1
|
Zhang J, Cheng X, Wang Y, Guo H, Liu L, Liu L, Gao J, He M. Association between serum per- and polyfluoroalkyl substances levels and metabolic dysfunction-associated steatotic liver disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125233. [PMID: 39491579 DOI: 10.1016/j.envpol.2024.125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Experimental evidences have suggested that Per- and polyfluoroalkyl substances (PFASs) were hepatotoxicity, but epidemiologic inconsistencies. There were 1751 participants included in this study after excluding chronic hepatitis, cirrhosis, excessive alcohol drinkers, and those with missing key variables. Totally 30 PFASs were quantified using ultrahigh-pressure liquid chromatography tandem mass spectrometer (UPLC-MS). Metabolic dysfunction-associated steatotic liver disease (MASLD) defined as the presence of hepatic steatosis diagnosed on abdominal B-ultrasound in conjunction with at least one cardiometabolic risk factors (CMRF) and without other discernible cause. After multivariate adjustment, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluoroalkyl carboxylates (ΣPFCAs), and perfluoroheptanoic acid (PFHpA) were positively associated with the risk of MASLD. Specifically, for each natural log-transformed unit increase in PFOA, PFNA, and ΣPFCAs, the risk of MASLD increased by 27% (95% confidence interval (CI): 1.09-1.48), 10% (95% CI: 0.99-1.23), and 29% (95% CI: 1.09-1.53), respectively. Compared with those in Tertile 1 of PFOA, PFNA, and ΣPFCAs, the risk of MASLD was increased by 35% (95% CI: 1.06-1.71, Ptrend = 0.019), 46% (95% CI: 1.15-1.85, Ptrend = 0.0018), and 43% (95% CI: 1.13-1.82, Ptrend = 0.0032) in Tertile 3, respectively. For PFHpA (detection rate: 14.79%), individuals with PFHpA levels above the detection limit had increased risk of MASLD by 54% (95% CI: 1.17-2.01) compared with those with PFHpA levels below the detection limit. While 8:2 chlorinated polyfluoroethersulfonic acid (8:2 Cl-PFESA) was inversely associated with steatotic liver disease (SLD) combined with 4 or 5 CMRFs (odds ratio per ln-unit = 0.87, 95% CI: 0.77-0.99). Mixed exposure analysis showed PFNA manifested a significant positive effect, while PFUdA had a significant negative effect. No association was found between other PFASs and MASLD prevalence. More prospective studies are needed to validate our conclusions.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yu Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Hong Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Lin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Lu Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Junya Gao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Samala N, Kulkarni M, Lele RS, Gripshover TC, Lynn Wise J, Rai SN, Cave MC. Associations between per- and polyfluoroalkyl substance exposures and metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey 2017 to 2018. Toxicol Sci 2024; 202:142-151. [PMID: 39150893 PMCID: PMC11514833 DOI: 10.1093/toxsci/kfae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants previously associated with elevated liver enzymes in human cohorts and steatotic liver disease in animal models. We aimed to evaluate the associations between PFAS exposures, and liver enzymes and vibration controlled transient elastography (VCTE) biomarkers of metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey (NHANES) 2017 to 2018. VCTE was determined by FibroScan. Serum PFAS (n = 14), measured by mass spectrometry, were analyzed individually and by principal component (PC). Univariate and multivariable associations were determined between PFAS exposures and liver disease outcome variables: alanine aminotransferase (ALT), controlled attenuation parameter (CAP), liver stiffness measurement (LSM), FibroScan-based Score (FAST), using R. About 1,400 participants including 50% women with a mean age of 48 ± 19 years and a mean BMI of 29 ± 7 kg/m2 were analyzed. Four PFAS clustered to PC1, whereas 3 PFAS clustered to PC2. PC1 was significantly associated with ALT (β = 0.028), CAP (β = 0.041), LSM (β = 0.025), and FAST (β = 0.198) in univariate analysis. Individual PFAS exposures were oftentimes inversely associated with these measurements in multivariate analysis. In adult NHANES 2017-2018, PFAS may not be a significant burden for MASLD, because of the inconsistent associations between the environmental PFAS exposures and biomarkers of liver steatosis, inflammation, and fibrosis. More data are required to better understand the relationships between PFAS exposures and liver disease.
Collapse
Affiliation(s)
- Niharika Samala
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Manjiri Kulkarni
- Environmental Health Institute, University of Louisville, Louisville, KY 40202, United States
| | - Rachana S Lele
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Tyler C Gripshover
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Jaime Lynn Wise
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Shesh N Rai
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
3
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
4
|
Abdullah M, Adhikary S, Bhattacharya S, Hazra S, Ganguly A, Nanda S, Rajak P. E-waste in the environment: Unveiling the sources, carcinogenic links, and sustainable management strategies. Toxicology 2024; 509:153981. [PMID: 39490727 DOI: 10.1016/j.tox.2024.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
E-waste refers to the electrical and electronic equipment discarded without the intent of reuse or at the end of its functional lifespan. In 2022, approximately 62 billion kg of e-waste, equivalent to 7.8 kg per capita, was generated globally. With an alarming annual growth of approximately 2 million metric tonnes, e-waste production may exceed 82 billion kg by 2030. Improper disposal of e-waste can be detrimental to human health and the entire biosphere. E-waste encompasses a wide range of materials, including heavy metals, Polychlorinated Biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Dibenzo-dioxins and -furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs), and radioactive elements. E-waste, when disposed inappropriately can directly contaminate the aquatic and terrestrial environment, leading to human exposure through ingestion, inhalation, dermal absorption, and trans-placental transfer. These detrimental contaminants can directly enter the human body from the environment and may fuel carcinogenesis by modulating cell cycle proteins, redox homeostasis, and mutations. Heavy metals such as cadmium, mercury, arsenic, lead, chromium, and nickel, along with organic pollutants like PAHs, PCBs, PBDEs, PFAS, and radioactive elements, play a crucial role in inducing malignancy. Effective collection, sorting, proper recycling, and appropriate disposal techniques are essential to reduce environmental contamination with e-waste-derived chemicals. Hence, this comprehensive review aims to unravel the global environmental burden of e-waste and its links to carcinogenesis in humans. Furthermore, it provides an inclusive discussion on potential treatment approaches to minimize environmental e-waste contamination.
Collapse
Affiliation(s)
- Md Abdullah
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Sudharani Hazra
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
5
|
Wei Y, Zhang Y, Ji Q, Yang S, Yang F. Association of per- and polyfluoroalkylated substances/heavy metals and bone health in children and adolescents. Front Public Health 2024; 12:1431001. [PMID: 39450387 PMCID: PMC11499139 DOI: 10.3389/fpubh.2024.1431001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Background Research on the correlation between exposure to per- and polyfluoroalkylated substances (PFASs)/heavy metals and bone health during childhood and adolescence is limited. Considering their role as endocrine disruptors, we examined relationships of six PFASs and three heavy metals with bone mineral density (BMD) in children and adolescents using representative samples from the National Health and Nutrition Examination Survey (NHANES). Methods The study included 622 participants aged 12-19. The relationship between single pollutant and lumbar spine and total BMD was studied using linear regression analyses. Additionally, Bayesian Kernel Machine Regression (BKMR) models were applied to assess the joint effects of multiple PFASs and heavy metals exposure on the lumbar spine and total BMD. Results Statistically significant differences were noted in the serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), blood lead (Pb), and blood manganese (Mn) between male and female participants (all p < 0.05). Single-exposure studies have shown that Mn was negatively correlated with lumbar spine BMD and total BMD. Multivariate linear regression models revealed that, in the male group, total bone density decreased as the blood PFOA levels [95% CI = (-0.031, -0.001), p = 0.040] and blood manganese levels [95% CI = (-0.009, -0.002), p = 0.004] increased. Similarly, lumbar spine bone density decreased as the blood manganese levels [95% CI = (-0.011, -0.002), p = 0.009] increased. In the female group, total bone density decreased as the serum PFNA levels [95% CI = (-0.039, 0.000), p = 0.048] increased. As shown in the BKMR model, the joint effects of pollutant mixtures, including Mn, were negatively associated with both the lumbar spine and total BMD. Among the pollutants analyzed, Mn appeared to be the primary contributor to this negative association. Conclusion This study suggests that exposure to certain PFASs and heavy metals may be associated with poor bone health. Childhood and adolescence are crucial stages for bone development, and improper exposure to PFASs and heavy metals during these stages could potentially jeopardize future bone health, consequently raising the risk of osteoporosis in adulthood.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuxiao Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiaoyun Ji
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Sufei Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
7
|
Luo Y, Li X, Li J, Gong X, Wu T, Li X, Li Z, Zhai Y, Wei Y, Wang Y, Jiang G. Prenatal Exposure of PFAS in Cohorts of Pregnant Women: Identifying the Critical Windows of Vulnerability and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13624-13635. [PMID: 39051940 DOI: 10.1021/acs.est.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cohorts of pregnant women in 2018 and 2020 were selected to explore prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS). Maternal serum during the whole pregnancy (first to third trimesters) and matched cord serum were collected for the analysis of 50 PFAS. Perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 6:2 fluorotelomer sulfonic acid (6:2 FTS) were the dominant PFAS in both the maternal and cord serum. The median ∑PFAS concentration was 14.18 ng/mL, and the ∑PFAS concentration was observed to decline from the first trimester to the third trimester. The transplacental transfer efficiencies (TTE) of 29 PFAS were comprehensively assessed, and a "U"-shaped trend in TTE values with increasing molecular chain length of perfluoroalkyl carboxylic acid (PFCA) was observed in this study. Moreover, the maternal concentrations of 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (6:2 Cl-PFESA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), PFOS, and hexafluoropropylene oxide dimer acid (HFPO-DA) in the 2020 cohort were significantly lower than those in the 2018 cohort, declining by about 23.85-43.2% from 2018 to 2020 (p < 0.05). Higher proportions of emerging PFAS were observed in fetuses born in 2020. This birth cohort was collected during the COVID-19 epidemic period. The change in the PFAS exposure scene might be in response to the different exposure profiles of the 2018 and 2020 cohorts, which are attributed to the impact of COVID-19 on the social activities and environment of pregnant women. Finally, by application of a multiple informant model, the third trimester was identified as the critical window of vulnerability to PFAS exposure that affects birth weight and birth length.
Collapse
Affiliation(s)
- Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Xiaona Li
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoli Gong
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Tianchen Wu
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xuening Li
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujia Zhai
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wei
- Department of Pharmacy and Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
9
|
George AJ, Birnbaum LS. Dioxins vs. PFAS: Science and Policy Challenges. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:85003. [PMID: 39133093 PMCID: PMC11318569 DOI: 10.1289/ehp14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Dioxin-like chemicals are a group of ubiquitous environmental toxicants that received intense attention in the last two decades of the 20th century. Through extensive mechanistic research and validation, the global community has agreed upon a regulatory strategy for these chemicals that centers on their common additive activation of a single receptor. Applying these regulations has led to decreased exposure in most populations studied. As dioxin-like chemicals moved out of the limelight, research and media attention has turned to other concerning contaminants, including per- and polyfluoroalkyl substances (PFAS). During the 20th century, PFAS were also being quietly emitted into the environment, but only in the last 20 years have we realized the serious threat they pose to health. There is active debate about how to appropriately classify and regulate the thousands of known PFAS and finding a solution for these "forever chemicals" is of the utmost urgency. OBJECTIVES Here, we compare important features of dioxin-like chemicals and PFAS, including the history, mechanism of action, and effective upstream regulatory strategies, with the objective of gleaning insight from the past to improve strategies for addressing PFAS. DISCUSSION The differences between these two chemical classes means that regulatory strategies for dioxin-like chemicals will not be appropriate for PFAS. PFAS exert toxicity by both receptor-based and nonreceptor-based mechanisms, which complicates mixtures evaluation and stymies efforts to develop inexpensive assays that accurately capture toxicity. Furthermore, dioxin-like chemicals were unwanted byproducts, but PFAS are useful and valuable, which has led to intense resistance against efforts to restrict their production. Nonetheless, useful lessons can be drawn from dioxin-like chemicals and applied to PFAS, including eliminating nonessential production of new PFAS and proactive investment in environmental remediation to address their extraordinarily long environmental persistence. https://doi.org/10.1289/EHP14449.
Collapse
Affiliation(s)
- Alex J. George
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Linda S. Birnbaum
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Kashobwe L, Sadrabadi F, Brunken L, Coelho ACMF, Sandanger TM, Braeuning A, Buhrke T, Öberg M, Hamers T, Leonards PEG. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Toxicology 2024; 506:153862. [PMID: 38866127 DOI: 10.1016/j.tox.2024.153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industrial and consumer products. They have gained attention due to their ubiquitous occurrence in the environment and potential for adverse effects on human health, often linked to immune suppression, hepatotoxicity, and altered cholesterol metabolism. This study aimed to explore the impact of ten individual PFAS, 3 H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP/Adona), ammonium perfluoro-(2-methyl-3-oxahexanoate) (HFPO-DA/GenX), perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) on the lipid metabolism in human hepatocyte-like cells (HepaRG). These cells were exposed to different concentrations of PFAS ranging from 10 µM to 5000 µM. Lipids were extracted and analyzed using liquid chromatography coupled with mass spectrometry (LC- MS-QTOF). PFOS at 10 µM and PFOA at 25 µM increased the levels of ceramide (Cer), diacylglycerol (DAG), N-acylethanolamine (NAE), phosphatidylcholine (PC), and triacylglycerol (TAG) lipids, while PMPP/Adona, HFPO-DA/GenX, PFBA, PFBS, PFHxA, and PFHxS decreased the levels of these lipids. Furthermore, PFOA and PFOS markedly reduced the levels of palmitic acid (FA 16.0). The present study shows distinct concentration-dependent effects of PFAS on various lipid species, shedding light on the implications of PFAS for essential cellular functions. Our study revealed that the investigated legacy PFAS (PFOS, PFOA, PFBA, PFDA, PFHxA, PFHxS, and PFNA) and alternative PFAS (PMPP/Adona, HFPO-DA/GenX and PFBS) can potentially disrupt lipid homeostasis and metabolism in hepatic cells. This research offers a comprehensive insight into the impacts of legacy and alternative PFAS on lipid composition in HepaRG cells.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lars Brunken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Carolina M F Coelho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
11
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
- Elena Morales-Grahl
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Pacyga DC, Papandonatos GD, Rosas L, Whalen J, Smith S, Park JS, Gardiner JC, Braun JM, Schantz SL, Strakovsky RS. Associations of per- and polyfluoroalkyl substances with maternal early second trimester sex-steroid hormones. Int J Hyg Environ Health 2024; 259:114380. [PMID: 38657330 PMCID: PMC11127781 DOI: 10.1016/j.ijheh.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND/AIMS Pregnant women are exposed to persistent environmental contaminants, including per- and polyfluoroalkyl substances (PFAS) that disrupt thyroid function. However, it is unclear if PFAS alter maternal sex-steroid hormone levels, which support pregnancy health and fetal development. METHODS In Illinois women with relatively high socioeconomic status (n = 460), we quantified perfluorononanoic (PFNA), perfluorooctane sulfonic (PFOS), perfluorooctanoic (PFOA), methyl-perfluorooctane sulfonamide acetic acid, perfluorohexanesulphonic (PFHxS), perfluorodecanoic (PFDeA), and perfluoroundecanoic (PFUdA) acid concentrations in fasting serum samples at median 17 weeks gestation, along with plasma progesterone, testosterone, and estradiol. We evaluated covariate-adjusted associations of ln-transformed hormones with each ln-transformed PFAS individually using linear regression and with the PFAS mixture using quantile-based g-computation (QGComp). RESULTS Interquartile range (IQR) increases in PFOS were associated with higher progesterone (%Δ 3.0; 95%CI: -0.6, 6.6) and estradiol (%Δ: 8.1; 95%CI: 2.2, 14.4) levels. Additionally, PFHxS was positively associated with testosterone (%Δ: 10.2; 95%CI: 4.0, 16.7), whereas both PFDeA and PFUdA were inversely associated with testosterone (%Δ: -5.7; 95%CI: -10.3, -0.8, and %Δ: -4.1; 95%CI: -7.6, -0.4, respectively). The IQR-standardized PFAS mixture was not associated with progesterone (%Δ: 1.6; 95%CI: -5.8, 9.2), due equal partial positive (%Δ: 9.2; driven by PFOA) and negative (%Δ: -7.4; driven by PFOS) mixture associations. Similarly, the mixture was not associated with testosterone (%Δ: 5.3; 95%CI: -9.0, 20.1), due to similar partial positive (%Δ: 23.6; driven by PFHxS) and negative (%Δ: -17.4; driven by PFDeA) mixture associations. However, we observed a slightly stronger partial positive (%Δ: 25.6; driven by PFOS and PFUdA) than negative (%Δ: -16.3; driven by PFOA) association resulting in an overall non-significant positive trend between the mixture and estradiol (%Δ: 8.5; 95%CI: -3.7, 20.9). CONCLUSION PFAS mixture modeled using QGComp was not associated with maternal sex-steroid hormones due to potential opposing effects of certain PFAS. Additional prospective studies could corroborate these findings.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Libeth Rosas
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94158, USA
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Dauwe Y, Mary L, Oliviero F, Dubois L, Rousseau-Bacquie E, Gomez J, Gayrard V, Mselli-Lakhal L. Synergistic Steatosis Induction in Mice: Exploring the Interactions and Underlying Mechanisms between PFOA and Tributyltin. Cells 2024; 13:940. [PMID: 38891072 PMCID: PMC11171786 DOI: 10.3390/cells13110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), Ecole Nationale Veterinaire de Toulouse (ENVT), INP-Purpan, Université Paul Sabatier (UPS), 31027 Toulouse, France; (Y.D.); (L.M.); (F.O.); (L.D.); (E.R.-B.); (J.G.); (V.G.)
| |
Collapse
|
14
|
Park YT, Chung EY, Chae CH, Lee YH. Association between serum perfluoroalkyl substances concentrations and non-alcoholic fatty liver disease among Korean adults: a cross-sectional study using the National Environmental Health Survey cycle 4. Ann Occup Environ Med 2024; 36:e10. [PMID: 38872635 PMCID: PMC11168940 DOI: 10.35371/aoem.2024.36.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
Background Perfluoroalkyl substances (PFAS) are widely used in industry and daily life due to their useful properties. They have a long half-life, accumulate in the body, and there is evidence that they are associated with biomarkers of lipid metabolism and liver damage. This may suggest non-alcoholic fatty liver disease (NAFLD) caused by PFAS. However, since there has been no study analyzing the relationship between PFAS and NAFLD in the entire population in Korea. We sought to confirm the relationship between serum PFAS concentration and NAFLD prevalence in Korean adults using the Korean National Environmental Health Survey (KoNEHS) cycle 4. Methods The study was conducted on 2,529 subjects in 2018-2019 among KoNEHS participants. For the diagnosis of NAFLD, the hepatic steatosis index (HSI) was used, and the geometric mean and concentration distribution of serum PFAS were presented. Logistic regression was performed to confirm the increase in the risk of NAFLD due to changes in PFAS concentration, and the odds ratio and 95% confidence interval (CI) were calculated. Results In both adjusted and unadjusted models, an increased odds ratio was observed with increasing serum concentrations of total PFAS and perfluorooctane sulfonate (PFOS) in the non-obese group. In the adjusted model, the odds ratios for serum total PFAS and PFOS were 6.401 (95% CI: 1.883-21.758) and 7.018 (95% CI: 2.688-18.319). Conclusions In this study, a higher risk of NAFLD based on HSI was associated with serum total PFAS, PFOS in non-obese group. Further research based on radiological or histological evidence for NAFLD diagnosis and long-term prospective studies are necessary. Accordingly, it is necessary to find ways to reduce exposure to PFAS in industry and daily life.
Collapse
Affiliation(s)
- Yong Tae Park
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eui Yup Chung
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Chang Ho Chae
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Hoon Lee
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
15
|
Tian Q, Yang Y, An Q, Li Y, Wang Q, Zhang P, Zhang Y, Zhang Y, Mu L, Lei L. Association of exposure to multiple perfluoroalkyl and polyfluoroalkyl substances and glucose metabolism in National Health and Nutrition Examination Survey 2017-2018. Front Public Health 2024; 12:1370971. [PMID: 38633237 PMCID: PMC11021729 DOI: 10.3389/fpubh.2024.1370971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Objective To investigate the relationships between perfluoroalkyl and polyfluoroalkyl substances (PFASs) exposure and glucose metabolism indices. Methods Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 waves were used. A total of 611 participants with information on serum PFASs (perfluorononanoic acid (PFNA); perfluorooctanoic acid (PFOA); perfluoroundecanoic acid (PFUA); perfluorohexane sulfonic acid (PFHxS); perfluorooctane sulfonates acid (PFOS); perfluorodecanoic acid (PFDeA)), glucose metabolism indices (fasting plasma glucose (FPG), homeostasis model assessment for insulin resistance (HOMA-IR) and insulin) as well as selected covariates were included. We used cluster analysis to categorize the participants into three exposure subgroups and compared glucose metabolism index levels between the subgroups. Least absolute shrinkage and selection operator (LASSO), multiple linear regression analysis and Bayesian kernel machine regression (BKMR) were used to assess the effects of single and mixed PFASs exposures and glucose metabolism. Results The cluster analysis results revealed overlapping exposure types among people with higher PFASs exposure. As the level of PFAS exposure increased, FPG level showed an upward linear trend (p < 0.001), whereas insulin levels demonstrated a downward linear trend (p = 0.012). LASSO and multiple linear regression analysis showed that PFNA and FPG had a positive relationship (>50 years-old group: β = 0.059, p < 0.001). PFOA, PFUA, and PFHxS (≤50 years-old group: insulin β = -0.194, p < 0.001, HOMA-IR β = -0.132, p = 0.020) showed negative correlation with HOMA-IR/insulin. PFNA (>50 years-old group: insulin β = 0.191, p = 0.018, HOMA-IR β = 0.220, p = 0.013) showed positive correlation with HOMA-IR/insulin, which was essentially the same as results that obtained for the univariate exposure-response map in the BKMR model. Association of exposure to PFASs on glucose metabolism indices showed positive interactions between PFOS and PFHxS and negative interactions between PFOA and PFNA/PFOS/PFHxS. Conclusion Our study provides evidence that positive and negative correlations between PFASs and FPG and HOMA-IR/insulin levels are observed, respectively. Combined effects and interactions between PFASs. Given the higher risk of glucose metabolism associated with elevated levels of PFAS, future studies are needed to explore the potential underlying mechanisms.
Collapse
Affiliation(s)
- Qinghua Tian
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yutong Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Qi An
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Qingyao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Ping Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yue Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yingying Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Wu M, Zhu Z, Wan R, Xu J. Exposure to per- and polyfluoroalkyl substance and metabolic syndrome: A nationally representative cross-sectional study from NHANES, 2003-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123615. [PMID: 38402937 DOI: 10.1016/j.envpol.2024.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Per- and polyfluoroalkyl substances(PFAS) are widespread organic pollutants with endocrine-disrupting effects on human health, but the association of PFAS exposure with metabolic syndrome remains conflicting. National Health and Nutrition Examination Survey(NHANES) program was utilized to evaluate the association of individual PFAS exposure and metabolic disorders and further determined the joint effect of PFAS co-exposures. 13921 participants and five PFAS exposures(PFHxS, MPAH, PFDE, PFNA, and PFUA) were included for analysis. The association between individual PFAS and metabolic syndrome varied in the specific PFAS and the specific metabolic disorder examined. PFHxS was negatively associated with obesity(Q4; OR = 0.75; P < 0.001), but positively associated with hyperlipidemia (Q3; OR = 1.2; P = 0.013). PFUA was negatively associated with obesity (Q4; OR = 0.6; P < 0.001), hyperlipidemia (Q3; OR = 0.85; P = 0.03), and non-alcoholic fatty liver disease (NAFLD, Q4; OR = 0.64; P = 0.015), but positively associated with hyperglycemia(Q3; OR = 1.27; P = 0.004). Furthermore, PFAS co-exposures were negatively associated with obesity(OR = 0.63; P < 0.001) and NAFLD(OR = 0.85; P = 0.021), and positively associated with hyperlipidemia(OR = 1.05; P = 0.022), but not significantly associated with hyperglycemia or hypertension. Overall, there was a negative association between PFAS co-exposures and metabolic severity score(β = -0.15; P < 0.001). Subgroup analysis stratified by gender and obesity consistently showed the negative association of PFAS co-exposures with metabolic severity score, and the positive association with hyperlipidemia. However, subgroup analysis showed a negative association with NAFLD in females but not in males, and a negative association with hyperglycemia in the obesity group, but not in the non-obesity group. Collectively, our study showed a negative association of PFAS co-exposures with metabolic syndrome severity score, but did not support a consistent association between PFAS co-exposures and individual components of metabolic syndrome. Additionally, there were gender-specific as well as BMI-specific differences in these associations. Further studies are needed to rule out the reverse causality and clarify the relationship of PFAS co-exposures with the specific metabolic disorder.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangyue Xu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
18
|
Reimann B, Remy S, Koppen G, Schoeters G, Den Hond E, Nelen V, Franken C, Covaci A, Bruckers L, Baeyens W, Loots I, van Larebeke N, Voorspoels S, De Henauw S, Nawrot TS, Plusquin M. Prenatal exposure to mixtures of per- and polyfluoroalkyl substances and organochlorines affects cognition in adolescence independent of postnatal exposure. Int J Hyg Environ Health 2024; 257:114346. [PMID: 38447259 DOI: 10.1016/j.ijheh.2024.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Studies on cognitive and neurodevelopmental outcomes have shown inconsistent results regarding the association with prenatal exposure to perfluoroalkyl substance (PFAS) and organochlorines. Assessment of mixture effects of correlated chemical exposures that persist in later life may contribute to the unbiased evaluation and understanding of dose-response associations in real-life exposures. METHODS For a subset of the 4th Flemish Environment and Health Study (FLEHS), concentrations of four PFAS and six organochlorines were measured in respectively 99 and 153-160 cord plasma samples and 15 years later in adolescents' peripheral serum by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Sustained and selective attention were measured at 14-15 years with the Continuous Performance Test (CPT) and Stroop Test as indicators of potential neurodevelopmental deficits. Quantile g-computation was applied to assess the joint associations between prenatal exposure to separate and combined groups of PFAS and organochlorines and performance in the CPT and Stroop Test at adolescence. Subsequently, individual effects of each chemical compound were analyzed in mixed effects models with two sets of covariates. Analytical data at birth and at the time of cognitive assessment allowed for off-setting postnatal exposure. RESULTS In mixtures analysis, a simultaneous one-quantile increase in the natural log-transformed values of PFAS and organochlorines combined was associated with a decrease in the mean reaction time (RT) and the reaction time variability (RTV) in the CPT (β = -15.54, 95% CI:-29.64, -1.45, and β = -7.82, 95% CI: -14.97, -0.67 respectively) and for the mixture of PFAS alone with RT (β = -11.94, 95% CI: -23.29, -0.60). In the single pollutant models, these results were confirmed for the association between perfluorohexanesulfonate (PFHxS) with RT (β = -17.95, 95% CI = -33.35, -2.69) and hexachlorobenzene with RTV in the CPT (β = -5.78, 95% CI: -10.39, -0.76). Furthermore, the participants with prenatal exposure above the limit of quantification for perfluorononanoic acid (PFNA) had a significantly shorter RT and RTV in the CPT (β = -23.38, 95% CI: -41.55, -5.94, and β = -9.54, 95% CI: -19.75, -0.43, respectively). CONCLUSION Higher prenatal exposure to a PFAS mixture and a mixture of PFAS and organochlorines combined was associated with better sustained and selective attention during adolescence. The associations seemed to be driven by PFHxS and were not linked to exposure levels at the time of assessment.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Sylvie Remy
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Gudrun Koppen
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Greet Schoeters
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium; Family Medicine and Population Health (FAMPOP), University of Antwerp, Gouverneur Kingsbergencentrum, Doornstraat 331, 2610, Wilrijk, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Liesbeth Bruckers
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, 3590, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Belgium
| | - Ilse Loots
- University of Antwerp, Department of Sociology (CRESC and IMDO), Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Nicolas van Larebeke
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Belgium; Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Stefan Voorspoels
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Environmental Toxicology Unit, Mol, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
19
|
Heinsberg LW, Niu S, Arslanian KJ, Chen R, Bedi M, Unasa-Apelu F, Fidow UT, Soti-Ulberg C, Conley YP, Weeks DE, Ng CA, Hawley NL. Characterization of per- and polyfluoroalkyl substances (PFAS) concentrations in a community-based sample of infants from Samoa. CHEMOSPHERE 2024; 353:141527. [PMID: 38401869 PMCID: PMC10997188 DOI: 10.1016/j.chemosphere.2024.141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n = 66) and infant dried blood spots (DBS) collected at 4 months post-birth (n = 50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 10 detected in >50% of samples (PFBA, PFPeA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); and 12 analytes were detected in DBS, with 3 detected in >50% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted suggestive (p < 0.05) or significant (p < 0.006) associations between higher PFHxS and male sex; higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA); lower PFUnA and 9Cl-PF3ONS and greater socioeconomic resources; lower PFOA and higher parity; higher PFDA and higher maternal age; and lower PFUnA, PFTrDA, and 9Cl-PF3ONS and higher maternal BMI. In DBS, we found suggestive (p < 0.05) or significant (p < 0.025) associations between lower PFBA and residence in NWU versus AUA; lower PFBA and PFHxS and higher maternal age; and higher PFBA and higher maternal BMI. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study represents the first characterization of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shan Niu
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kendall J Arslanian
- Department of Social and Behavioral Sciences, Yale University School of Public Health, New Haven, CT, USA.
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Megha Bedi
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Folla Unasa-Apelu
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa.
| | | | | | - Yvette P Conley
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel E Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Carla A Ng
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA.
| |
Collapse
|
20
|
Hong X, Tao L, Guo L, Luo L, Lv J, Li R, Hu J, Gao C, Wang H, Xu DX, Cheng ZZ, Mai BX, Tang Q, Huang Y. PFASs in Cerebrospinal Fluids and Blood-CSF Barrier Permeability in Patients with Cognitive Impairment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5129-5138. [PMID: 38385684 DOI: 10.1021/acs.est.3c10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Attention has been drawn to the associations between PFASs and human cognitive decline. However, knowledge on the occurrence and permeability of PFASs in the brains of patients with cognitive impairment has not been reported. Here, we determined 30 PFASs in paired sera and cerebrospinal fluids (CSFs) from patients with cognitive impairment (n = 41) and controls without cognitive decline (n = 18). We revealed similar serum PFAS levels but different CSF PFAS levels, with lower CSF PFOA (median: 0.125 vs 0.303 ng/mL, p < 0.05), yet higher CSF PFOS (0.100 vs 0.052 ng/mL, p < 0.05) in patients than in controls. Blood-brain transfer rates also showed lower RCSF/Serum values for PFOA and higher RCSF/Serum values for PFOS in patients, implying potential heterogeneous associations with cognitive function. The RCSF/Serum values for C4-C14 perfluoroalkyl carboxylates exhibited a U-shape trend with increasing chain length. Logistic regression analyses demonstrated that CSF PFOS levels were linked to the heightened risk of cognitive impairment [odds ratio: 3.22 (1.18-11.8)] but not for serum PFOS. Toxicity inference results based on the Comparative Toxicogenomics Database suggested that PFOS in CSF may have a greater potential to impair human cognition than other PFASs. Our results contribute to a better understanding of brain PFAS exposure and its potential impact on cognitive function.
Collapse
Affiliation(s)
- Xiaowen Hong
- Department of Neurology, Anhui Provincial Hospital Affiliated to Anhui Medical University; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230032, Anhui, China
| | - Lin Tao
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Lin Luo
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Ruonan Li
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Chang Gao
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Zhao-Zhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230032, Anhui, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiqiang Tang
- Department of Neurology, Anhui Provincial Hospital Affiliated to Anhui Medical University; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230032, Anhui, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health; Center for Big Data and Population Health of IHM; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
21
|
Ren W, Wang Z, Guo H, Gou Y, Dai J, Zhou X, Sheng N. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123314. [PMID: 38218542 DOI: 10.1016/j.envpol.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.
Collapse
Affiliation(s)
- Wanlan Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yong Gou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Hampson HE, Costello E, Walker DI, Wang H, Baumert BO, Valvi D, Rock S, Jones DP, Goran MI, Gilliland FD, Conti DV, Alderete TL, Chen Z, Chatzi L, Goodrich JA. Associations of dietary intake and longitudinal measures of per- and polyfluoroalkyl substances (PFAS) in predominantly Hispanic young Adults: A multicohort study. ENVIRONMENT INTERNATIONAL 2024; 185:108454. [PMID: 38316574 PMCID: PMC11089812 DOI: 10.1016/j.envint.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.
Collapse
Affiliation(s)
- Hailey E Hampson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, the United States of America
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, the United States of America
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, the United States of America
| | - Michael I Goran
- Department of Pediatrics, Keck School of Medicine, USC and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, the United States of America
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, the United States of America
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America.
| |
Collapse
|
23
|
Pang L, Li M, Dukureh A, Li Y, Ma J, Tang Q, Wu W. Association between prenatal perfluorinated compounds exposure and risk of pregnancy complications: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116017. [PMID: 38290316 DOI: 10.1016/j.ecoenv.2024.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Per- and polyfluoroalkyl substances (PFASs) have been shown to be persistent and bioaccumulative. An elevated danger of pregnancy complications perhaps connected with exposure to PFASs, but the potential effects remain elusive. The objective of this study is to investigate the possible association between PFASs exposure and pregnancy complications, drawing upon existing evidence. METHODS Electronic databases of PubMed, Qvid Medline, Embase, and Web of Science were searched thoroughly to identify eligible research published prior to November 28, 2023, examining the relationship between PFASs and pregnancy-related complications. To evaluate the quality of observational studies incorporated into the article, the Strengthening Reporting of Observational Studies in Epidemiology (STROBE) tool was utilized. The main outcomes assessed in this study included gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP), gestational hypertension (GH), and preeclampsia (PE). RESULTS Twenty-five relevant studies involving 30079 participants were finally selected from four databases. The combined estimates indicate that prenatal exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), and perfluoroenanthic acid (PFHpA) is associated with gestational diabetes mellitus (GDM) (PFOA: OR = 1.45, 95%CI: 1.07-1.94, P = 0.015; PFHxS: OR = 1.16, 95%CI: 1.00-1.36, P = 0.055; PFBS: OR = 1.44, 95%CI: 1.16-1.79, P = 0.001; PFHpA: OR = 1.41, 95%CI: 1.10-1.82, P = 0.008). The exposure to PFBS is positively associated with HDP (OR = 1.27, 95%CI: 1.14-1.41, P < 0.001), while both PFOA and PFHpA demonstrate statistically significant positive correlations with GH (PFOA: OR = 1.09, 95%CI: 1.00-1.19, P = 0.049; PFHpA: OR = 1.43, 95%CI: 1.15-1.78, P = 0.001). Negative correlations were observed for prenatal perfluorododecanoic acid (PFDoA) exposure and GH (OR = 0.71, 95%CI: 0.57-0.87, P = 0.001). However, no compelling evidence was identified to link PFASs exposure with the risk of PE. CONCLUSION According to the meta-analysis findings, exposure to PFASs may be linked to GDM, HDP, and GH, but it does not significantly raise the risk of PE alone. Further research with larger sample size is required to verify this potential association and explore the biological mechanisms.
Collapse
Affiliation(s)
- Liya Pang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mei Li
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Abdoulie Dukureh
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China
| | - Jinqi Ma
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Wei Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
24
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
25
|
Frangione B, Birk S, Benzouak T, Rodriguez-Villamizar LA, Karim F, Dugandzic R, Villeneuve PJ. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:131-146. [PMID: 37907715 PMCID: PMC10824662 DOI: 10.1038/s41366-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially obesogenic for children. We undertook a systematic review to synthesize this literature and explore sources of heterogeneity in previously published epidemiological studies. METHODS Studies that collected individual-level PFAS and anthropometric data from children up to 12 years of age were identified by searching six databases. We excluded studies that only evaluated obesity measures at the time of birth. A full-text review and quality assessment of the studies was performed using the Office of Health Assessment and Translation (OHAT) criteria. Forest plots were created to summarize measures of association and assess heterogeneity across studies by chemical type and exposure timing. Funnel plots were used to assess small-study effects. RESULTS We identified 24 studies, of which 19 used a cohort design. There were 13 studies included in the meta-analysis examining various chemicals and outcomes. Overall prenatal exposures to four different types of PFAS were not statistically associated with changes in body mass index (BMI) or waist circumference. In contrast, for three chemicals, postnatal exposures were inversely related to changes in BMI (i.e., per log10 increase in PFOS: BMI z-score of -0.16 (95% CI: -0.22, -0.10)). There was no substantial heterogeneity in the reported measures of association within prenatal and postnatal subgroups. We observed modest small-study effects, but correction for these effects using the Trim and Fill method did not change our summary estimate(s). CONCLUSION Our review found no evidence of a positive association between prenatal PFAS exposure and pediatric obesity, whereas an inverse association was found for postnatal exposure. These findings should be interpreted cautiously due to the small number of studies. Future research that can inform on the effects of exposure mixtures, the timing of the exposure, outcome measures, and the shape of the exposure-response curve is needed.
Collapse
Affiliation(s)
- Brianna Frangione
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Sapriya Birk
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Tarek Benzouak
- Faculty of Medicine, McGill University, H3A 0G4, Montreal, Canada
| | - Laura A Rodriguez-Villamizar
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
- Faculty of Health, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Fatima Karim
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | | | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada.
- CHAIM Research Centre, Carleton University, K1S 5B6, Ottawa, Canada.
| |
Collapse
|
26
|
Yang X, Zheng L, Zhang J, Wang H. Prenatal exposure to per-and polyfluoroalkyl substances and child executive function: Evidence from the Shanghai birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 183:108437. [PMID: 38232503 DOI: 10.1016/j.envint.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Per-and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and accumulate in humans. Toxicological studies have indicated the potential neurotoxicity of PFAS during the fetal development. However, in epidemiological studies, the association between prenatal exposure to PFAS and executive function in offspring remains unclear. OBJECTIVES To investigate the association between prenatal exposure to PFAS and executive function in offspring. METHOD This study included 1765 mother-child pairs in the Shanghai Birth Cohort, a prospective birth cohort enrolled during 2013-2016. The levels of 10 PFAS were measured in maternal plasma samples collected during early gestation. Child executive function was assessed at 4 years of age using the parent-reported Behavior Rating Inventory of Executive Function-Preschool version (BRIEF-P), which provided 4 composite measures: Inhibitory Self-Control Index, Flexibility Index, Emergent Metacognition Index, and Global Executive Composite. We used multivariable linear regression to examine the associations between individual PFAS and BRIEF-P scores. Bayesian kernel machine regression (BKMR) was employed to evaluate the joint effects. We also investigated whether these associations were modified by sex. RESULT We found no significant associations between prenatal PFAS exposure and BRIEF-P scores when the child was 4 years old. BKMR analysis showed no joint effect of the PFAS mixture on child executive function. RCS analysis indicated that the majority of relationships between PFAS and BRIEF-P did not deviate from the linear relationship, even though there was a nonlinear association between PFUA and EMI. Additionally, the associations were not modified by sex. CONCLUSION Overall, our findings showed that there were no associations between prenatal exposure to PFAS and child executive function at 4 years of age.
Collapse
Affiliation(s)
- Xuchen Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Bakrim S, El Omari N, Khan EJ, Khalid A, Abdalla AN, Chook JB, Goh KW, Ming LC, Aboulaghras S, Bouyahya A. Phytosterols activating nuclear receptors are involving in steroid hormone-dependent cancers: Myth or fact? Biomed Pharmacother 2023; 169:115783. [PMID: 37944439 DOI: 10.1016/j.biopha.2023.115783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia.
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
28
|
Hollister J, Caban-Martinez AJ, Ellingson KD, Beitel S, Fowlkes AL, Lutrick K, Tyner HL, Naleway AL, Yoon SK, Gaglani M, Hunt D, Meece J, Mayo Lamberte J, Schaefer Solle N, Rose S, Dunnigan K, Khan SM, Kuntz JL, Fisher JM, Coleman A, Britton A, Thiese MS, Hegmann KT, Pavuk M, Ramadan FA, Fuller S, Nematollahi A, Sprissler R, Burgess JL. Serum per- and polyfluoroalkyl substance concentrations and longitudinal change in post-infection and post-vaccination SARS-CoV-2 antibodies. ENVIRONMENTAL RESEARCH 2023; 239:117297. [PMID: 37816422 PMCID: PMC10842580 DOI: 10.1016/j.envres.2023.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/17/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination.
Collapse
Affiliation(s)
- James Hollister
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences and Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, USA
| | - Katherine D Ellingson
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Shawn Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Karen Lutrick
- College of Medicine - Tucson, University of Arizona, Tucson, AZ, USA
| | | | - Allison L Naleway
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | - Sarang K Yoon
- University of Utah Health, Rocky Mountain Center for Occupational and Environmental Health, USA
| | - Manjusha Gaglani
- Baylor Scott and White Health, Temple, TX, USA; Texas A&M University College of Medicine, Temple, TX, USA
| | | | | | | | - Natasha Schaefer Solle
- Department of Public Health Sciences and Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, USA
| | | | | | - Sana M Khan
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer L Kuntz
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | | | - Alissa Coleman
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Matthew S Thiese
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
| | - Kurt T Hegmann
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, CDC, Atlanta, GA, USA
| | - Ferris A Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | | | - Amy Nematollahi
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ryan Sprissler
- University of Arizona Genetics Core, Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
29
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
30
|
Yan W, Bai R, Zheng Q, Yang X, Shi Y, Yang R, Jiang C, Wang X, Li X. Concentrations and association between exposure to mixed perfluoroalkyl and polyfluoroalkyl substances and glycometabolism among adolescents. Ann Med 2023; 55:2227844. [PMID: 37354023 PMCID: PMC10291925 DOI: 10.1080/07853890.2023.2227844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/07/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used for industrial and commercial purposes and have received increasing attention due to their adverse effects on health. OBJECTIVE To examine the relationship of serum PFAS and glycometabolism among adolescents based on the US National Health and Nutrition Examination Survey. METHODS General linear regression models were applied to estimate the relationship between exposure to single PFAS and glycometabolism. Weighted quantile sum (WQS) regression models and Bayesian kernel machine regressions (BKMR) were used to assess the associations between multiple PFASs mixture exposure and glycometabolism. RESULTS A total of 757 adolescents were enrolled. Multivariable regression model showed that Me-PFOSA-AcOH exposure was negatively associated with fasting blood glucose. WQS index showed that there was marginal negative correlation between multiple PFASs joint exposure and the homeostasis model of assessment for insulin resistance index (HOMA-IR) (β = -0.26, p < .068), and PFHxS had the largest weight. BKMR models showed that PFASs mixture exposure were associated with decreased INS and HOMA-IR, and the exposure-response relationship had curvilinear shape. CONCLUSIONS The increase in serum PFASs were associated with a decrease in HOMA-IR among adolescents. Mixed exposure models could more accurately and effectively reveal true exposure.Key MessagesThe detection rates of different PFAS contents in adolescent serum remained diverse.Adolescent serum PFASs had negative curvilinear correlation with INS and HOMA-IR levels.PFHxS had the highest weight in the associations between multiple PFASs and adolescent glycometabolism.
Collapse
Affiliation(s)
- Wu Yan
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruhai Bai
- School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China
| | - Qingqing Zheng
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanan Shi
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Yang
- Department of Prevention and Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Jiang
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Institute of Pediatric Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Guo P, Jin Z, Bellia G, Luo J, Inoue K, Pollitt KJG, Deziel NC, Liew Z. Per- and polyfluoroalkyl substances and sleep health in U.S. adults, NHANES 2005-2014. ENVIRONMENTAL RESEARCH 2023; 237:117092. [PMID: 37683785 DOI: 10.1016/j.envres.2023.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that induce oxidative inflammatory responses and disrupt the endocrine and central nervous systems, all of which can influence sleep. OBJECTIVE To investigate the association between PFAS exposure and sleep health measures in U.S. adults. METHODS We analyzed serum concentration data of four PFAS [perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] reported for 8913 adults in NHANES 2005-2014. Sleep outcomes, including trouble sleeping, having a diagnosis of sleep disorder, and recent daily sleep duration classified as insufficient or excessive sleep (<6 or >9 h/day) were examined. Weighted logistic regression was used to estimate the association between the sleep outcomes and each PFAS modeled continuously (log2) or in exposure tertiles. We applied quantile g-computation to estimate the effect of the four PFAS as a mixture on the sleep outcomes. We conducted a quantitative bias analysis to assess the potential influence of self-selection and uncontrolled confounding. RESULTS We observed some inverse associations between serum PFAS and trouble sleeping or sleep disorder, which were more consistent for PFOS (e.g., per log2-PFOS (ng/ml) and trouble sleeping OR = 0.93, 95%CI: 0.89, 0.98; sleep disorder OR = 0.89, 95%CI: 0.83, 0.95). Per quartile increase of the PFAS mixture was inversely associated with trouble sleeping and sleep disorder. No consistent associations were found for sleep duration across analyses. Our bias analysis suggests that the finding on sleep disorder could be explained by a moderate level of self-selection and negative confounding effects. CONCLUSIONS We found no evidence to suggest exposure to four legacy PFAS worsened self-reported sleep health among U.S. adults. While some inverse associations between specific PFAS and sleep disorder were observed, self-selection and uncontrolled confounding biases may play a role in these findings.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, USA.
| | - Giselle Bellia
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| | - Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, USA.
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Japan.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
32
|
Heinsberg LW, Niu S, Arslanian KJ, Chen R, Bedi M, Unasa-Apelu F, Fidow UT, Soti-Ulberg C, Conley YP, Weeks DE, Ng CA, Hawley NL. Characterization of Per- and Polyfluoroalkyl Substance (PFAS) concentrations in a community-based sample of infants from Samoa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298357. [PMID: 37986966 PMCID: PMC10659488 DOI: 10.1101/2023.11.10.23298357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa, where there is more recent modernization and potential window to examine earlier stages of PFAS exposure and consequences. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n=66) and dried blood spots (DBS) collected at 4 months post-birth (n=50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 11 detected in >10% of samples (PFBA, PFPeA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); 12 analytes were detected in DBS, with 3 detected in >10% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted associations between higher PFHxS and male sex, higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA), and lower PFUnA and 9Cl-PF3ONS with greater socioeconomic resources. In DBS, we found associations between higher PFBA and greater socioeconomic resources, and between lower PFBA and PFHxS and residence in NWU versus AUA. However, the latter association did not hold when controlling for socioeconomic resources. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study presents the first evidence of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.
Collapse
|
33
|
Wang M, Song B, Song T, Sun K, He J, Deng J, Fang L, Luan T, Lin L. Efflux transport proteins of Tetrahymena thermophila play important roles in resistance to perfluorooctane sulfonate exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132287. [PMID: 37591171 DOI: 10.1016/j.jhazmat.2023.132287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The biotoxicity of perfluorooctane sulfonate (PFOS) has been a concern. However, the effects of PFOS on Tetrahymena thermophila, a unicellular model organism, remain unclear. This study aimed to investigate the toxicity and detoxification mechanism of PFOS in this protozoan. PFOS did not show prominent toxic effects on T. thermophila. Cell viability of T. thermophila can be concentration-dependently increased by PFOS. PFOS also increased the stability of cell membranes and the activity of lysosomes. However, PFOS inhibited efflux transporter activities. Most of the PFOS amount remained in the culture medium during the culture periods. Only a low amount of PFOS was absorbed by cells, where PFOS molecules were mainly combined with membrane proteins. The expressions of four membrane protein genes involved in transporting xenobiotics were analyzed by real time-PCR. The gene abcg25 was significantly up-regulated. The growth of abcg25 gene knockout protozoans under PFOS treatment was slightly inhibited. However, the amount of PFOS adsorbed by the knockout protozoans showed no significant difference from the Wild-type protozoans. We concluded that the ABCG25 protein might play a key role in preventing PFOS from entering the cell or being exported from the cells to protect T. thermophila against PFOS. However, ABCG25 was not the only membrane protein able to bind with PFOS.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingyu Song
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianyu Song
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kailun Sun
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin He
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiewei Deng
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Fang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Lin
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
34
|
Ogunsuyi OM, Fasakin PT, Ajibiye OP, Ogunsuyi OI, Adekoya KO. Perfluoroundecanoic acid induces DNA damage, reproductive and pathophysiological dysfunctions via oxidative stress in male Swiss mice. CHEMOSPHERE 2023; 338:139491. [PMID: 37453524 DOI: 10.1016/j.chemosphere.2023.139491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Perfluoroundecanoic acid (PFUnA) is an eleven carbon-chain compound that belongs to the perfluoroalkyl carboxylic acid family. It has been detected in the human blood, effluents, and surface/ground waters, but its toxic effects to the DNA and reproductive system remain unclear. This study was aimed at exploring the toxicity of PFUnA on the hepatic DNA, organ-system and reproductive system in orally treated male Swiss mice. In this present study, administration of PFUnA for 28 days with five doses (0.1, 0.3, 05, 0.7 and 1.0 mg kg-1 b.w./d) in male Swiss mice induced significant hepatic DNA damage which was observed using the alkaline comet assay and equally altered hematological and clinical biochemical parameters. In addition to testicular atrophy, sperm count and sperm motility significantly decreased while sperm abnormalities increased after 35 days exposure. Serum LH and FSH levels were remarkably increased while serum testosterone levels were strikingly reduced. Histopathology revealed the liver, kidney, and testis as potential targets of PFUnA toxicity. Increased activities of superoxide dismutase (SOD) and catalase (CAT), as well as levels of glutathione-s-transferase (GST) and reduced glutathione (GSH), with consistent reduction of glutathione peroxidase (GPx) and reduced glutathione (GSH) in the liver and testis induced oxidative stress. In conclusion, PFUnA exhibited both genotoxicity and reproductive toxicity via oxidative stress induction.
Collapse
Affiliation(s)
- Opeoluwa M Ogunsuyi
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria.
| | - Peter T Fasakin
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Oluwatobi P Ajibiye
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Science, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Khalid O Adekoya
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| |
Collapse
|
35
|
Beck IH, Bilenberg N, Möller S, Nielsen F, Grandjean P, Højsager FD, Halldorsson TI, Nielsen C, Jensen TK. Association Between Prenatal and Early Postnatal Exposure to Perfluoroalkyl Substances and IQ Score in 7-Year-Old Children From the Odense Child Cohort. Am J Epidemiol 2023; 192:1522-1535. [PMID: 37119029 DOI: 10.1093/aje/kwad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are persistent chemicals capable of crossing the placenta and passing into breast milk. Evidence suggests that PFAS exposure may affect brain development. We investigated whether prenatal or early postnatal PFAS exposure was associated with intelligence quotient (IQ) scores in schoolchildren from the Odense Child Cohort (Denmark, 2010-2020). We assessed concentrations of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in maternal serum collected during the first trimester of pregnancy and in child serum at age 18 months. At 7 years of age, children completed an abbreviated version of the Wechsler Intelligence Scale for Children, Fifth Edition, from which Full Scale Intelligence Quotient (FSIQ) and Verbal Comprehension Index scores were estimated. In multiple linear regression analyses conducted among 967 mother-child pairs, a doubling in maternal PFOS and PFNA concentrations was associated with a lower FSIQ score, while no significant associations were observed for PFOA, PFHxS, or PFDA. PFAS concentrations at age 18 months and duration of breastfeeding were strongly correlated, and even in structural equation models it was not possible to differentiate between the opposite effects of PFAS exposure and duration of breastfeeding on FSIQ. PFAS exposure is ubiquitous; therefore, an association with even a small reduction in IQ is of public health concern.
Collapse
|
36
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
37
|
Kim JH, Moon N, Ji E, Moon HB. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per- and poly-fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: a korean mother-infant pair cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96384-96399. [PMID: 37572253 DOI: 10.1007/s11356-023-29292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can promote infant neurodevelopmental impairment and maternal postpartum depression (PPD). However, the associations between lactation exposure to EDCs, maternal PPD, and infant neurodevelopment are unclear. Hence, we investigated these relationships in infants aged 36-42 months. We recruited 221 Korean mothers and analyzed 29 EDCs. The Edinburgh Postnatal Depression Scale (EPDS) was used to assess maternal PPD. Bayley scales of infant development; the Swanson, Nolan, and Pelham rating scale (SNAP); and the Child Behavior Checklist (CBCL) were used to assess neurodevelopment in infants exposed to the top 30% of EDC over three years. Multiple regression analyses were adjusted for maternal age, pre-pregnancy body mass index, education, income, employment, residence, and infant age and sex. The rates of infants with clinically abnormal diagnoses on neurologic developmental tests (Balyey, SNAP, and CBCL scales) ranged from 7.7 to 38.5% in this study, with the motor and hyperactivity/impulsivity areas scoring the highest among 65 boys and girls. Mono-2-ethylhexyl phthalate (MEHP) and mono-isononyl phthalate (MiNP) levels in breast milk significantly correlated with infant inattention and hyperactivity. Perfluorononanoic acid (PFNA) and perfluorooctyl sulfonate (PFOS) levels correlated significantly with motor development of BSID-III and total CBCL score which mean infant might have lower developmental status. EDC concentrations in breast milk were not associated with maternal PPD. Overall, lactational exposure to EDCs during the postpartum period can exert a negative effect on maternal PPD and infant neurodevelopment.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea.
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea
| | - Eunsun Ji
- Department of Nursing, Konkuk University Global Campus, Chungju, 27478, Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
38
|
Zhang F, Liu L, Hu J, Fu H, Li H, Chen J, Yang C, Guo Q, Liang X, Wang L, Guo Y, Dai J, Sheng N, Wang J. Accumulation and glucocorticoid signaling suppression by four emerging perfluoroethercarboxylic acids based on animal exposure and cell testing. ENVIRONMENT INTERNATIONAL 2023; 178:108092. [PMID: 37463541 DOI: 10.1016/j.envint.2023.108092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Various perfluoroethercarboxylic acids (PFECA) have emerged as next-generation replacements of legacy per- and polyfluoroalkyl substances (PFAS). However, there is a paucity of information regarding their bioaccumulation ability and hazard characterization. Here, we explored the accumulation and hepatotoxicity of four PFECA compounds (HFPO-DA, HFPO-TA, PFO4DA, and PFO5DoDA) in comparison to perfluorooctanoic acid (PFOA) after chronic low-dose exposure in mice. Except for HFPO-DA, the levels of all tested PFAS in the liver exceeded that in serum. High molecular weight PFECA compounds (PFO5DoDA and HFPO-TA) showed stronger accumulation capacity and longer half-lives (t1/2) than low molecular weight PFECA compounds (HFPO-DA and PFO4DA) and even legacy PFOA. Although hepatomegaly is a common apical end point of PFAS exposure, the differentially expressed gene (DEG) profiles in the liver suggested significant differences between PFOA and the four PFECA compounds. Gene enrichment analysis supported a considerable inhibitory effect of PFECA, but not PFOA, on the glucocorticoid receptor (GR) signaling pathway. Both HFPO-TA and PFO5DoDA demonstrated a more pronounced ability to perturb RNA expression profiles in vivo and to suppress GR signaling in vitro compared to HFPO-DA and PFO4DA. Calculated reference doses (RfDs) emphasized the potential hazard of PFECA to human health. Overall, our findings indicate that PFECA alternatives do not ease the concerns raised from legacy PFAS pollution.
Collapse
Affiliation(s)
- Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingrong Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaotian Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
39
|
Zheng L, Wang Z, Yang R, Chen W, Zhang J, Li R, Lv W, Lin B, Luo J. The interference between effects of PFAS exposure on thyroid hormone disorders and cholesterol levels: an NHANES analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90949-90959. [PMID: 37468783 DOI: 10.1007/s11356-023-28739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Studies have documented that per- and polyfluoroalkyl substance (PFAS) exposures are associated with thyroid hormones (TH) and lipid levels. This study investigates whether these effects interfere with each other. We analyzed data on 3954 adults in the US National Health and Nutrition Examination Survey (NHANES; 2007-2012). TH disorder was defined using thyroid hormones. Serum high-density lipoprotein (HDL) cholesterol, total cholesterol, and six types of PFAS were included. Weighted quantile sum (WQS) regression was used to estimate the overall effect of PFAS mixture on TH disorder and cholesterols, respectively. Potential confounders, including age, race, gender, education, household poverty, smoking, and alcohol drinking, were adjusted. PFAS mixture was associated increased risk for TH disorder (odds ratio = 1.21, 95% confidence interval (CI): 1.02, 1.43), higher HDL cholesterol (linear coefficient = 1.31, 95% CI: 0.50, 2.11), and higher total cholesterol (linear coefficient = 5.30, 95% CI: 3.40, 7.21). TH disorder was associated with higher HDL cholesterol (linear coefficient = 2.30, 95% CI: 0.50, 2.11), but not total cholesterol. When adjusted for TH disorder, the effect estimates of PFAS mixture remain roughly unchanged on HDL cholesterol (linear coefficient = 1.13, 95% CI: 0.28, 1.98) and total cholesterol (linear coefficient = 5.61, 95% CI: 3.58, 7.63). Sex modified the effect of PFAS mixture on HDL cholesterol (P for interaction: 0.04) but did not change the interaction between PFAS and TH disorder on cholesterols. We corroborated the adverse health effects of PFAS exposure on TH and lipids; however, these two effects appear to be independent of and not interfere with each other.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhecun Wang
- Department of Vascular Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Rui Yang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wanna Chen
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jing Zhang
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ruixia Li
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weiming Lv
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Bo Lin
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiajun Luo
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
41
|
Niu S, Cao Y, Chen R, Bedi M, Sanders AP, Ducatman A, Ng C. A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76002. [PMID: 37418334 DOI: 10.1289/ehp11885] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear. OBJECTIVES This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge. METHODS We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives. RESULTS The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression. DISCUSSION Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuexin Cao
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Ducatman
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Yim G, McGee G, Gallagher L, Baker E, Jackson BP, Calafat AM, Botelho JC, Gilbert-Diamond D, Karagas MR, Romano ME, Howe CG. Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. CHEMOSPHERE 2023; 329:138644. [PMID: 37031836 PMCID: PMC10208216 DOI: 10.1016/j.chemosphere.2023.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed to investigate the joint, class-specific, and individual impacts of (i) PFAS, (ii) toxic metals and metalloids (referred to collectively as "metals"), and (iii) essential elements on birth outcomes in a prospective pregnancy cohort using both established and recent mixture modeling approaches. Participants included 537 mother-child pairs from the New Hampshire Birth Cohort Study. Concentrations of 6 metals and 5 PFAS were measured in maternal toenail clippings and plasma, respectively. Birth weight, birth length, and head circumference at birth were abstracted from medical records. Joint, index-wise, and individual associations of the metals and PFAS concentrations with birth outcomes were evaluated using Bayesian Kernel Machine Regression (BKMR) and Bayesian Multiple Index Models (BMIM). After controlling for potential confounders, the metals-PFAS mixture was associated with a larger head circumference at birth, which was driven by manganese. When using BKMR, the difference in the head circumference z-score when changing manganese from its 25th to 75th percentiles while holding all other mixture components at their medians was 0.22 standard deviations (95% posterior credible interval [CI]: -0.02, 0.46). When using BMIM, the posterior mean of index weight estimates assigned to manganese for head circumference z-score was 0.72 (95% CI: 0, 0.99). Prenatal exposure to the metals-PFAS mixture was not associated with birth weight or birth length by either BKMR or BMIM. Using both traditional and new mixture modeling approaches, prenatal exposure to manganese was associated with a larger head circumference at birth after accounting for exposure to PFAS and multiple toxic and essential metals.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Lisa Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
43
|
Wu S, Daston G, Rose J, Blackburn K, Fisher J, Reis A, Selman B, Naciff J. Identifying chemicals based on receptor binding/bioactivation/mechanistic explanation associated with potential to elicit hepatotoxicity and to support structure activity relationship-based read-across. Curr Res Toxicol 2023; 5:100108. [PMID: 37363741 PMCID: PMC10285556 DOI: 10.1016/j.crtox.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The liver is the most common target organ in toxicology studies. The development of chemical structural alerts for identifying hepatotoxicity will play an important role in in silico model prediction and help strengthen the identification of analogs used in structure activity relationship (SAR)- based read-across. The aim of the current study is development of an SAR-based expert-system decision tree for screening of hepatotoxicants across a wide range of chemistry space and proposed modes of action for clustering of chemicals using defined core chemical categories based on receptor-binding or bioactivation. The decision tree is based on ∼ 1180 different chemicals that were reviewed for hepatotoxicity information. Knowledge of chemical receptor binding, metabolism and mechanistic information were used to group these chemicals into 16 different categories and 102 subcategories: four categories describe binders to 9 different receptors, 11 categories are associated with possible reactive metabolites (RMs) and there is one miscellaneous category. Each chemical subcategory has been associated with possible modes of action (MOAs) or similar key structural features. This decision tree can help to screen potential liver toxicants associated with core structural alerts of receptor binding and/or RMs and be used as a component of weight of evidence decisions based on SAR read-across, and to fill data gaps.
Collapse
|
44
|
Wang Y, Howe C, Gallagher LG, Botelho JC, Calafat AM, Karagas MR, Romano ME. Per- and Polyfluoroalkyl Substances (PFAS) Mixture during Pregnancy and Postpartum Weight Retention in the New Hampshire Birth Cohort Study (NHBCS). TOXICS 2023; 11:450. [PMID: 37235264 PMCID: PMC10223499 DOI: 10.3390/toxics11050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), widely used in industrial and consumer products, are suspected metabolic disruptors. We examined the association between a PFAS mixture during pregnancy and postpartum weight retention in 482 participants from the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate, perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate, were quantified in maternal plasma collected at ~28 gestational weeks. Postpartum weight change was calculated as the difference between self-reported weight from a postpartum survey administered in 2020 and pre-pregnancy weight abstracted from medical records. Associations between PFAS and postpartum weight change were examined using Bayesian kernel machine regression and multivariable linear regression, adjusting for demographic, reproductive, dietary, and physical activity factors; gestational week of blood sample collection; and enrollment year. PFOS, PFOA, and PFNA were positively associated with postpartum weight retention, and associations were stronger among participants with a higher pre-pregnancy body mass index. A doubling of PFOS, PFOA, and PFNA concentrations was associated with a 1.76 kg (95%CI: 0.31, 3.22), 1.39 kg (-0.27, 3.04), and 1.04 kg (-0.19, 2.28) greater postpartum weight retention, respectively, among participants who had obesity/overweight prior to pregnancy. Prenatal PFAS exposure may be associated with increased postpartum weight retention.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Lisa G. Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Margaret R. Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E. Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
45
|
Wang C, Fu H, Yang J, Liu L, Zhang F, Yang C, Li H, Chen J, Li Q, Wang X, Ye Y, Sheng N, Guo Y, Dai J, Xu G, Liu X, Wang J. PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130831. [PMID: 36696776 DOI: 10.1016/j.jhazmat.2023.130831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) are a worldwide health concern due to their potential bioaccumulation and toxicity in humans. A variety of perfluoroether carboxylic acids (PFECAs) have been developed as next-generation replacements of legacy PFASs. However, information regarding their possible environmental and human health risks is limited. In the present study, we explored the effects of PFECAs on mice based on long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA). Results showed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly. PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the liver. Importantly, PFECAs had an inhibitory effect on the glucocorticoid receptor (GR), which may contribute to the extensive suppression of stress signals. Of note, the GR suppression induced by PFECAs was not reported by legacy perfluorooctanoic acid (PFOA). PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased fatty acids and amino acids and increased β-oxidation. Mechanistically, PFO5DoDA inhibited GR transactivation by degradation of GR proteins. Our results emphasize the potential risk of PFECAs to human health, which were introduced to ease concerns regarding legacy PFASs.
Collapse
Affiliation(s)
- Chang Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jun Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
46
|
Associations of per- and polyfluoroalkyl substances and alternatives with reproductive hormones in women of childbearing age. Int J Hyg Environ Health 2023; 250:114158. [PMID: 36934548 DOI: 10.1016/j.ijheh.2023.114158] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Experimental studies suggested that per- and polyfluoroalkyl substances (PFAS) may have endocrine-disrupting effects. However, the epidemiological evidence on the associations of PFAS with female reproductive hormones is sparse and limited to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). OBJECTIVE To evaluate effects of legacy and emerging PFAS alternatives on female reproductive hormones. METHODS A total of 433 reproductive-aged females were recruited from 2014 to 2016. Information on age, age at menarche, gravity, menstrual cycle, BMI, education, and income was obtained from medical records and questionnaires. Serum samples were collected for reproductive hormones, and plasma samples for PFAS measurement by ultraperformance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). Multiple linear regression and quantile g-computation (q-gcomp) were used to examine the associations of individual PFAS and their mixture with reproductive hormones. RESULTS Multiple linear regression analysis showed significant effects of certain PFAS on total testosterone (TT): adjusted estimate (β) for perfluoroheptanoic acid (PFHpA) was 0.57 (95% CI: 0.18, 0.97). Moreover, a positive association was detected between PFAS mixture and TT in the q-gcomp model. Higher concentrations of 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) were associated with significantly lower prolactin level (β = -0.07, 95% CI: -0.14, -0.001). CONCLUSION Our study found that exposure to PFAS alternatives was associated with altered levels of reproductive hormones in women of childbearing age.
Collapse
|
47
|
Khan EA, Grønnestad R, Krøkje Å, Bartosov Z, Johanson SM, Müller MHB, Arukwe A. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture. ENVIRONMENT INTERNATIONAL 2023; 173:107838. [PMID: 36822005 DOI: 10.1016/j.envint.2023.107838] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In the present study, we have investigated liver lipid homeostasis and corresponding changes in transcript and functional product levels in A/J mice exposed to environmental relevant concentration of per- and polyfluoroalkyl substances (PFAS) mixture. Mice were fed environmentally relevant concentrations of a PFAS mixture during a period of 10 weeks. The concentrations of the 8 individual PFAS in the mixture were chosen based on measured concentrations in earthworms at a Norwegian skiing area. Our data show high liver accumulation of ∑PFAS in exposed mice, which paralleled significant elevation in body weight and hepatosomatic index (HSI) of male mice. UPC2 -MS/MS analysis in both positive and negative mode, respectively, indicated significant differences between control and exposure groups in the liver of exposed mice. Principal component analysis (PCA) of the features revealed separation of control and exposure groups in both sexes. From the significantly differential 207 lipids, only 72 were identified and shown to belong to eight different lipid classes. PCA of fatty acids (FAs) profile showed a clear separation between control and PFAS exposure groups in both female and male mice, with differential abundant levels of 5 and 4 hydrolyzed FAs, respectively. Transcript and protein analysis of genes associated with lipid homeostasis (ppar-α and β, lxr-α and β, rxr, fasn and srebp) showed that PFAS exposure produced sex- and individual response related alterations. Glutathione reductase (Gr) activity showed exposure-related changes in both female and male mice, compared with controls. Overall, the present study has demonstrated changes in lipid metabolism after PFAS exposure, showing that PFAS accumulation in the liver resulted to hepatotoxic effects, potential interference with membrane lipid profile and homeostasis, and oxidative stress. Given the structural similarity with FAs, interaction between PFAS and nuclear receptors such as PPARs may have severe consequences for general health and physiology in exposed animals and humans.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zdenka Bartosov
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Modahl Johanson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
48
|
Qin W, Henneberger L, Huchthausen J, König M, Escher BI. Role of bioavailability and protein binding of four anionic perfluoroalkyl substances in cell-based bioassays for quantitative in vitro to in vivo extrapolations. ENVIRONMENT INTERNATIONAL 2023; 173:107857. [PMID: 36881956 DOI: 10.1016/j.envint.2023.107857] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFAS) are persistent and pose a risk to human health. High throughput screening (HTS) cell-based bioassays may inform risk assessment of PFAS provided that quantitative in vitro to in vivo extrapolation (QIVIVE) can be developed. The QIVIVE ratio is the ratio of nominal (Cnom) or freely dissolved concentration (Cfree) in human blood to Cnom or Cfree in the bioassays. Considering that the concentrations of PFAS in human plasma and in vitro bioassays may vary by orders of magnitude, we tested the hypothesis that anionic PFAS bind to proteins concentration-dependently and therefore the binding differs substantially between human plasma and bioassays, which has an impact on QIVIVE. Solid phase microextraction (SPME) with C18-coated fibers served to quantify the Cfree of four anionic PFAS (perfluorobutanoate (PFBA), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS)) in the presence of proteins and lipid, medium components, cells and human plasma over five orders of magnitude in concentrations. The C18-SPME method was used to quantify the non-linear binding to proteins, human plasma and medium, and the partition constants to cells. These binding parameters were used to predict Cfree of PFAS in cell bioassays and human plasma by a concentration-dependent mass balance model (MBM). The approach was illustrated with a reporter gene assay indicating activation of the peroxisome proliferator-activated receptor gamma (PPARγ-GeneBLAzer). Blood plasma levels were collected from literature for occupational exposure and the general population. The QIVIVEnom ratios were higher than the QIVIVEfree ratios due to the strong affinity to proteins and large differences in protein contents between human blood and bioassays. For human health risk assessment, the QIVIVEfree ratios of many in vitro assays need to be combined to cover all health relevant endpoints. If Cfree cannot be measured, they can be estimated with the MBM and concentration-dependent distribution ratios.
Collapse
Affiliation(s)
- Weiping Qin
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr, 94-96, DE-72076 Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr, 94-96, DE-72076 Tübingen, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr, 94-96, DE-72076 Tübingen, Germany.
| |
Collapse
|
49
|
Ni H, Yuan J, Ji J, Guo Y, Zhong S, Lin Y, Zheng Y, Jiang Q. Long term toxicities following developmental exposure to perfluorooctanoic acid: Roles of peroxisome proliferation activated receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120722. [PMID: 36436667 DOI: 10.1016/j.envpol.2022.120722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread persistent organic pollutant. Fertile chicken eggs were exposed to PFOA and incubated to hatch. At three time points post hatch (0-, 1- and 3-months old), chickens were subjected to electrocardiography and sacrificed. Serum was subjected to LC-MS/MS for PFOA concentration, and organs were subjected to histopathological assessments. Additionally, PPARα-silencing lentivirus was co-applied with PFOA exposure, and the corresponding phenotypes were evaluated. Western blotting was performed to assess expressions of FABPs and pSMAD2 in heart and liver samples. Considerable amount of PFOA were detected in hatchling chicken serum, but not in one-month-old or three-month-old chicken serum. PFOA exposure resulted in developmental cardiotoxicity and hepatotoxicity in hatchling chickens. Meanwhile, one-month-old chickens still exhibited elevated heart rate, but classical cardiac remodeling (thicker right ventricular wall) were observed in exposed animals. Three-month-old chickens exhibited similar results as one-month-old ones. PPARα silencing only had partial protective effects in hatchling chickens, but the protective effects seemed to increase as chickens aged. Western blotting results indicated that L-FABP was involved in PFOA-induced hepatotoxicity, while pSMAD2 was involved in PFOA-induced cardiotoxicity. In summary, developmental exposure to PFOA resulted in persistent cardiotoxicity, but not hepatotoxicity. PPARα participates in both cardiotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
50
|
How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors-An In Silico Screening Study. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020479. [PMID: 36677537 PMCID: PMC9866891 DOI: 10.3390/molecules28020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
In this study, we investigated PFAS (per- and polyfluoroalkyl substances) binding potencies to nuclear hormone receptors (NHRs): peroxisome proliferator-activated receptors (PPARs) α, β, and γ and thyroid hormone receptors (TRs) α and β. We have simulated the docking scores of 43 perfluoroalkyl compounds and based on these data developed QSAR (Quantitative Structure-Activity Relationship) models for predicting the binding probability to five receptors. In the next step, we implemented the developed QSAR models for the screening approach of a large group of compounds (4464) from the NORMAN Database. The in silico analyses indicated that the probability of PFAS binding to the receptors depends on the chain length, the number of fluorine atoms, and the number of branches in the molecule. According to the findings, the considered PFAS group bind to the PPARα, β, and γ only with low or moderate probability, while in the case of TR α and β it is similar except that those chemicals with longer chains show a moderately high probability of binding.
Collapse
|