1
|
Li J, Ye J. Chronic intermittent hypoxia induces cognitive impairment in Alzheimer's disease mouse model via postsynaptic mechanisms. Sleep Breath 2024; 28:1197-1205. [PMID: 38267641 DOI: 10.1007/s11325-023-02970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is highly comorbid with Alzheimer's disease (AD) and may represent a risk factor for inducing or accelerating cognitive impairment in AD. Chronic intermittent hypoxia (CIH) has been considered to be a predictor of developing cognitive decline and AD. However, the precise underlying mechanisms by which CIH contributes to cognitive impairment remain unknown. In the present study, we examined the effects of CIH on cognition and hippocampal function in APP/PS1 mice, an animal model of AD. METHODS Wild-type (WT) and APP/PS1 mice were subjected to one of the following conditions for 2 weeks: (1) sham condition (continuous room air) or (2) CIH condition. The oxygen concentration of the CIH condition transitioned from 5 to 21%. Behavioral tests, electrophysiological recording, real-time polymerase chain reaction, and Western blot were used to assess the effect of CIH on cognitive performance and synaptic plasticity. RESULTS CIH exposure did not affect motor coordination, general locomotor activity, anxiety, or willingness to explore. However, behavioral test results indicated that APP/PS1-CIH mice showed more spatial learning and memory deficits. CIH induced long-term potentiation (LTP) dysfunction of the hippocampus in WT mice. These effects were aggravated in APP/PS1 mice. The N-methyl-D-aspartic acid receptor (NMDAR) NR1 subunit and postsynaptic density 95 (PSD95) in the hippocampus of WT and APP/PS1 mice were downregulated. CONCLUSIONS These findings showed that a postsynaptic mechanism was involved in the effect of CIH on cognitive impairment.
Collapse
Affiliation(s)
- Juan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jingying Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Katagiri A, Kishimoto S, Okamoto Y, Yamada M, Niwa H, Bereiter DA, Kato T. Effect of chronic intermittent hypoxia on ocular and intraoral mechanical allodynia mediated via the calcitonin gene-related peptide in a rat. Sleep 2024; 47:zsad332. [PMID: 38166171 PMCID: PMC10925949 DOI: 10.1093/sleep/zsad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Indexed: 01/04/2024] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea, a significant hypoxic condition, may exacerbate several orofacial pain conditions. The study aims to define the involvement of calcitonin gene-related peptide (CGRP) in peripheral and central sensitization and in evoking orofacial mechanical allodynia under chronic intermittent hypoxia (CIH). METHODS Male rats were exposed to CIH. Orofacial mechanical allodynia was assessed using the eyeblink test and the two-bottle preference drinking test. The CGRP-immunoreactive neurons in the trigeminal ganglion (TG), CGRP-positive primary afferents projecting to laminae I-II of the trigeminal spinal subnucleus caudalis (Vc), and neural responses in the second-order neurons of the Vc were determined by immunohistochemistry. CGRP receptor antagonist was administrated in the TG. RESULTS CIH-induced ocular and intraoral mechanical allodynia. CGRP-immunoreactive neurons and activated satellite glial cells (SGCs) were significantly increased in the TG and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly higher in CIH rats compared to normoxic rats. Local administration of the CGRP receptor antagonist in the TG of CIH rats attenuated orofacial mechanical allodynia; the number of CGRP-immunoreactive neurons and activated SGCs in the TG, and the density of CGRP-positive primary afferent terminals and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly lower compared to vehicle-administrated CIH rats. CONCLUSIONS An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Saki Kishimoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshie Okamoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, MN, USA
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
3
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
4
|
Díaz-García E, García-Sánchez A, Alfaro E, López-Fernández C, Mañas E, Cano-Pumarega I, López-Collazo E, García-Río F, Cubillos-Zapata C. PSGL-1: a novel immune checkpoint driving T-cell dysfunction in obstructive sleep apnea. Front Immunol 2023; 14:1277551. [PMID: 37854605 PMCID: PMC10579800 DOI: 10.3389/fimmu.2023.1277551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Although higher incidence of cancer represents a major burden for obstructive sleep apnea (OSA) patients, the molecular pathways driving this association are not completely understood. Recently, the adhesion receptor P-selectin glycoprotein-1 (PSGL 1) has been identified as a novel immune checkpoint, which are recognized major hallmarks in several types of cancer and have revolutionized cancer therapy. Methods The expression of PSGL-1 and its ligands VISTA and SIGLEC-5 was assessed in the leucocytes of OSA patients and control subjects exploring the role of intermittent hypoxia (IH) using in vitro models. In addition, PSGL-1 impact on T-cells function was evaluated by ex vivo models. Results Data showed PSGL-1 expression is upregulated in the T-lymphocytes from patients with severe OSA, indicating a relevant role of hypoxemia mediated by intermittent hypoxia. Besides, results suggest an inhibitory role of PSGL-1 on T-cell proliferation capacity. Finally, the expression of SIGLEC-5 but not VISTA was increased in monocytes from OSA patients, suggesting a regulatory role of intermittent hypoxia. Discussion In conclusion, PSGL-1 might constitute an additional immune checkpoint leading to T-cell dysfunction in OSA patients, contributing to the disruption of immune surveillance, which might provide biological plausibility to the higher incidence and aggressiveness of several tumors in these patients.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Aldara García-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Enrique Alfaro
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Cristina López-Fernández
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Eva Mañas
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- The Innate Immune Response Group, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| |
Collapse
|
5
|
Bhatt AS, Schabath MB, Hoogland AI, Jim HS, Brady-Nicholls R. Patient-Reported Outcomes as Interradiographic Predictors of Response in Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3142-3150. [PMID: 37233986 PMCID: PMC10425729 DOI: 10.1158/1078-0432.ccr-23-0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 05/24/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Minimally invasive biomarkers have been used as important indicators of treatment response and progression in cancers such as prostate and ovarian. Unfortunately, all biomarkers are not prognostic in all cancer types and are often not routinely collected. Patient-reported outcomes (PRO) provide a non-obtrusive, personalized measure of a patient's quality of life and symptomatology, reported directly from the patient, and are increasingly collected as part of routine care. Previous literature has shown correlations between specific PROs (i.e., insomnia, fatigue) and overall survival. Although promising, these studies often only consider single time points and ignore patient-specific dynamic changes in individual PROs, which might be early predictors of treatment response or progression. EXPERIMENTAL DESIGN In this study, PRO dynamics were analyzed to determine if they could be used as interradiographic predictors of tumor volume changes among 85 patients with non-small cell lung cancer undergoing immunotherapy. PRO questionnaires and tumor volume scans were completed biweekly and monthly, respectively. Correlation and predictive analysis were conducted to identify specific PROs that could accurately predict patient response. RESULTS Changes in tumor volume over time were significantly correlated with dizziness (P < 0.005), insomnia (P < 0.05), and fatigue (P < 0.05). In addition, cumulative changes in insomnia could predict progressive disease with a 77% accuracy, on average 45 days prior to the next imaging scan. CONCLUSIONS This study presents the first time that patient-specific PRO dynamics have been considered to predict how individual patients will respond to treatment. This is an important first step in adapting treatment to improve response rates.
Collapse
Affiliation(s)
- Ambika S. Bhatt
- Department of Biostatistics, Gillings School of Global Public Health at the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aasha I. Hoogland
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Heather S.L. Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
6
|
Díaz-García E, Sanz-Rubio D, García-Tovar S, Alfaro E, Cubero P, Gil AV, Marin JM, Cubillos-Zapata C, García-Río F. Inflammasome activation mediated by oxidised low-density lipoprotein in patients with sleep apnoea and early subclinical atherosclerosis. Eur Respir J 2023; 61:13993003.01401-2022. [PMID: 36517180 DOI: 10.1183/13993003.01401-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atherosclerosis is a common comorbidity of obstructive sleep apnoea (OSA) patients, caused by the interaction of dyslipidaemia and systemic inflammation. The OSA pro-inflammatory response is mediated by NLRP3 inflammasome activation, which requires a priming signal mediated by intermittent hypoxia (IH) and an activation signal provided by soluble stimulus present in plasma. Our objectives were to study oxidised low-density lipoprotein (oxLDL) expression in OSA patients with or without early subclinical atherosclerosis (eSA) as well as its contribution to NLRP3 activation and tissue factor (TF) release. METHODS We analysed oxLDL, key components of the NLRP3 inflammasome cascade and TF in plasma and monocytes from OSA patients and non-apnoeic subjects, with or without eSA as determined by increased carotid intima-media thickness without the appearance of atherosclerotic plaques. The oxLDL contribution to NLRP3 inflammasome activation was assessed using in vitro models. RESULTS High levels of oxLDL were identified in plasma from OSA patients, particularly in those with eSA, as well as an overexpression of NLRP3 cascade components and TF. Furthermore, in vitro models showed that both oxLDL and plasma from OSA patients with eSA act synergistically with IH as a priming and activation signal of NLRP3 that enhances the inflammatory response, pyroptosis and TF release. CONCLUSIONS OSA patients with eSA exhibit NLRP3 activation by IH and the presence of oxLDL capable of releasing TF, constituting a pathway for the interaction between dyslipidaemia and systemic inflammation in the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Miguel Servet University Hospital - IISAragon, Zaragoza, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Pablo Cubero
- Translational Research Unit, Miguel Servet University Hospital - IISAragon, Zaragoza, Spain
| | - Ana V Gil
- Translational Research Unit, Miguel Servet University Hospital - IISAragon, Zaragoza, Spain
| | - José M Marin
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Translational Research Unit, Miguel Servet University Hospital - IISAragon, Zaragoza, Spain
- Department of Medicine, University of Zaragoza School of Medicine, Zaragoza, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- C. Cubillos-Zapata and F. García-Río contributed equally to this article as lead authors and supervised the work
| | - Francisco García-Río
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- C. Cubillos-Zapata and F. García-Río contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
7
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
8
|
Cubillos-Zapata C, Martínez-García MÁ, Díaz-García E, García-Tovar S, Campos-Rodríguez F, Sánchez-de-la-Torre M, Nagore E, Martorell-Calatayud A, Blasco LH, Pastor E, Abad-Capa J, Montserrat JM, Cabriada-Nuño V, Cano-Pumarega I, Corral-Peñafiel J, Arias E, Mediano O, Somoza-González M, Dalmau-Arias J, Almendros I, Farré R, Gozal D, García-Río F. Obstructive sleep apnoea is related to melanoma aggressiveness through paraspeckle protein-1 upregulation. Eur Respir J 2023; 61:13993003.00707-2022. [PMID: 36265878 DOI: 10.1183/13993003.00707-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND In patients with obstructive sleep apnoea (OSA), intermittent hypoxia induces overexpression of paraspeckle component (PSPC)1, a master modulator of transforming growth factor (TGF)-β signalling, which promotes cell cancer progression through epithelial-mesenchymal transition (EMT) and acquisition of cancer stem cell (CSC)-like features. However, the persistence of intermittent hypoxia-induced effects on PSPC1, and their consequences in cancer patients are not known. To this effect, circulating PSPC1 levels were compared in patients with cutaneous melanoma with or without OSA, and their relationship with tumour aggressiveness along with the in vitro effects of soluble PSPC1 and intermittent hypoxia on melanoma cell aggressiveness mechanisms were assessed. METHODS In 292 cutaneous melanoma patients, sleep studies and serum levels of PSPC1 and TGF-β were evaluated. The effect of PSPC1 on expression of EMT and CSC transcription factors was assessed using melanoma cell lines with patient sera under both normoxia and intermittent hypoxia conditions. RESULTS PSPC1 levels were higher in patients with moderate-severe OSA compared with mild OSA or non-OSA patients. Serum levels of PSPC1 were associated with several cutaneous melanoma clinical aggressiveness indicators. Both intermittent hypoxia exposures and serum from OSA patients upregulated TGF-β expression and amplified the expression of transcription factors associated with EMT activation and acquisition of CSC characteristics. CONCLUSION In cutaneous melanoma patients, OSA severity is associated with higher PSPC1 serum levels, which jointly with intermittent hypoxia would enhance the self-reprogramming capabilities of EMT and CSC feature acquisition of melanoma cells, promoting their intrinsic aggressiveness.
Collapse
Affiliation(s)
- Carolina Cubillos-Zapata
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Miguel Ángel Martínez-García
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Respiratory Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Elena Díaz-García
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Francisco Campos-Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario de Valme, IBIS, Seville, Spain
| | - Manuel Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Eduardo Nagore
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Luis Hernández Blasco
- Respiratory Department, ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Departamento Medicina Clinica, Universidad Miguel Hernandez, Elche, Spain
| | - Esther Pastor
- Respiratory Department, Hospital san Juan de Alicante, Alicante, Spain
| | - Jorge Abad-Capa
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Germans Trias i Pujol, Centro de investigacion Biomedica, Madrid, Spain
| | - Josep María Montserrat
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Clinic - IDIBAPS, Barcelona, Spain
| | | | | | - Jaime Corral-Peñafiel
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario S. Pedro Alcántara, Cáceres, Spain
| | - Eva Arias
- Respiratory Department, Hospital 12 de Octubre, Madrid, Spain
| | - Olga Mediano
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Joan Dalmau-Arias
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramón Farré
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francisco García-Río
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
9
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|
10
|
Gao X, Wei T, Wang H, Sui R, Liao J, Sun D, Han D. Causal associations between obstructive sleep apnea and COVID-19: A bidirectional Mendelian randomization study. Sleep Med 2023; 101:28-35. [PMID: 36334498 PMCID: PMC9557138 DOI: 10.1016/j.sleep.2022.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUNDS The COVID-19 pandemic has caused significant impact on human health. Whether obstructive sleep apnea (OSA) increases the risk of COVID-19 remains unclear. We sought to clarify this issue using two-sample Mendelian randomization (TSMR) analysis in large cohorts. METHODS Bidirectional two-sample Mendelian randomization (MR) was used to evaluate the potential causality between OSA and COVID-19 by selecting single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) from genome-wide association studies (GWAS). The inverse-variance weighted (IVW) method was selected as the main approach for data analysis to estimate the possible causal effects. Alternative methods such as MR-Egger, the MR pleiotropy residual sum and outlier (MR-PRESSO), and leave-one-out analysis methods were implemented as sensitivity analysis approaches to ensure the robustness of the results. RESULTS All forward MR analyses consistently indicated the absence of a causal relationship between OSA and any COVID-19 phenotype. In the reverse MR analysis, the IVW mode demonstrated that severe respiratory confirmed COVID-19 was correlated with a 4.9% higher risk of OSA (OR, 1.049; 95%CI, 1.018-1.081; P = 0.002), consistent in MR-PRESSO (OR = 1.049, 95%CI 1.018-1.081, P = 0.004), weighted median (OR = 1.048, 95%CI 1.003-1.095, P = 0.035), and MR-Egger (OR = 1.083, 95%CI 1.012-1.190, P = 0.041) methods. CONCLUSIONS There is no significant evidence supporting a causal association between OSA and any COVID phenotype, while we identified potential evidence for a causal effect of severe COVID-19 on an increased risk of OSA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Huijun Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Jianhong Liao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Dance Sun
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
11
|
Zhang XB, Chen GP, Huang MH, Chen XX, Zhan FF, He XZ, Cai L, Zeng HQ. Bcl-2 19-kDa Interacting Protein 3 (BNIP3)-Mediated Mitophagy Attenuates Intermittent Hypoxia-Induced Human Renal Tubular Epithelial Cell Injury. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e936760. [PMID: 35836356 PMCID: PMC9295414 DOI: 10.12659/msm.936760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a novel pathophysiological characteristic of obstructive sleep apnea, intermittent hypoxia (IH) contributes to human renal tubular epithelial cells impairment. The underlying pathological mechanisms remain unrevealed. The present study aimed to evaluate the influence of Bcl-2 19-kDa interacting protein 3 (BNIP3)-mediated mitophagy on IH-induced renal tubular epithelial cell impairment. Material/Methods Human kidney proximal tubular (HK-2) cells were exposed to IH condition. IH cycles were as follows: 21% oxygen for 25 min, 21% descended to 1% for 35 min, 1% oxygen sustaining for 35 min, and 1% ascended to 21% for 25 min. The IH exposure lasted 24 h with 12 cycles of hypoxia and re-oxygenation. Both the siBNIP3 and BNIP3 vector were transfected to cells. Cell viability and apoptosis, mitochondrial morphology and function, and mitophagy were detected by cell counting kit-8, flow cytometry and TUNEL staining, transmission electron microscopy, western blotting, and immunofluorescence, respectively. Results In the IH-induced HK-2 cells, inhibition of BNIP3 further aggravated mitochondrial structure damage, and decreased mitophagy level, leading to increased cell apoptosis and decreased cell viability. While overexpression of BNIP3 enhanced mitophagy, which protected mitochondrial structure, it can decrease cell death in HK-2 cells exposed to IH. Conclusions The present study showed that BNIP3-mediated mitophagy plays a protective role against IH-induced renal tubular epithelial cell impairment.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Gong-Ping Chen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Mao-Hong Huang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiang-Xing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Feng-Fu Zhan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiu-Zhen He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Ling Cai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
12
|
Shang S, Zhao Y, Qian K, Qin Y, Zhang X, Li T, Shan L, Wei M, Xi J, Tang B. The role of neoantigens in tumor immunotherapy. Biomed Pharmacother 2022; 151:113118. [PMID: 35623169 DOI: 10.1016/j.biopha.2022.113118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor neoantigens are aberrant polypeptides produced by tumor cells as a result of genomic mutations. They are also tumor-specific antigens (TSA). Neoantigens are more immunogenic than tumor-related antigens and do not induce autoimmunity. Based on the rapid development of bioinformatics and the continuous update of sequencing technology, cancer immunotherapy with tumor neoantigens has made promising breakthroughs and progress. In this review, the generation, prediction, and identification of novel antigens, as well as the individualized treatments of neoantigens, were first introduced. Secondly, the mechanism of Chimeric Antigen Receptor T-Cell Immunotherapy (CAR-T) therapy and immune checkpoint blockade therapy in the treatment of tumors were outlined, and the three treatment methods were compared. Thirdly, the application of neoantigens in CAR-T therapy and PD-1/PD-L1 blockade therapy was briefly described. The benefits of the neoantigen vaccines over common vaccines were summarized as well. Finally, the prospect of neoantigen therapy was presented.
Collapse
Affiliation(s)
- Shengwen Shang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Yongjie Zhao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Kaiqiang Qian
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Xinyi Zhang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Lidong Shan
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Meili Wei
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
13
|
Sleep-disordered breathing and risk of lung cancer: a meta-analysis longitudinal follow-up studies. Eur J Cancer Prev 2022; 31:245-252. [PMID: 34519691 DOI: 10.1097/cej.0000000000000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Consensus remains lack regarding whether sleep-disordered breathing (SDB) is an independent risk factor for lung cancer. We therefore conducted a meta-analysis to clarify the relationship of SDB and lung cancer. Longitudinal follow-up studies investigating the association between SDB and incidence of lung cancer were included by search of electronic databases including PubMed, Embase, and Cochrane's Library. A random-effects model was adopted to combine the results. Seven studies were included. Pooled results showed that presence of SDB was independently associated with higher incidence of lung cancer [adjusted risk ratio (RR): 1.28; 95% confidence interval (CI), 1.11-1.47; P < 0.001; I2 = 37%]. Sensitivity analysis limited to studies with adjustment of smoking showed consistent results (three studies, RR: 1.34; 95% CI, 1.22-1.48; P < 0.001; I2 = 8%). Subgroup analysis suggested that the association between SDB and higher risk of lung cancer was not significantly affected by study characteristics such as study design, source of population, sample size, evaluation methods for SDB, follow-up duration, methods for validation of lung cancer, or score of study quality (P values for subgroup difference all >0.05). No significant publication bias was observed (P for Egger's regression test = 0.258). These results suggested that SDB may be an independent risk factor of lung cancer in adult population. Intensive screening and prevention of lung cancer in subjects with SDB should be considered.
Collapse
|
14
|
Abstract
Multiple Sclerosis (MS) is a common neuroinflammatory disorder which is associated with disabling clinical consequences. The MS disease process may involve neural centers implicated in the control of breathing, leading to ventilatory disturbances during both wakefulness and sleep. In this chapter, a brief overview of MS disease mechanisms and clinical sequelae including sleep disorders is provided. The chapter then focuses on obstructive sleep apnea-hypopnea (OSAH) which is the most prevalent respiratory control abnormality encountered in ambulatory MS patients. The diagnosis, prevalence, and clinical consequences as well as data on effects of OSAH treatment in MS patients are discussed, including the impact on the disabling symptom of fatigue and other clinical sequelae. We also review pathophysiologic mechanisms contributing to OSAH in MS, and in turn mechanisms by which OSAH may impact on the MS disease process, resulting in a bidirectional relationship between these two conditions. We then discuss central sleep apnea, other respiratory control disturbances, and the pathogenesis and management of respiratory muscle weakness and chronic hypoventilation in MS. We also provide a brief overview of Neuromyelitis Optica Spectrum Disorders and review current data on respiratory control disturbances and sleep-disordered breathing in that condition.
Collapse
Affiliation(s)
- R John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Marta Kaminska
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Daria Trojan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Akbari H, Taghizadeh-Hesary F, Bahadori M. Mitochondria determine response to anti-programmed cell death protein-1 (anti-PD-1) immunotherapy: An evidence-based hypothesis. Mitochondrion 2021; 62:151-158. [PMID: 34890822 DOI: 10.1016/j.mito.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on programmed cell death protein-1 (PD-1) is a promising approach in oncology. However, a significant fraction of patients remain unresponsive. Therefore, it is imperative to clarify the relevant predictive factors. A decrease in cellular adenosine triphosphate (c-ATP) level can predispose to cellular dysfunction. ATP is a prerequisite for proper T cell migration and activation. Therefore, a decrease in the c-ATP level impairs T cell function and promotes cancer progression. This article gives an overview of the potential predictive factors of PD-1 blockade. Besides, it highlights the pivotal role of mitochondria in response to anti-PD-1 therapies.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moslem Bahadori
- Professor Emeritus, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
López-Alonso I, López-Martínez C, Martín-Vicente P, Amado-Rodríguez L, González-López A, Mayordomo-Colunga J, Del Busto C, Bernal M, Crespo I, Astudillo A, Arias-Guillén M, Fueyo A, Almendros I, Otero J, Sanz-Fraile H, Farré R, Albaiceta GM. Mechanical ventilation promotes lung tumor spread by modulation of cholesterol cell content. Eur Respir J 2021; 60:13993003.01470-2021. [PMID: 34887328 DOI: 10.1183/13993003.01470-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022]
Abstract
Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumors have not been explored. To characterize the influence of mechanical ventilation on the behavior of lung tumors, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechano-dependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of non-ventilated patients. Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in PCSK9 and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harboring melanoma implants increased brain and kidney metastases two weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo In patients, mechanical ventilation increased PCSK9 abundance in lung tumors and the incidence of metastasis, thus decreasing survival. Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.
Collapse
Affiliation(s)
- Inés López-Alonso
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain .,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,These authors contributed equally
| | - Cecilia López-Martínez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,These authors contributed equally
| | - Paula Martín-Vicente
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Adrián González-López
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, Germany
| | - Juan Mayordomo-Colunga
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Pediátricos. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cecilia Del Busto
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Polivalente. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marina Bernal
- Servicio de Medicina Interna. Fundación Jiménez Díaz, Madrid, Spain
| | - Irene Crespo
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Miguel Arias-Guillén
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Servicio de Neumología. Hospital Unviersitario Central de Asturias. Oviedo, Spain
| | - Antonio Fueyo
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Jorge Otero
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ramón Farré
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Guillermo M Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Enhanced Ocular Surface and Intraoral Nociception via a Transient Receptor Potential Vanilloid 1 Mechanism in a Rat Model of Obstructive Sleep Apnea. Neuroscience 2021; 483:66-81. [PMID: 34883200 DOI: 10.1016/j.neuroscience.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by low arterial oxygen saturation during sleep, is associated with an increased risk of orofacial pain. In this study, we simulated chronic intermittent hypoxia (CIH) during the sleep/rest phase (light phase) to determine the role of transient receptor potential vanilloid 1 (TRPV1) in mediating enhanced orofacial nocifensive behavior and trigeminal spinal subnucleus caudalis (Vc) neuronal responses to capsaicin (a TRPV1 agonist) stimulation in a rat model of OSA. Rats were subjected to CIH (nadir O2, 5%) during the light phase for 8 or 16 consecutive days. CIH yielded enhanced behavioral responses to capsaicin after application to the ocular surface and intraoral mucosa, which was reversed under normoxic conditions. The percentage of TRPV1-immunoreactive trigeminal ganglion neurons was greater in CIH rats than in normoxic rats and recovered under normoxic conditions after CIH. The ratio of large-sized TRPV1-immunoreactive trigeminal ganglion neurons increased in CIH rats. The density of TRPV1 positive primary afferent terminals in the superficial laminae of Vc was higher in CIH rats. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive cells intermingled with the central terminal of TRPV1-positive afferents in the Vc. The number of pERK-immunoreactive cells following low-dose capsaicin (0.33 µM) application to the tongue was significantly greater in the middle portion of the Vc of CIH rats than of normoxic rats and recovered under normoxic conditions after CIH. These data suggest that CIH during the sleep (light) phase is sufficient to transiently enhance pain on the ocular surface and intraoral mucosa via TRPV1-dependent mechanisms.
Collapse
|
18
|
Ulland TK, Ewald AC, Knutson AO, Marino KM, Smith SMC, Watters JJ. Alzheimer's Disease, Sleep Disordered Breathing, and Microglia: Puzzling out a Common Link. Cells 2021; 10:2907. [PMID: 34831129 PMCID: PMC8616348 DOI: 10.3390/cells10112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep Disordered Breathing (SDB) and Alzheimer's Disease (AD) are strongly associated clinically, but it is unknown if they are mechanistically associated. Here, we review data covering both the cellular and molecular responses in SDB and AD with an emphasis on the overlapping neuroimmune responses in both diseases. We extensively discuss the use of animal models of both diseases and their relative utilities in modeling human disease. Data presented here from mice exposed to intermittent hypoxia indicate that microglia become more activated following exposure to hypoxia. This also supports the idea that intermittent hypoxia can activate the neuroimmune system in a manner like that seen in AD. Finally, we highlight similarities in the cellular and neuroimmune responses between SDB and AD and propose that these similarities may lead to a pathological synergy between SDB and AD.
Collapse
Affiliation(s)
- Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Andrew O. Knutson
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Kaitlyn M. Marino
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Stephanie M. C. Smith
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Jyoti J. Watters
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| |
Collapse
|
19
|
Díaz-García E, García-Tovar S, Casitas R, Jaureguizar A, Zamarrón E, Sánchez-Sánchez B, Sastre-Perona A, López-Collazo E, Garcia-Rio F, Cubillos-Zapata C. Intermittent Hypoxia Mediates Paraspeckle Protein-1 Upregulation in Sleep Apnea. Cancers (Basel) 2021; 13:cancers13153888. [PMID: 34359789 PMCID: PMC8345391 DOI: 10.3390/cancers13153888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Patients with obstructive sleep apnea (OSA) exhibit an intermittent hypoxia-dependent paraspeckle protein-1 (PSPC1) increase, which is eventually delivered to the plasma through its cleavage from OSA monocytes by matrix metalloprotease-2, promoting tumor growth factor (TGFβ) expression and increasing epithelial-to-mesenchymal transition in a tumor functional model using a melanoma cell line. These results connect the phenomena of sleep apnea with increased plasma PSPC1 levels, which has a functional effect on the TGFβ pathway and accelerates tumor progression. Abstract As some evidence suggests that hypoxia might be an inducer of nuclear paraspeckle formation, we explore whether intermittent hypoxia (IH)-mediated paraspeckle protein-1 (PSPC1) overexpression might contribute to the activation of tumor growth factor (TGF)β-SMAD pathway in patients with obstructive sleep apnea (OSA). This activation would promote changes in intracellular signaling that would explain the increased cancer aggressiveness reported in these patients. Here, we show that patients with OSA exhibit elevated PSPC1 levels both in plasma and in monocytes. Our data suggest that PSPC1 is ultimately delivered to the plasma through its cleavage from OSA monocytes by matrix metalloproteinase-2 (MMP2). In addition, IH promotes PSPC1, TGFβ, and MMP2 expression in monocytes through the hypoxia-inducible factor. Lastly, both PSPC1 and TGFβ induce increased expression of genes that drive the epithelial-to-mesenchymal transition. Our study details the mechanism by which hypoxemia upmodulates the extracellular release of PSPC1 by means of MMP2, such that plasma PSPC1 together with TGFβ activation signaling further promotes tumor metastasis and supports cancer aggressiveness in patients with OSA.
Collapse
Affiliation(s)
- Elena Díaz-García
- Grupo de Enfermedades Respiratorias, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain; (E.D.-G.); (S.G.-T.)
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
| | - Sara García-Tovar
- Grupo de Enfermedades Respiratorias, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain; (E.D.-G.); (S.G.-T.)
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
| | - Raquel Casitas
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
- Servicio de Neumología, Hospital Universitario La Paz, 28029 Madrid, Spain; (E.Z.); (B.S.-S.)
| | - Ana Jaureguizar
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Ester Zamarrón
- Servicio de Neumología, Hospital Universitario La Paz, 28029 Madrid, Spain; (E.Z.); (B.S.-S.)
| | - Begoña Sánchez-Sánchez
- Servicio de Neumología, Hospital Universitario La Paz, 28029 Madrid, Spain; (E.Z.); (B.S.-S.)
| | - Ana Sastre-Perona
- Grupo deTerapias Experimentales y Biomarcadores en Cáncer, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain;
| | - Eduardo López-Collazo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
- Grupo de Respuesta Inmune Innata, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
- Servicio de Neumología, Hospital Universitario La Paz, 28029 Madrid, Spain; (E.Z.); (B.S.-S.)
- Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: (F.G.-R.); (C.C.-Z.); Tel.: +34-639-91-17-18 (F.G.-R.); +34-600-87-71-79 (C.C.-Z.)
| | - Carolina Cubillos-Zapata
- Grupo de Enfermedades Respiratorias, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain; (E.D.-G.); (S.G.-T.)
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.C.); (A.J.); (E.L.-C.)
- Correspondence: (F.G.-R.); (C.C.-Z.); Tel.: +34-639-91-17-18 (F.G.-R.); +34-600-87-71-79 (C.C.-Z.)
| |
Collapse
|
20
|
Sun Y, Tan J, Miao Y, Zhang Q. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury. Cell Commun Signal 2021; 19:76. [PMID: 34256773 PMCID: PMC8276205 DOI: 10.1186/s12964-021-00742-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a pathological condition common to many diseases, although multiple organ injuries induced by hypoxia are often overlooked. There is increasing evidence to suggest that the hypoxic environment may activate innate immune cells and suppress adaptive immunity, further stimulating inflammation and inhibiting immunosurveillance. We found that dysfunctional immune regulation may aggravate hypoxia-induced tissue damage and contribute to secondary injury. Among the diverse mechanisms of hypoxia-induced immune dysfunction identified to date, the role of programmed death-ligand 1 (PD-L1) has recently attracted much attention. Besides leading to tumour immune evasion, PD-L1 has also been found to participate in the progression of the immune dysfunction which mediates hypoxia-induced multiple organ injury. In this review, we aimed to summarise the role of immune dysfunction in hypoxia-induced multiple organ injury, the effects of hypoxia on the cellular expression of PD-L1, and the effects of upregulated PD-L1 expression on immune regulation. Furthermore, we summarise the latest information pertaining to the involvement, diagnostic value, and therapeutic potential of immunosuppression induced by PD-L1 in various types of hypoxia-related diseases, including cancers, ischemic stroke, acute kidney injury, and obstructive sleep apnoea. Video Abstract.
Collapse
Affiliation(s)
- Yang Sun
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road NO.154, Tianjin, 300052 China
| |
Collapse
|
21
|
Liu Y, Lu M, Chen J, Li S, Deng Y, Yang S, Ou Q, Li J, Gao P, Luo Z, Yuan P, Tan J, Gao X. Extracellular vesicles derived from lung cancer cells exposed to intermittent hypoxia upregulate programmed death ligand 1 expression in macrophages. Sleep Breath 2021; 26:893-906. [PMID: 34254261 PMCID: PMC9130183 DOI: 10.1007/s11325-021-02369-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Purpose Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), compromises immune surveillance through the upregulation of programmed cell death-1 ligand (PD-L1). Tumor-released extracellular vesicles (EVs) have been reported to modulate immunosuppressive activities. We investigated whether or not EVs derived from intermittent hypoxic lung cancer cells can alter the expression of PD-L1 in macrophages. Methods The expression of PD-L1+monocytes from 40 patients with newly diagnosed non-small-cell lung cancer (NSCLC) and with (n=21) or without (n=19) OSA were detected. Plasma EVs isolated from NSCLC patients with moderate–severe OSA (n=4) and without OSA (n=4) were co-cultured with macrophages. A549 cells were exposed to normoxia or IH (48 cycles of 5 min of 1% O2 hypoxia, followed by 5 min of normoxia). EVs were isolated from cell supernatant and were co-cultured with macrophages differentiated from THP-1. PD-L1 and hypoxia-inducible factor-1 α (HIF-1α) expressions were measured by flow cytometry, immunofluorescence, and Western blot analysis. Results PD-L1+monocytes were elevated in NSCLC patients with OSA and increased with the severity of OSA and nocturnal desaturation. PD-L1+ macrophages were induced by EVs from NSCLC patients with OSA and positively correlated with HIF-1α expressions. EVs from IH-treated A549 can promote PD-L1 and HIF-1α expression in macrophages and the upregulation of PD-L1 expression was reversed by specific HIF-1α inhibitor. Conclusion IH can enhance the function of EVs derived from lung cancer cells to aggravate immunosuppressive status in macrophages. HIF-1α may play an important role in this process. Supplementary Information The online version contains supplementary material available at 10.1007/s11325-021-02369-1.
Collapse
Affiliation(s)
- Yuanling Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Minzhen Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Jianan Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Siqi Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shifang Yang
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Qiong Ou
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
| | - Ping Gao
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Zeru Luo
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Ping Yuan
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Jianlong Tan
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Xinglin Gao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd road No. 106, Guangzhou, 510080, China.
- Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
23
|
Hong H, Hosomichi J, Maeda H, Ishida Y, Usumi-Fujita R, Yoshida KI, Ono T. Selective β2-Adrenoceptor Blockade Rescues Mandibular Growth Retardation in Adolescent Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2021; 12:676270. [PMID: 34220541 PMCID: PMC8247478 DOI: 10.3389/fphys.2021.676270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Activation of the sympathoadrenal system is associated with sleep apnea-related symptoms and metabolic dysfunction induced by chronic intermittent hypoxia (IH). IH can induce hormonal imbalances and growth retardation of the craniofacial bones. However, the relationship between IH and β2-adrenergic receptor signaling in the context of skeletal growth regulation is unclear. This study aimed to investigate the role of β2-adrenergic receptors in IH-induced mandibular growth retardation and bone metabolic alterations. Male 7-week-old Sprague–Dawley rats were subjected to IH for 3 weeks. IH conditions were established using original customized hypoxic chambers; IH was induced at a rate of 20 cycles per hour (oxygen levels changed from 4 to 21% in one cycle) for 8 h per day during the 12 h “lights on” period. The rats received intraperitoneal administration of a β2-adrenergic antagonist (butoxamine) or saline. To exclude dietary effects on general growth, the normoxic rats with saline, normoxic rats with butoxamine, and IH rats with butoxamine were subjected to food restriction to match the body weight gains between IH and other three groups. Body weight, heart rate, blood pressure, and plasma concentrations of leptin, serotonin, and growth hormone were measured. Bone growth and metabolism were evaluated using radiography, microcomputed tomography, and immunohistochemical staining. Plasma leptin levels were significantly increased, whereas that of serotonin and growth hormone were significantly decreased following IH exposure. Leptin levels recovered following butoxamine administration. Butoxamine rescued IH-induced mandibular growth retardation, with alterations in bone mineral density at the condylar head of the mandible. Immunohistochemical analysis revealed significantly lower expression levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the condylar head of IH-exposed rats. Conversely, recovery of RANKL expression was observed in IH-exposed rats administered with butoxamine. Collectively, our findings suggest that the activation of β2-adrenergic receptors and leptin signaling during growth may be involved in IH-induced skeletal growth retardation of the mandible, which may be mediated by concomitant changes in RANKL expression at the growing condyle.
Collapse
Affiliation(s)
- Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan.,Department of Stomatology, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Kendzerska T, Povitz M, Leung RS, Boulos MI, McIsaac DI, Murray BJ, Bryson GL, Talarico R, Hilton JF, Malhotra A, Gershon AS. Obstructive Sleep Apnea and Incident Cancer: A Large Retrospective Multicenter Clinical Cohort Study. Cancer Epidemiol Biomarkers Prev 2020; 30:295-304. [PMID: 33268490 DOI: 10.1158/1055-9965.epi-20-0975] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To examine the association between the severity of obstructive sleep apnea (OSA) and nocturnal hypoxemia with incident cancer. METHODS This was a multicenter retrospective clinical cohort study using linked clinical and provincial health administrative data on consecutive adults who underwent a diagnostic sleep study between 1994 and 2017 in four academic hospitals (Canada) who were free of cancer at baseline. Cancer status was derived from the Ontario Cancer Registry. Cox cause-specific regressions were utilized to address the objective and to calculate the 10-year absolute risk difference (ARD) in the marginal probability of incident cancer and the number needed to harm (NNH). RESULTS Of 33,997 individuals considered, 33,711 with no missing OSA severity were included: median age, 50 years; 58% male; and 23% with severe OSA (apnea-hypopnea index >30). Of the 18,458 individuals with information on sleep time spent with oxygen saturation (SaO2) <90%, 5% spent >30% of sleep with SaO2 <90% (severe nocturnal hypoxemia). Over a median of 7 years, 2,498 of 33,711 (7%) individuals developed cancer, with an incidence rate of 10.3 (10.0-10.8) per 1,000 person-years. Controlling for confounders, severe OSA was associated with a 15% increased hazard of developing cancer compared with no OSA (HR = 1.15, 1.02-1.30; ARD = 1.28%, 0.20-2.37; and NNH = 78). Severe hypoxemia was associated with about 30% increased hazard (HR = 1.32, 1.08-1.61; ARD = 2.38%, 0.47-4.31; and NNH = 42). CONCLUSIONS In a large cohort of individuals with suspected OSA free of cancer at baseline, the severity of OSA and nocturnal hypoxemia was independently associated with incident cancer. IMPACT These findings suggest the need for more targeted cancer risk awareness in individuals with OSA.
Collapse
Affiliation(s)
- Tetyana Kendzerska
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada.
- ICES (formerly the Institute for Clinical Evaluative Sciences), Ottawa, Toronto, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marcus Povitz
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Richard S Leung
- Department of Medicine, the University of Toronto, Toronto, Ontario, Canada
- St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark I Boulos
- Department of Medicine, the University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Daniel I McIsaac
- ICES (formerly the Institute for Clinical Evaluative Sciences), Ottawa, Toronto, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Brian J Murray
- Department of Medicine, the University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gregory L Bryson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Talarico
- ICES (formerly the Institute for Clinical Evaluative Sciences), Ottawa, Toronto, Ontario, Canada
| | - John F Hilton
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Atul Malhotra
- Department of Medicine, the University of California, San Diego, California
| | - Andrea S Gershon
- ICES (formerly the Institute for Clinical Evaluative Sciences), Ottawa, Toronto, Ontario, Canada
- Department of Medicine, the University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Polasky C, Steffen A, Loyal K, Lange C, Bruchhage KL, Pries R. Redistribution of Monocyte Subsets in Obstructive Sleep Apnea Syndrome Patients Leads to an Imbalanced PD-1/PD-L1 Cross-Talk with CD4/CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:51-58. [PMID: 33268482 DOI: 10.4049/jimmunol.2001047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) represents a substantial disease of recurrent sleep fragmentation, leading to intermittent hypoxia and subsequent diseases such as cardiovascular, metabolic, or cognitive dysfunctions. In addition, OSAS is considered as low-grade systemic inflammation, which is associated with a higher incidence of cancer, severity of infections, and an overall immune dysregulation. This research project aims to comprehensively investigate the interplay of wholesome sleep and the immune functions of circulating monocytes and T cells in OSAS patients, which are known to be affected by oxidative stress. We studied the distribution of the CD14/CD16 characterized monocyte subsets in peripheral blood as well as their PD-L1 expression and complex formation with T cells. Furthermore, a detailed analysis of T cell subsets with regard to their PD-1 and PD-L1 expression was performed. Data revealed a decrease of classical monocytes accompanied by an increase of both CD16+ monocyte subsets in OSAS patients that was positively correlated with the body mass index. OSAS patients revealed an increased PD-1 and PD-L1 expression in T cells and monocytes, respectively, which was linked to the severity of monocyte subset alterations. The complex formation of monocytes and T cells was also elevated in OSAS patients, which indicates a deregulated PD-1/PD-L1 cross-talk between these cells. Our data show for the first time, to our knowledge, massive alterations of peripheral monocyte subsets in response to OSAS and its accompanying phenomena.
Collapse
Affiliation(s)
- Christina Polasky
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Kristin Loyal
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Christian Lange
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| |
Collapse
|
26
|
Cubillos-Zapata C, Martínez-García MÁ, Díaz-García E, Jaureguizar A, Campos-Rodríguez F, Sánchez-de-la-Torre M, Nagore E, Martorell-Calatayud A, Blasco LH, Pastor E, Abad-Capa J, Montserrat JM, Cabriada-Nuño V, Cano-Pumarega I, Corral-Peñafiel J, Arias E, Mediano O, Somoza-González M, Dalmau-Arias J, Almendros I, Farré R, López-Collazo E, Gozal D, García-Río F. Obesity attenuates the effect of sleep apnea on active TGF-ß1 levels and tumor aggressiveness in patients with melanoma. Sci Rep 2020; 10:15528. [PMID: 32968152 PMCID: PMC7511355 DOI: 10.1038/s41598-020-72481-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Active transforming growth factor-β1 (TGF-β1), a cytokine partially regulated by hypoxia and obesity, has been related with poor prognosis in several tumors. We determine whether obstructive sleep apnea (OSA) increases serum levels of active TGF-β1 in patients with cutaneous melanoma (CM), assess their relationship with melanoma aggressiveness and analyze the factors related to TGF-β1 levels in obese and non-obese OSA patients. In a multicenter observational study, 290 patients with CM were underwent sleep studies. TGF-β1 was increased in moderate-severe OSA patients vs. non-OSA or mild OSA patients with CM. In OSA patients, TGF-β1 levels correlated with mitotic index, Breslow index and melanoma growth rate, and were increased in presence of ulceration or higher Clark levels. In CM patients, OSA was associated with higher TGF-β1 levels and greater melanoma aggressiveness only in non-obese subjects. An in vitro model showed that IH-induced increases of TGF-β1 expression in melanoma cells is attenuated in the presence of high leptin levels. In conclusion, TGF-β1 levels are associated with melanoma aggressiveness in CM patients and increased in moderate-severe OSA. Moreover, in non-obese patients with OSA, TGF-β1 levels correlate with OSA severity and leptin levels, whereas only associate with leptin levels in obese OSA patients.
Collapse
Affiliation(s)
- Carolina Cubillos-Zapata
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Miguel Ángel Martínez-García
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Díaz-García
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ana Jaureguizar
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
| | - Francisco Campos-Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario de Valme, IBIS, Seville, Spain
| | - Manuel Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Eduardo Nagore
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Luis Hernández Blasco
- Respiratory Department, ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Departamento Medicina Clinica, Universidad Miguel Hernandez, Elche, Spain
| | - Esther Pastor
- Respiratory Department, Hospital San Juan de Alicante, Alicante, Spain
| | - Jorge Abad-Capa
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Centro de Investigacion Biomedica, Hospital Germans Trias i Pujol, Madrid, Spain
| | - Josep María Montserrat
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Clinic- IDIBAPS, Barcelona, Spain
| | | | | | - Jaime Corral-Peñafiel
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario S. Pedro Alcántara, Cáceres, Spain
| | - Eva Arias
- Respiratory Department, Hospital 12 de Octubre, Madrid, Spain
| | - Olga Mediano
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Joan Dalmau-Arias
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unitat de Biofísica I Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramón Farré
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unitat de Biofísica I Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduardo López-Collazo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain
- TumorImmunology Laboratory IdiPAZ, Madrid, Spain
- Innate Immune Response Group, IdiPAZ, Madrid, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francisco García-Río
- Grupo de Enfermedades Respiratorias, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain.
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA) has been recognized as a risk factor for cancer mainly through hypoxia, based on studies that did not distinguish among cancer types. The purpose of this review is to discuss the most recent data on epidemiology and pathophysiology of the OSA-cancer association. RECENT FINDINGS According to epidemiological studies, OSA may have different influences on each type of cancer, either increasing or decreasing its incidence and aggressiveness. Time spent with oxygen saturation below 90% appears the polysomnographic variable most strongly associated with unfavorable effects on cancer. Experimental studies support the role of hypoxia as an important risk factor for cancer growth and aggressiveness, especially when it shows an intermittent pattern. These effects are largely mediated by the hypoxia-inducible factor, which controls the synthesis of molecules with effects on inflammation, immune surveillance and cell proliferation. Sleep fragmentation participates in increasing cancer risk. Modulating effects of age remain controversial. SUMMARY Effects of OSA on cancer may largely vary among neoplastic diseases, both in their magnitude and direction. The worse risk associated with intermittent rather than persistent hypoxia, and the effects of OSA therapy on cancer natural history are still poorly known, and deserve new careful studies.
Collapse
|
28
|
Díaz-García E, Jaureguizar A, Casitas R, García-Tovar S, Sánchez-Sánchez B, Zamarrón E, López-Collazo E, García-Río F, Cubillos-Zapata C. SMAD4 Overexpression in Patients with Sleep Apnoea May Be Associated with Cardiometabolic Comorbidities. J Clin Med 2020; 9:jcm9082378. [PMID: 32722512 PMCID: PMC7464800 DOI: 10.3390/jcm9082378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with several diseases related to metabolic and cardiovascular risk. Although the mechanisms involved in the development of these disorders may vary, OSA patients frequently present an increase in transforming growth factor beta (TGFβ), the activity of which is higher still in patients with hypertension, diabetes or cardiovascular morbidity. Smad4 is a member of the small mother against decapentaplegic homologue (Smad) family of signal transducers and acts as a central mediator of TGFβ signalling pathways. In this study, we evaluate Smad4 protein and mRNA expression from 52 newly diagnosed OSA patients, with an apnoea-hypopnoea index (AHI) ≥30 and 26 healthy volunteers. These analyses reveal that OSA patients exhibit high levels of SMAD4 which correlates with variation in HIF1α, mTOR and circadian genes. Moreover, we associated high concentrations of Smad4 plasma protein with the presence of diabetes, dyslipidaemia and hypertension in these patients. Results suggest that increased levels of SMAD4, mediated by intermittent hypoxaemia and circadian rhythm deregulation, may be associated with cardiometabolic comorbidities in patients with sleep apnoea.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ana Jaureguizar
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Raquel Casitas
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Begoña Sánchez-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ester Zamarrón
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- The Innate Immune Response Group, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Correspondence:
| |
Collapse
|
29
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|