1
|
Hu J, Liu C, Zeng X, Tang T, Zeng Z, Wu J, Tan X, Dai Q, Jin C. Prochloraz induced alterations in the expression of mRNA in the reproductive system of male offspring mice. PeerJ 2024; 12:e17917. [PMID: 39210919 PMCID: PMC11361262 DOI: 10.7717/peerj.17917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prochloraz is a widely used fungicide worldwide. It is classified as an endocrine disrupting pesticide that affects the reproductive system. This study aimed to examine the impact of exposure to prochloraz of male mice on the reproductive system of their offspring male mice. Male father mice were intragastrically administered different dosages of prochloraz (group MA: 0 mg/kg/day; MB: 53.33 mg/kg/day; MD:160 mg/kg/day). Then, the testicular average weight of male offspring in the dose groups was found to be significantly lower than those in the control group (MB:0.312g, MD:0.294g, and MA:0.355 g; P < 0.05). Additionally, the testicular coefficient index in the MB and MD groups was also lower than that of the control group. Secondly,we observed that there were significantly different expressed genes clustered in groups B and D, in contrast to the control. Finally, the findings demonstrated a significant alteration in the response of male mice reproductive relative genes to prochloraz invasion. Two genes (Mt-nd6 and Slc12a4) were found to be involved in the regulation of sperm mitochondria function and six genes (Greb1, Esrrb, Catsperb, Mospd2, Sohlh1 and Specc1) were closely linked to sperm functions and estrogen response. The study revealed a significant impact of prochloraz on the reproductive system of male mice, thereby supporting further investigation into the reproductive toxicological effects of the drug.
Collapse
Affiliation(s)
- Junhe Hu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xianghui Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Tao Tang
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Zhi Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Juan Wu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xiansheng Tan
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Qingxiang Dai
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| |
Collapse
|
2
|
Lee WY, Lee R, Park HJ. Tebuconazole Induces Mouse Fetal Testes Damage via ROS Generation in an Organ Culture Method. Int J Mol Sci 2024; 25:7050. [PMID: 39000159 PMCID: PMC11241142 DOI: 10.3390/ijms25137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The fungicide tebuconazole (TEB) poses risks to human and animal health via various exposure routes. It induces toxicity in multiple organs and disrupts reproductive health by affecting steroid hormone synthesis and fetal development. In this study, we investigated the impact of TEB on fetal testes using in vitro models, focusing on germ, Sertoli, and Leydig cells, and explored the mechanisms underlying cellular damage. The results revealed significant damage to germ cells and disruption of Leydig cell development. TEB exposure led to a decrease in germ cell numbers, as indicated by histological and immunostaining analyses. TEB induced the up- and down-regulation of the expression of fetal and adult Leydig cell markers, respectively. Additionally, TEB-treated fetal testes exhibited increased expression of oxidative-stress-related genes and proteins. However, co-treatment with the antioxidant N-acetylcysteine mitigated TEB-induced germ cell damage and prevented abnormal Leydig cell development. These findings suggest that administration of antioxidants can prevent the intratesticular damage typically caused by TEB exposure.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
3
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
4
|
Sánchez-Yépez J, Acevedo-Huergo T, Mendoza-Trejo MS, Corona R, Hernández-Plata I, Viñuela-Berni V, Giordano M, Rodríguez VM. Early and transitory hypoactivity and olfactory alterations after chronic atrazine exposure in female Sprague-Dawley rats. Neurotoxicology 2024; 101:68-81. [PMID: 38340903 DOI: 10.1016/j.neuro.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.
Collapse
Affiliation(s)
- Jonathan Sánchez-Yépez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Triana Acevedo-Huergo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maria Soledad Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Rebeca Corona
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isela Hernández-Plata
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
5
|
Lin Q, Huang Y, Li G, Luo Z, Wang L, Li D, Xiang Y, Liu L, Ban Z, Li L. The journey of prochloraz pesticide in Citrus sinensis: Residual distribution, impact on transcriptomic profiling and reduction by plasma-activated water. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130931. [PMID: 36860068 DOI: 10.1016/j.jhazmat.2023.130931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Prochloraz (PTIC) is a hazardous fungicide used worldwide on agricultural produce despite concerns about potential impacts on human health and environmental pollution. The residue of PTIC and its metabolite 2,4,6-trichlorophenol (2,4,6-TCP) in fresh produce has largely not been clarified. Herein, we address this research gap by examining residues of PTIC and 2,4,6-TCP in fruit of Citrus sinensis through a typical storage period. PTIC residue in the exocarp and mesocarp peaked on days 7 and 14, respectively, while 2,4,6-TCP residue gradually increased throughout storage period. Based upon gas chromatography-mass spectrometry and RNA-sequencing analysis, we reported the potential impact of residual PTIC on endogenous terpene production, and identified 11 DEGs encoding enzymes involved in terpene biosynthesis in Citrus sinensis. Additionally, we investigated both the reduction efficacy (max: 58.93%) of plasma-activated water in citrus exocarp and the minimal impact on quality attributes of citrus mesocarp. The present study not only sheds light on the residual distribution of PTIC and its impact on endogenous metabolism in Citrus sinensis, but also further provides theoretical basis for potential approaches for efficiently reducing or eliminating pesticide residues.
Collapse
Affiliation(s)
- Qianwei Lin
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yuanwei Huang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Gangfeng Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yizhou Xiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Lingling Liu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China.
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
6
|
The effect of conazoles on reproductive organs structure and function – a review. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conazoles are azole antifungals used in agricultural and pharmaceutical products. Exposure to conazole fungicides leads to several toxic endpoints, including reproductive and endocrine. The results of animal experiments have shown that various conazole fungicides at high doses affect the structure and functions of reproductive organs. In males, adverse effects of conazole fungicides are manifested in the testes, prostate, sperm viability, fertility and sexual behaviour. Reduced testis weight, testis atrophy and reduced or absent sperm production were frequently observed. In female genitalia, structural changes in the ovaries and uterus have been observed. The extent of the changes depends on the dose and duration of treatment. Triazoles affected the expression of multiple genes involved in steroid hormone metabolism and modulate enzyme activity of multiple cytochrome P450 (CYP) and other metabolic enzymes in mammalian liver and other tissues. Conazole fungicides act as endocrine disruptors. Conazoles have been reported to reduce oestradiol and testosterone production and to increase progesterone concentration, indicating the inhibition of enzymes involved in the conversion of progesterone to testosterone. The reproductive effects are consistent with impairment of testosterone homeostasis. The disruption in steroid homeostasis is a common mode of action, leading to abnormal reproductive development and diminished reproductive function. At high doses, azole fungicides affect reproductive organs and fertility in several species.
Collapse
|
7
|
Draskau MK, Svingen T. Azole Fungicides and Their Endocrine Disrupting Properties: Perspectives on Sex Hormone-Dependent Reproductive Development. FRONTIERS IN TOXICOLOGY 2022; 4:883254. [PMID: 35573275 PMCID: PMC9097791 DOI: 10.3389/ftox.2022.883254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Azoles are antifungal agents used in both agriculture and medicine. They typically target the CYP51 enzyme in fungi and, by so doing, disrupt cell membrane integrity. However, azoles can also target various CYP enzymes in mammals, including humans, which can disrupt hormone synthesis and signaling. For instance, several azoles can inhibit enzymes of the steroidogenic pathway and disrupt steroid hormone biosynthesis. This is of particular concern during pregnancy, since sex hormones are integral to reproductive development. In other words, exposure to azole fungicides during fetal life can potentially lead to reproductive disease in the offspring. In addition, some azoles can act as androgen receptor antagonists, which can further add to the disrupting potential following exposure. When used as pharmaceuticals, systemic concentrations of the azole compounds can become significant as combatting fungal infections can be very challenging and require prolonged exposure to high doses. Although most medicinal azoles are tightly regulated and used as prescription drugs after consultations with medical professionals, some are sold as over-the-counter drugs. In this review, we discuss various azole fungicides known to disrupt steroid sex hormone biosynthesis or action with a focus on what potential consequences exposure during pregnancy can have on the life-long reproductive health of the offspring.
Collapse
|
8
|
Pedersen EB, Christiansen S, Svingen T. AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. Curr Res Toxicol 2022; 3:100085. [PMID: 36090961 PMCID: PMC9459418 DOI: 10.1016/j.crtox.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
A full AOP KER description linking AR antagonism with nipple retention in rodents. Described KER 2133 is a non-adjacent KER of an intended AOP delineating anti-androgenicity as a mode for nipple retention. A case study for developing and publishing independent units of information under the AOP framework.
In rat developmental and reproductive toxicity studies, nipple/areola retention (NR) in male offspring is a biomarker for reduced androgen signaling during development. This is because nipples normally regress in male rats in response to androgen signaling during critical stages of development. NR is thus included as a mandatory endpoint in several OECD test guidelines for assessment of chemicals, particularly as a readout for anti-androgenic effects relevant for reproductive toxicity. With the growing interest in developing Adverse Outcome Pathways (AOPs) to aid in chemical risk assessment, a more pragmatic approach has been proposed, whereby essential units of knowledge could be developed independently of complete AOPs, not least emergent key event relationships (KERs). Herein, we have developed a KER linking “androgen receptor antagonism” and “increased areola/nipple retention”. The KER is based on a literature review conducted in a transparent semi-systematic manner in peer-reviewed databases with pre-defined inclusion criteria. Twenty-seven papers were included for development of the KER. The results support a qualitative relationship between the two key events (KEs) with a high weight of evidence; i.e., a causal relationship between androgen receptor (AR) antagonism and nipple retention in male rats exists.
Collapse
|
9
|
Colorimetric Measurement of Deltamethrin Pesticide Using a Paper Sensor Based on Aggregation of Gold Nanoparticles. COATINGS 2021. [DOI: 10.3390/coatings12010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deltamethrin (DEL) is one of the most commonly used pyrethroid pesticides that can cause serious harms to the ecological environment and human health. Herein, we have developed a paper-based colorimetric sensor impregnated with gold nanoparticles (AuNPs) for on-site determination of DEL pesticide. AuNPs show obvious color change on paper device with the presence of DEL. Measuring the gray intensity of the AuNPs on the reaction zone of the paper sensor allows accurate quantitative analysis. The detection mechanism of DEL on paper sensor was confirmed by UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscope (TEM). Under optimal conditions, the colorimetric sensor exhibited high sensitivity, rapid detection, and low detection limit within the values stipulated by Chinese detection standards (LOD = 0.584 mg/L). Besides, detecting DEL in vegetable and fruit samples also gave satisfying results, which were much consistent with those obtained by spectrophotometry. Overall, this work provided a user-friendly, cost-effective and visualized detection platform, which could be applied to rapidly detect DEL pesticides in the food safety field.
Collapse
|
10
|
Liu J, Xia W, Wan Y, Xu S. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149733. [PMID: 34467936 DOI: 10.1016/j.scitotenv.2021.149733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
11
|
Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, Svingen T. On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. FRONTIERS IN TOXICOLOGY 2021; 3:730752. [PMID: 35295101 PMCID: PMC8915873 DOI: 10.3389/ftox.2021.730752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.
Collapse
|
12
|
Cardona B, Rudel RA. Application of an in Vitro Assay to Identify Chemicals That Increase Estradiol and Progesterone Synthesis and Are Potential Breast Cancer Risk Factors. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77003. [PMID: 34287026 PMCID: PMC8293912 DOI: 10.1289/ehp8608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Established breast cancer risk factors, such as hormone replacement therapy and reproductive history, are thought to act by increasing estrogen and progesterone (P4) activity. OBJECTIVE We aimed to use in vitro screening data to identify chemicals that increase the synthesis of estradiol (E2) or P4 and evaluate potential risks. METHOD Using data from a high-throughput (HT) in vitro steroidogenesis assay developed for the U.S. Environmental Protection Agency (EPA) ToxCast program, we identified chemicals that increased estradiol (E2-up) or progesterone (P4-up) in human H295R adrenocortical carcinoma cells. We prioritized chemicals by their activity. We compiled in vivo studies and assessments about carcinogenicity and reproductive/developmental (repro/dev) toxicity. We identified exposure sources and predicted intakes from the U.S. EPA's ExpoCast. RESULTS We found 296 chemicals increased E2 (182) or P4 (185), with 71 chemicals increasing both. In vivo data often showed effects consistent with this mechanism. Of the E2- and P4-up chemicals, about 30% were likely repro/dev toxicants or carcinogens, whereas only 5-13% were classified as unlikely. However, most of the chemicals had insufficient in vivo data to evaluate their effects. Of 45 chemicals associated with mammary gland effects, and also tested in the H294R assay, 29 increased E2 or P4, including the well-known mammary carcinogen 7,12-dimethylbenz(a)anthracene. E2- and P4-up chemicals include pesticides, consumer product ingredients, food additives, and drinking water contaminants. DISCUSSION The U.S. EPA's in vitro screening data identified several hundred chemicals that should be considered as potential risk factors for breast cancer because they increased E2 or P4 synthesis. In vitro data is a helpful addition to current toxicity assessments, which are not sensitive to mammary gland effects. Relevant effects on the mammary gland are often not noticed or are dismissed, including for 2,4-dichlorophenol and cyfluthrin. Fifty-three active E2-up and 59 active P4-up chemicals that are in consumer products, food, pesticides, or drugs have not been evaluated for carcinogenic potential and are priorities for study and exposure reduction. https://doi.org/10.1289/EHP8608.
Collapse
|
13
|
Draskau MK, Rosenmai AK, Scholze M, Pedersen M, Boberg J, Christiansen S, Svingen T. Human-relevant concentrations of the antifungal drug clotrimazole disrupt maternal and fetal steroid hormone profiles in rats. Toxicol Appl Pharmacol 2021; 422:115554. [PMID: 33910022 DOI: 10.1016/j.taap.2021.115554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023]
Abstract
Clotrimazole is a non-prescription and broad-spectrum antifungal drug sold under brand names such as Canesten® and Lotrimin®. It is used to treat different types of fungal infections, from oral thrush to athlete's foot and vaginal mycosis. The level of exposure to clotrimazole is uncertain, as the exact usage amongst self-medicating patients is unclear. Recent studies have raised potential concern about the unsupervised use of clotrimazole during pregnancy, especially since it is a potent inhibitor of CYP enzymes of the steroidogenesis pathway. To address some of these concerns, we have assessed the effects of intrauterine exposure to clotrimazole on developing rat fetuses. By exposing pregnant rats to clotrimazole 25 or 75 mg/kg bw/day during gestation days 7-21, we obtained internal fetal concentrations close to those observed in humans. These in vivo data are in strong agreement with our physiologically-based pharmacokinetic (PBK)-modelled levels. At these doses, we observed no obvious morphological changes to the reproductive system, nor shorter male anogenital distance; a well-established morphometric marker for anti-androgenic effects in male offspring. However, steroid hormone profiles were significantly affected in both maternal and fetal plasma, in particular pronounced suppression of estrogens was seen. In fetal testes, marked up-concentration of hydroxyprogesterone was observed, which indicates a specific action on steroidogenesis. Since systemic clotrimazole is rapidly metabolized in humans, relevant exposure levels may not in itself cause adverse changes to the reproductive systems. Its capacity to significantly alter steroid hormone concentrations, however, suggests that clotrimazole should be used with caution during pregnancy.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Anna Kjerstine Rosenmai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Martin Scholze
- Division of Environmental Studies, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Mikael Pedersen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
14
|
Johansson HKL, Christiansen S, Draskau MK, Svingen T, Boberg J. Classical toxicity endpoints in female rats are insensitive to the human endocrine disruptors diethylstilbestrol and ketoconazole. Reprod Toxicol 2021; 101:9-17. [PMID: 33571642 DOI: 10.1016/j.reprotox.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
Developmental exposure to endocrine disrupting chemicals can have negative consequences for reproductive health in both men and women. Our knowledge about how chemicals can cause adverse health outcomes in females is, however, poorer than our knowledge in males. This is possibly due to lack of sensitive endpoints to evaluate endocrine disruption potential in toxicity studies. To address this shortcoming we carried out rat studies with two well-known human endocrine disruptors, diethylstilbestrol (DES) and ketoconazole (KTZ), and evaluated the sensitivity of a series of endocrine related endpoints. Sprague-Dawley rats were exposed orally from gestational day 7 until postnatal day 22. In a range-finding study, disruption of pregnancy-related endpoints was seen from 0.014 mg/kg bw/day for DES and 14 mg/kg bw/day for KTZ, so doses were adjusted to 0.003; 0.006; and 0.0012 mg/kg bw/day DES and 3; 6; or 12 mg/kg bw/day KTZ in the main study. We observed endocrine disrupting effects on sensitive endpoints in male offspring: both DES and KTZ shortened anogenital distance and increased nipple retention. In female offspring, 0.0012 mg/kg bw/day DES caused slightly longer anogenital distance. We did not see effects on puberty onset when comparing average day of vaginal opening; however, we saw a subtle delay after exposure to both chemicals using a time-curve analysis. No effects on estrous cycle were registered. Our study shows a need for more sensitive test methods to protect the reproductive health of girls and women from harmful chemicals.
Collapse
Affiliation(s)
- Hanna K L Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
15
|
Draskau MK, Lardenois A, Evrard B, Boberg J, Chalmel F, Svingen T. Transcriptome analysis of fetal rat testis following intrauterine exposure to the azole fungicides triticonazole and flusilazole reveals subtle changes despite adverse endocrine effects. CHEMOSPHERE 2021; 264:128468. [PMID: 33032228 DOI: 10.1016/j.chemosphere.2020.128468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Azoles are used in agriculture and medicine to combat fungal infections. We have previously examined the endocrine disrupting properties of the agricultural azole fungicides triticonazole and flusilazole. Triticonazole displayed strong androgen receptor (AR) antagonism in vitro, whereas in utero exposure resulted in anti-androgenic effects in vivo evidenced by shorter anogenital distance (AGD) in fetal male rats. Flusilazole displayed strong AR antagonism, but less potent than triticonazole, and disrupted steroidogenesis in vitro, whereas in utero exposure disrupted fetal male plasma hormone levels. To elaborate on how these azole fungicides can disrupt male reproductive development by different mechanisms, and to investigate whether feminization effects such as short AGD in males can also be detected at the transcript level in fetal testes, we profiled fetal testis transcriptomes after in utero exposure to triticonazole and flusilazole by 3'Digital Gene Expression (3'DGE). The analysis revealed few transcriptional changes after exposure to either compound at gestation day 17 and 21. This suggests that the observed influence of flusilazole on hormone production may be by directly targeting steroidogenic enzyme activity in the testis at the protein level, whereas observations of shorter AGD by triticonazole may primarily be due to disturbed androgen signaling in androgen-sensitive tissues. Expression of Calb2 and Gsta2 was altered by flusilazole but not triticonazole and may pinpoint novel pathways of disrupted testicular steroid synthesis. Our findings have wider implication for how we integrate omics data in chemical testing frameworks, including selection of non-animal test methods and building of Adverse Outcome Pathways for regulatory purposes.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark
| | - Aurélie Lardenois
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark.
| |
Collapse
|
16
|
Ishii H, Bryson PK, Kayamori M, Miyamoto T, Yamaoka Y, Schnabel G. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104737. [PMID: 33357559 DOI: 10.1016/j.pestbp.2020.104737] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
In the European Union (EU), regulation of sterol demethylation inhibiting (DMI) fungicides is tightened due to their suspected endocrine disrupting properties. However, the new DMI fungicide mefentrifluconazole was reported to have high fungicidal activity with minimal adverse side effects. In addition, some evidence suggests inconsistent cross resistance between mefentrifluconazole and other azoles. In this study, mefentrifluconazole and other triazoles were examined for activity to select pathogens sensitive or resistant to DMIs using mycelial growth tests on fungicide-treated culture medium or spray trials using cucumber plants. Cross-resistance was confirmed for all of the fungal species tested but activity levels varied. The sensitivity of Monilinia fructicola from peach to mefentrifluconazole was higher compared to other DMIs. In contrast, the inhibitory activity of mefentrifluconazole was equal or slightly inferior compared to difenoconazole, tebuconazole, propiconazole in Colletotrichum spp., Alternaria alternaria sp. complex and Cercospora beticola isolated from peach and sugar beet, respectively. Similar tendencies (i.e. equal or slightly inferior activity and cross-resistance) were observed for cucumber powdery mildew (Podosphaera xanthii) resistant to triflumizole, myclobutanil, and difenoconazole. Despite cross-resistance to other DMIs, mefentrifluconazole is a promising fungicide for fungal disease control on peach and other crops, with a reportedly more favorable toxicity profile.
Collapse
Affiliation(s)
- Hideo Ishii
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| | | | - Miyuki Kayamori
- Tokachi Agricultural Experiment Station, Hokkaido Research Organization, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Takuya Miyamoto
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan
| | - Yuichi Yamaoka
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Guido Schnabel
- Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| |
Collapse
|
17
|
Dikmen Y, Güleryüz A, Metin B, Bodur S, Öner M, Bakırdere S. A novel and rapid extraction protocol for sensitive and accurate determination of prochloraz in orange juice samples: Vortex-assisted spraying-based fine droplet formation liquid-phase microextraction before gas chromatography-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4622. [PMID: 33210452 DOI: 10.1002/jms.4622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A novel, ecofriendly, and easy extraction and preconcentration method named as vortex-assisted spraying-based fine droplet formation liquid-phase microextraction was proposed for the determination of prochloraz at trace levels in orange juice samples by gas chromatography-mass spectrometry (GC-MS). In this novel system, extraction solvent is dispersed by the help of spraying apparatus instead of dispersive solvent. Various parameters of the method were carefully optimized to increase signal-to-noise ratio of the analyte. Under the optimum chromatographic and extraction conditions, limit of detection and limit of quantification were calculated as 3.2 and 10.8 μg/kg, respectively. Moreover, enhancement in quantification power for the GC-MS system was determined as 372 folds based on LOQ comparison. Relative recovery results for orange juice samples were found to be between 95.0-107.7% by utilizing matrix matching calibration. Furthermore, the developed method may be used to efficiently and simply extract other organic compounds for their determinations in several matrices.
Collapse
Affiliation(s)
- Yaren Dikmen
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
| | - Aybüke Güleryüz
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
| | - Berfin Metin
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
| | - Süleyman Bodur
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
| | - Miray Öner
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, Davutpasa, Esenler, İstanbul, 34220, Turkey
- Turkish Academy of Sciences (TÜBA), Piyade Street, No: 27, Çankaya, Ankara, 06690, Turkey
| |
Collapse
|
18
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Kilcoyne KR, Mitchell RT. Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum Reprod Update 2020; 25:397-421. [PMID: 30869130 PMCID: PMC6601394 DOI: 10.1093/humupd/dmz004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Overall, the incidence of male reproductive disorders has increased in recent decades. Testicular development during fetal life is crucial for subsequent male reproductive function. Non-genomic factors such as environmental chemicals, pharmaceuticals and lifestyle have been proposed to impact on human fetal testicular development resulting in subsequent effects on male reproductive health. Whilst experimental studies using animal models have provided support for this hypothesis, more recently a number of experimental studies using human tissues and cells have begun to translate these findings to determine direct human relevance. OBJECTIVE AND RATIONALE The objective of this systematic review was to provide a comprehensive description of the evidence for effects of prenatal exposure(s) on human fetal testis development and function. We present the effects of environmental, pharmaceutical and lifestyle factors in experimental systems involving exposure of human fetal testis tissues and cells. Comparison is made with existing epidemiological data primarily derived from a recent meta-analysis. SEARCH METHODS For identification of experimental studies, PubMed and EMBASE were searched for articles published in English between 01/01/1966 and 13/07/2018 using search terms including ‘endocrine disruptor’, ‘human’, ‘fetal’, ‘testis’, ‘germ cells’, ‘testosterone’ and related search terms. Abstracts were screened for selection of full-text articles for further interrogation. Epidemiological studies involving exposure to the same agents were extracted from a recent systematic review and meta-analysis. Additional studies were identified through screening of bibliographies of full-texts of articles identified through the initial searches. OUTCOMES A total of 25 experimental studies and 44 epidemiological studies were included. Consistent effects of analgesic and phthalate exposure on human fetal germ cell development are demonstrated in experimental models, correlating with evidence from epidemiological studies and animal models. Furthermore, analgesic-induced reduction in fetal testosterone production, which predisposes to the development of male reproductive disorders, has been reported in studies involving human tissues, which also supports data from animal and epidemiological studies. However, whilst reduced testosterone production has been demonstrated in animal studies following exposure(s) to a variety of environmental chemicals including phthalates and bisphenol A, these effects are not reproduced in experimental approaches using human fetal testis tissues. WIDER IMPLICATIONS Direct experimental evidence for effects of prenatal exposure(s) on human fetal testis development and function exists. However, for many exposures the data is limited. The increasing use of human-relevant models systems in which to determine the effects of environmental exposure(s) (including mixed exposures) on development and function of human tissues should form an important part of the process for assessment of such exposures by regulatory bodies to take account of animal–human differences in susceptibility.
Collapse
Affiliation(s)
- Karen R Kilcoyne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK.,Royal Hospital for Sick Children, Edinburgh, UK
| |
Collapse
|
20
|
Lu Q, Bu Y, Ma L, Liu R. Transgenerational reproductive and developmental toxicity of tebuconazole in Caenorhabditis elegans. J Appl Toxicol 2020; 40:578-591. [PMID: 31960463 DOI: 10.1002/jat.3927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transgenerational reproductive and developmental toxicity of tebuconazole (TEB) in Caenorhabditis elegans was investigated over five generations (P0 - F4). Only parental C.elegans (P0) were exposed to TEB (0, 0.01, 0.1, 1, and 10 μg/L) for 24 h and the subsequent offspring (F1-F4) were grown under TEB-free conditions. TEB exposure caused dose-dependent reproductive defects and developmental impairments in C.elegans. In the P0 generation reproductive defects were observed such as: reduced brood size and embryo hatchability, prolonged generation time, retarded gonadal development, and slower germline proliferation, even at 0.01 μg/L, together with developmental toxicity with significant reduced body length and narrowed body width at 10 μg/L. Additionally, the brood size significantly reduced in F2, which began to recover from F3, but was still lower than the control in F4. The proportion of abnormalities increased significantly in F2 and reduced from F3, but was still higher than the control, suggesting that TEB could have cumulative potential and be passed to offspring through parental exposure. Furthermore, exposure to TEB (10 μg/L) in P0 significantly reduced the body length in F1, which began to recover from F2, and was the same level as the control in F4. There was a concentration-dependent increase in body width in F1-F4, with a significant increase only observed in F1 at 10 μg/L. Thus, parental exposure to TEB induced transgenerational defects in both reproduction and development, emphasizing the significance of considering bio-toxicity over multiple generations to conduct accurate assessment of environmental risks of toxicants.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuanqing Bu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, China
| | - Lingyi Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Draskau MK, Boberg J, Taxvig C, Pedersen M, Frandsen HL, Christiansen S, Svingen T. In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113309. [PMID: 31610510 DOI: 10.1016/j.envpol.2019.113309] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Azoles are effective antifungal agents used in both medicine and agriculture. They typically work by inhibiting cytochrome P450 enzymes, primarily CYP51 of the ergosterol biosynthesis pathway, thus damaging the fungal cell membrane. However, apart from their desired antifungal properties, several azoles also exhibit endocrine disrupting properties in mammals, both in vitro and in vivo. Here, we have tested two currently used agricultural azole fungicides, triticonazole and flusilazole, for their in vitro anti-androgenic activity and potential effects on reproductive parameters. Both fungicides showed strong androgen receptor (AR) antagonism and disruption of steroid biosynthesis in vitro. Following gestational exposure to flusilazole (15 or 45 mg/kg bw/day) or triticonazole (150 or 450 mg/kg bw/day) in time-mated Sprague Dawley rats, triticonazole induced shorter male anogenital distance (AGD). Flusilazole exposure did not affect the AGD, but altered fetal male blood hormone profile, with increased androstenedione and decreased estrone levels. Flusilazole and triticonazole have dissimilar effects on reproductive parameters in vivo, but both show endocrine disrupting activities.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Camilla Taxvig
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Mikael Pedersen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Henrik Lauritz Frandsen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark.
| |
Collapse
|
22
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:418-426. [PMID: 30216876 DOI: 10.1016/j.envpol.2018.08.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Despite the efforts of the European Commission to implement measures that offset the detrimental effects of agricultural intensification, farmland bird populations continue to decline. Pesticide use has been pointed out as a major cause of decline, with growing concern about those agro-chemicals that act as endocrine disruptors. We report here on the effects of flutriafol, a ubiquitous systemic fungicide used for cereal seed treatment, on the physiology and reproduction of a declining gamebird. Captive red-legged partridges (Alectoris rufa; n = 11-13 pairs per treatment) were fed wheat treated with 0%, 20% or 100% of the flutriafol application rate during 25 days in late winter. We studied treatment effects on the reproductive performance, carotenoid-based coloration and cellular immune responsiveness of adult partridges, and their relationship with changes in oxidative stress biomarkers and plasma biochemistry. We also studied the effect of parental exposure on egg antioxidant content and on the survival, growth and cellular immune response of offspring. Exposed partridges experienced physiological effects (reduced levels of cholesterol and triglycerides), phenotypical effects (a reduction in the carotenoid-based pigmentation of their eye rings), and most importantly, severe adverse effects on reproduction: a reduced clutch size and fertile egg ratio, and an overall offspring production reduced by more than 50%. No effects on body condition or cellular immune response of either exposed adult or their surviving offspring were observed. These results, together with previous data on field exposure in wild partridges, demonstrate that seed treatment with flutriafol represents a risk for granivorous birds; they also highlight a need to improve the current regulation system used for foreseeing and preventing negative impacts of Plant Protection Products on wildlife.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
23
|
Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 2018; 93:253-272. [PMID: 30430187 DOI: 10.1007/s00204-018-2350-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
24
|
Haselman JT, Kosian PA, Korte JJ, Olmstead AW, Degitz SJ. Effects of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:240-251. [PMID: 29674245 PMCID: PMC6299828 DOI: 10.1016/j.aquatox.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 05/14/2023]
Abstract
The Larval Amphibian Growth and Development Assay (LAGDA) is an internationally harmonized testing guideline for evaluating effects of chronic chemical exposure in amphibians. In order to evaluate the effects of chronic exposure to an antiandrogenic chemical in an amphibian model, prochloraz was tested using a variation of the LAGDA design. Exposure was initiated with <1d post-fertilization embryos at nominal concentrations of 0, 6.7, 20, 60 and 180 μg/L (0, 18, 53, 159, 478 nM) and continued in flow-through conditions until two months following the median time that controls completed metamorphosis. Growth, developmental rate, circulating thyroid hormone and thyroid gland histopathology were evaluated in a subsample at completion of metamorphosis. There were no effects on growth or development at this stage, but circulating thyroid hormone was elevated in the 20, 60 and 180 μg/L treatments and minimal to mild thyroid follicular cell hypertrophy was observed histologically in the 180 μg/L treatment. Growth, overt toxicity, and reproductive development were evaluated at test termination. There were no effects on growth in either gender, but livers and kidneys exhibited treatment-related pathologies consistent with organ toxicity related to metabolism and presumably impaired excretion of prochloraz metabolites. Histological assessments of female ovaries resulted in minimal pathologies only in the 180 μg/L treatment while male testes exhibited numerous treatment-related pathologies that are consistent with previously reported antiandrogenic effects of prochloraz in other species. The most severe testis pathologies occurred in the 180 μg/L treatment; however, incidences of treatment-related pathologies occurred in all prochloraz treatments. Müllerian duct regression in males was inhibited by prochloraz exposure while Müllerian duct maturation in females was accelerated, characteristic of a feminizing effect. Gene expression levels of potential biomarkers of testis function were also measured. Relative abundance of cyp17a1 transcripts was generally unaffected by prochloraz exposure whereas the Insl3 orthologue, rflcii, was elevated by 3 and >5-fold in the 60 and 180 μg/L treatments, respectively, indicating impaired Leydig cell maturation and testosterone signaling. Overall, prochloraz exposure caused effects characteristic of an antiandrogenic mode of action, which is consistent with previously reported results in other species and supports the utility of the LAGDA design for chemical testing.
Collapse
Affiliation(s)
- Jonathan T Haselman
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Patricia A Kosian
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Joseph J Korte
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Allen W Olmstead
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Sigmund J Degitz
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| |
Collapse
|
25
|
Giménez-Gómez P, Pérez-Hernández M, Gutiérrez-López MD, Vidal R, Abuin-Martínez C, O'Shea E, Colado MI. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens. Neuropharmacology 2018; 135:581-591. [PMID: 29705534 DOI: 10.1016/j.neuropharm.2018.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
26
|
Lundqvist J, Hellman B, Oskarsson A. Fungicide prochloraz induces oxidative stress and DNA damage in vitro. Food Chem Toxicol 2016; 91:36-41. [DOI: 10.1016/j.fct.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 01/02/2023]
|
27
|
Yagdiran Y, Oskarsson A, Knight CH, Tallkvist J. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium--Effects of Prochloraz. PLoS One 2016; 11:e0151904. [PMID: 27028005 PMCID: PMC4814071 DOI: 10.1371/journal.pone.0151904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/16/2023] Open
Abstract
Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11) featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine (BME-UV) mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers.
Collapse
Affiliation(s)
- Yagmur Yagdiran
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Christopher H. Knight
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Jonas Tallkvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
28
|
Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz. Arch Toxicol 2016; 91:143-162. [DOI: 10.1007/s00204-016-1678-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
29
|
Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol Rev 2016; 96:55-97. [PMID: 26582516 DOI: 10.1152/physrev.00017.2015] [Citation(s) in RCA: 598] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography.
Collapse
Affiliation(s)
- Niels E Skakkebaek
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Germaine M Buck Louis
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Jorma Toppari
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Michael L Eisenberg
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Shanna H Swan
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Katherine J Sapra
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Søren Ziebe
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Lærke Priskorn
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Karmaus AL, Toole CM, Filer DL, Lewis KC, Martin MT. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells. Toxicol Sci 2016; 150:323-32. [PMID: 26781511 PMCID: PMC4809454 DOI: 10.1093/toxsci/kfw002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis.
Collapse
Affiliation(s)
- Agnes L Karmaus
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina;
| | | | - Dayne L Filer
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina
| | | | - Matthew T Martin
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina;
| |
Collapse
|
31
|
Barbosa AMC, Solano MDLM, Umbuzeiro GDA. Pesticides in Drinking Water - The Brazilian Monitoring Program. Front Public Health 2015; 3:246. [PMID: 26581345 PMCID: PMC4631936 DOI: 10.3389/fpubh.2015.00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Brazil is the world largest pesticide consumer; therefore, it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua) with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring). Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health) includes 27 pesticide active ingredients that need to be monitored every 6 months. This number represents <10% of current active ingredients approved for use in the country. In this work, we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9–17% of municipalities registered their data in Sisagua. In this dataset, we observed non-compliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide.
Collapse
|
32
|
Lent EM, Crouse LC, Wallace SM, Carroll EE. Peri-pubertal administration of 3-nitro-1,2,4-triazol-5-one (NTO) affects reproductive organ development in male but not female Sprague Dawley rats. Reprod Toxicol 2015; 57:1-9. [DOI: 10.1016/j.reprotox.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/19/2015] [Accepted: 04/29/2015] [Indexed: 11/17/2022]
|
33
|
Holm JB, Chalmey C, Modick H, Jensen LS, Dierkes G, Weiss T, Jensen BAH, Nørregård MM, Borkowski K, Styrishave B, Martin Koch H, Mazaud-Guittot S, Jegou B, Kristiansen K, Kristensen DM. Aniline Is Rapidly Converted Into Paracetamol Impairing Male Reproductive Development. Toxicol Sci 2015; 148:288-98. [DOI: 10.1093/toxsci/kfv179] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
34
|
Effects of selective serotonin reuptake inhibitors on three sex steroids in two versions of the aromatase enzyme inhibition assay and in the H295R cell assay. Toxicol In Vitro 2015; 29:1729-35. [PMID: 26162595 DOI: 10.1016/j.tiv.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
Selective serotonin reuptake inhibitors are known to have a range of disorders that are often linked to the endocrine system e.g. hormonal imbalances, breast enlargement, sexual dysfunction, and menstrual cycle disorders. The mechanisms behind most of these disorders are not known in details. In this study we investigated whether the endocrine effect due to SSRI exposure could be detected in well adopted in vitro steroidogenesis assays, two versions of the aromatase enzyme inhibition assay and the H295R cell assay. The five drugs citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline, were shown to inhibit the aromatase enzyme in both types of aromatase assays. The IC50 values ranged from 3 to 600 μM. All five SSRIs, were further investigated in the H295R cell line. All compounds altered the steroid secretion from the cells, the lowest observed effect levels were 0.9 μM and 3.1 μM for sertraline and fluvoxamine, respectively. In general the H295R cell assay was more sensitive to SSRI exposure than the two aromatase assays, up to 20 times more sensitive. This indicates that the H295R cell line is a better tool for screening endocrine disrupting effects. Our findings show that the endocrine effects of SSRIs may, at least in part, be due to interference with the steroidogenesis.
Collapse
|
35
|
Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015; 329:10-20. [DOI: 10.1016/j.tox.2015.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
|
36
|
Kuzmanović M, Ginebreda A, Petrović M, Barceló D. Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:289-99. [PMID: 25017637 DOI: 10.1016/j.scitotenv.2014.06.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 05/11/2023]
Abstract
The use of chemicals is continuously growing both in total amount as well as in a number of different substances, among which organic chemicals play a major role. Owing to the growing public awareness on the need of protecting both ecosystems and human health from the risks related to chemical pollution, an increasing attention has been drowned to risk assessment and prioritization of organic pollutants. In this context, the aims of this study were (a) to perform an environmental risk assessment for 200 organic micropollutants including both regulated and emerging contaminants (pesticides, alkylphenols, pharmaceuticals, hormones, personal care products, perflourinated compounds and various industrial organic chemicals) monitored in four rivers located in the Mediterranean side of the Iberian Peninsula, namely, the Ebro, Llobregat, Júcar and Guadalquivir rivers; and (b) to prioritize them for each of the four river basins studied, taking into account their observed concentration levels together with their ecotoxicological potential. For this purpose, a prioritization approach has been developed and a resulting ranking index (RI) associated with each compound. Ranking index is based on the measured concentrations of the chemical in each river and its ecotoxicological potential (EC50 values for algae, Daphnia sp. and fish). Ten compounds were identified as most important for the studied rivers: pesticides chlorpyriphos, chlorfenvinphos, diazinon, dichlofenthion, prochloraz, ethion carbofuran and diuron and the industrial organic chemicals nonylphenol and octylphenol that result from the biodegration of polyethoxylated alkyphenol surfactants. Also, further research into chronic toxicity of emerging contaminants is advocated.
Collapse
Affiliation(s)
- Maja Kuzmanović
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Antoni Ginebreda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
| | - Damia Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain
| |
Collapse
|
37
|
Andersen HR, Debes F, Wohlfahrt-Veje C, Murata K, Grandjean P. Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol Teratol 2015; 47:1-9. [DOI: 10.1016/j.ntt.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
|
38
|
Sanabria M, Pessin A, Zanutto MR, Perobelli JE, Guerra MT, Banzato TP, Borges CDS, Kempinas WDG. Absence of effects on the rat sperm quality after subacute exposure to low doses of fungicide prochloraz. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:481-491. [PMID: 25849765 DOI: 10.1080/15287394.2015.1010463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prochloraz (PCZ) is a fungicide and androgen-receptor antagonist used worldwide in horticulture and agriculture. Pre- and perinatal exposure to this pesticide during sexual differentiation is deleterious for male offspring. Since data on the effects of PCZ on epididymal functions are scarce, and because sperm maturation occurs in this organ, the present investigation aimed to determine whether low PCZ doses administered to rats during the phase of sperm transit through the epididymis might affect the morphophysiology of this organ and sperm quality. Adult male Wistar rats were assigned to 4 different groups: 0 (control, vehicle) or 10, 15, or 30 mg/kg bw/d PCZ diluted in corn oil administered orally for 4 consecutive days. Morphofunctional parameters of the male reproductive tract, hormone concentrations, sperm evaluations, and fertility and histopathologic analysis of testis and epididymis were assessed. There were no statistically significant differences between treated and control groups in relation to all evaluated parameters. Data demonstrated show that PCZ exposure for a brief 4-d exposure and low doses did not produce reproductive toxicity or compromise sperm quality in adult rats.
Collapse
Affiliation(s)
- Marciana Sanabria
- a Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology , Institute of Biosciences, UNESP-Universidade Estadual Paulista , Botucatu , São Paulo , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Robitaille CN, Rivest P, Sanderson JT. Antiandrogenic mechanisms of pesticides in human LNCaP prostate and H295R adrenocortical carcinoma cells. Toxicol Sci 2014; 143:126-35. [PMID: 25324206 DOI: 10.1093/toxsci/kfu212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1.
Collapse
Affiliation(s)
- Christina N Robitaille
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, Quebec, Canada H7V 1B7
| | - Patricia Rivest
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, Quebec, Canada H7V 1B7
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, Quebec, Canada H7V 1B7
| |
Collapse
|
40
|
Christen V, Crettaz P, Fent K. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin. Toxicol Appl Pharmacol 2014; 279:455-466. [PMID: 25019461 DOI: 10.1016/j.taap.2014.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. METHODS The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. RESULTS The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. CONCLUSION Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. PRACTICE Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. IMPLICATIONS Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Pierre Crettaz
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; ETH Zürich, Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
41
|
Axelstad M, Christiansen S, Boberg J, Scholze M, Jacobsen PR, Isling LK, Kortenkamp A, Hass U. Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats. Reproduction 2014; 147:489-501. [DOI: 10.1530/rep-13-0447] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures, and the dose levels reflecting 100, 200, and 450 times this exposure were tested. The compounds were also grouped according to their estrogenicity or anti-androgenicity, and their joint effects were tested at two different doses, with each group reflecting 200 or 450 times human exposure. In addition, a single paracetamol dose was tested (350 mg/kg per day). All exposures and a vehicle were administered by oral gavage to time-mated Wistar dams rats throughout gestation and lactation, and their offspring were assessed for reproductive effects at birth and in prepuberty. The mixture doses, which included the anti-androgenic compounds, affected the male offspring by causing decreased anogenital distance, increased nipple retention (NR), and reduced ventral prostate weights, at both medium and high doses. In addition, the weights of the levator ani/bulbocavernosus muscle (LABC) were decreased at the high dose of anti-androgen mixture. No effects were seen after exposure to the estrogenic chemicals alone, whereas males exposed solely to paracetamol showed decreased LABC weights and increased NR. Thus adverse reproductive effects were observed at mixtures reflecting 200 times high-end human exposure, which is relatively close to the safety margin covered by the regulatory uncertainty factor of 100. This suggests that highly exposed human population groups may not be sufficiently protected against mixtures of endocrine-disrupting chemicals.
Collapse
|
42
|
Hudon Thibeault AA, Deroy K, Vaillancourt C, Sanderson JT. A unique co-culture model for fundamental and applied studies of human fetoplacental steroidogenesis and interference by environmental chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:371-377. [PMID: 24486430 PMCID: PMC3984223 DOI: 10.1289/ehp.1307518] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Experimental tools for studying the complex steroidogenic interactions that occur between placenta and fetus during human pregnancy are extremely limited. OBJECTIVES We aimed to develop a co-culture model to study steroidogenesis by the human fetoplacental unit and its disruption by exposure to environmental contaminants. METHODS We cultured BeWo human choriocarcinoma cells, representing the villous cytotrophoblast, and H295R human adrenocortical carcinoma cells, representing the fetal unit, in a carefully adapted co-culture medium. We placed H295R cells in 24-well plates and BeWo cells on transwell inserts with or without pesticide treatment (atrazine or prochloraz) and assessed CYP19 activity and hormonal production after 24 hr of co-culture. RESULTS The co-culture exhibited the steroidogenic profile of the fetoplacental unit, allowing a synergistic production of estradiol and estriol (but not of estrone) of 133.3 ± 11.3 pg/mL and 440.8 ± 44.0 pg/mL, respectively. Atrazine and prochloraz had cell-type specific effects on CYP19 activity and estrogen production in co-culture. Atrazine induced CYP19 activity and estrogen production in H295R cells only, but did not affect overall estrogen production in co-culture, whereas prochloraz inhibited CYP19 activity exclusively in BeWo cells and reduced estrogen production in co-culture by almost 90%. In contrast, prochloraz did not affect estradiol or estrone production in BeWo cells in monoculture. These differential effects underline the relevance of our co-culture approach to model fetoplacental steroidogenesis. CONCLUSIONS The co-culture of H295R and BeWo cells creates a unique in vitro model to reproduce the steroidogenic cooperation between fetus and placenta during pregnancy and can be used to study the endocrine-disrupting effects of environmental chemicals.
Collapse
|
43
|
Kongsbak K, Hadrup N, Audouze K, Vinggaard AM. Applicability of computational systems biology in toxicology. Basic Clin Pharmacol Toxicol 2014; 115:45-9. [PMID: 24528503 DOI: 10.1111/bcpt.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search. However, computational systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for establishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult to establish experimentally. This is possible due to the existence of comprehensive databases containing information on networks of human protein-protein interactions and protein-disease associations. Experimentally determined targets of the specific chemical of interest can be fed into these networks to obtain additional information that can be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method in the hypothesis-generating phase of toxicological research.
Collapse
Affiliation(s)
- Kristine Kongsbak
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark; Department for Systems Biology, Centre for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
44
|
Alpertunga B, Kara M, Abudayyak M, Oztas E, Ozden S, Özhan G. Effects of prochloraz on DNA damage, lipid peroxidation and antioxidant systemin vitro. Toxicol Mech Methods 2014; 24:268-75. [DOI: 10.3109/15376516.2014.881943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Taxvig C, Hadrup N, Boberg J, Axelstad M, Bossi R, Bonefeld-Jørgensen EC, Vinggaard AM. In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicol Appl Pharmacol 2013; 272:757-66. [DOI: 10.1016/j.taap.2013.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
|
46
|
Hadrup N, Taxvig C, Pedersen M, Nellemann C, Hass U, Vinggaard AM. Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro. PLoS One 2013; 8:e70490. [PMID: 23990906 PMCID: PMC3750043 DOI: 10.1371/journal.pone.0070490] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/19/2013] [Indexed: 11/27/2022] Open
Abstract
Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed. Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be accounted for by single chemicals.
Collapse
Affiliation(s)
- Niels Hadrup
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
- * E-mail:
| | - Camilla Taxvig
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Mikael Pedersen
- Division of Food Chemistry, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Christine Nellemann
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Ulla Hass
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Anne Marie Vinggaard
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| |
Collapse
|
47
|
Kjeldsen LS, Ghisari M, Bonefeld-Jørgensen EC. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol Appl Pharmacol 2013; 272:453-64. [PMID: 23871939 DOI: 10.1016/j.taap.2013.06.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023]
Abstract
The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [(3)H](2)O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks.
Collapse
|
48
|
Pallarés ME, Adrover E, Baier CJ, Bourguignon NS, Monteleone MC, Brocco MA, González-Calvar SI, Antonelli MC. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress 2013; 16:429-40. [PMID: 23252714 DOI: 10.3109/10253890.2012.761195] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.
Collapse
Affiliation(s)
- María Eugenia Pallarés
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Overgaard A, Holst K, Mandrup KR, Boberg J, Christiansen S, Jacobsen PR, Hass U, Mikkelsen JD. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus. Neurotoxicology 2013; 37:154-62. [DOI: 10.1016/j.neuro.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/01/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
|
50
|
Bossi R, Vinggaard AM, Taxvig C, Boberg J, Bonefeld-Jørgensen EC. Levels of pesticides and their metabolites in Wistar rat amniotic fluids and maternal urine upon gestational exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2271-81. [PMID: 23736656 PMCID: PMC3717736 DOI: 10.3390/ijerph10062271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 11/17/2022]
Abstract
Concentrations of pesticides and selected metabolites in rat urine and amniotic fluid were determined as biomarker upon oral administration of Wistar rats to two pesticide mixtures consisting of three to five pesticides (bitertanol, propiconazole, cypermethrin, malathion, and terbuthylazine). The pesticides and their metabolites were found in rat amniotic fluid and urine, generally in dose-response concentrations in relation to dosage. The measurement of the substances in the amniotic fluid indicated that the fetus was exposed to the pesticides as well as their metabolites. Moreover, the pesticides detected in urine demonstrated the exposure as well as the ability of the rat to excrete these compounds.
Collapse
Affiliation(s)
- Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Søborg 2860, Denmark; E-Mails: (A.M.V.); (C.T.); (J.B.)
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Søborg 2860, Denmark; E-Mails: (A.M.V.); (C.T.); (J.B.)
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Søborg 2860, Denmark; E-Mails: (A.M.V.); (C.T.); (J.B.)
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health and Unit for Cellular & Molecular Toxicology, Department of Public Health, Build. 1260, Bartholins Allé 2, Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| |
Collapse
|