1
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
2
|
Hamasaki Y, Nakayama T, Hikida T, Murai T. Combined pattern of childhood psycho-behavioral characteristics in patients with schizophrenia: a retrospective study in Japan. BMC Psychiatry 2021; 21:57. [PMID: 33499818 PMCID: PMC7836163 DOI: 10.1186/s12888-021-03049-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Although epidemiological and genetic studies have provided scientific evidence that places schizophrenia into the framework of early neurodevelopmental disorders, the psycho-behavioral characteristics of children that later go on to develop schizophrenia have not been sufficiently clarified. This study aimed to retrospectively identify characteristics specific to patients with schizophrenia during childhood via their guardians' reporting of these characteristics. METHODS Participants included 54 outpatients with schizophrenia in their twenties who fulfilled DSM-IV-TR criteria. Additionally, 192 normal healthy subjects participated as sex- and age-matched controls. The guardians of all participants were recruited to rate participants' childhood characteristics from 6 to 8 years of age on a modified version of the Child Behavior Checklist (CBCL), which was used as a retrospective assessment questionnaire. Using t-tests, logistic regression, and Receiver Operating Characteristic (ROC) curve analysis, we estimated the psycho-behavioral characteristics specific to schizophrenia during childhood. Using the obtained logistic regression model, we prototyped a risk-predicting algorithm based on the CBCL scores. RESULTS Among the eight CBCL subscale t-scores, "withdrawn" (p = 0.002), "thought problems" (p = 0.001), and "lack of aggressive behavior" (p = 0.002) were each significantly associated with the later diagnosis of schizophrenia, although none of these mean scores were in the clinical range at the time of childhood. The algorithm of the logistic regression model, based on eight CBCL subscales, had an area under the ROC curve of 82.8% (95% CI: 76-89%), which indicated that this algorithm's prediction of late development of schizophrenia has moderate accuracy. CONCLUSIONS The results suggest that according to guardian reports, participants showed psycho-behavioral characteristics during childhood, different to those of healthy controls, which could be predictive of the later development of schizophrenia. Our newly developed algorithm is available to use in future studies to further test its validity.
Collapse
Affiliation(s)
- Yukiko Hamasaki
- Faculty of Contemporary Society, Kyoto Women's University, 35, Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan.
- Shigasato Hospital, 1-18-41 Shigasato, Otsu, Shiga, 520-0006, Japan.
| | - Takao Nakayama
- Faculty of Contemporary Society, Kyoto Women's University, 35, Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Dennison CA, Legge SE, Pardiñas AF, Walters JTR. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr Res 2020; 217:4-12. [PMID: 31780348 DOI: 10.1016/j.schres.2019.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) have proved to be a powerful approach for gene discovery in schizophrenia; their findings have important implications not just for our understanding of the genetic architecture of the disorder, but for the potential applications of personalised medicine through improved classification and targeted interventions. In this article we review the current status of the GWAS literature in schizophrenia including functional annotation methods and polygenic risk scoring, as well as the directions and challenges of future research. We consider recent findings in East Asian populations and the advancements from trans-ancestry analysis, as well as the insights gained from research looking across psychiatric disorders.
Collapse
Affiliation(s)
- Charlotte A Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Guan F, Zhang T, Han W, Zhu L, Ni T, Lin H, Liu D, Chen G, Xiao J, Li T. Relationship of SNAP25 variants with schizophrenia and antipsychotic-induced weight change in large-scale schizophrenia patients. Schizophr Res 2020; 215:250-255. [PMID: 31653583 DOI: 10.1016/j.schres.2019.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/19/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
Abstract
The SNAP25 gene is involved in the development of antipsychotic-induced weight gain (AIWG) or metabolic syndrome during antipsychotics use in Americans and Europeans, but its role in Asians remains unknown. To identify common variants in SNAP25 associated with schizophrenia and evaluate their effects on AIWG and antipsychotic responses in Han Chinese individuals with schizophrenia, we conducted a two-stage case-control study of 3,243 patients and 6,154 healthy controls. 2128 inpatients in the replication stage have received conventional treatment with an antipsychotic monotherapy (Haloperidol, Olanzapine or Risperidone) for 10 weeks at least. Weight change, antipsychotic responses and metabolic indices change were assessed during treatments. Three SNPs were significantly associated with schizophrenia in samples (rs6039769, P = 6.64 × 10-7; rs3787283, P = 0.004283; rs3746544, P = 2.51 × 10-6). Of these, rs6039769 is a novel schizophrenia-associated SNP and is uncorrelated with the other two variants, which have previously been associated with schizophrenia in European-ancestry samples. Rs6039769 was significantly associated with AIWG (P < 0.001), but not with antipsychotic responses or metabolic indices. Another two SNPs were not associated with AIWG or antipsychotic responses or metabolic indices. Overall, there were significant differences in antipsychotic responses and metabolic indices among the three treatment groups. Our findings suggest that SNAP25 gene may contribute to the susceptibility of AIWG and even metabolic disturbances. A prior identification of high-risk of patients with rs6039769 would contribute to a better precision of the pharmacological treatment.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Li Zhu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Huali Lin
- Xi'an Mental Health Center, 15 Yanyin Road, Xi'an, Shaanxi, 710086, China
| | - Dan Liu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Gang Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jing Xiao
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tao Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Jauhar S, Krishnadas R, Nour MM, Cunningham-Owens D, Johnstone EC, Lawrie SM. Is there a symptomatic distinction between the affective psychoses and schizophrenia? A machine learning approach. Schizophr Res 2018; 202:241-247. [PMID: 30054176 DOI: 10.1016/j.schres.2018.06.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/21/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Dubiety exists over whether clinical symptoms of schizophrenia can be distinguished from affective psychosis, the assumption being that absence of a "point of rarity" indicates lack of nosological distinction, based on prior group-level analyses. Advanced machine learning techniques, using unsupervised (hierarchical clustering) and supervised (regularized logistic regression algorithm and nested-cross-validation) were applied to a dataset of 202 patients with functional psychosis (schizophrenia n = 120, affective psychosis, n = 82). Patients were initially assessed with the Present State Examination (PSE), and followed up 2.5 years later, when DSM III diagnoses were applied (independent of initial PSE). Based on PSE syndromes, unsupervised learning discriminated depressive (approximately unbiased probability, AUP = 0.92) and mania/psychosis (AUP = 0.94) clusters. The mania/psychosis cluster further split into two groups - a mania (AUP = 0.84) and a psychosis cluster (AUP = 0.88). Supervised machine learning classified schizophrenia or affective psychosis with 83.66% (95% CI = 77.83% to 88.48%) accuracy. Area under the ROC curve (AUROC) was 89.14%. True positive rate for schizophrenia was 88.24% (95%CI = 81.05-93.42%) and affective psychosis 77.11% (95%CI = 66.58-85.62). Classification accuracy and AUROC remained high when PSE syndromes corresponding to affective symptoms (those that corresponded to the depressive and mania clusters) were removed. PSE syndromes, based on clinical symptoms, therefore discriminated between schizophrenia and affective psychosis, suggesting validity to these diagnostic constructs.
Collapse
Affiliation(s)
- S Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom.
| | - R Krishnadas
- Sackler Institute for Psychobiological Research, Glasgow Clinical Research Facility, Queen Elizabeth University Hospital, Glasgow, G51 4TF, United Kingdom.
| | - M M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London SE5 8AF, United Kingdom.
| | - D Cunningham-Owens
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - E C Johnstone
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - S M Lawrie
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| |
Collapse
|
6
|
KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Mol Psychiatry 2016; 21:1517-1526. [PMID: 26857598 PMCID: PMC4980295 DOI: 10.1038/mp.2015.219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.
Collapse
|
7
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
8
|
Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition. Neural Plast 2016; 2016:4724792. [PMID: 27478646 PMCID: PMC4958463 DOI: 10.1155/2016/4724792] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/11/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population.
Collapse
|
9
|
Abstract
Schizophrenia is a complex, heterogeneous behavioural and cognitive syndrome that seems to originate from disruption of brain development caused by genetic or environmental factors, or both. Dysfunction of dopaminergic neurotransmission contributes to the genesis of psychotic symptoms, but evidence also points to a widespread and variable involvement of other brain areas and circuits. Disturbances of synaptic function might underlie abnormalities of neuronal connectivity that possibly involves interneurons, but the precise nature, location, and timing of these events are uncertain. At present, treatment mainly consists of antipsychotic drugs combined with psychological therapies, social support, and rehabilitation, but a pressing need for more effective treatments and delivery of services exists. Advances in genomics, epidemiology, and neuroscience have led to great progress in understanding the disorder, and the opportunities for further scientific breakthrough are numerous--but so are the challenges.
Collapse
Affiliation(s)
- Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Preben B Mortensen
- Department of Economics, School of Business and Social Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Guan F, Zhang T, Liu X, Han W, Lin H, Li L, Chen G, Li T. Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia. Sci Rep 2016; 6:24914. [PMID: 27102562 PMCID: PMC4840350 DOI: 10.1038/srep24914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated L-type calcium channels (VLCC) are distributed widely throughout the brain. Among the genes involved in schizophrenia (SCZ), genes encoding VLCC subunits have attracted widespread attention. Among the four subunits comprising the VLCC (α − 1, α −2/δ, β, and γ), the γ subunit that comprises an eight-member protein family is the least well understood. In our study, to further investigate the risk susceptibility by the γ subunit gene family to SCZ, we conducted a large-scale association study in Han Chinese individuals. The SNP rs17645023 located in the intergenic region of CACNG4 and CACNG5 was identified to be significantly associated with SCZ (OR = 0.856, P = 5.43 × 10−5). Similar results were obtained in the meta-analysis with the current SCZ PGC data (OR = 0.8853). We also identified a two-SNP haplotype (rs10420331-rs11084307, P = 1.4 × 10−6) covering the intronic region of CACNG8 to be significantly associated with SCZ. Epistasis analyses were conducted, and significant statistical interaction (OR = 0.622, P = 2.93 × 10−6, Pperm < 0.001) was observed between rs192808 (CACNG6) and rs2048137 (CACNG5). Our results indicate that CACNG4, CACNG5, CACNG6 and CACNG8 may contribute to the risk of SCZ. The statistical epistasis identified between CACNG5 and CACNG6 suggests that there may be an underlying biological interaction between the two genes.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Tianxiao Zhang
- Department of Psychiatry, School of Medicine, Washington University, Saint Louis, MO, USA
| | - Xinshe Liu
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Medicine, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, China
| | - Lu Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Gang Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Tao Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Medicine, School of Medicine &Forensics, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Forero DA, Herteleer L, De Zutter S, Norrback KF, Nilsson LG, Adolfsson R, Callaerts P, Del-Favero J. A network of synaptic genes associated with schizophrenia and bipolar disorder. Schizophr Res 2016; 172:68-74. [PMID: 26899345 DOI: 10.1016/j.schres.2016.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022]
Abstract
Identification of novel candidate genes for schizophrenia (SZ) and bipolar disorder (BP), two psychiatric disorders with large epidemiological impacts, is a key research area in neurosciences and psychiatric genetics. Previous evidence from genome-wide studies suggests an important role for genes involved in synaptic plasticity in the risk for SZ and BP. We used a convergent genomics approach, combining different lines of biological evidence, to identify genes involved in the cAMP/PKA/CREB functional pathway that could be novel candidates for BP and SZ: CREB1, CREM, GRIN2C, NPY2R, NF1, PPP3CB and PRKAR1A. These 7 genes were analyzed in a HapMap based association study comprising 48 common SNPs in 486 SZ, 351 BP patients and 514 control individuals recruited from an isolated population in Northern Sweden. Genetic analysis showed significant allelic associations of SNPs in PRKAR1A with SZ and of PPP3CB and PRKAR1A with BP. Our results highlight the feasibility and the importance of convergent genomic data analysis for the identification of candidate genes and our data provide support for the role of common inherited variants in synaptic genes and their involvement in the etiology of BP and SZ.
Collapse
Affiliation(s)
- Diego A Forero
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Belgium; University of Antwerp, Antwerp, Belgium; Laboratory of Behavioral and Developmental Genetics, VIB, Belgium; Catholic University of Leuven, Leuven, Belgium; Laboratory of NeuroPsychiatric Genetics, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Liesbet Herteleer
- Laboratory of Behavioral and Developmental Genetics, VIB, Belgium; Catholic University of Leuven, Leuven, Belgium
| | - Sonia De Zutter
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Belgium; University of Antwerp, Antwerp, Belgium
| | - Karl-Fredrik Norrback
- Department of Clinical Sciences, Division of Psychiatry, University of Umeå, Umeå, Sweden; Sunderby Hospital, Sweden
| | | | - Rolf Adolfsson
- Department of Clinical Sciences, Division of Psychiatry, University of Umeå, Umeå, Sweden; Sunderby Hospital, Sweden
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, VIB, Belgium; Catholic University of Leuven, Leuven, Belgium.
| | - Jurgen Del-Favero
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Belgium; University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Carroll LS, Woolf R, Ibrahim Y, Williams HJ, Dwyer S, Walters J, Kirov G, O'Donovan MC, Owen MJ. Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatr Genet 2016; 26:60-5. [PMID: 26555645 PMCID: PMC4756433 DOI: 10.1097/ypg.0000000000000110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES There is a growing body of evidence suggesting a shared genetic susceptibility between many neuropsychiatric disorders, including schizophrenia, autism, intellectual disability (ID) and epilepsy. The sodium channel, voltage-gated type II α subunit gene SCN2A has been shown to exhibit loss-of-function (LoF) mutations in individuals with seizure disorders, ID, autism and schizophrenia. The role of LoF mutations in schizophrenia is still uncertain with only one such mutation identified to date. METHODS To seek additional evidence for a role for LoF mutations at SCN2A in schizophrenia we performed mutation screening of the entire coding sequence in 980 schizophrenia cases. Given an absence of LoF mutations in a public exome cohort (ESP6500, N=6503), we did not additionally sequence controls. RESULTS We identified a novel, nonsense (i.e. stop codon) mutation in one case (E169X) that is absent in 4300 European-American and 2203 African-American individuals from the NHLBI Exome Sequencing Project. This is the second LoF allele identified in a schizophrenia case to date. We also show a novel, missense variant, V1282F, that occurs in two cases and is absent in the control dataset. CONCLUSION We argue that very rare, LoF mutations at SCN2A act in a moderately penetrant manner to increase the risk of developing several neuropsychiatric disorders including seizure disorders, ID, autism and schizophrenia.
Collapse
Affiliation(s)
- Liam S Carroll
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine & Neurology, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schulze-Rauschenbach S, Lennertz L, Ruhrmann S, Petrovsky N, Ettinger U, Pukrop R, Dreher J, Klosterkötter J, Maier W, Wagner M. Neurocognitive functioning in parents of schizophrenia patients: Attentional and executive performance vary with genetic loading. Psychiatry Res 2015; 230:885-91. [PMID: 26619916 DOI: 10.1016/j.psychres.2015.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Neuropsychological deficits are candidate endophenotypes of schizophrenia which can assist to explain the neurocognitive impact of genetic risk variants. The identification of endophenotypes is often based on the familiality of these phenotypes. Several studies demonstrate neuropsychological deficits in unaffected biological relatives of schizophrenia patients without differentiating between genetic and non-genetic factors underlying these deficits. We assessed N=129 unaffected biological parents of schizophrenia patients, N=28 schizophrenia patients (paranoid subtype), and N=143 controls without a family history of schizophrenia with an extensive neuropsychological test battery. Direct comparison of N=22 parents with an ancestral history of schizophrenia (more likely carriers, MLC) and N=17 of their spouses without such a history (less likely carriers, LLC) allowed the separation of genetic and non-genetic aspects in cognition. Overall, parents showed significant deficits in neuropsychological tasks from all cognitive domains with medium effect sizes. Direct comparisons of MLC- and LLC-parents showed that attentional and executive tasks were most strongly affected by genetic loading. To conclude, unaffected parents of schizophrenia patients showed modest yet significant impairments in attention, memory, and executive functioning. In particular, attentional and executive impairments varied most strongly with genetic loading for schizophrenia, prioritising these dysfunctions for genotype-endophenotype analyses.
Collapse
Affiliation(s)
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | | | | | - Ralf Pukrop
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Jan Dreher
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany; Department of Psychiatry, Neurology, and Psychotherapy, Clinic Königshof Krefeld, Germany
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
14
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
15
|
Taylor MJ, Gregory AM, Freeman D, Ronald A. Do sleep disturbances and psychotic-like experiences in adolescence share genetic and environmental influences? JOURNAL OF ABNORMAL PSYCHOLOGY 2015; 124:674-684. [PMID: 25938536 PMCID: PMC4532318 DOI: 10.1037/abn0000057] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 12/12/2022]
Abstract
Sleep disturbances regularly co-occur with clinical psychotic disorders and dimensions of psychotic-like experiences (PLEs). One possible explanation for this, which has yet to be tested, is that similar genetic or environmental influences underlie sleep disturbances and vulnerability to PLEs. We conducted a twin study to test this possibility in relation to sleep disturbances and six specific PLEs in adolescence in the general population. Approximately 5,000 16-year-old twin pairs completed the Pittsburgh Sleep Quality Index and Insomnia Severity Index. PLEs were assessed using the Specific PLEs Questionnaire, comprising five self-report subscales (Paranoia, Hallucinations, Cognitive Disorganization, Grandiosity, and Anhedonia) and one parent-report subscale (Negative Symptoms). The associations between these measures were tested using structural equation twin model fitting. Paranoia, Hallucinations, and Cognitive Disorganization displayed moderate and significant correlations with both sleep measures (0.32-.42), while Negative Symptoms, Anhedonia, and Grandiosity showed lower correlations (0.01-0.17). Genetic and environmental influences significantly overlapped across PLEs (Paranoia, Hallucinations, Cognitive Disorganization) and both types of sleep disturbance (mean genetic and nonshared environmental correlations = 0.54 and 0.24, respectively). These estimates reduced, yet remained significant, after controlling for negative affect. The association between PLEs with sleep disturbances in adolescence is partly due to genetic and environmental influences that are common to them both. These findings indicate that the known neurobiology of sleep disturbance may provide clues regarding the causes of PLEs in adolescence.
Collapse
Affiliation(s)
- Mark J Taylor
- Genes Environment Lifespan Laboratory, Centre for Brain and Cognitive Development, Birkbeck, University of London
| | | | | | - Angelica Ronald
- Genes Environment Lifespan Laboratory, Centre for Brain and Cognitive Development, Birkbeck, University of London
| |
Collapse
|
16
|
Affiliation(s)
- Richard Bentall
- Department of Psychological Sciences, Liverpool UniversityLiverpool, L69 3GL, UK
| |
Collapse
|
17
|
Wang X, Cairns MJ. Understanding complex transcriptome dynamics in schizophrenia and other neurological diseases using RNA sequencing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 116:127-52. [PMID: 25172474 DOI: 10.1016/b978-0-12-801105-8.00006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
How the human brain develops and adapts with its trillions of functionally integrated synapses remains one of the greatest mysteries of life. With tremendous advances in neuroscience, genetics, and molecular biology, we are beginning to appreciate the scope of this complexity and define some of the parameters of the systems that make it possible. These same tools are also leading to advances in our understanding of the pathophysiology of neurocognitive and neuropsychiatric disorders. Like the substrate for these problems, the etiology is usually complex-involving an array of genetic and environmental influences. To resolve these influences and derive better interventions, we need to reveal every aspect of this complexity and model their interactions and define the systems and their regulatory structure. This is particularly important at the tissue-specific molecular interface between the underlying genetic and environmental influence defined by the transcriptome. Recent advances in transcriptome analysis facilitated by RNA sequencing (RNA-Seq) can provide unprecedented insight into the functional genomics of neurological disorders. In this review, we outline the advantages of this approach and highlight some early application of this technology in the investigation of the neuropathology of schizophrenia. Recent progress of RNA-Seq studies in schizophrenia has shown that there is extraordinary transcriptome dynamics with significant levels of alternative splicing. These studies only scratch the surface of this complexity and therefore future studies with greater depth and samples size will be vital to fully explore transcriptional diversity and its underlying influences in schizophrenia and provide the basis for new biomarkers and improved treatments.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; The Schizophrenia Research Institute, Sydney, Australia.
| |
Collapse
|
18
|
Wang HG, Jeffries JJ, Wang TF. Genetic and Developmental Perspective of Language Abnormality in Autism and Schizophrenia. Neuroscientist 2015; 22:119-31. [DOI: 10.1177/1073858415572078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Language and communication through it are two of the defining features of normally developed human beings. However, both these functions are often impaired in autism and schizophrenia. In the former disorder, the problem usually emerges in early childhood (~2 years old) and typically includes a lack of communication. In the latter condition, the language problems usually occur in adolescence and adulthood and presents as disorganized speech. What are the fundamental mechanisms underlying these two disorders? Is there a shared genetic basis? Are the traditional beliefs about them true? Are there any common strategies for their prevention and management? To answer these questions, we searched PubMed by using autism, schizophrenia, gene, and language abnormality as keywords, and we reconsidered the basic concepts about these two diseases or syndromes. We found many functional genes, for example, FOXP2, COMT, GABRB3, and DISC1, are actually implicated in both of them. After observing the symptoms, genetic correlates, and temporal progression of these two disorders as well as their relationships more carefully, we now infer that the occurrence of these two diseases is likely developmentally regulated via interaction between the genome and the environment. Furthermore, we propose a unified view of autism and schizophrenia: a single age-dependently occurred disease that is newly named as Systemic Integral Disorder: if occurring in children before age 2, it is called autism; if in adolescence or a later age, it is called schizophrenia.
Collapse
Affiliation(s)
- Haoran George Wang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Joseph Joel Jeffries
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tianren Frank Wang
- Department of Molecular Genetics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Hall J, Trent S, Thomas KL, O'Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 2015; 77:52-8. [PMID: 25152434 DOI: 10.1016/j.biopsych.2014.07.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Recent large-scale genomic studies have revealed two broad classes of risk alleles for schizophrenia: a polygenic component of risk mediated through multiple common risk variants and rarer more highly penetrant submicroscopic chromosomal deletions and duplications, known as copy number variants. The focus of this review is on the emerging findings from the latter and subsequent exome sequencing data of smaller, deleterious single nucleotide variants and indels. In these studies, schizophrenia patients were found to have enriched de novo mutations in genes belonging to the postsynaptic density at glutamatergic synapses, particularly components of the N-methyl-D-aspartate receptor signaling complex, including the PSD-95 complex, activity-regulated cytoskeleton-associated protein interactors, the fragile X mental retardation protein complex, voltage-gated calcium channels, and genes implicated in actin cytoskeletal dynamics. The convergence of these implicated genes onto a coherent biological pathway at the synapse, with a specific role in plasticity, provides a significant advance in understanding pathogenesis and points to new targets for biological investigation. We consider the implications of these studies in the context of existing genetic data and the potential need to reassess diagnostic boundaries of neuropsychiatric disorders before discussing ways forward for more directed mechanistic studies to develop stratified, novel therapeutic approaches in the future.
Collapse
Affiliation(s)
- Jeremy Hall
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute.
| | - Simon Trent
- Neuroscience and Mental Health Research Institute
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute; Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute
| |
Collapse
|
20
|
Sprecher KE, Ferrarelli F, Benca RM. Sleep and plasticity in schizophrenia. Curr Top Behav Neurosci 2015; 25:433-58. [PMID: 25608723 DOI: 10.1007/7854_2014_366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1%. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder.
Collapse
Affiliation(s)
- Kate E Sprecher
- Department of Psychiatry, Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
21
|
Morris BJ, Pratt JA. Novel treatment strategies for schizophrenia from improved understanding of genetic risk. Clin Genet 2014; 86:401-11. [PMID: 25142969 DOI: 10.1111/cge.12485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/19/2023]
Abstract
Recent years have seen significant advances in our understanding of the genetic basis of schizophrenia. In particular, genome-wide approaches have suggested the involvement of many common genetic variants of small effect, together with a few rare variants exerting relatively large effects. While unequivocal identification of the relevant genes has, for the most part, remained elusive, the genes revealed as potential candidates can in many cases be clustered into functionally related groups which are potentially open to therapeutic intervention. In this review, we summarise this information, focusing on the accumulating evidence that genetic dysfunction at glutamatergic synapses and post-synaptic signalling complexes contributes to the aetiology of the disease. In particular, there is converging support for involvement of post-synaptic JNK pathways in disease aetiology. An expansion of our neurobiological knowledge of the basis of schizophrenia is urgently needed, yet some promising novel pharmacological targets can already be discerned.
Collapse
Affiliation(s)
- B J Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, Glasgow, UK; Institute of Neuroscience and Psychology, School of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
22
|
Jenkins A, Apud JA, Zhang F, Decot H, Weinberger DR, Law AJ. Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia. Neuropsychopharmacology 2014; 39:2170-8. [PMID: 24633560 PMCID: PMC4104334 DOI: 10.1038/npp.2014.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/09/2014] [Indexed: 12/22/2022]
Abstract
Neurexins are presynaptic neuronal adhesion molecules that interact with postsynaptic neuroligins to form an inter-synaptic complex required for synaptic specification and efficient neurotransmission. Deletions and point mutations in the neurexin 1 (NRXN1) gene are associated with a broad spectrum of neuropsychiatric and neurodevelopmental disorders, including autism, intellectual disability, epilepsy, developmental delay, and schizophrenia. Recently, small nucleotide polymorphisms in NRXN1 have been associated with antipsychotic drug response in patients with schizophrenia. Based on previous suggestive evidence of an impact on clozapine response in patients with schizophrenia, we conducted an association study of NRXN1 polymorphisms (rs12467557 and rs10490162) with antipsychotic treatment response in 54 patients with schizophrenia in a double blind, placebo-controlled NIMH inpatient crossover trial and examined for association with risk for schizophrenia in independent case-control and family-based clinical cohorts. Pharmacogenetic analysis in the placebo controlled trial revealed significant association of rs12467557and rs10490162 with drug response, whereby individuals homozygous for the A allele, at either SNP, showed significant improvement in positive symptoms, general psychopathology, thought disturbance, and negative symptoms, whereas patients carrying the G allele showed no overall response. Although we did not find evidence of the same NRXN1 SNPs being associated with results of the NIMH sponsored CATIE trial, other SNPs showed weakly positive signals. The family and case-control analyses for schizophrenia risk were negative. Our results provide confirmatory evidence of genetically determined differences in drug response in patients with schizophrenia related to NRXN1 variation. Furthermore, these findings potentially implicate NRXN1 in the therapeutic actions of antipsychotic drugs.
Collapse
Affiliation(s)
- Aaron Jenkins
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA,University of Kentucky College of Medicine, Lexington, KY, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Heather Decot
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanda J Law
- Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, CO, USA,Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Mailstop 8344, RC1 North, RM. 8101, Aurora, CO 80045, USA, Tel: +1 303 724 4418, Fax: +1 303 724 4425, E-mail:
| |
Collapse
|
23
|
van Os J, Rutten BP, Myin-Germeys I, Delespaul P, Viechtbauer W, van Zelst C, Bruggeman R, Reininghaus U, Morgan C, Murray RM, Di Forti M, McGuire P, Valmaggia LR, Kempton MJ, Gayer-Anderson C, Hubbard K, Beards S, Stilo SA, Onyejiaka A, Bourque F, Modinos G, Tognin S, Calem M, O'Donovan MC, Owen MJ, Holmans P, Williams N, Craddock N, Richards A, Humphreys I, Meyer-Lindenberg A, Leweke FM, Tost H, Akdeniz C, Rohleder C, Bumb JM, Schwarz E, Alptekin K, Üçok A, Saka MC, Atbaşoğlu EC, Gülöksüz S, Gumus-Akay G, Cihan B, Karadağ H, Soygür H, Cankurtaran EŞ, Ulusoy S, Akdede B, Binbay T, Ayer A, Noyan H, Karadayı G, Akturan E, Ulaş H, Arango C, Parellada M, Bernardo M, Sanjuán J, Bobes J, Arrojo M, Santos JL, Cuadrado P, Rodríguez Solano JJ, Carracedo A, García Bernardo E, Roldán L, López G, Cabrera B, Cruz S, Díaz Mesa EM, Pouso M, Jiménez E, Sánchez T, Rapado M, González E, Martínez C, Sánchez E, Olmeda MS, de Haan L, Velthorst E, van der Gaag M, Selten JP, van Dam D, van der Ven E, van der Meer F, Messchaert E, Kraan T, Burger N, Leboyer M, Szoke A, Schürhoff F, Llorca PM, Jamain S, Tortelli A, Frijda F, Vilain J, Galliot AM, Baudin G, Ferchiou A, Richard JR, Bulzacka E, Charpeaud T, Tronche AM, De Hert M, van Winkel R, Decoster J, Derom C, Thiery E, Stefanis NC, Sachs G, Aschauer H, Lasser I, Winklbaur B, Schlögelhofer M, Riecher-Rössler A, Borgwardt S, Walter A, Harrisberger F, Smieskova R, Rapp C, Ittig S, Soguel-dit-Piquard F, Studerus E, Klosterkötter J, Ruhrmann S, Paruch J, Julkowski D, Hilboll D, Sham PC, Cherny SS, Chen EYH, Campbell DD, Li M, Romeo-Casabona CM, Emaldi Cirión A, Urruela Mora A, Jones P, Kirkbride J, Cannon M, Rujescu D, Tarricone I, Berardi D, Bonora E, Seri M, Marcacci T, Chiri L, Chierzi F, Storbini V, Braca M, Minenna MG, Donegani I, Fioritti A, La Barbera D, La Cascia CE, Mulè A, Sideli L, Sartorio R, Ferraro L, Tripoli G, Seminerio F, Marinaro AM, McGorry P, Nelson B, Amminger GP, Pantelis C, Menezes PR, Del-Ben CM, Gallo Tenan SH, Shuhama R, Ruggeri M, Tosato S, Lasalvia A, Bonetto C, Ira E, Nordentoft M, Krebs MO, Barrantes-Vidal N, Cristóbal P, Kwapil TR, Brietzke E, Bressan RA, Gadelha A, Maric NP, Andric S, Mihaljevic M, Mirjanic T. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull 2014; 40:729-36. [PMID: 24860087 PMCID: PMC4059449 DOI: 10.1093/schbul/sbu069] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotype.
Collapse
|
24
|
Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 2014; 40:504-15. [PMID: 24567502 PMCID: PMC3984527 DOI: 10.1093/schbul/sbu016] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant.
Collapse
Affiliation(s)
- Alastair G. Cardno
- Academic Unit of Psychiatry and Behavioural Sciences, University of Leeds, Leeds, UK;,*To whom correspondence should be addressed; Academic Unit of Psychiatry and Behavioural Sciences, Leeds Institute of Health Sciences, University of Leeds, Charles Thackrah Building, 101 Clarendon Road, Leeds LS2 9LJ, UK; tel: +44 113 3437260, fax: +44 113 3436997, e-mail:
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
|
26
|
Hamm JP, Ethridge LE, Boutros NN, Keshavan MS, Sweeney JA, Pearlson GD, Tamminga CA, Clementz BA. Diagnostic specificity and familiality of early versus late evoked potentials to auditory paired stimuli across the schizophrenia-bipolar psychosis spectrum. Psychophysiology 2014; 51:348-57. [PMID: 24660885 DOI: 10.1111/psyp.12185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/15/2013] [Indexed: 01/26/2023]
Abstract
Disrupted sensory processing is a core feature of psychotic disorders. Auditory paired stimuli (PS) evoke a complex neural response, but it is uncertain which aspects reflect shared and/or distinct liability for the most common severe psychoses, schizophrenia (SZ) and psychotic bipolar disorder (BDP). Evoked time-voltage/time-frequency domain responses quantified with EEG during a typical PS paradigm (S1-S2) were compared among proband groups (SZ [n = 232], BDP [181]), their relatives (SZrel [259], BDPrel [220]), and healthy participants (H [228]). Early S1-evoked responses were reduced in SZ and BDP, while later/S2 abnormalities showed SZ/SZrel and BDP/BDPrel specificity. Relatives' effects were absent/small despite significant familiality of the entire auditorineural response. This pattern suggests general and divergent biological pathways associated with psychosis, yet may reflect complications with conditioning solely on clinical phenomenology.
Collapse
Affiliation(s)
- Jordan P Hamm
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, Georgia, USA; Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75:307-15. [PMID: 23938317 DOI: 10.1016/j.biopsych.2013.07.011] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/18/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023]
Abstract
It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic-polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multi-faceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a "neurodevelopmental disease primer" that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.
Collapse
Affiliation(s)
- Urs Meyer
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
28
|
Vancampfort D, Probst M, De Hert M, Soundy A, Stubbs B, Stroobants M, De Herdt A. Neurobiological effects of physical exercise in schizophrenia: a systematic review. Disabil Rehabil 2014; 36:1749-54. [PMID: 24383471 DOI: 10.3109/09638288.2013.874505] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of the present systematic review was to provide a summary of neurobiological effects of physical exercise for people with schizophrenia. METHODS A systematic review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Searches were conducted up to April 2013 across three databases: Medline, PsycINFO, and Embase. A methodological quality assessment using the Downs and Black Quality Index was carried out with all of the included studies. RESULTS Of the 654 initial data search results, two studies reported in 3 articles including 48 patients (six women) with schizophrenia, met the eligibility criteria. The methodological quality of each study was high. Data on hippocampal volume changes following physical exercise were conflicting while physical exercise-induced changes in other brain areas were absent. Increases in hippocampal volume following physical exercise were correlated with improvements in aerobic fitness and short-term memory. CONCLUSIONS Future research is needed to investigate whether brain health in people with schizophrenia is activity-dependent. Additionally, research that considers the neurobiological mechanisms and associated functional outcomes of physical exercise in individuals with schizophrenia is required. IMPLICATIONS FOR REHABILITATION Understanding the neurobiological effects of physical exercise in patients with schizophrenia may contribute to the development of new rehabilitation strategies. There is currently insufficient evidence to determine if physical exercise has a beneficial influence on the brain health of people with schizophrenia.
Collapse
Affiliation(s)
- Davy Vancampfort
- Department of Neurosciences, University Psychiatric Centre , KU Leuven, Kortenberg , Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Schizophrenia susceptibility and age of diagnosis--a frailty approach. Schizophr Res 2013; 147:140-146. [PMID: 23541033 DOI: 10.1016/j.schres.2013.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Using a frailty model approach, we aim to evaluate the effect of early-life risk factors on susceptibility and age at diagnosis of schizophrenia. We assume paternal age and familial schizophrenia influence the susceptibility, while these and several early risk factors influence the age of diagnosis. METHOD Schizophrenia incidence data were derived from the population-based Swedish Patient Registry; including individuals aged 18 to 45 years, diagnosed between 1974 and 2008. Data were analyzed by a frailty model, a random effects model in survival analysis, using a compound Poisson model. RESULTS 15,340 incident schizophrenia cases were included. For individuals without familial schizophrenia, a protective effect was seen across most ages of diagnosis for females, low paternal age, born in rural areas, and being born in later cohorts. For individuals with familial schizophrenia, a protective effect is found for females diagnosed between ages 18 and 30 years, corresponding values were 18-25 years for low paternal age. Being born in rural areas and in the last birth cohort was protective for all. The estimated proportion of susceptible was 5% for those without familial schizophrenia and 18% for individuals with familial schizophrenia. There was no statistically significant effect of paternal age on the proportion of susceptible. DISCUSSION To our knowledge, this is the first regression modeling of time to schizophrenia diagnosis allowing for a non-susceptible fraction of the population, including age dependent modeling of covariate effects and an interaction. Applying frailty model to schizophrenia provide etiological clues, elucidating patterns of susceptibility and age-at-diagnosis for which early-life factors are of importance.
Collapse
|
30
|
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 2013; 4:76. [PMID: 23675382 PMCID: PMC3646240 DOI: 10.3389/fgene.2013.00076] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
32
|
Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res 2013; 354:221-46. [PMID: 23579553 DOI: 10.1007/s00441-013-1611-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2013] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient's psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search for remedies, prevention of the disease and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia, a task that inevitably involves behavioural tests with animals. To a novice, this challenge not only is a technical one but also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience of diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction and early life developmental manipulations. The review pays equal emphasis to the general (theoretical) considerations of experimental design and the illustration of the problems related to critical test parameters and the data analysis of selected exemplar behavioural tests. Finally, the individual differences of behavioural expression in relevant tests observed in wild-type animals might offer an alternative approach in order to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels, all of which are of more immediate relevance to cell and tissue research.
Collapse
Affiliation(s)
- Benjamin K Yee
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE Second Avenue, Portland, OR 97232, USA,
| | | |
Collapse
|
33
|
Affiliation(s)
- Gregory A. Miller
- Department of Psychology, University of Delaware, Newark, Delaware 19716;
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61820
| | - Brigitte Rockstroh
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany;
| |
Collapse
|