within superior temporal gyrus, thalamus, anterior cingulate, and cerebellum predicted improved functioning at the single-subject level following ABCT in SCZ participants. The present findings provide a structural MRI fingerprint associated with preserved GM volumes at a single baseline timepoint, which predicted improved functioning following an ABCT intervention, and serve as a model for how to facilitate precision clinical therapies for SCZ based on imaging data, operating at the single-subject level.
Collapse
Affiliation(s)
- Lana Kambeitz-Ilankovic
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Sophia Vinogradov
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Julian Wenzel
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Melissa Fisher
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Shalaila S. Haas
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Linda Betz
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Nora Penzel
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany ,grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs – University of Bari Aldo Moro, Bari, Italy
| | - Srikantan Nagarajan
- grid.266102.10000 0001 2297 6811Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | - Nikolaos Koutsouleris
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany ,grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Karuna Subramaniam
- grid.266102.10000 0001 2297 6811Department of Psychiatry, University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
49
|
Thirugnanachandran T, Beare R, Mitchell M, Wong C, Vuong J, Singhal S, Slater LA, Hilton J, Sinnott M, Srikanth V, Ma H, Phan T. Anterior Cerebral Artery Stroke: Role of Collateral Systems on Infarct Topography. Stroke 2021; 52:2930-2938. [PMID: 34015938 DOI: 10.1161/strokeaha.120.032867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tharani Thirugnanachandran
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Richard Beare
- Murdoch Children's Research Institute, Developmental Imaging Group, Neurosciences Research Unit, Southern Clinical School (R.B.), Monash University, Clayton, VIC
| | - Melissa Mitchell
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Chloe Wong
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Jason Vuong
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Shaloo Singhal
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Lee-Anne Slater
- Monash Health, Diagnostic Imaging, Monash Health, Clayton, Australia (L.-A.S.)
| | - James Hilton
- CSIRO, Mathematics - Informatics and Statistics, Clayton, Australia (J.H., M.S.)
| | - Mathew Sinnott
- CSIRO, Mathematics - Informatics and Statistics, Clayton, Australia (J.H., M.S.)
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School (V.S.), Monash University, Clayton, VIC
| | - Henry Ma
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| | - Thanh Phan
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health (T.T., M.M., C.W., J.V., S.S., H.M., T.P.), Monash University, Clayton, VIC
| |
Collapse
|
50
|
Wang C, Oughourlian T, Tishler TA, Anwar F, Raymond C, Pham AD, Perschon A, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Cortical morphometric correlational networks associated with cognitive deficits in first episode schizophrenia. Schizophr Res 2021; 231:179-188. [PMID: 33872855 DOI: 10.1016/j.schres.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a chronic cognitive and behavioral disorder associated with abnormal cortical activity during information processing. Several brain structures associated with the seven performance domains evaluated using the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB) have shown cortical volume loss in first episode schizophrenia (FES) patients. However, the relationship between morphological organization and MCCB performance remains unclear. Therefore, in the current observational study, high-resolution structural MRI scans were collected from 50 FES patients, and the morphometric correlation network (MCN) using cortical volume was established to characterize the cortical pattern associated with poorer MCCB performance. We also investigated topological properties, such as the modularity, the degree and the betweenness centrality. Our findings show structural volume was directly and strongly associated with the cognitive deficits of FES patients in the precuneus, anterior cingulate, and fusiform gyrus, as well as the prefrontal, parietal, and sensorimotor cortices. The medial orbitofrontal, fusiform, and superior frontal gyri were not only identified as the predominant nodes with high degree and betweenness centrality in the MCN, but they were also found to be critical in performance in several of the MCCB domains. Together, these results suggest a widespread cortical network is altered in FES patients and that performance on the MCCB domains is associated with the core pathophysiology of SCZ.
Collapse
Affiliation(s)
- Chencai Wang
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Talia Oughourlian
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Todd A Tishler
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Faizan Anwar
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Catalina Raymond
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Alex D Pham
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Abby Perschon
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - J Pablo Villablanca
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joseph Ventura
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Kenneth L Subotnik
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Keith H Nuechterlein
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Benjamin M Ellingson
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Neuroscience Interdisciplinary Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America.
| |
Collapse
|